1
|
Jäger R, Heileson JL, Abou Sawan S, Dickerson BL, Leonard M, Kreider RB, Kerksick CM, Cornish SM, Candow DG, Cordingley DM, Forbes SC, Tinsley GM, Bongiovanni T, Cannataro R, Campbell BI, Arent SM, Stout JR, Kalman DS, Antonio J. International Society of Sports Nutrition Position Stand: Long-Chain Omega-3 Polyunsaturated Fatty Acids. J Int Soc Sports Nutr 2025; 22:2441775. [PMID: 39810703 PMCID: PMC11737053 DOI: 10.1080/15502783.2024.2441775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.Diets rich in ω-3 PUFA, including supplements, are effective strategies for increasing ω-3 PUFA levels.ω-3 PUFA supplementation, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has been shown to enhance endurance capacity and cardiovascular function during aerobic-type exercise.ω-3 PUFA supplementation may not confer a muscle hypertrophic benefit in young adults.ω-3 PUFA supplementation in combination with resistance training may improve strength in a dose- and duration-dependent manner.ω-3 PUFA supplementation may decrease subjective measures of muscle soreness following intense exercise.ω-3 PUFA supplementation can positively affect various immune cell responses in athletic populations.Prophylactic ω-3 PUFA supplementation may offer neuroprotective benefits in athletes exposed to repeated head impacts.ω-3 PUFA supplementation is associated with improved sleep quality.ω-3 PUFA are classified as prebiotics; however, studies on the gut microbiome and gut health in athletes are currently lacking.
Collapse
Affiliation(s)
| | - Jeffery L. Heileson
- Walter Reed National Military Medical Center, Nutrition Services Division, Bethesda, MD, USA
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | - Broderick L. Dickerson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Stephen M. Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Graduate Studies, University of Manitoba, Winnipeg, Canada
| | - Scott C. Forbes
- Department of Physical Education Studies, Brandon University, Brandon, Canada
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Tindaro Bongiovanni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Player Health & Performance Department, Palermo Football Club, Palermo, Italy
| | - Roberto Cannataro
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Research Division, Dynamical Business & Science Society – DBSS International SAS, Bogotá, Colombia, USA
| | - Bill I. Campbell
- Performance& Physique Enhancement Laboratory, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Shawn M. Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Douglas S. Kalman
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
2
|
Fossli M, Øhman EA, Andal M, Løland BF, Holven KB, Brekke HK. Nutrient Intake Among Lactating Women With Overweight and Obesity in Norway: A Comparison With the Nordic Nutrition Recommendations 2023. J Hum Nutr Diet 2025; 38:e70000. [PMID: 39763277 PMCID: PMC11704453 DOI: 10.1111/jhn.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND During lactation, maternal requirements for many nutrients increase due to the physiological demands of breast milk production, reflected in dietary recommendations. BMI is negatively associated with dietary quality postpartum, and 40% of women in Norway have pre-pregnancy overweight and obesity. Currently, there is limited data on dietary intake among lactating women in Norway and whether they meet nutritional requirements. We aimed to evaluate the nutrient intake in a study sample of lactating women with overweight and obesity, compared with the Nordic Nutrition Recommendations (NNR 2023). METHODS In this cross-sectional analysis, we included baseline data from 112 lactating women with a pre-pregnancy BMI of 25-35 kg/m2, participating in a weight loss and breastfeeding promotion intervention trial in Oslo, Norway. Data were collected at 2 weeks postpartum (subject characteristics, anthropometry and dietary supplement use), at 7 weeks postpartum (dietary assessment) and post-weaning (retrospective dietary supplement use). Dietary data were obtained from a 4-day dietary record before randomisation to dietary treatment for weight loss. Nutrient intake was compared to the dietary reference values for lactating women in NNR 2023. Increased risk of inadequate intake of micronutrients was assessed as the proportion of women with intakes below the average requirement (AR), with and without dietary supplements. RESULTS Mean ± SD BMI at 2 weeks postpartum was 30.7 ± 2.5 kg/m2. At 7 weeks postpartum the women reported a mean energy intake of 9.2 ± 2.0 MJ/day, with a higher intake of saturated fat and a lower intake of carbohydrate, dietary fibre and docosahexaenoic acid than recommended. The majority had an increased risk of inadequate intake of vitamin A (92%), folate (92%), vitamin D (84%), selenium (87%) and iodine (71%) from the diet alone. When dietary supplements were taken into account, ≥ 50% of the women still had an increased risk of inadequate intake of vitamin A, folate and selenium. CONCLUSIONS The high proportion of lactating women with overweight and obesity failing to meet the newly updated Nordic Nutrition Recommendations highlights the need to raise awareness among new mothers and healthcare professionals about the increased maternal nutritional demands during lactation and hence, the importance of nutrient-dense diets.
Collapse
Affiliation(s)
- Maria Fossli
- Norwegian Research Centre for Women's HealthOslo University HospitalOsloNorway
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Elisabeth A. Øhman
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Malin Andal
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Beate F. Løland
- Cluster for Research and Analysis of the Health ServicesNorwegian Institute of Public HealthOsloNorway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive MedicineOslo University HospitalOsloNorway
| | - Hilde K. Brekke
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
3
|
Shirodkar SS, Babre N. The role of nutrition in neurodegeneration. THE NEURODEGENERATION REVOLUTION 2025:167-202. [DOI: 10.1016/b978-0-443-28822-7.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Mititelu M, Lupuliasa D, Neacșu SM, Olteanu G, Busnatu ȘS, Mihai A, Popovici V, Măru N, Boroghină SC, Mihai S, Ioniță-Mîndrican CB, Scafa-Udriște A. Polyunsaturated Fatty Acids and Human Health: A Key to Modern Nutritional Balance in Association with Polyphenolic Compounds from Food Sources. Foods 2024; 14:46. [PMID: 39796335 PMCID: PMC11719865 DOI: 10.3390/foods14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are vital dietary elements that play a significant role in human nutrition. They are highly regarded for their positive contributions to overall health and well-being. Beyond the fact that they provide a substantial supply of energy to the body (a role that saturated fats can also perform), these unsaturated fatty acids and, especially, the essential ones are involved in cell membrane structure, blood pressure regulation, and coagulation; participate in the proper functioning of the immune system and assimilation of fat-soluble vitamins; influence the synthesis of pro- and anti-inflammatory substances; and protect the cardiovascular system. Modern diets like the Western diet and the American diet are rich in saturated fats found especially in fast food products, sweets, and processed foods, a fact that has led to an increase in the prevalence of metabolic diseases worldwide (obesity, type II diabetes, gout, cardiovascular disease). Nutritionists have drawn attention to the moderate consumption of saturated fats and the need to increase the intake of unsaturated fats to the detriment of saturated ones. This paper examines the biochemical roles of polyunsaturated fats, particularly essential fatty acids, and contrasts their benefits with the detrimental effects of saturated fat overconsumption. Furthermore, it highlights the necessity for dietary shifts towards increased PUFA intake to mitigate the global burden of diet-related health issues. The co-occurrence of PUFAs and polyphenols in plant-based foods highlights the sophistication of nature's design. These bioactive compounds are not randomly distributed but are present in foods humans have consumed together historically. From traditional diets like the Mediterranean, which pairs olive oil (PUFAs and polyphenols) with vegetables and legumes, to Asian cuisines combining sesame seeds with turmeric, cultural practices have long harnessed this natural synergy.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.S.B.); (A.S.-U.)
| | - Andreea Mihai
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Violeta Popovici
- “Costin C. Kiriţescu” National Institute of Economic Research—Center for Mountain Economics (INCE-CEMONT) of Romanian Academy, 725700 Vatra-Dornei, Romania;
| | - Nicoleta Măru
- Department of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sebastian Mihai
- Department of Therapeutic Chemistry, Faculty of Pharmacy, “Ovidius“ University of Constanta, 6 Căpitan Aviator Al Șerbănescu Street, 900470 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Alexandru Scafa-Udriște
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.S.B.); (A.S.-U.)
| |
Collapse
|
5
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
6
|
Valero-Hernandez E, Tremoleda JL, Michael-Titus AT. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients 2024; 16:4175. [PMID: 39683568 DOI: 10.3390/nu16234175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) can lead to substantial disability and health loss. Despite its importance and impact worldwide, no treatment options are currently available to help protect or preserve brain structure and function following injury. In this review, we discuss the potential benefits of using omega-3 polyunsaturated fatty acids (O3 PUFAs) as therapeutic agents in the context of TBI in the paediatric and adult populations. Methods: Preclinical and clinical research reports investigating the effects of O3 PUFA-based interventions on the consequences of TBI were retrieved and reviewed, and the evidence presented and discussed. Results: A range of animal models of TBI, types of injury, and O3 PUFA dosing regimens and administration protocols have been used in different strategies to investigate the effects of O3 PUFAs in TBI. Most evidence comes from preclinical studies, with limited clinical data available thus far. Overall, research indicates that high O3 PUFA levels help lessen the harmful effects of TBI by reducing tissue damage and cell loss, decreasing associated neuroinflammation and the immune response, which in turn moderates the severity of the associated neurological dysfunction. Conclusions: Data from the studies reviewed here indicate that O3 PUFAs could substantially alleviate the impact of traumatic injuries in the central nervous system, protect structure and help restore function in both the immature and adult brains.
Collapse
Affiliation(s)
- Ester Valero-Hernandez
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
7
|
Monteiro JP, Sousa T, Melo T, Pires C, Marques A, Nunes ML, Calado R, Domingues MR. Unveiling the Lipid Features and Valorization Potential of Atlantic Salmon ( Salmo salar) Heads. Mar Drugs 2024; 22:518. [PMID: 39590798 PMCID: PMC11595946 DOI: 10.3390/md22110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The sustainable utilization of co-products derived from the salmon processing industry is crucial for enhancing the viability and decreasing the environmental footprint of both capture and aquaculture operations. Salmon (Salmo salar) is one of the most consumed fish worldwide and a major species produced in aquaculture. As such, significant quantities of salmon co-products are produced in pre-commercialization processing/steaking procedures. The present study characterized a specific co-product derived from the processing of salmon: minced salmon heads. More specifically, this work aimed to reveal the nutritional profile of this co-product, with a special focus on its lipid content, including thoroughly profiling fatty acids and fully appraising the composition in complex lipids (polar lipids and triglycerides) for the first time. The antioxidant potential of lipid extracts from this salmon co-product was also studied in order to bioprospect lipid functional properties and possibly unveil new pathways for added-value applications. Our analysis indicated that these minced salmon heads are exceptionally rich in lipids. Oleic acid is the most prevalent fatty acid in this co-product, followed by palmitic acid, stearic acid, and linoleic acid. Moreover, relevant lipid indexes inferred from the fatty acid composition of this co-product revealed good nutritional traits. Lipidome analysis revealed that triglycerides were clearly the predominant lipid class present in this co-product while phospholipids, as well as ceramides, were also present, although in minimal quantities. The bioprospecting of antioxidant activity in the lipid extracts of the minced salmon heads revealed limited results. Given the high concentration of triglycerides, minced salmon heads can constitute a valuable resource for industrial applications from the production of fish oil to biodiesel (as triglycerides can be easily converted into fatty acid methyl esters), as well as possible ingredients for cosmetics, capitalizing on their alluring emollient properties. Overall, the valorization of minced salmon heads, major co-products derived from the processing of one of the most intensively farmed fish in the world, not only offers economic benefits but also contributes to the sustainability of the salmon processing industry by reducing waste and promoting a more efficient use of marine bioresources.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.S.); (T.M.)
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CIVG—Vasco da Gama Research Center/EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Tiago Sousa
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.S.); (T.M.)
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.S.); (T.M.)
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pires
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (C.P.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - António Marques
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (C.P.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - Ricardo Calado
- ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.S.); (T.M.)
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Wang L, Yu C, Zhang Y, Xiao J, Liu ZY, Gao J. Associations of the intake of individual and multiple fatty acids with depressive symptoms among adults in NHANES 2007-2018. J Affect Disord 2024; 365:364-374. [PMID: 39173925 DOI: 10.1016/j.jad.2024.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/20/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Previous studies have mainly focused on the effects of individual fatty acids on depressive symptoms, while the combined effect of fatty acids on the risk of depressive symptoms has not yet been extensively reported. This study evaluate the associations between individual and multiple fatty acids with depressive symptoms in U.S. adults. METHODS Data sets were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2018 cycles. Both males and females aged above 18 years with complete information about dietary fatty acids intake, depression symptoms, and covariates were included. Weighted linear regression models were conducted to evaluate the relationships between individual fatty acid intake and depressive symptoms, and restricted cubic spline (RCS) models were utilized to explore the corresponding dose-response relationships. Additionally, we implemented the weighted quantile sum (WQS) regression and quantile g-computation (QGC) models to estimate the mixed effects of 19 fatty acids and identify the predominant types. RESULTS After multivariable adjustments, an increase of one unit in Linoleic acid (LA), Alpha-Linolenic Acid (ALA), Arachidonic acid (AA), Docosapentaenoic acid(DPA), Docosahexaenoic acid(DHA), was associated with a decrease in depressive scores by -0.021 (95 % CI: -0.039,-0.003, p = 0.021),-0.028 (95 % CI: -0.045,-0.011, p = 0.002),-0.026 (95 % CI: -0.044,-0.008, p = 0.005), -0.026 (95 % CI: -0.042,-0.009, p = 0.003), and - 0.022 (95 % CI: -0.041,-0.003, p = 0.022), respectively. However, a per unit increase in Hexanoic acid and Octanoic acid was associated with an increase in depressive scores of 0.020 (95 % CI: 0.002,0.038, p = 0.029) and 0.026 (95 % CI: 0.004,0.048, p = 0.020), respectively. Meanwhile, significant dose-response relationships were supported by the RCS models. As for the mixed effects, both WQS and QGC models demonstrated that the mixture of polyunsaturated fatty acids (PUFAs) was inversely related to depressive symptoms, and ALA and DPA were the most critical contributors. DHA was negatively correlated with depressive symptoms in WQS analysis, but positively correlated with depressive symptoms in QGC analysis. LIMITATIONS The cross-sectional design limits our ability to establish causality, and 24-hour dietary recall can lead to potential inaccuracies reflecting participants' true eating habits. CONCLUSION Our study suggests that the single effects of each PUFA were inversely associated with depressive symptoms, except for octadecatetraenoic acid. Moreover, higher combined intake of dietary PUFAs is inversely associated with depressive symptoms in U.S. adults. Among the mixed effects of PUFAs, ALA and DPA may play predominant roles. However, DHA mixed with other fatty acids may have different effects on depressive symptoms, and further study is needed.
Collapse
Affiliation(s)
- Lujie Wang
- Department of Psychiatry, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuanchuan Yu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Zhang
- Internal medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianyun Xiao
- Department of Psychiatry, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jian Gao
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Department of Epidemiology, School of Public Health, Guangzhou, China.
| |
Collapse
|
9
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
10
|
de Farias Fraga G, da Silva Rodrigues F, Jantsch J, Silva Dias V, Milczarski V, Wickert F, Pereira Medeiros C, Eller S, Gatto Barschak A, Giovenardi M, Padilha Guedes R. Omega-3 Attenuates Disrupted Neurotransmission and Partially Protects Metabolic Dysfunction Caused by Obesity in Wistar Rats. Neurochem Res 2024; 49:2763-2773. [PMID: 38960951 DOI: 10.1007/s11064-024-04201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Omega-3 (n3) is a polyunsaturated fatty acid well known for its anti-inflammatory and neuroprotective properties. Obesity is linked to chronic inflammation that disrupts metabolism, the intestine physiology and the central nervous system functioning. This study aims to determine if n3 supplementation can interfere with the effects of obesity on the mitochondrial activity, intestinal barrier, and neurotransmitter levels in the brain of Wistar rats that received cafeteria diet (CAF). We examined adipose tissue, skeletal muscle, plasma, intestine, and the cerebral cortex of four groups: CT (control diet), CTn3 (control diet with n3 supplementation), CAF, and CAFn3 (CAF and n3). Diets were offered for 13 weeks, with n3 supplementation in the final 5 weeks. Adipose tissue Electron Transport Chain complexes I, II, and III showed higher activity in CAF groups, as did complexes III and IV in skeletal muscle. Acetate levels in plasma were reduced in CAF groups, and Lipopolysaccharide (LPS) was higher in the CAF group but reduced in CAFn3 group. Claudin-5 in the intestine was lower in CAF groups, with no n3 supplementation effect. In the cerebral cortex, dopamine levels were decreased with CAF, which was reversed by n3. DOPAC, a dopamine metabolite, also showed a supplementation effect, and HVA, a diet effect. Serotonin levels increased in the CAF group that received supplementation. Therefore, we demonstrate disturbances in mitochondria, plasma, intestine and brain of rats submitted to CAF and the potential benefit of n3 supplementation in endotoxemia and neurotransmitter levels.
Collapse
Affiliation(s)
- Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victor Silva Dias
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Vitória Milczarski
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Fernanda Wickert
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Camila Pereira Medeiros
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alethéa Gatto Barschak
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
11
|
Pérez-Cabral ID, Bernal-Mercado AT, Islas-Rubio AR, Suárez-Jiménez GM, Robles-García MÁ, Puebla-Duarte AL, Del-Toro-Sánchez CL. Exploring Dietary Interventions in Autism Spectrum Disorder. Foods 2024; 13:3010. [PMID: 39335937 PMCID: PMC11431671 DOI: 10.3390/foods13183010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) involves social communication difficulties and repetitive behaviors, and it has a growing prevalence worldwide. Symptoms include cognitive impairments, gastrointestinal (GI) issues, feeding difficulties, and psychological problems. A significant concern in ASD is food selectivity, leading to nutrient deficiencies. Common GI issues in ASD, such as constipation and irritable bowel syndrome, stem from abnormal gut flora and immune system dysregulation. Sensory sensitivities and behavioral challenges exacerbate these problems, correlating with neurological symptom severity. Children with ASD also exhibit higher oxidative stress due to low antioxidant levels like glutathione. Therapeutic diets, including ketogenic, high-antioxidant, gluten-free and casein-free, and probiotic-rich diets, show potential in managing ASD symptoms like behavior, communication, GI issues, and oxidative stress, though the evidence is limited. Various studies have focused on different populations, but there is increasing concern about the impact among children. This review aims to highlight the food preferences of the ASD population, analyze the effect of the physicochemical and nutritional properties of foods on the selectivity in its consumption, GI problems, and antioxidant deficiencies in individuals with ASD, and evaluate the effectiveness of therapeutic diets, including diets rich in antioxidants, gluten-free and casein-free, ketogenic and essential fatty acids, and probiotic-rich diets in managing these challenges.
Collapse
Affiliation(s)
| | | | - Alma Rosa Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, SO, Mexico
| | | | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, JA, Mexico
| | | | | |
Collapse
|
12
|
Ayala-Aldana N, Pinar-Martí A, Ruiz-Rivera M, Fernández-Barrés S, Romaguera D, Casanova-Mollà J, Solà-Valls N, Julvez J. Original article: adolescent dietary patterns derived using principal component analysis and neuropsychological functions: a cross-sectional analysis of Walnuts Smart Snack cohort. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02577-6. [PMID: 39292245 DOI: 10.1007/s00787-024-02577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
A balanced diet is relevant for neuropsychological functioning. We aimed to analyze the association between dietary patterns and neuropsychological outcomes in a sample of healthy adolescents of the Walnuts Smart Snack (WSS) cohort from Barcelona city. We performed principal components analysis (PCA) to determine dietary patterns in the adolescent sample using a food frequency questionnaire (60 items). Multiple linear regression models were performed to analyze the association between PCA dietary patterns with neuropsychological outcomes: Strengths and Difficulties (SDQ) externalizing and internalizing scores, Attention Network Test (ANT) Impulsivity Index and Emotional Recognition Task (ERT) scores. We additionally adjusted the models for child sex, age, body mass index (BMI), physical activity and maternal education. Six dietary patterns were identified in PCA analyses. "low consumption of calorie-dense foods" dietary pattern had a negative association (protective) with the both SDQ outcomes (p value < 0.001) and "Nuts" dietary pattern showed a negative (protective) association with impulsivity index( β 1 = -24.60, 95% CI = -36.80, -12.41, p value < 0.001). Overall, our main results suggest that healthy dietary patterns, including higher intakes of "nuts" and a preference of "low consumption of calorie-dense foods" dietary patterns, could provide a beneficial association with neuropsychological functions during the adolescence period. The associations may include improvements of externalizing and internalizing problem symptoms, and impulsivity.
Collapse
Affiliation(s)
- Nicolas Ayala-Aldana
- Clinical and Epidemiological Neuroscience (NeuroÈ̇pia), Institut d'Investigació̇ Sanità̇ria Pere Virgili (IISPV), Reus, Spain.
- ISGlobal, Barcelona, Spain.
- University of Barcelona, Catalonia Barcelona, Spain.
| | - Ariadna Pinar-Martí
- Clinical and Epidemiological Neuroscience (NeuroÈ̇pia), Institut d'Investigació̇ Sanità̇ria Pere Virgili (IISPV), Reus, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Catalonia Barcelona, Spain
| | - Marina Ruiz-Rivera
- Clinical and Epidemiological Neuroscience (NeuroÈ̇pia), Institut d'Investigació̇ Sanità̇ria Pere Virgili (IISPV), Reus, Spain
- ISGlobal, Barcelona, Spain
| | | | - Dora Romaguera
- ISGlobal, Barcelona, Spain
- Institut d'Investigació Sanitaria Illes Balears (IdISBa), Palma, Spain
- CIBER Fisiopatologí̇a de la Obesidad y Nutrició̇n (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Casanova-Mollà
- Clinical and Epidemiological Neuroscience (NeuroÈ̇pia), Institut d'Investigació̇ Sanità̇ria Pere Virgili (IISPV), Reus, Spain
- Salut Sant Joan Reus - Baix Camp, Reus, Spain
| | - Nuria Solà-Valls
- Clinical and Epidemiological Neuroscience (NeuroÈ̇pia), Institut d'Investigació̇ Sanità̇ria Pere Virgili (IISPV), Reus, Spain
- Salut Sant Joan Reus - Baix Camp, Reus, Spain
| | - Jordi Julvez
- Clinical and Epidemiological Neuroscience (NeuroÈ̇pia), Institut d'Investigació̇ Sanità̇ria Pere Virgili (IISPV), Reus, Spain.
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Catalonia Barcelona, Spain.
- CIBER Fisiopatologí̇a de la Obesidad y Nutrició̇n (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Human Nutrition Unit, Reus, Spain.
| |
Collapse
|
13
|
Miyake Y, Tanaka K, Okubo H, Sasaki S, Arakawa M. Maternal fat intake in pregnancy and risk of depressive symptoms in Japanese adolescents: the Kyushu Okinawa Maternal and Child Health Study. Int J Food Sci Nutr 2024; 75:562-570. [PMID: 38932430 DOI: 10.1080/09637486.2024.2370351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The current prebirth cohort study investigated the association between maternal intake of specific types of fatty acids during pregnancy and adolescent depressive symptoms based on the Center for Epidemiologic Studies Depression Scale. Subjects were 873 mother-child pairs. Dietary intake during the preceding month was assessed using a self-administered diet history questionnaire. The risk of depressive symptoms was 23.3% among the 873 adolescents at 13 years of age. Higher maternal saturated fatty acid intake during pregnancy was independently associated with a reduced risk of depressive symptoms in adolescents. Maternal intake of total fat, monounsaturated fatty acids, n-3 polyunsaturated fatty acids, α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, n-6 polyunsaturated fatty acids, linoleic acid, arachidonic acid and cholesterol during pregnancy was not significantly related to depressive symptoms in adolescents. Higher maternal intake of saturated fatty acids during pregnancy may be inversely associated with adolescent depressive symptoms.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Integrated Medical and Agricultural School of Public Health, Ehime University, Ehime, Japan
- Research Promotion Unit, Translation Research Center, Ehime University Hospital, Ehime, Japan
- Center for Data Science, Ehime University, Ehime, Japan
- Department of Healthcare Data Science, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Keiko Tanaka
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Integrated Medical and Agricultural School of Public Health, Ehime University, Ehime, Japan
- Research Promotion Unit, Translation Research Center, Ehime University Hospital, Ehime, Japan
- Center for Data Science, Ehime University, Ehime, Japan
| | - Hitomi Okubo
- Department of Nutritional Epidemiology and Behavioural Nutrition, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Masashi Arakawa
- Wellness Research Fields, Faculty of Global and Regional Studies, University of the Ryukyus, Okinawa, Japan
- The Department of Cross Cultural Studies, Osaka University of Tourism, Okinawa, Japan
| |
Collapse
|
14
|
Gui J, Xie M, Wang L, Tian B, Liu B, Chen H, Cheng L, Huang D, Han Z, Yang X, Liu J, Jiang L. Protective effects of docosahexaenoic acid supplementation on cognitive dysfunction and hippocampal synaptic plasticity impairment induced by early postnatal PM2.5 exposure in young rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6563-6575. [PMID: 38459987 DOI: 10.1007/s00210-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
PM2.5 exposure is a challenging environmental issue that is closely related to cognitive development impairment; however, currently, relevant means for prevention and treatment remain lacking. Herein, we determined the preventive effect of docosahexaenoic acid (DHA) supplementation on the neurodevelopmental toxicity induced by PM2.5 exposure. Neonatal rats were divided randomly into three groups: control, PM2.5, and DHA + PM2.5 groups. DHA could ameliorate PM2.5-induced learning and memory dysfunction, as well as reverse the impairment of hippocampal synaptic plasticity, evidenced by enhanced long-term potentiation, recovered synaptic ultrastructure, and increased expression of synaptic proteins. Moreover, DHA increased CREB phosphorylation and BDNF levels and attenuated neuroinflammation and oxidative stress, reflected by lower levels of IBA-1, IL-1β, and IL-6 and increased levels of SOD1 and Nrf2. In summary, our findings demonstrated that supplementation of DHA effectively mitigated the cognitive dysfunction and synaptic plasticity impairment induced by early postnatal exposure to PM2.5. These beneficial effects may be attributed to the upregulation of the CREB/BDNF signaling pathway, as well as the reduction of neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Mingdan Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Bing Tian
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Benke Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
- Department of Pediatrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518101, China
| | - Hengsheng Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Li Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
15
|
Demelash Abera B, Alefe Adimas M. Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon 2024; 10:e33905. [PMID: 39050454 PMCID: PMC11268356 DOI: 10.1016/j.heliyon.2024.e33905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Fish contains high-quality omega-3 fatty acids, protein, vitamins, and minerals and due to this it is termed as an essential component of a balanced diet. But there have been concerns raised about the risks of consuming fish that is contaminated with toxins such as methylmercury, polychlorinated biphenyls (PCBs), dioxins, pesticides, and plastic waste. Consumption of contaminated fish containing these pollutants is raising global mortality and morbidity rates. Scope and approaches The review examines the current research outputs on the health benefits and potential health risks of fish consumption. The review also discusses various approaches to mitigating the health problems caused by fish consumption, highlights the roles of balancing the risks and benefits when consuming fish. Key findings and conclusion Different findings indicated that contaminants cause cancer, kidney failure, adverse neurological effect, cardiovascular diseases, and so on to vulnerable groups such as pregnant, child breast-feeding and children. In conclusion, there is a need to get more tangible evidence about the advantages and disadvantages of fish consumption to safeguard the wellbeing of the society.
Collapse
|
16
|
Lau JS, Lust CAC, Lecques JD, Hillyer LM, Mountjoy M, Kang JX, Robinson LE, Ma DWL. n-3 PUFA ameliorate functional outcomes following repetitive mTBI in the fat-1 mouse model. Front Nutr 2024; 11:1410884. [PMID: 39070251 PMCID: PMC11272621 DOI: 10.3389/fnut.2024.1410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Repeated mild traumatic brain injuries (mTBI) are a continuing healthcare concern worldwide, given its potential for enduring adverse neurodegenerative conditions. Past research suggests a potential protective effect of n-3 polyunsaturated fatty acids (PUFA) in experimental models of mTBI. The aim of this study was to investigate whether the neuroprotective benefits of n-3 PUFA persist following repetitive weight drop injury (WDI). Methods Male fat-1 mice (n = 12), able to endogenously convert n-6 PUFA to n-3 PUFA, and their wild type (WT) counterparts (n = 12) were maintained on a 10% w/w safflower diet. At 9-10 weeks of age, both groups received one mild low-impact WDI on the closed cranium daily, for three consecutive days. Following each WDI, time to righting reflex and seeking behaviour were measured. Neurological recovery, cognitive, motor, and neurobehavioural outcomes were assessed using the Neurological Severity Score (NSS) over 7 days (168 h) post-last WDI. Brains were assessed for cerebral microhemorrhages by Prussian blue and cellular damage by glial fibrillary acidic protein (GFAP) staining. Results Fat-1 mice exhibited significantly faster righting reflex and seeking behaviour time, and lower mean NSS scores and at all post-WDI time points (p ≤ 0.05) compared to WT mice. Immunohistochemistry showed no significant difference in presence of cerebral microhemorrhage however, fat-1 mice had significantly lower GFAP staining in comparison to WT mice (p ≤ 0.05). Conclusion n-3 PUFA is effective in restoring cognitive, motor, and behavioural function after repetitive WDI, which may be mediated through reduced cellular damage of the brain.
Collapse
Affiliation(s)
- Jessi S. Lau
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Cody A. C. Lust
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Lyn M. Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Margo Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Jing X. Kang
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Ho QT, Dahl L, Nedreaas K, Azad AM, Bank MS, Berg F, Wiech M, Frantzen S, Sanden M, Wehde H, Frøyland L, Maage A, Madsen L. Modelling seasonal and geographical n-3 polyunsaturated fatty acid contents in marine fish from the Northeast Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 252:119021. [PMID: 38685293 DOI: 10.1016/j.envres.2024.119021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Demand for n-3 polyunsaturated fatty acids (n-3 PUFAs) exceeds supply. Large-scale studies on effects of season and geography of n-3 PUFAs in marine fish from the Northeast Atlantic Ocean (NEAO) may be used to optimize utilization and improve nutrition security. Using a sinusoid model, seasonal cycles of n-3 PUFAs were determined and found to be species-specific and clearly pronounced for the pelagic zooplankton feeding species. The Greenland halibut showed very little seasonal variation. The n-3 PUFA content in North Sea autumn-spawning (NSAS) herring peaked in summer, while Norwegian spring-spawning (NSS) herring and mackerel had their peak in autumn. A time shift of peaks in n-3 PUFAs between the two herring stocks was detected, likely due to different spawning strategies in addition to a delay of n-3 PUFAs flux in the northern regions of the NEAO. This study demonstrates that consideration of nutrient contents, such as n-3 PUFAs, when organizing and structuring fishery approaches may improve overall nutritional yield. Based on total annual Norwegian fish landings and seasonal variation in n-3 PUFA contents, n-3 PUFAs yield could theoretically be increased from 13.79 kilo ton per year from the current fishing tactics, to 15.54 if the pelagic species were only caught during the time of their seasonal n-3 PUFA peaks. Pelagic fish is a good source for dietary n-3 PUFAs, but harvest timing will also influence n-3 PUFAs intake by human consumers. One portion of fatty fish harvested during winter/spring may not meet the weekly intake reference nutritional guidelines for n-3 PUFAs. Marine n-3 PUFAs yields also varied geographically and decreased southwards, with the lowest values in Skagerrak. This study can serve as a model to understand patterns of reproductive cycles and geographical distribution of n-3 PUFAs in fatty fish from the NEAO and the novel approach may be useful to support sustainable, seasonal fishing programmes for optimization of n-3 PUFAs yields.
Collapse
Affiliation(s)
| | | | | | | | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | | | | | | | | | - Amund Maage
- Institute of Marine Research, Bergen, Norway
| | - Lise Madsen
- Institute of Marine Research, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Schuchardt JP, Beinhorn P, Hu XF, Chan HM, Roke K, Bernasconi A, Hahn A, Sala-Vila A, Stark KD, Harris WS. Omega-3 world map: 2024 update. Prog Lipid Res 2024; 95:101286. [PMID: 38879135 DOI: 10.1016/j.plipres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
In 2016, the first worldwide n3 PUFA status map was published using the Omega-3 Index (O3I) as standard biomarker. The O3I is defined as the percentage of EPA + DHA in red blood cell (RBC) membrane FAs. The purpose of the present study was to update the 2016 map with new data. In order to be included, studies had to report O3I and/or blood EPA + DHA levels in metrics convertible into an estimated O3I, in samples drawn after 1999. To convert the non-RBC-based EPA + DHA metrics into RBC we used newly developed equations. Baseline data from clinical trials and observational studies were acceptable. A literature search identified 328 studies meeting inclusion criteria encompassing 342,864 subjects from 48 countries/regions. Weighted mean country O3I levels were categorized into very low ≤4%, low >4-6%, moderate >6-8%, and desirable >8%. We found that the O3I in most countries was low to very low. Notable differences between the current and 2016 map were 1) USA, Canada, Italy, Turkey, UK, Ireland and Greece (moving from the very low to low category); 2) France, Spain and New Zealand (low to moderate); and 3) Finland and Iceland (moderate to desirable). Countries such as Iran, Egypt, and India exhibited particularly poor O3I levels.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany.
| | - Philine Beinhorn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Xue Feng Hu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kaitlin Roke
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Aldo Bernasconi
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Hospital del Mar Medical Research Institute, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William S Harris
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| |
Collapse
|
19
|
Feng BY, Zhang H, Zhang DY, Luo YH, Yang H, Lin J, Li LY, Qiu XZ, Qiu FY, Ye LS, Yi LT, Xu GH. Comprehensive biochemical analysis and nutritional evaluation of fatty acid and amino acid profiles in eight seahorse species ( Hippocampus spp.). Heliyon 2024; 10:e33220. [PMID: 39021916 PMCID: PMC11252734 DOI: 10.1016/j.heliyon.2024.e33220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Seahorses are increasingly recognized for their nutritional potential, which underscores the necessity for comprehensive biochemical analyses. This study aims to investigate the fatty acid and amino acid compositions of eight seahorse species, including both genders of Hippocampus trimaculatus, Hippocampus kelloggi, Hippocampus abdominalis, and Hippocampus erectus, to evaluate their nutritional value. We employed Gas Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid Chromatography (HPLC) to analyze the fatty acid and amino acid profiles of the seahorse species. GC-MS was used to detect 34 fatty acid methyl esters, while HPLC provided detailed amino acid profiles. GC-MS analysis demonstrated high precision with relative standard deviations (RSDs) generally below 2.53 %, satisfactory repeatability (RSDs from 6.55 % to 8.73 %), and stability (RSDs below 2.82 %). Recovery rates for major fatty acids ranged from 98.73 % to 109.12 %. HPLC analysis showed strong separation of amino acid profiles with theoretical plate numbers exceeding 5000. Precision tests yielded RSDs below 1.23 %, with reproducibility and stability tests showing RSDs below 2.73 % and 2.86 %, respectively. Amino acid recovery rates ranged from 97.58 % to 104.66 %. Nutritional analysis revealed significant variations in fatty acid content among the species. Female H. erectus showed higher levels of hexadecanoic acid and saturated fatty acids, while male H. abdominalis had lower concentrations of n-3 full cis 4,7,10,13,16,19-docosahexaenoic acid (DHA). Total lipid yields varied from 3.2491 % to 12.3175 %, with major fatty acids constituting 17.9717 %-74.6962 % of total lipids. In conclusion, this study provides essential insights into the fatty acid and amino acid composition of seahorses, supporting their potential as valuable dietary supplements. The differences between genders in specific fatty acids suggest a nuanced nutritional profile that could be exploited for targeted dietary applications. Further research is needed to explore the seasonal and environmental variations affecting seahorse biochemical composition.
Collapse
Affiliation(s)
- Bi-Yun Feng
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
| | - Hui Zhang
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
| | - Dong-Yuan Zhang
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
| | - You-Hua Luo
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
- Xiamen Health and Medical Big Data Center, Xiamen, Fujian province, 361008, PR China
| | - Hui Yang
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Xiamen Health and Medical Big Data Center, Xiamen, Fujian province, 361008, PR China
| | - Jing Lin
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
| | - Ling-Yan Li
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
| | - Xian-Zhu Qiu
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Xiamen Anz Health Co., LTD, Xiamen, Fujian province, 361006, PR China
| | - Feng-Yan Qiu
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Xiamen Anz Health Co., LTD, Xiamen, Fujian province, 361006, PR China
| | - Li-Shan Ye
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Department of Automation, Tsinghua University, 100084, Beijing, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian province, 361021, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
- Xiamen Health and Medical Big Data Center, Xiamen, Fujian province, 361008, PR China
| |
Collapse
|
20
|
AlGhamdi SA. Effectiveness of Vitamin D on Neurological and Mental Disorders. Diseases 2024; 12:131. [PMID: 38920563 PMCID: PMC11202759 DOI: 10.3390/diseases12060131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: Mental disorders are conditions that affect a person's cognition, mood, and behaviour, such as depression, anxiety, bipolar disorder, and schizophrenia. In contrast, neurological disorders are diseases of the brain, spinal cord, and nerves. Such disorders include strokes, epilepsy, Alzheimer's, and Parkinson's. Both mental and neurological disorders pose significant global health challenges, impacting hundreds of millions worldwide. Research suggests that certain vitamins, including vitamin D, may influence the incidence and severity of these disorders; (2) Methods: This systematic review examined the potential effects of vitamin D supplementation on various mental and neurological disorders. Evidence was gathered from databases like PubMed, Cochrane, and Google Scholar, including multiple randomized controlled trials comparing vitamin D supplementation to placebo or no treatment for conditions like depression, bipolar disorder, epilepsy, schizophrenia, and neuroinflammation; (3) Results: The findings strongly indicate that vitamin D supplementation may benefit a range of mental health and neurological disorders. The magnitude of the beneficial impact varied by specific disorder, but the overall pattern strongly supports the therapeutic potential of vitamin D on these disorders; (4) Conclusions: This review provides valuable insight into the role vitamin D may play in the management of critical brain-related health issues.
Collapse
Affiliation(s)
- Shareefa Abdullah AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ; Tel.: +966-506-352-828
- Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
22
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
23
|
Ibi A, Chang C, Kuo YC, Zhang Y, Du M, Roh YS, Gahler R, Hardy M, Solnier J. Evaluation of the Metabolite Profile of Fish Oil Omega-3 Fatty Acids (n-3 FAs) in Micellar and Enteric-Coated Forms-A Randomized, Cross-Over Human Study. Metabolites 2024; 14:265. [PMID: 38786742 PMCID: PMC11123365 DOI: 10.3390/metabo14050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
This study evaluated the differences in the metabolite profile of three n-3 FA fish oil formulations in 12 healthy participants: (1) standard softgels (STD) providing 600 mg n-3 FA; (2) enteric-coated softgels (ENT) providing 600 mg n-3 FA; (3) a new micellar formulation (LMF) providing 374 mg n-3 FA. The pharmacokinetics (PKs), such as the area under the plot of plasma concentration (AUC), and the peak blood concentration (Cmax) of the different FA metabolites including HDHAs, HETEs, HEPEs, RvD1, RvD5, RvE1, and RvE2, were determined over a total period of 24 h. Blood concentrations of EPA (26,920.0 ± 10,021.0 ng/mL·h) were significantly higher with respect to AUC0-24 following LMF treatment vs STD and ENT; when measured incrementally, blood concentrations of total n-3 FAs (EPA/DHA/DPA3) up to 11 times higher were observed for LMF vs STD (iAUC 0-24: 16,150.0 ± 5454.0 vs 1498.9 ± 443.0; p ≤ 0.0001). Significant differences in n-3 metabolites including oxylipins were found between STD and LMF with respect to 12-HEPE, 9-HEPE, 12-HETE, and RvD1; 9-HEPE levels were significantly higher following the STD vs. ENT treatment. Furthermore, within the scope of this study, changes in blood lipid levels (i.e., cholesterol, triglycerides, LDL, and HDL) were monitored in participants for up to 120 h post-treatment; a significant decrease in serum triglycerides was detected in participants (~20%) following the LMF treatment; no significant deviations from the baseline were detected for all the other lipid biomarkers in any of the treatment groups. Despite a lower administered dose, LMF provided higher blood concentrations of n-3 FAs and certain anti-inflammatory n-3 metabolites in human participants-potentially leading to better health outcomes.
Collapse
Affiliation(s)
- Afoke Ibi
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Chuck Chang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Yun Chai Kuo
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Yiming Zhang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Min Du
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Yoon Seok Roh
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | | | - Mary Hardy
- Academy of Integrative and Holistic Medicine, San Diego, CA 92037, USA
| | - Julia Solnier
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| |
Collapse
|
24
|
Chen TB, Yang CC, Tsai IJ, Yang HW, Hsu YC, Chang CM, Yang CP. Neuroimmunological effects of omega-3 fatty acids on migraine: a review. Front Neurol 2024; 15:1366372. [PMID: 38770523 PMCID: PMC11103013 DOI: 10.3389/fneur.2024.1366372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Migraine is a highly prevalent disease worldwide, imposing enormous clinical and economic burdens on individuals and societies. Current treatments exhibit limited efficacy and acceptability, highlighting the need for more effective and safety prophylactic approaches, including the use of nutraceuticals for migraine treatment. Migraine involves interactions within the central and peripheral nervous systems, with significant activation and sensitization of the trigeminovascular system (TVS) in pain generation and transmission. The condition is influenced by genetic predispositions and environmental factors, leading to altered sensory processing. The neuroinflammatory response is increasingly recognized as a key event underpinning the pathophysiology of migraine, involving a complex neuro-glio-vascular interplay. This interplay is partially mediated by neuropeptides such as calcitonin gene receptor peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP) and/or cortical spreading depression (CSD) and involves oxidative stress, mitochondrial dysfunction, nucleotide-binding domain-like receptor family pyrin domain containing-3 (NLRP3) inflammasome formation, activated microglia, and reactive astrocytes. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), crucial for the nervous system, mediate various physiological functions. Omega-3 PUFAs offer cardiovascular, neurological, and psychiatric benefits due to their potent anti-inflammatory, anti-nociceptive, antioxidant, and neuromodulatory properties, which modulate neuroinflammation, neurogenic inflammation, pain transmission, enhance mitochondrial stability, and mood regulation. Moreover, specialized pro-resolving mediators (SPMs), a class of PUFA-derived lipid mediators, regulate pro-inflammatory and resolution pathways, playing significant anti-inflammatory and neurological roles, which in turn may be beneficial in alleviating the symptomatology of migraine. Omega-3 PUFAs impact various neurobiological pathways and have demonstrated a lack of major adverse events, underscoring their multifaceted approach and safety in migraine management. Although not all omega-3 PUFAs trials have shown beneficial in reducing the symptomatology of migraine, further research is needed to fully establish their clinical efficacy and understand the precise molecular mechanisms underlying the effects of omega-3 PUFAs and PUFA-derived lipid mediators, SPMs on migraine pathophysiology and progression. This review highlights their potential in modulating brain functions, such as neuroimmunological effects, and suggests their promise as candidates for effective migraine prophylaxis.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - I-Ju Tsai
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yung-Chu Hsu
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation ChiaYi Chistian Hospital, Chiayi, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Dicklin MR, Anthony JC, Winters BL, Maki KC. ω-3 Polyunsaturated Fatty Acid Status Testing in Humans: A Narrative Review of Commercially Available Options. J Nutr 2024; 154:1487-1504. [PMID: 38522783 DOI: 10.1016/j.tjnut.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
There is an increasing body of evidence supporting a link between low intakes of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) and numerous diseases and health conditions. However, few people are achieving the levels of fish/seafood or eicosapentaenoic acid and docosahexaenoic acid intake recommended in national and international guidelines. Knowledge of a person's ω-3 LCPUFA status will benefit the interpretation of research results and could be expected to lead to an increased effort to increase intake. Dietary intake survey methods are often used as a surrogate for measuring ω-3 PUFA tissue status and its impact on health and functional outcomes. However, because individuals vary widely in their ability to digest and absorb ω-3 PUFA, analytical testing of biological samples is desirable to accurately evaluate ω-3 PUFA status. Adipose tissue is the reference biospecimen for measuring tissue fatty acids, but less-invasive methods, such as measurements in whole blood or its components (e.g., plasma, serum, red blood cell membranes) or breast milk are often used. Numerous commercial laboratories provide fatty acid testing of blood and breast milk samples by different methods and present their results in a variety of reports such as a full fatty acid profile, ω-3 and ω-6 fatty acid profiles, fatty acid ratios, as well as the Omega-3 Index, the Holman Omega-3 Test, OmegaScore, and OmegaCheck, among others. This narrative review provides information about the different ways to measure ω-3 LCPUFA status (including both dietary assessments and selected commercially available analytical tests of blood and breast milk samples) and discusses evidence linking increased ω-3 LCPUFA intake or status to improved health, focusing on cardiovascular, neurological, pregnancy, and eye health, in support of recommendations to increase ω-3 LCPUFA intake and testing.
Collapse
Affiliation(s)
| | | | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Indiana University School of Public Health, Bloomington, IN, United States.
| |
Collapse
|
26
|
Smolińska K, Szopa A, Sobczyński J, Serefko A, Dobrowolski P. Nutritional Quality Implications: Exploring the Impact of a Fatty Acid-Rich Diet on Central Nervous System Development. Nutrients 2024; 16:1093. [PMID: 38613126 PMCID: PMC11013435 DOI: 10.3390/nu16071093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Given the comprehensive examination of the role of fatty acid-rich diets in central nervous system development in children, this study bridges significant gaps in the understanding of dietary effects on neurodevelopment. It delves into the essential functions of fatty acids in neurodevelopment, including their contributions to neuronal membrane formation, neuroinflammatory modulation, neurogenesis, and synaptic plasticity. Despite the acknowledged importance of these nutrients, this review reveals a lack of comprehensive synthesis in current research, particularly regarding the broader spectrum of fatty acids and their optimal levels throughout childhood. By consolidating the existing knowledge and highlighting critical research gaps, such as the effects of fatty acid metabolism on neurodevelopmental disorders and the need for age-specific dietary guidelines, this study sets a foundation for future studies. This underscores the potential of nutritional strategies to significantly influence neurodevelopmental trajectories, advocating an enriched academic and clinical understanding that can inform dietary recommendations and interventions aimed at optimizing neurological health from infancy.
Collapse
Affiliation(s)
- Katarzyna Smolińska
- Chronic Wounds Laboratory, Medical University of Lublin, Chodźki St. 7, 20-093 Lublin, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| |
Collapse
|
27
|
Wang P, Chen P, Zhang X, Szeto IMY, Li F, Tan S, Ba G, Zhang Y, Duan S, Yang Y. Bioaccessibility of docosahexaenoic acid in naturally and artificially enriched milk. Food Chem 2024; 437:137772. [PMID: 37871424 DOI: 10.1016/j.foodchem.2023.137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
This study aimed to compare the bioaccessibility of docosahexaenoic acid (DHA) in naturally and artificially enriched milk and investigate the potential mechanisms involved. The results indicated that the DHA in naturally enriched milk (NEM) had a higher bioaccessibility (76.9 %) and a lower digestive loss rate (18.1 %) compared to artificially enriched milk (ArEM). Moreover, NEM contained a higher proportion of DHA-containing glycerophospholipids and sn-2 DHA, with fewer long-chain fatty acids and more saturated fatty acids adjacent to DHA in the same lipid molecule. During simulated intestinal digestion, NEM had a higher free fatty acid release and lipid digestion rate than ArEM. These findings suggested that the bioaccessibility of endogenous DHA in milk was superior to that of externally added DHA due to its more easily digestible and absorbable chemical binding form and lower digestive loss rate. The easy digestibility of milk lipids in NEM also contributed to its high DHA bioaccessibility.
Collapse
Affiliation(s)
- Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Panqiao Chen
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Xiaoxu Zhang
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Fang Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China
| | - Shengjie Tan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China
| | - Genna Ba
- Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China.
| | - Yue Yang
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
28
|
Byrne MK, Cook R, Murta JCD, Bressington D, Meyer BJ. Dietary Intakes of Long-Chain Polyunsaturated Fatty Acids and Impulsivity: Comparing Non-Restricted, Vegetarian, and Vegan Diets. Nutrients 2024; 16:875. [PMID: 38542786 PMCID: PMC10975088 DOI: 10.3390/nu16060875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Research suggests a link between deficiencies in omega-3 long-chain polyunsaturated fatty acids (LCPUFAs) and impulsivity among psychiatric populations. However, this association is less evident in non-clinical populations. As omega-3 LCPUFAs are predominantly sourced through fish consumption, non-fish dieters may be more vulnerable to higher impulsivity. METHODS This cross-sectional observational study explored the association between lower intakes of omega-3 LCPUFA food sources and higher self-reported measures of impulsivity among healthy adults consuming non-restricted, vegetarian, and vegan diets. RESULTS The results from the validated Food Frequency Questionnaire showed significantly lower estimated omega-3 LCPUFA intakes among vegans and vegetarians when compared with people consuming non-restricted diets. Furthermore, although all groups scored within the normal range of impulsivity measures, vegans scored comparatively higher. Vegans also scored significantly higher in impulsivity control relating to attention than those consuming non-restricted diets. CONCLUSIONS The significantly lower omega-3 LCPUFA dietary intakes in the vegan diets were associated with higher scores in the second-order attentional aspect of self-reported impulsiveness.
Collapse
Affiliation(s)
- Mitchell K. Byrne
- Faculty of Health, Charles Darwin University, Ellengowan Drive, Darwin, NT 0810, Australia; (M.K.B.); (R.C.); (J.C.D.M.); (D.B.)
| | - Rebecca Cook
- Faculty of Health, Charles Darwin University, Ellengowan Drive, Darwin, NT 0810, Australia; (M.K.B.); (R.C.); (J.C.D.M.); (D.B.)
| | - Janina C. D. Murta
- Faculty of Health, Charles Darwin University, Ellengowan Drive, Darwin, NT 0810, Australia; (M.K.B.); (R.C.); (J.C.D.M.); (D.B.)
| | - Daniel Bressington
- Faculty of Health, Charles Darwin University, Ellengowan Drive, Darwin, NT 0810, Australia; (M.K.B.); (R.C.); (J.C.D.M.); (D.B.)
- Faculty of Nursing, Chiang Mai University, 110/406 Inthawaroros Road, Sri Phum District, Chiang Mai 50200, Thailand
| | - Barbara J. Meyer
- School of Medical, Indigenous and Health Sciences, Lipid Research Centre, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
29
|
Shahabi B, Hernández-Martínez C, Voltas N, Canals J, Arija V. The Maternal Omega-3 Long-Chain Polyunsaturated Fatty Acid Concentration in Early Pregnancy and Infant Neurodevelopment: The ECLIPSES Study. Nutrients 2024; 16:687. [PMID: 38474815 DOI: 10.3390/nu16050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Omega-3 Long-Chain Polyunsaturated Fatty Acids (n-3 LCPUFAs) play a key role in early neurodevelopment, but evidence from observational and clinical studies remains inconsistent. This study investigates the association between maternal n-3 LCPUFA, Docosahexaenoic Acid (DHA), and eicosapentaenoic acid (EPA) concentrations during pregnancy and infant development functioning at 40 days. This study includes 348 mother-infant pairs. Maternal serum concentrations were assessed in the first and third trimesters alongside sociodemographic, clinical, nutritional, psychological, and obstetrical data. At 40 days, the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) was administered. An adjusted analysis revealed that lower first-trimester n-3 LCPUFA and DHA concentrations are associated with better infant motor development. These results underscore the potential significance of the maternal n-3 LCPUFA status in early pregnancy for influencing fetal neurodevelopment. However, the complexity of these associations necessitates further investigation, emphasizing the urgent need for additional studies to comprehensively elucidate the nuanced interplay between the maternal n-3 LCPUFA status and infant neurodevelopment.
Collapse
Affiliation(s)
- Behnaz Shahabi
- Research Group in Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Carmen Hernández-Martínez
- Research Group in Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain
- Research Center for Behavioral Assessment (CRAMC), Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Núria Voltas
- Research Group in Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain
- Research Center for Behavioral Assessment (CRAMC), Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Serra Húnter Fellow, Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Josefa Canals
- Research Group in Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain
- Research Center for Behavioral Assessment (CRAMC), Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Victoria Arija
- Research Group in Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain
| |
Collapse
|
30
|
Yildiz C, Medina I. Thermodynamic Analysis to Evaluate the Effect of Diet on Brain Glucose Metabolism: The Case of Fish Oil. Nutrients 2024; 16:631. [PMID: 38474759 DOI: 10.3390/nu16050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Inefficient glucose metabolism and decreased ATP production in the brain are linked to ageing, cognitive decline, and neurodegenerative diseases (NDDs). This study employed thermodynamic analysis to assess the effect of fish oil supplementation on glucose metabolism in ageing brains. Data from previous studies on glucose metabolism in the aged human brain and grey mouse lemur brains were examined. The results demonstrated that Omega-3 fish oil supplementation in grey mouse lemurs increased entropy generation and decreased Gibbs free energy across all brain regions. Specifically, there was a 47.4% increase in entropy generation and a 47.4 decrease in Gibbs free energy in the whole brain, indicating improved metabolic efficiency. In the human model, looking at the specific brain regions, supplementation with Omega-3 polyunsaturated fatty acids (n-3 PUFAs) reduced the entropy generation difference between elderly and young individuals in the cerebellum and particular parts of the brain cortex, namely the anterior cingulate and occipital lobe, with 100%, 14.29%, and 20% reductions, respectively. The Gibbs free energy difference was reduced only in the anterior cingulate by 60.64%. This research underscores that the application of thermodynamics is a comparable and powerful tool in comprehending the dynamics and metabolic intricacies within the brain.
Collapse
Affiliation(s)
- Cennet Yildiz
- Marine Chemistry, Instituto de Investigaciones Marinas CSIC, 36208 Vigo, Spain
- Biothermodynamics, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Isabel Medina
- Marine Chemistry, Instituto de Investigaciones Marinas CSIC, 36208 Vigo, Spain
| |
Collapse
|
31
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
32
|
Burron S, Richards T, Krebs G, Trevizan L, Rankovic A, Hartwig S, Pearson W, Ma DWL, Shoveller AK. The balance of n-6 and n-3 fatty acids in canine, feline, and equine nutrition: exploring sources and the significance of alpha-linolenic acid. J Anim Sci 2024; 102:skae143. [PMID: 38776363 PMCID: PMC11161904 DOI: 10.1093/jas/skae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024] Open
Abstract
Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.
Collapse
Affiliation(s)
- Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Giovane Krebs
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Alexandra Rankovic
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Samantha Hartwig
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
33
|
Zhao H, Yang C, Xing F. Correlation of the Serum Fatty Acids with Cognitive Function: An NHANES 2011-2014 and Multivariate Mendelian Randomization Analysis. J Alzheimers Dis 2024; 101:835-845. [PMID: 39269844 DOI: 10.3233/jad-240715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background The relationship between serum fatty acids and cognitive function has been the subject of extensive study. Objective To analyze the relationship between serum fatty acids composition and cognitive function by NHANES database and multivariate Mendelian randomization (MR) analysis. Methods A sub-cohort of 1,339 individuals with serum fatty acids and Digit Symbol Substitution Test (DSST) examinations from the 2011-2014 wave of the NHANES were analyzed using fully adjusted multiple linear regression models for associations between serum hydrolyzed fatty acid levels and cognitive function. Univariable and multivariable MR was used to analyze the correlation between 98 exposures related to serum fatty acids and cognitive function. Results from different database sources were combined using meta-analysis. Results The fully adjusted regression analysis showed that linoleic acid (LA), Omega 6, fatty acids (FAs), and LA/FAs were positively correlated with DSST. 27 exposures were included for univariate MR analysis. Ultimately, only 2 traits had IVW test p-values ranging between 0.0019 and 0.05, both of which were LA/FAs. The meta-analysis of univariate MR revealed that LA/FAs was positively associated with cognitive function (β: 0.040, 95% CI = 0.013-0.067, p = 0.0041). In multivariate MR analysis, after adjusting for education, ischemic stroke, and age, LA/FAs was positively independently associated with cognitive function (IVW β: 0.049, 95% CI = 0.021-0.077, p = 0.0006). The results of MVMR are well in line with the univariate results. Conclusions Both the Cross-sectional observational analyses and MR-based studies supported a suggestive causal relationship between the serum ratio of Linoleic acid in fatty acids and cognitive function.
Collapse
Affiliation(s)
- Huimin Zhao
- Department of General Medicine, No. 970 Hospitalof the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China
| | - Changlin Yang
- Department of General Medicine, No. 970 Hospitalof the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China
| | - Fangkai Xing
- Unit 71217 of People's Liberation Army, Yantai, Shandong, China
| |
Collapse
|
34
|
White B, Sirohi S. A Complex Interplay between Nutrition and Alcohol use Disorder: Implications for Breaking the Vicious Cycle. Curr Pharm Des 2024; 30:1822-1837. [PMID: 38797900 DOI: 10.2174/0113816128292367240510111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Approximately 16.5% of the United States population met the diagnostic criteria for substance use disorder (SUD) in 2021, including 29.5 million individuals with alcohol use disorder (AUD). Individuals with AUD are at increased risk for malnutrition, and impairments in nutritional status in chronic alcohol users can be detrimental to physical and emotional well-being. Furthermore, these nutritional deficiencies could contribute to the never-ending cycle of alcoholism and related pathologies, thereby jeopardizing the prospects of recovery and treatment outcomes. Improving nutritional status in AUD patients may not only compensate for general malnutrition but could also reduce adverse symptoms during recovery, thereby promoting abstinence and successful treatment of AUD. In this review, we briefly summarize alterations in the nutritional status of people with addictive disorders, in addition to the underlying neurobiological mechanisms and clinical implications regarding the role of nutritional intervention in recovery from alcohol use disorder.
Collapse
Affiliation(s)
- Brooke White
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
35
|
Yassine HN, Carrasco AS, Badie DS. Designing Newer Omega-3 Supplementation Trials for Cognitive Outcomes: A Systematic Review Guided Analysis. J Alzheimers Dis 2024; 101:S455-S466. [PMID: 39422948 DOI: 10.3233/jad-231467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Epidemiology cohorts reveal associations between levels or intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) and a lower risk of Alzheimer's disease (AD). However, the results of randomized clinical trials have been inconsistent. Objective A systematic review was performed to understand the effects of n-3 PUFA supplementation on cognition in adults. The objective was to present suggestions for new study designs to translate epidemiological findings into effective clinical trials. Methods A database search was conducted on PubMed (MEDLINE) and Web of Science to retrieve articles published between 2000 and 2023 that evaluated the effects of n-3 PUFA supplementation on cognitive function. Subsequently, the search results were filtered to collect randomized controlled trials with 100 or more participants, n-3 PUFA supplementation was one of the interventions, cognition was an outcome of interest, and participants were at least 18 years of age. Results A total of 24 articles met the inclusion criteria. In 5 of the 24 studies reviewed, supplementation with n-3 PUFAs improved cognition. All four trials in persons with AD reported null outcomes. Most of the n-3 PUFA studies in cognitively normal individuals or participants with mild cognitive impairment were null, not powered to detect small effect sizes, or selected participants without dementia risk factors. Conclusions We recommend that newer n-3 PUFA supplement trials targeting AD prevention be personalized. For the general population, the null hypothesis appears to be correct, and future interventions are needed to identify and test dietary patterns that include PUFA-rich food rather than supplements.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - A Sofia Carrasco
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Badie
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
37
|
Nassar M, Jaffery A, Ibrahim B, Baraka B, Abosheaishaa H. The multidimensional benefits of eicosapentaenoic acid: from heart health to inflammatory control. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2023; 35:81. [DOI: 10.1186/s43162-023-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
AbstractEicosapentaenoic acid (EPA) is an omega-3 fatty acid found in fatty fish and fish oil supplements. Over the past few decades, research has suggested that EPA has various potential health benefits, particularly for heart health.EPA has been associated with reduced inflammation, improved cholesterol levels, and reduced blood pressure, all of which can contribute to a lower risk of heart disease. Additionally, EPA has been found to reduce the risk of blood clots, which can lead to heart attacks and strokes. This comprehensive review article aims to summarize the current state of knowledge regarding the potential health benefits of EPA. We focus on its effects on cardiovascular health, inflammation, atherosclerotic plaques, blood clots, diabetes, obesity, and cancer. Finally, we provide an overview of the recommended daily dose of EPA for optimal health benefits.This review highlights the importance of EPA in promoting overall health and well-being and provides insights into its potential therapeutic applications.
Collapse
|
38
|
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomed Pharmacother 2023; 168:115708. [PMID: 37857255 DOI: 10.1016/j.biopha.2023.115708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.
Collapse
Affiliation(s)
- Francisco Moreno
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain; Universidad de Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain.
| | - Ana Raner
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Sara Ramos-Romero
- Faculty of Biology, University of Barcelona, Av Diagonal 643, E-08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Av Diagonal 643, E-08028 Barcelona, Spain; Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| |
Collapse
|
39
|
Görs PE, Ayala-Cabrera JF, Meckelmann SW. Unraveling the Double Bond Position of Fatty Acids by GC-MS Using Electron Capture APCI and In-Source Fragmentation Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2538-2546. [PMID: 37751542 DOI: 10.1021/jasms.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The position of double bonds in unsaturated fatty acids is strongly connected to their biological effects, but their analytical characterization is still challenging. However, the ionization of unsaturated fatty acids by a GC-APCI leads to regiospecific in-source fragment ions, which can be used to identify the double bond position. The fragment ions are oxidized species that occur mostly at the double bond closest to the carboxylic acid group. This effect can be further promoted by using benzaldehyde as a gas-phase reactant. This allows the identification of the Δ-notation of the fatty acid, and based on additional information such as m/z and retention time, it is possible to annotate the corresponding fatty acid. The developed method also enables the quantification of fatty acids in one step with high selectivity and sensitivity. Moreover, rare fatty acids can be identified in suspected target approaches that are often not available as standards. This was demonstrated by analyzing fish oil samples that provide a complex mixture of highly unsaturated fatty acids and by identifying rare fatty acids such as hexadecatetraenoic acid (FA 16:4 Δ6).
Collapse
Affiliation(s)
- Paul E Görs
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Juan F Ayala-Cabrera
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa, Biscay, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Biscay, Basque Country, Spain
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
40
|
Kołodziej Ł, Czarny PL, Ziółkowska S, Białek K, Szemraj J, Gałecki P, Su KP, Śliwiński T. How fish consumption prevents the development of Major Depressive Disorder? A comprehensive review of the interplay between n-3 PUFAs, LTP and BDNF. Prog Lipid Res 2023; 92:101254. [PMID: 37820872 DOI: 10.1016/j.plipres.2023.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
MDD (major depressive disorder) is a highly prevalent mental disorder with a complex etiology involving behavioral and neurochemical factors as well as environmental stress. The interindividual variability in response to stress stimuli may be explained by processes such as long-term potentiation (LTP) and long-term depression (LTD). LTP can be described as the strengthening of synaptic transmission, which translates into more efficient cognitive performance and is regulated by brain-derived neurotrophic factor (BDNF), a protein responsible for promoting neural growth. It is found in high concentrations in the hippocampus, a part of the limbic system which is far less active in people with MDD. Omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) not only contribute to structural and antioxidative functions but are essential for the maintenance of LTP and stable BDNF levels. This review explores the mechanisms and potential roles of omega-3 fatty acids in the prevention of MDD.
Collapse
Affiliation(s)
- Łukasz Kołodziej
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, 90-236 Lodz, Poland; University of Lodz, Bio-Med-Chem Doctoral School of University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, 90-237 Lodz, Poland.
| | - Piotr Lech Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Katarzyna Białek
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; An-Nan Hospital, China Medical University, Tainan 709, Taiwan.
| | - Tomasz Śliwiński
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, 90-236 Lodz, Poland.
| |
Collapse
|
41
|
Harauma A, Yoshihara H, Hoshi Y, Hamazaki K, Moriguchi T. Effects of Varied Omega-3 Fatty Acid Supplementation on Postpartum Mental Health and the Association between Prenatal Erythrocyte Omega-3 Fatty Acid Levels and Postpartum Mental Health. Nutrients 2023; 15:4388. [PMID: 37892462 PMCID: PMC10610328 DOI: 10.3390/nu15204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
We investigated the postpartum mental health of women who had consumed perilla oil or fish oil containing various omega-3 fatty acids for 12 weeks starting in mid-pregnancy. The association between fatty acids in maternal erythrocytes and mental health risk factors was also examined. Healthy Japanese primiparas in mid-pregnancy (gestational weeks 18-25) were randomly divided into two groups and consumed approximately 2.0 g/day of omega-3 fatty acids in either perilla oil (the ALA dose was 2.4 g/day) or fish oil (the EPA + DHA dose was 1.7 g/day) for 12 weeks. Maternal mental health was assessed using the Edinburgh Postnatal Depression Scale (EPDS) as the primary measure and the Mother-to-Infant Bonding Scale (MIBS) as the secondary measure. Data from an observational study were used as a historical control. Maternal blood, cord blood, and colostrum samples were collected for fatty acid composition analysis. In addition, completers of the observational studies were enrolled in a case-control study, wherein logistic regression analysis was performed to examine the association between maternal fatty acids and EPDS score. The proportion of participants with a high EPDS score (≥9) was significantly lower in the perilla oil group (12.0%, p = 0.044) but not in the fish oil group (22.3%, p = 0.882) compared with the historical control (21.6%), while the proportions between the former groups also tended to be lower (p = 0.059). No marked effect of omega-3 fatty acid intake was observed from the MIBS results. In the case-control study of the historical control, high levels of α-linolenic acid in maternal erythrocytes were associated with an EPDS score of <9 (odds ratio of 0.23, 95% confidence interval: 0.06, 0.84, p = 0.018 for trend). The results of this study suggest that consumption of α-linolenic acid during pregnancy may stabilize postpartum mental health.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo, Sagamihara 252-5201, Japan;
| | - Hajime Yoshihara
- Japan Community Health Care Organization, Sagamino Hospital, 1-2-30 Fuchinobe, Chuo, Sagamihara 252-0206, Japan;
| | - Yukino Hoshi
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo, Sagamihara 252-5201, Japan;
| | - Kei Hamazaki
- Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi 371-8511, Japan;
| | - Toru Moriguchi
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo, Sagamihara 252-5201, Japan;
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo, Sagamihara 252-5201, Japan;
| |
Collapse
|
42
|
Lin YK, Lin YH, Chiang CF, Jingling L. Effectiveness of Fish Roe, Snow Fungus, and Yeast Supplementation for Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:4221. [PMID: 37836504 PMCID: PMC10574613 DOI: 10.3390/nu15194221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The brain is one of the most critical organs in the human body, regulating functions such as thinking, memory, learning, and perception. Studies have indicated that fish roe, snow fungus, and yeast may have the potential to modulate cognitive, memory, and emotional functions. However, more relevant clinical research in this area still needs to be conducted. This study explored the cognition-enhancing potential of a formula beverage including fish roe, snow fungus, and yeast. Sixty-four subjects were divided into a placebo group (n = 32) and a formula-drink group (n = 32), who consumed the product for 8 weeks. Cognitive tests were administered and analyzed at weeks 0, 4, and 8. After 4 and 8 weeks, there was a significant increase in the number of memory cards, and the response times among those who consumed the formula beverage were significantly faster than those in the placebo group. The subjects remembered the old items better and were more impressed with similar items based on the week effect. There was a significant increase in the cue effect of happy facial expressions after the subjects consumed the formula beverage for 8 weeks. In addition, there was a significant decrease in anxiety and fatigue, and improved quality of life. This formula beverage is a promising option that could be used to prevent further cognitive decline in adults with subjective cognitive complaints.
Collapse
Affiliation(s)
- Yung-Kai Lin
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yung-Hsiang Lin
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Chi-Fu Chiang
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Li Jingling
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
43
|
Mu F, Huo H, Wang M, Wang F. Omega-3 fatty acid supplements and recurrent miscarriage: A perspective on potential mechanisms and clinical evidence. Food Sci Nutr 2023; 11:4460-4471. [PMID: 37576058 PMCID: PMC10420786 DOI: 10.1002/fsn3.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023] Open
Abstract
Recurrent miscarriage (RM) affects approximately 1%-5% of couples worldwide. Due to its complicated etiologies, the treatments for RM also vary greatly, including surgery for anatomic factors such as septate uterus and uterine adhesions, thyroid modulation drugs for hyperthyroidism and hypothyroidism, and aspirin and low molecular weight heparin for antiphospholipid syndrome. However, these treatment modalities are still insufficient to solve RM. Omega-3 fatty acids are reported to modulate the dysregulation of immune cells, oxidative stress, endocrine disorders, inflammation, etc., which are closely associated with the pathogenesis of RM. However, there is a lack of a systematic description of the involvement of omega-3 fatty acids in treating RM, and the underlying mechanisms are also not clear. In this review, we sought to determine the potential mechanisms that are highly associated with the pathogenesis of RM and the regulation of omega-3 fatty acids on these mechanisms. In addition, we also highlighted the direct and indirect clinical evidence of omega-3 fatty acid supplements to treat RM, which might encourage the application of omega-3 fatty acids to treat RM, thus improving pregnancy outcomes.
Collapse
Affiliation(s)
- Fangxiang Mu
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Huyan Huo
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Mei Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Fang Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
44
|
Sha Y, He Y, Liu X, Shao P, Wang F, Xie Z, Li W, Wang J, Li S, Zhao S, Chen G. Interactions of rumen microbiota and metabolites with meat quality-related genes to regulate meat quality and flavor of Tibetan sheep under nutrient stress in the cold season. J Appl Microbiol 2023; 134:lxad182. [PMID: 37567778 DOI: 10.1093/jambio/lxad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
AIM The meat of Tibetan sheep has a unique flavor, delicious taste, and superior nutritional value. However, the change of grass will lead to a change in meat quality. This study aimed to explore the potential regulatory mechanisms of microbial metabolites with respect to meat quality traits of Tibetan sheep under nutrient stress in the cold season. METHODS AND RESULTS We determined and analyzed the longissimus dorsi quality, fatty acid composition, expression of genes, and rumen microbial metabolites of Tibetan sheep in cold and warm seasons. The shear force was decreased (P < .05), the meat color a*24 h value was increased (P < .05), and the contents of crude fat (EE) and protein (CP) were decreased in the cold season. Polyunsaturated fatty acids (PUFAs)-linoleic acid and docosahexaenoic acid increased significantly in the cold season (P < .05). The expressions of meat quality genes MC4R, CAPN1, H-FABP, and LPL were significantly higher in the warm season (P < .05), and the CAST gene was significantly expressed in the cold season (P < .01). The different microbial metabolites of Tibetan sheep in the cold and warm seasons were mainly involved in amino acid metabolism, lipid metabolism, and digestive system pathway, and there was some correlation between microbiota and meat quality traits. There are similarities between microbial metabolites enriched in the lipid metabolism pathway and muscle metabolites. CONCLUSION Under nutritional stress in the cold season, the muscle tenderness of Tibetan sheep was improved, and the fat deposition capacity was weakened, but the levels of beneficial fatty acids were higher than those in the warm season, which was more conducive to healthy eating.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fanxiong Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhuanhui Xie
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary medicine, Qinghai University, Xining 810000, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoshun Chen
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
45
|
Rasaei N, Khadem A, Masihi LS, Mirzaei K. Interaction of fatty acid quality indices and genes related to lipid homeostasis on mental health among overweight and obese women. Sci Rep 2023; 13:9580. [PMID: 37311812 DOI: 10.1038/s41598-023-35810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
The aim of this study is to investigate the interaction of fatty acid quality indices and genes related to lipid homeostasis on mental health among overweight and obese women. This cross-sectional study included 279 overweight and obese women for N6/N3 ratio and 378 overweight and obese women for CSI aged 18-58 years. Mental health were evaluated using Depression Anxiety Stress Scales (DASS-21). The anthropometric indices, biochemical parameters, body composition and dietary fat quality were measured. MC4R (rs17782313) and Caveolin-1 (CAV-1) (rs3807992) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The results of the study showed that after adjusting for age, energy intake, thyroid disease, physical activity, and BMI, a positive interaction between TC genotype of MC4R and CSI on depression (β = 0.39, CI = 0.12, 0.66, P = 0.004), and DASS-21 (β = 0.074, CI = 0.04, 1.44, P = 0.036). Also, there were a marginal significant interactions between AG genotype of CAV-1 and N6/N3 ratio on depression in adjustment model1 (β = 16.83, CI = - 0.19, 33.85, P = 0.053). Our findings showed that increasing adherence to fatty acid quality indices by considering genes related to lipid homeostasis was related to increasing depression in our population.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Alireza Khadem
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lilit Sardari Masihi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Mehdi S, Manohar K, Shariff A, Kinattingal N, Wani SUD, Alshehri S, Imam MT, Shakeel F, Krishna KL. Omega-3 Fatty Acids Supplementation in the Treatment of Depression: An Observational Study. J Pers Med 2023; 13:jpm13020224. [PMID: 36836458 PMCID: PMC9962071 DOI: 10.3390/jpm13020224] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
Depression is a common mood disorder characterized by persistent sadness and loss of interest. Research suggests an association between the inclusion of omega-3 fatty acids in the diet and a reduced risk for depression. The present study evaluated the effectiveness of omega-3 fatty acid supplements in alleviating depressive symptoms in patients with mild to moderate depression. A total of 165 patients suffering from mild to moderated depression were randomized to receive omega-3 fatty acid supplementation, an antidepressant (single agent), or a combination of an antidepressant and omega-3 fatty acid supplementation. The clinical features of depression were assessed using the Hamilton Depression Rating Scale (HDRS) during the follow-up period. A statistically significant improvement in depressive symptoms was observed from baseline to first, second and third follow-ups within each treatment arm as measured by HRDS scores (p = 0.00001). Further, the HDRS scores at the third follow-up were significantly lower in patients on combination therapy of omega-3 fatty acid supplement and antidepressants (arm-3) than the patients on the omega-3 fatty acid supplement alone (arm-1) [Q = 5.89; p = 0.0001] or the patients taking an antidepressant alone (arm 2) [Q = 4.36; p = 0.0068]. The combination of an omega-3 fatty acid supplement and an antidepressant elicited significantly higher improvement in depressive symptoms than the supplement or the antidepressant alone.
Collapse
Affiliation(s)
- Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher education and Research, Mysuru 570015, India
| | - Kishor Manohar
- Department of Psychiatry, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Atiqulla Shariff
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher education and Research, Mysuru 570015, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammad T. Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamsagara L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher education and Research, Mysuru 570015, India
- Correspondence:
| |
Collapse
|
47
|
Zafar SU, Mehra A, Nesamma AA, Jutur PP. Innovations in algal biorefineries for production of sustainable value chain biochemicals from the photosynthetic cell factories. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Zhou L, Xiong JY, Chai YQ, Huang L, Tang ZY, Zhang XF, Liu B, Zhang JT. Possible antidepressant mechanisms of omega-3 polyunsaturated fatty acids acting on the central nervous system. Front Psychiatry 2022; 13:933704. [PMID: 36117650 PMCID: PMC9473681 DOI: 10.3389/fpsyt.2022.933704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) can play important roles in maintaining mental health and resistance to stress, and omega-3 PUFAs supplementation can display beneficial effects on both the prevention and treatment of depressive disorders. Although the underlying mechanisms are still unclear, accumulated evidence indicates that omega-3 PUFAs can exhibit pleiotropic effects on the neural structure and function. Thus, they play fundamental roles in brain activities involved in the mood regulation. Since depressive symptoms have been assumed to be of central origin, this review aims to summarize the recently published studies to identify the potential neurobiological mechanisms underlying the anti-depressant effects of omega-3 PUFAs. These include that of (1) anti-neuroinflammatory; (2) hypothalamus-pituitary-adrenal (HPA) axis; (3) anti-oxidative stress; (4) anti-neurodegeneration; (5) neuroplasticity and synaptic plasticity; and (6) modulation of neurotransmitter systems. Despite many lines of evidence have hinted that these mechanisms may co-exist and work in concert to produce anti-depressive effects, the potentially multiple sites of action of omega-3 PUFAs need to be fully established. We also discussed the limitations of current studies and suggest future directions for preclinical and translational research in this field.
Collapse
Affiliation(s)
- Lie Zhou
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Jia-Yao Xiong
- Yangtze University Health Science Center, Jingzhou, China
| | - Yu-Qian Chai
- Yangtze University Health Science Center, Jingzhou, China
| | - Lu Huang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Zi-Yang Tang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Xin-Feng Zhang
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Bo Liu
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Jun-Tao Zhang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| |
Collapse
|
49
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Alvarez De Mon M. Nutrition, Epigenetics, and Major Depressive Disorder: Understanding the Connection. Front Nutr 2022; 9:867150. [PMID: 35662945 PMCID: PMC9158469 DOI: 10.3389/fnut.2022.867150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a complex, multifactorial disorder of rising prevalence and incidence worldwide. Nearly, 280 million of people suffer from this leading cause of disability in the world. Moreover, patients with this condition are frequently co-affected by essential nutrient deficiency. The typical scene with stress and hustle in developed countries tends to be accompanied by eating disorders implying overnutrition from high-carbohydrates and high-fat diets with low micronutrients intake. In fact, currently, coronavirus disease 2019 (COVID-19) pandemic has drawn more attention to this underdiagnosed condition, besides the importance of the nutritional status in shaping immunomodulation, in which minerals, vitamins, or omega 3 polyunsaturated fatty acids (ω-3 PUFA) play an important role. The awareness of nutritional assessment is greater and greater in the patients with depression since antidepressant treatments have such a significant probability of failing. As diet is considered a crucial environmental factor, underlying epigenetic mechanisms that experience an adaptation or consequence on their signaling and expression mechanisms are reviewed. In this study, we included metabolic changes derived from an impairment in cellular processes due to lacking some essential nutrients in diet and therefore in the organism. Finally, aspects related to nutritional interventions and recommendations are also addressed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Spain
- *Correspondence: Miguel A. Ortega
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Sonia Fernandez-Rojo
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), Alcalá de Henares, Spain
| |
Collapse
|
50
|
Petermann AB, Reyna-Jeldes M, Ortega L, Coddou C, Yévenes GE. Roles of the Unsaturated Fatty Acid Docosahexaenoic Acid in the Central Nervous System: Molecular and Cellular Insights. Int J Mol Sci 2022; 23:5390. [PMID: 35628201 PMCID: PMC9141004 DOI: 10.3390/ijms23105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Ana B. Petermann
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| | - Mauricio Reyna-Jeldes
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Lorena Ortega
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| |
Collapse
|