1
|
Palma-Jacinto JA, López-López E, Medina-Franco JL, Montero-Ruíz O, Santiago-Roque I. Putative mechanism of a multivitamin treatment against insulin resistance. Adipocyte 2024; 13:2369777. [PMID: 38937879 PMCID: PMC11216102 DOI: 10.1080/21623945.2024.2369777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.
Collapse
Affiliation(s)
- José Antonio Palma-Jacinto
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research, Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - José Luis Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oreth Montero-Ruíz
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Isela Santiago-Roque
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| |
Collapse
|
2
|
Celano G, Calabrese FM, Riezzo G, D’Attoma B, Ignazzi A, Di Chito M, Sila A, De Nucci S, Rinaldi R, Linsalata M, Apa CA, Mancini L, De Angelis M, Giannelli G, De Pergola G, Russo F. A Multi-Omics Approach to Disclose Metabolic Pathways Impacting Intestinal Permeability in Obese Patients Undergoing Very Low Calorie Ketogenic Diet. Nutrients 2024; 16:2079. [PMID: 38999827 PMCID: PMC11243313 DOI: 10.3390/nu16132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
A very low calorie ketogenic diet (VLCKD) impacts host metabolism in people marked by an excess of visceral adiposity, and it affects the microbiota composition in terms of taxa presence and relative abundances. As a matter of fact, there is little available literature dealing with microbiota differences in obese patients marked by altered intestinal permeability. With the aim of inspecting consortium members and their related metabolic pathways, we inspected the microbial community profile, together with the set of volatile organic compounds (VOCs) from untargeted fecal and urine metabolomics, in a cohort made of obese patients, stratified based on both normal and altered intestinal permeability, before and after VLCKD administration. Based on the taxa relative abundances, we predicted microbiota-derived metabolic pathways whose variations were explained in light of our cohort symptom picture. A totally different number of statistically significant pathways marked samples with altered permeability, reflecting an important shift in microbiota taxa. A combined analysis of taxa, metabolic pathways, and metabolomic compounds delineates a set of markers that is useful in describing obesity dysfunctions and comorbidities.
Collapse
Affiliation(s)
- Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Annamaria Sila
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Sara De Nucci
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Roberta Rinaldi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Leonardo Mancini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| |
Collapse
|
3
|
Palma-Jacinto JA, Santiago-Roque I, Coutiño-Rodríguez MDR, Arroyo-Helguera OE. [Effect of a multivitamin on insulin resistance, inflammation, and oxidative stress in a Wistar rat model of induced obesity]. NUTR HOSP 2023; 40:1183-1191. [PMID: 38084629 DOI: 10.20960/nh.04621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Introduction Introduction: excessive accumulation of adipose tissue is accompanied by alterations in the inflammatory state and increased oxidative stress, and these variables are associated with insulin resistance and increased glucose and insulin levels. On the other hand, vitamins and minerals reinforce the antioxidant and inflammatory capacity, for this reasons we propose that they could contribute to the control of insulin resistance, glucose and lipid metabolism in a rat model of obesity. Objective: to analyze the effect of a multivitamin supplement on markers of insulin resistance, inflammation, and oxidative stress in obese rats on a cafeteria diet. Methods: thirty-five 28-day-old male Wistar rats were randomly divided into four groups: 1, standard diet control; 2, standard diet plus multivitamin; 3, obese on a cafeteria diet; and 4, obese on a cafeteria diet plus multivitamin. After the treatments, glucose levels, HbA1c, insulin, TNF-α, IL-6, oxidative stress and lipid profile were analyzed by colorimetric methods, as well as the percentage of adipose tissue, Homeostasis Model Assessment (HOMA) index y Quantitative Insulin Sensitivity Check Index (QUICKI). Results: multivitamin supplementation significantly decreased visceral adipose tissue, HOMA index, glucose, HbA1c, oxidant stress, and inflammatory markers in the obese plus multivitamin rat group, compared with the obese cafeteria diet rat group and the standard diet rat control group. However, the group that was administered only the multivitamin without the cafeteria diet had increased levels of total adipose tissue, glucose, and oxidative stress, as well as the QUICKI index relative to the control group with the standard diet. Conclusion: co-administration of a multivitamin supplement may improve insulin sensitivity, glucose metabolism and lipid profile; strengthen antioxidant status; and decrease inflammation during weight gain. However, it was not expected that added sugars in multivitamin supplement can also increase total adipose tissue, oxidative stress and glucose levels, so it is suggested to use sugar-free multivitamins in the future.
Collapse
|
4
|
Sawicki CM, Haslam DE, Braun KV, Drouin-Chartier JP, Voortman T, Franco OH, Sun Q, Hu FB, Bhupathiraju SN. Methyl Donor Nutrient Intake and Incidence of Type 2 Diabetes: Results From Three Large U.S. Cohorts. Diabetes Care 2023; 46:1799-1806. [PMID: 37643330 PMCID: PMC10516245 DOI: 10.2337/dc23-0662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE We examined whether intake of methyl donor nutrients, including vitamins B2, B6, and B12 and folate, from foods and/or supplements is associated with type 2 diabetes risk. RESEARCH DESIGN AND METHODS We included 203,644 women and men from the Nurses' Health Study (1984-2016), Nurses' Health Study 2 (1991-2017), and Health Professionals Follow-Up Study (1986-2016). Dietary data were collected every 2-4 years with use of semiquantitative food-frequency questionnaires. Cox proportional hazards models with time-varying covariates were used to evaluate associations between each nutrient and type 2 diabetes risk. We combined cohort-specific hazard ratios (HRs) using inverse variance-weighted fixed-effects meta-analyses. RESULTS During 4,900,181 person-years of follow-up, we documented 19,475 incident type 2 diabetes cases. In multivariable-adjusted meta-analyses, participants in the highest quintiles of total vitamin B2 and B6 intakes had lower risk of diabetes compared with those in the lowest quintiles (HR 0.93 [95% CI 0.89, 0.98] for B2 and 0.93 [0.89, 0.97] for B6). With stratification by source, significant associations remained for B2 from food but not from supplements. Neither association for B6 from food nor association for B6 from supplements attained significance. No association was observed between total B12 intake and diabetes. However, B12 from food was marginally associated with higher diabetes risk (1.05 [1.00-1.11]) but not after additional adjustment for red meat intake (1.04 [0.99-1.10]). No evidence of association was observed between intakes of folate and diabetes. CONCLUSIONS The results of our study suggest that higher intake of vitamin B2 and B6, especially B2 from food sources, may be associated with a modestly lower type 2 diabetes risk.
Collapse
Affiliation(s)
- Caleigh M. Sawicki
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Danielle E. Haslam
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kim V.E. Braun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Nutrition and Dietetics, Faculty of Health, Nutrition and Sport, The Hague University of Applied Sciences, The Hague, the Netherlands
| | - Jean-Philippe Drouin-Chartier
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Oscar H. Franco
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank B. Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Shilpa N. Bhupathiraju
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
5
|
Brunani A, Cancello R, Gobbi M, Lucchetti E, Di Guglielmo G, Maestrini S, Cattaldo S, Piterà P, Ruocco C, Milesi A, Valerio A, Capodaglio P, Nisoli E. Comparison of Protein- or Amino Acid-Based Supplements in the Rehabilitation of Men with Severe Obesity: A Randomized Controlled Pilot Study. J Clin Med 2023; 12:4257. [PMID: 37445292 PMCID: PMC10342837 DOI: 10.3390/jcm12134257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Weight loss is associated with a reduction in all body compartments, including muscle mass (MM), and this effect produces a decrease in function and muscle strength. Our objective was to assess the impact of protein or amino acid supplements on MM loss in middle-aged men (age < 65 years) with severe obesity (BMI > 35 kg/m2) during weight loss. MATERIALS AND METHODS We conducted a single-site randomized controlled trial (Clinicaltrials.gov NCT05143398) with 40 in-patient male subjects with severe obesity. Participants underwent an intervention program consisting of a low-calorie balanced diet and structured physical activity. They were randomly assigned to 4-week treatment groups: (1) control (CTR, N = 10), (2) protein (P, N = 10), (3) branched-chain amino acid (BCAA, N = 10), and (4) essential amino acid mixture with tricarboxylic acid cycle intermediates (PD-E07, N = 10) supplementation. RESULTS Following 4 weeks of intervention, all groups showed similar reductions in body weight compared to baseline. When examining the delta values, a notable increase in muscle mass (MM) was observed in the PD-E07 intervention group [MM (kg): 2.84 ± 3.57; MM (%): 3.63 ± 3.14], in contrast to the CTR group [MM (kg): -2.46 ± 3.04; MM (%): -0.47 ± 2.28], with a statistical significance of p = 0.045 and p = 0.023, respectively. However, the MM values for the P group [MM (kg): -2.75 ± 5.98, p = 0.734; MM (%): -0.44 ± 4.02, p = 0.990] and the BCAA group [MM (kg): -1 ± 3.3, p = 0.734; MM (%): 0.34 ± 2.85, p = 0.956] did not exhibit a statistically significant difference when compared to the CTR group. CONCLUSIONS Amino acid-based supplements may effectively mitigate the loss of MM typically observed during weight reduction. Further validation through large-scale studies is necessary.
Collapse
Affiliation(s)
- Amelia Brunani
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Raffaella Cancello
- Obesity Unit, Department of Endocrine and Metabolic Diseases, Laboratory of Nutrition and Obesity Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy;
| | - Michele Gobbi
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Elisa Lucchetti
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Giulia Di Guglielmo
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Sabrina Maestrini
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Stefania Cattaldo
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Paolo Piterà
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20100 Milan, Italy; (C.R.)
| | - Alessandra Milesi
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Paolo Capodaglio
- IRCCS, Istituto Auxologico Italiano, Ospedale San Giuseppe, Piancavallo, 28921 Verbania, Italy; (M.G.); (E.L.); (G.D.G.); (S.M.); (S.C.); (P.P.); (A.M.)
- Department of Surgical Sciences, Physical and Rehabilitation Medicine, University of Torino, 10121 Torino, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20100 Milan, Italy; (C.R.)
| |
Collapse
|
6
|
Quarta S, Massaro M, Carluccio MA, Calabriso N, Bravo L, Sarria B, García-Conesa MT. An Exploratory Critical Review on TNF-α as a Potential Inflammatory Biomarker Responsive to Dietary Intervention with Bioactive Foods and Derived Products. Foods 2022; 11:2524. [PMID: 36010524 PMCID: PMC9407274 DOI: 10.3390/foods11162524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
This review collects and critically examines data on the levels of tumour necrosis factor-alpha (TNF-α) in lean, overweight and obese subjects, and the effects of intervention with different foods and food products containing bioactive constituents in overweight/obese individuals. We additionally explore the influence of different single nucleotide polymorphisms (SNPs) on TNF-α levels and compare the response to food products with that to some anti-obesity drugs. Our aim was to provide an overview of the variability, consistency, and magnitude of the reported effects of dietary factors on TNF-α, and to envisage the reliability of measuring changes in the levels of this cytokine as a biomarker responsive to food intervention in association with the reduction in body weight. Regarding the circulating levels of TNF-α, we report: (i) a large intra-group variability, with most coefficients of variation (CV%) values being ≥30% and, in many cases, >100%; (ii) a large between-studies variability, with baseline TNF-α values ranging from <1.0 up to several hundred pg/mL; (iii) highly variable effects of the different dietary approaches with both statistically significant and not significant decreases or increases of the protein, and the absolute effect size varying from <0.1 pg/mL up to ≈50 pg/mL. Within this scenario of variability, it was not possible to discern clear differentiating limits in TNF-α between lean, overweight, and obese individuals or a distinct downregulatory effect on this cytokine by any of the different dietary approaches reviewed, i.e., polyunsaturated fatty acids (PUFAs), Vitamin-D (VitD), mixed (micro)nutrients, (poly)phenols or other phytochemicals. Further, there was not a clear relationship between the TNF-α responses and body weight changes. We found similarities between dietary and pharmacological treatments in terms of variability and limited evidence of the TNF-α response. Different factors that contribute to this variability are discussed and some specific recommendations are proposed to reinforce the need to improve future studies looking at this cytokine as a potential biomarker of response to dietary approaches.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Laura Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Beatriz Sarria
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
7
|
Elemo GN, Erukainure OL, Okafor JNC, Banerjee P, Preissner R, Nwachukwu Nicholas-Okpara VA, Atolani O, Omowunmi O, Ezeanyanaso CS, Awosika A, Shode F. Underutilized legumes, Cajanus cajan and Glycine max may bring about antisickling effect in sickle cell disease by modulation of redox homeostasis in sickled erythrocytes and alteration of its functional chemistry. J Food Biochem 2022; 46:e14322. [PMID: 35894096 DOI: 10.1111/jfbc.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The antisickling and anti-oxidative effect of the Cajanus cajan, Glycine max, and their blends were investigated in sickled erythrocytes. The powdered samples were analyzed for their nutritional and anti-nutritional constituents. Their aqueous extracts were analyzed for in vitro antioxidant activities. The extracts were incubated with sickled erythrocytes at 37°C for 6 hours and the antisickling effect examined via microscopic analysis. The blend was the most active and its incubated cells were subjected to anti-oxidative analysis which covers for GSH, SOD, catalase, and lipid peroxidation (LPO). Chemical functional group of the treated cells was analyzed with FTIR spectroscopy. The in silico binding of the predominant amino acid to hemoglobin was also investigated. An increased concentration of leucine was observed in the blend compared to that of C. cajan and G. max, respectively. Vitamins C, B6, and B9 were the only vitamins observed in the blend. Phytate and oxalate were present in all samples. All extracts displayed significant (p < .05) scavenging activities. Treatment with the blend exacerbated SOD and catalase activities as well as the GSH level, while suppressing LPO. FTIR analysis of the treated cells showed the presence of hydrophobic functional groups. Leucine was the predominant amino acid, and it showed a potent molecular interaction with HIS-87 residue of the alpha chain of 1HCO. C. cajan and G. max blend inhibited sickling activities of sickle erythrocytes, while concomitantly exacerbating their endogenous antioxidant enzymes activity and modification of the functional chemistry. PRACTICAL APPLICATIONS: Cajanus cajan and Glycine max are among the common underutilized legumes in Nigeria. Aside their nutritional properties, these legumes have been used from time immemorial for the treatment and management of various ailments. Sickle cell anemia is a class of hemoglobinopathy common in Sub-Saharan Africa. There have been concerns about its treatment owing to the increasing scourge of the disease coupled to the financial burden of its management. This study reports the ability of the potentials of the legumes to prevent sickling activities of sickled erythrocytes and the possible biochemical mechanism involved.
Collapse
Affiliation(s)
- Gloria N Elemo
- Nutraceutical Laboratories, Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria.,Department of Chemical Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Jane N C Okafor
- Nutraceutical Laboratories, Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria
| | - Priyanka Banerjee
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | - Olusola Omowunmi
- Laboratory Management & Services, Federal Institute of Industrial Research, Lagos, Nigeria
| | - Chika S Ezeanyanaso
- Polymer & Textile Division, Federal Institute of Industrial Research, Lagos, Nigeria
| | | | - Francis Shode
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa.,Sholab Nutraceuticals (Pty) Ltd, Westville North, South Africa
| |
Collapse
|
8
|
Binou P, Yanni AE, Kartsioti K, Barmpagianni A, Konstantopoulos P, Karathanos VT, Kokkinos A. Wheat Biscuits Enriched with Plant-Based Protein Contribute to Weight Loss and Beneficial Metabolic Effects in Subjects with Overweight/Obesity. Nutrients 2022; 14:nu14122516. [PMID: 35745249 PMCID: PMC9231350 DOI: 10.3390/nu14122516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to assess the impact of daily consumption of a snack fortified with plant proteins with high content in amino acids with appetite regulating properties (BCAAs and L-arginine), as part of a dietary intervention, on weight loss. Seventy adults without diabetes (26 male, 44 female) and with overweight/obesity participated in a 12-week restricted dietary intervention and were randomized to either a control or an intervention group, consuming daily 70 g of conventional wheat biscuits (CB) or an isocaloric amount of wheat biscuits enriched with plant proteins (PB) originating from legumes and seeds, respectively. Anthropometric characteristics were measured and venous blood samples were collected at baseline and at the end of the intervention. Decreases in body weight, body fat mass and waist circumference were observed in both groups. Participants in the intervention group experienced greater weight loss (7.6 ± 2.7 vs. 6.2 ± 2.7%, p = 0.025) and marginally significant larger decrease in body fat mass (4.9 ± 2.2 vs. 3.9 ± 2.4 kg, p = 0.059). A moderate reduction in IL-1β levels (p = 0.081), a significantly higher decrease in TNF-α levels (p < 0.001) and a marginally significant greater leptin decrease (p = 0.066) in subjects of the PB group were noticed. Greater reductions in caloric and carbohydrate intake and a trend towards a higher decrease in fat intake were also observed in participants of this group. Incorporation of plant-based proteins with high content in amino acids with appetite-regulating properties in wheat biscuits may contribute to greater weight loss and improvement of metabolic parameters in subjects who are overweight or obese. Protein enrichment of snacks offers a beneficial qualitative manipulation that could be successfully incorporated in a diet plan.
Collapse
Affiliation(s)
- Panagiota Binou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
| | - Amalia E. Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
- Correspondence: ; Tel.: +30-2109549174
| | - Klio Kartsioti
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
| | - Aikaterini Barmpagianni
- 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.B.); (A.K.)
| | - Panagiotis Konstantopoulos
- Laboratory of Experimental Surgery and Surgery Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaios T. Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
| | - Alexander Kokkinos
- 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.B.); (A.K.)
| |
Collapse
|
9
|
Miao J, Guo L, Cui H, Wang L, Zhu B, Lei J, Li P, Jia J, Zhang Z. Er-Chen Decoction Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Rats through Remodeling Gut Microbiota and Regulating the Serum Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6221340. [PMID: 35399623 PMCID: PMC8991405 DOI: 10.1155/2022/6221340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Many studies have found that the dysfunction in gut microbiota and the metabolic dysfunction can promote nonalcoholic fatty liver disease (NAFLD) development. Er-Chen decoction (EC) can be used in the treatment of NAFLD. However, the mechanism of this hepatoprotection is still unknown. In this study, we constructed a rat model with NAFLD fed with high-fat chow and administered EC treatment. The therapeutic effects of EC on NAFLD were evaluated by measuring transaminases, blood lipid levels, and pathological changes in the liver. In addition, we measured the effects of EC on liver inflammatory response and oxidative stress. The changes in gut microbiota after EC treatment were studied using 16S rRNA sequencing. Serum untargeted metabolomics analysis was also used to study the metabolic regulatory mechanisms of EC on NAFLD. The results showed that EC decreased the serum transaminases and lipid levels and improved the pathological changes in NAFLD rats. Furthermore, EC enhanced the activities of SOD and GSH-Px and decreased MDA level in the liver. EC treatment also decreased the gene and protein levels of IL-6, IL-1β, and TNF-α in the liver and serum. The 16S rRNA sequencing and untargeted metabolomics indicated that EC treatment affected the gut microbiota and regulated serum metabolism. Correlation analysis showed that the effects of EC on taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways were associated with affecting in the abundance of Lactobacillus, Dubosiella, Lachnospiraceae, Desulfovibri, Romboutsia, Akkermansia, Intestinimonas, and Candidatus_saccharimonas in the gut. In conclusion, our study confirmed the protective effect of EC on NAFLD. EC could treat NAFLD by inhibiting oxidative stress, reducing inflammatory responses, and improving the dysbiosis of gut microbiota and the modulation of the taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways in serum.
Collapse
Affiliation(s)
- Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Bo Zhu
- Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Abstract
BACKGROUND Obesity develops due to an imbalance in energy homeostasis, wherein energy intake exceeds energy expenditure. Accumulating evidence shows that manipulations of dietary protein and their component amino acids affect the energy balance, resulting in changes in fat mass and body weight. Amino acids are not only the building blocks of proteins but also serve as signals regulating multiple biological pathways. SCOPE OF REVIEW We present the currently available evidence regarding the effects of dietary alterations of a single essential amino acid (EAA) on energy balance and relevant signaling mechanisms at both central and peripheral levels. We summarize the association between EAAs and obesity in humans and the clinical use of modifying the dietary EAA composition for therapeutic intervention in obesity. Finally, similar mechanisms underlying diets varying in protein levels and diets altered of a single EAA are described. The current review would expand our understanding of the contribution of protein and amino acids to energy balance control, thus helping discover novel therapeutic approaches for obesity and related diseases. MAJOR CONCLUSIONS Changes in circulating EAA levels, particularly increased branched-chain amino acids (BCAAs), have been reported in obese human and animal models. Alterations in dietary EAA intake result in improvements in fat and weight loss in rodents, and each has its distinct mechanism. For example, leucine deprivation increases energy expenditure, reduces food intake and fat mass, primarily through regulation of the general control nonderepressible 2 (GCN2) and mammalian target of rapamycin (mTOR) signaling. Methionine restriction by 80% decreases fat mass and body weight while developing hyperphagia, primarily through fibroblast growth factor 21 (FGF-21) signaling. Some effects of diets with different protein levels on energy homeostasis are mediated by similar mechanisms. However, reports on the effects and underlying mechanisms of dietary EAA imbalances on human body weight are few, and more investigations are needed in future.
Collapse
Affiliation(s)
- Fei Xiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
11
|
Płonka J, Babiuch M, Barchanska H. Influence of nitisinone and its metabolites on l-tyrosine metabolism in a model system. CHEMOSPHERE 2022; 286:131592. [PMID: 34311397 DOI: 10.1016/j.chemosphere.2021.131592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Nitisinone (NTBC) is currently used for the treatment of tyrosinemia type 1, a rare disease. It also exhibits potential in the treatment of other orphan diseases as well as nervous system disorders - this is however limited by its side effects. In all living organisms, NTBC inhibits 4-hydroxyphenylpyruvate dioxygenase activity, thereby affecting l-tyrosine (L-TYR) catabolism, which results in the therapeutic effect. The NTBC metabolites formed in patient's body is one of the causes of its side effects. The influence of NTBC and its metabolites; 2-amino-4-(trifluoromethyl)benzoic acid, 2-nitro-4-(trifluoromethyl)benzoic acid, and cyclohexane-1,3-dione on L-TYR catabolism was investigated in Raphanus sativus var. longipinnatus. Based on targeted LC-MS/MS analysis the concentration of NTBC and its metabolites in exposed plant tissues was determined. Based on non-targeted LC-MS/MS analysis the concentrations of products of L-TYR catabolism: levodopa, epinephrine, norepinephrine, normetanephrine, dopamine, tyramine and vitamins C, B5 and B6, additionally leucine and valine were identified as influenced by the NTBC or its metabolites. NTBC and its metabolites influenced L-TYR catabolism differently. Particularly significant changes were found in the content of epinephrine and normetanephrine: in the plant tissues exposed to NTBC, an increase in the content of these neurotransmitters was found (+42%), whereas in the plant treated with 2-amino-4-(trifluoromethyl)benzoic acid or 2-nitro-4-(trifluoromethyl)benzoic acid a decrease in concentration (-39% and 55%, respectively) was observed. Cyclohexane-1,3-dione does not influence epinephrine and normetanephrine concentration. The conclusions of this study provide a platform for expanded research on the causes of side effects of NTBC treatment.
Collapse
Affiliation(s)
- Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Monika Babiuch
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|
12
|
Haidari F, Mohammadshahi M, Zarei M, Haghighizadeh MH, Mirzaee F. The Effect of Pyridoxine Hydrochloride Supplementation on Leptin, Adiponectin, Glycemic Indices, and Anthropometric Indices in Obese and Overweight Women. Clin Nutr Res 2021; 10:230-242. [PMID: 34386442 PMCID: PMC8331291 DOI: 10.7762/cnr.2021.10.3.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity has reached epidemic proportions globally. Among several methods for treating obesity, the use of dietary supplements is common recently. One supplement that can help in this regard might be vitamin B6 in high doses. The objective of this study was to evaluate the effect of pyridoxine hydrochloride supplementation on anthropometric indices, body composition, visceral adiposity index (VAI), and metabolic status in obese and overweight women. In this randomized controlled clinical trial, 44 obese and overweight women aged 18-50 years were selected and divided randomly into 2 groups: an intervention group (receiving 80 mg pyridoxine hydrochloride supplement for 8 weeks) and a control group (receiving placebo for 8 weeks). In the pyridoxine hydrochloride group, weight (p = 0.03), body mass index (p = 0.023), fat mass (p = 0.003), waist circumference (p = 0.005), VAI (p = 0.001), fasting insulin, insulin resistance (homeostasis model assessment of insulin resistance; HOMA-IR), total cholesterol, low-density lipoprotein, triglycerides (TG) and leptin (p < 0.001) decreased whereas adiponectin (p < 0.001) increased in comparison to the baseline values. There was a significant difference in fat mass, VAI, fasting insulin, HOMA-IR, and TG between pyridoxine hydrochloride and control groups following intervention in adjusted models (p < 0.05). The findings suggest that vitamin B6 supplementation may be effective in reducing BMI and improving body composition and biochemical factors associated with obesity. Trial Registration Iranian Registry of Clinical Trials Identifier: IRCT20181002041206N1.
Collapse
Affiliation(s)
- Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Majid Mohammadshahi
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-43337, Iran
| | - Mohammad Hosein Haghighizadeh
- Department of Statistics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Fatemeh Mirzaee
- Department of Nutrition, Diabetes Research Center, Health Research Institute, Faculty of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| |
Collapse
|
13
|
Theis N, Brown MA, Wood P, Waldron M. Leucine Supplementation Increases Muscle Strength and Volume, Reduces Inflammation, and Affects Wellbeing in Adults and Adolescents with Cerebral Palsy. J Nutr 2021; 151:59-64. [PMID: 31965179 DOI: 10.1093/jn/nxaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Spastic cerebral palsy (CP) is characterized by muscle weakness owing, in part, to a blunted muscle protein synthetic response. This might be normalized by long-term leucine supplementation. OBJECTIVES The study assessed the effects of 10 wk leucine supplementation in adolescents and adults with CP. METHODS The study was a single-center randomized controlled trial. Twenty-four participants were randomly assigned to a control group (n = 12) or a leucine group (n = 12). l-Leucine (192 mg/kg body mass) was dissolved in water and administered daily for 10 wk. The primary outcome measures of elbow flexor muscle strength and muscle volume (measured by 3D ultrasound technique) and inflammation [C-reactive protein (CRP) concentration] were assessed before and after the 10 wk, alongside the secondary outcomes of body composition (measured by CP-specific skinfold assessment), metabolic rate (measured by indirect calorimetry), and wellbeing (measured by a self-reported daily questionnaire). Data were compared via a series of 2-factor mixed ANOVAs. RESULTS Twenty-one participants completed the intervention (control group: n = 11, mean ± SD age: 18.3 ± 2.8 y, body mass: 48.8 ± 11.9 kg, 45% male; leucine group: n = 10, age: 18.6 ± 1.7 y, body mass: 58.3 ± 20.2 kg, 70% male). After 10 wk, there was a 25.4% increase in strength (P = 0.019) and a 3.6% increase in muscle volume (P = 0.001) in the leucine group, with no changes in the control group. This was accompanied by a 59.1% reduction in CRP (P = 0.045) and improved perceptions of wellbeing (P = 0.006) in the leucine group. No changes in metabolism or body composition were observed in either group (P > 0.05). CONCLUSIONS Improvements in muscle strength and volume with leucine supplementation might provide important functional changes for adults and adolescents with CP and could be partly explained by reduced inflammation. The improved wellbeing highlights its capacity to improve the quality of daily living. This trial was registered at clinicaltrials.gov as NCT03668548.
Collapse
Affiliation(s)
- Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, United Kingdom
| | - Meghan A Brown
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, United Kingdom
| | - Paula Wood
- Treloar's School and College, Treloar's Trust, Alton, United Kingdom
| | - Mark Waldron
- College of Engineering, Swansea University, Swansea, United Kingdom.,School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
14
|
Jakus T, Jurdana M, Žiberna L, Pražnikar ZJ. Acute moderate-intensity exercise increases total antioxidant capacity and anti-inflammatory responses in competitive cyclists: The role of adiponectin. EUR J INFLAMM 2021. [DOI: 10.1177/2058739221998890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
High-intensity exercise can elicit acute changes in the biochemical and physiological processes in the body of an athlete, including increased oxidative stress and inflammation. The purpose of this study was to explore the effect of acute moderate-intensity exercise on total antioxidant capacity (TAC) and serum levels of anti-inflammatory adiponectin (APN), and inflammatory markers in competitive cyclists. Ten male cyclists (age 15–26 years, body mass index 19.4–24.7 kg/m2) participated in this study. Each subject performed the maximal oxygen uptake test (VO2peak) and completed a 10-min cycling exercise at a workload of 50% of the peak of VO2peak. Blood samples were collected on three different occasions: after an overnight fasting and at the exercise workloads of 50% and 100% VO2peak. We measured APN, TAC, inflammatory markers as well as assessed nutrient and energy intake for each participant. Baseline concentration of serum APN (10.92 µg/mL) significantly increased at 50% and at 100% VO2peak. In addition, TAC also increased after acute exercise (0.079 vs 0.093 nmol/µL). The concentration of APN at 50% VO2peak positively correlated with the CRP ( r = 0.640, p = 0.046) and negatively correlated with TNF-α ( r = −0.696, p = 0.025). This test showed that short (10 min) and medium-intensity (50% VO2peak) exercise activity in trained athletes evoked beneficial antioxidant and anti-inflammatory responses. Importantly, this response correlates with the increase in APN levels thereby showing that highly trained individuals have beneficial responses originating from adipose tissue. Our observations show that a short training at moderate activity can be an important preservative strategy during the recovery training period.
Collapse
Affiliation(s)
- Tadeja Jakus
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Mihaela Jurdana
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Lovro Žiberna
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Ljubljana, Slovenia
| | - Zala J Pražnikar
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| |
Collapse
|
15
|
Loganathan N, McIlwraith EK, Belsham DD. BPA Differentially Regulates NPY Expression in Hypothalamic Neurons Through a Mechanism Involving Oxidative Stress. Endocrinology 2020; 161:5910085. [PMID: 32960947 DOI: 10.1210/endocr/bqaa170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, interferes with reproduction and is also considered an obesogen. The neuropeptide Y (NPY) neurons of the hypothalamus control both food intake and reproduction and have emerged as potential targets of BPA. These functionally diverse subpopulations of NPY neurons are differentially regulated by peripheral signals, such as estrogen and leptin. Whether BPA also differentially alters Npy expression in subpopulations of NPY neurons, contributing to BPA-induced endocrine dysfunction is unclear. We investigated the response of 6 immortalized hypothalamic NPY-expressing cell lines to BPA treatment. BPA upregulated Npy mRNA expression in 4 cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-42), and downregulated Npy in 2 lines (mHypoE-46, mHypoE-44). This differential expression of Npy occurred concurrently with differential expression of estrogen receptor mRNA levels. Inhibition of G-protein coupled estrogen receptor GPR30 or estrogen receptor β prevented the BPA-mediated decrease in Npy, whereas inhibition of energy sensor 5' adenosine monophosphate-activated protein kinase (AMPK) with compound C prevented BPA-induced increase in Npy. BPA also altered neuroinflammatory and oxidative stress markers in both mHypoA-59 and mHypoE-46 cell lines despite the differential regulation of Npy. Remarkably, treatment with BPA in an antioxidant-rich media, Neurobasal A (NBA), or with reactive oxygen species scavenger tauroursodeoxycholic acid mitigated the BPA-induced increase and decrease in Npy. Furthermore, 2 antioxidant species from NBA-N-acetylcysteine and vitamin B6-diminished the induction of Npy in the mHypoA-59 cells, demonstrating these supplements can counteract BPA-induced dysregulation in certain subpopulations. Overall, these results illustrate the differential regulation of Npy by BPA in neuronal subpopulations, and point to oxidative stress as a pathway that can be targeted to block BPA-induced Npy dysregulation in hypothalamic neurons.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics, University of Toronto, Toronto, Ontario, Canada
- Department of Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Schumacher KA, Gosmanov AR. Diabetic Ketoacidosis in a Type 2 Diabetes Patient After Initiation of Over-the-Counter Weight Loss Medications: A Cautionary Tale. Clin Diabetes 2020; 38:408-411. [PMID: 33132513 PMCID: PMC7566934 DOI: 10.2337/cd20-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Aidar R. Gosmanov
- Albany Medical College, Albany, NY
- Section of Endocrinology, Stratton VA Medical Center, Albany, NY
| |
Collapse
|
17
|
Murphy M, Bartges JW, Zemel MB, Kirk CA, Witzel-Rollins A. Effect of a Leucine/Pyridoxine Nutraceutical on Caloric Intake and Body Composition of Obese Dogs Losing Weight. Front Vet Sci 2020; 7:555. [PMID: 33195491 PMCID: PMC7477321 DOI: 10.3389/fvets.2020.00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/02/2022] Open
Abstract
The aim of this 29-week randomized, positively and negatively controlled study was to investigate whether a nutraceutical containing 1 g leucine and 13 mg pyridoxine can enhance weight loss while maintaining lean muscle mass in obese dogs. Twenty-four healthy, 2-year-old beagles were initially divided into obesification (n = 18) or ideal body weight groups (n = 6). After obesification, the 18 dogs were divided into three weight loss groups and fed one of the following over 12 weeks: nutraceutical with canned adult diet (CAD; ObN), placebo with CAD (ObP), or a canned therapeutic weight loss diet (WLD). Dogs in the ideal body weight (IBW) group were fed maintenance calorie requirements with CAD over 12 weeks. Based on MANOVA, ObN and WLD lost similar amounts of total weight (3.6 ± 0.9 vs. 4.4 ± 1.1 kg, respectively) and fat mass (3.1 ± 0.6 vs. 3.9 ± 0.8 kg, respectively) after 12 weeks of treatment, and more than ObP (1.1 ± 1.2 kg weight; 0.9 ± 1.0 kg fat; p < 0.0001). These data show the nutraceutical is a promising option for successful weight loss in dogs. Maintenance levels of CAD were able to induce weight loss without risk of hypo- or anorexia, or the need to switch diets or restrict energy intake.
Collapse
Affiliation(s)
- Maryanne Murphy
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Joseph W Bartges
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Michael B Zemel
- NuSirt Biopharma, Research & Development, Knoxville, TN, United States
| | - Claudia A Kirk
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Angela Witzel-Rollins
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| |
Collapse
|
18
|
Zemel MB. Modulation of Energy Sensing by Leucine Synergy with Natural Sirtuin Activators: Effects on Health Span. J Med Food 2020; 23:1129-1135. [PMID: 32758058 DOI: 10.1089/jmf.2020.0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sirt1 and 5' adenosine monophosphate-activated protein kinase (AMPK) are energy-sensing systems that work cooperatively and regulate mitochondrial biogenesis and fuel metabolism, and mediate, in part, the salutary effects of caloric restriction on lifespan and healthspan. We have shown that leucine activates Sirt1 and enables synergy with sirtuin co-activators. Resveratrol is a widely recognized activator of Sirt1; however, poor bioavailability and rapid metabolism limit effective clinical translation of promising animal data. However, we found that combining low resveratrol doses with leucine increased skeletal muscle and adipocyte Sirt1 activity, mitochondrial biogenesis and fatty acid oxidation; these effects result in increased lifespan and marked reductions in insulin resistance, inflammatory markers, body weight, and visceral adiposity in preclinical models. To translate these data to humans, we assessed the effects of resveratrol (50 mg)/leucine (1.11 g) on glucose dynamics in a 4-week placebo-controlled trial of 36 prediabetic subjects. Leucine-resveratrol reduced insulin resistance (homeostatic model assessment for insulin resistance) 33% with corresponding reductions in glucose and insulin area under the curve in oral glucose tolerance tests. We extended these concepts in preclinical studies using both direct Sirt1 activators and Sirt1 pathway activators. Low-dose (10 nM) NAD+ precursors (nicotinic acid, nicotinamide mononucleotide, and nicotinamide riboside) synergized with leucine to increase Sirt1 activity in adipocytes, hepatocytes, and muscle cells (30-100%, P < .01) and lifespan in Caenorhabditis elegans (25%, P = .025) and to significantly regress atherosclerotic lesion size and macrophage infiltration in a mouse model of atherosclerosis. Thus, synergistic activation of Sirt1 using leucine and a co-activator exerts pleiotropic effects impacting cardiometabolic endpoints.
Collapse
Affiliation(s)
- Michael B Zemel
- NuSirt Biopharma, Research and Development, Knoxville, Tennessee, USA
| |
Collapse
|
19
|
Hu C, Li F, Duan Y, Yin Y, Kong X. Dietary Supplementation With Leucine or in Combination With Arginine Decreases Body Fat Weight and Alters Gut Microbiota Composition in Finishing Pigs. Front Microbiol 2019; 10:1767. [PMID: 31456756 PMCID: PMC6700229 DOI: 10.3389/fmicb.2019.01767] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity was associated with change in gut microbiota composition and their metabolites. We investigated the effects of dietary supplementation with leucine (Leu) in combination with arginine (Arg) or glutamic acid (Glu) on body fat weight, composition of gut microbiota, and short-chain fatty acids (SCFAs) concentration in the colon. Forty-eight Duroc × Large White × Landrace pigs with an initial body weight of 77.08 ± 1.29 kg were randomly assigned to one of the four groups (12 pigs per group). The pigs in the control group were fed a basal diet supplemented with 2.05% alanine (isonitrogenous control, BD group), and those in the three experimental groups were fed a basal diet supplemented with 1.00% Leu + 1.37% alanine (Leu group), 1.00% Leu + 1.00% Arg (Leu_Arg group), or 1.00% Leu + 1.00% Glu (Leu_Glu group). We found that dietary supplementation with Leu alone or in combination with Arg decreased (p < 0.05) body fat weight, and increased (p < 0.05) colonic propionate and butyrate concentrations compared to the BD group. The mRNA expression levels of genes related to lipolysis increased (p < 0.05) in the Leu or Leu_Arg group compared to the BD group. Negative relationships (p < 0.05) were observed between body fat weight, colonic propionate, and butyrate concentrations. Compared to the BD group, the abundance of Actinobacteria was higher (p < 0.05) in the Leu group, and that of Clostridium_sensu_stricto_1, Terrisporobacter, and Escherichia-Shigella were higher in the Leu_Arg group. The abundance of Deinococcus-Thermus was negatively correlated (p < 0.05) with body fat weight, and was positively correlated (p < 0.05) with butyrate, isovalerate, propionate, and isobutyrate concentrations, and that of Cyanobacteria was positively correlated (p < 0.05) with butyrate, propionate, and isobutyrate concentrations. In conclusion, these findings suggest that decreased body fat weight in pigs can be induced by Leu supplementation alone or in combination with Arg and is associated with increased colonic butyrate and propionate concentrations. This provides new insights for potential therapy for obesity.
Collapse
Affiliation(s)
- Chengjun Hu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
20
|
Duan Y, Zhong Y, Xiao H, Zheng C, Song B, Wang W, Guo Q, Li Y, Han H, Gao J, Xu K, Li T, Yin Y, Li F, Yin J, Kong X. Gut microbiota mediates the protective effects of dietary β‐hydroxy‐β‐methylbutyrate (HMB) against obesity induced by high‐fat diets. FASEB J 2019; 33:10019-10033. [DOI: 10.1096/fj.201900665rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yinzhao Zhong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Hao Xiao
- Guangdong Academy of Agricultural SciencesKey Laboratory of Animal Nutrition and Feed Science in South ChinaInstitute of Animal ScienceMinistry of Agriculture Guangzhou China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional IngredientsHunan Co‐Innovation Center of Animal Production Safety (CICAPS) Changsha China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| |
Collapse
|
21
|
Velásquez M, Méndez D, Moneriz C. Pyridoxine Decreases Oxidative Stress on Human Erythrocyte Membrane Protein in vitro. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Pyridoxine has reduction and prevention against the levels of reactive oxygen species in in vitro studies. However, the biochemical mechanism that explains this behavior has not yet been fully clarified.
Objective:
To evaluate the effect of pyridoxine against oxidative damage on the membrane of human erythrocytes.
Methods:
Cumene hydroperoxide was used to induce oxidative stress in protein and lipid. Human erythrocytes were incubated with pyridoxine and cumene hydroperoxide, either alone or together for 8 h. Oxidative damage was determined by measuring lipid peroxidation and membrane protein carbonylation.
Results:
The results indicate that the malondialdehyde concentration decreased with increasing concentration of pyridoxine. The membrane protein content also decreased with increasing concentration of vitamin B6, which was confirmed by the decreased signal intensity in the western blot when compared to control without pyridoxine. Results demonstrate that pyridoxine can significantly decrease lipid peroxidation and protein carbonylation in red cell membrane exposed to high concentrations of oxidant agent.
Conclusion:
Pyridoxine showed a protective effect against the oxidative stress in human erythrocytes in vitro, inhibiting the carbonylation and the oxidative damage of erythrocyte membrane proteins. To date, such an effect has not yet been reported in terms of protein oxidation.
Collapse
|
22
|
Zhou P, Yang X, Yang Z, Huang W, Kou J, Li F. Akebia Saponin D Regulates the Metabolome and Intestinal Microbiota in High Fat Diet-Induced Hyperlipidemic Rats. Molecules 2019; 24:molecules24071268. [PMID: 30939835 PMCID: PMC6479315 DOI: 10.3390/molecules24071268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
Hyperlipidemia is a major component of metabolic syndrome, and regarded as one of the main risk factors causing metabolic diseases. We have developed a therapeutic drug, akebia saponin D (ASD), and determined its anti-hyperlipidemia activity and the potential mechanism(s) of action by analyzing the metabolome and intestinal microbiota. Male Sprague-Dawley rats were fed a high fat diet to induce hyperlipidemia, and then given ASD orally for 8 weeks. Lipid levels in serum were determined biochemically. Metabolites in serum, urine and feces were analyzed by UPLC-Q/TOF-MS, and the structure of the intestinal microbiota was determined by 16S rRNA sequencing. The ASD treatment significantly decreased the levels of TC, TG and LDL-c and increased the serum level of HDL-c. Metabolomics analysis indicated that the ASD treatment mainly impacted seven differential metabolites in the serum, sixteen differential metabolites in the urine and four differential metabolites in feces compared to the model group. The ASD treatment significantly changed eight bacteria at the genus level compared to the model group. In conclusion, ASD treatment can significantly alleviate HFD-induced hyperlipidemia and the hypolipidemic effect of ASD treatment is certainly associated with a systematic change in the metabolism, as well as dynamic changes in the structure of the intestinal microbiota.
Collapse
Affiliation(s)
- Peipei Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaolin Yang
- Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210009, China.
| | - Zhonglin Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenzhe Huang
- Nanjing Research Institute, Jiangsu Kangyuan Pharmaceutical Co., LTD, Nanjing 211100, China.
| | - Junping Kou
- Jiangsu Key laboratory of TCM Evaluation and Translational Research, Department of Complex TCM Prescriptions, China Pharmaceutical University, Nanjing 211198, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
23
|
Novin ZS, Ghavamzadeh S, Mehdizadeh A. The Weight Loss Effects of Branched Chain Amino Acids and Vitamin B6: A Randomized Controlled Trial on Obese and Overweight Women. INT J VITAM NUTR RES 2019; 88:80-89. [PMID: 30841823 DOI: 10.1024/0300-9831/a000511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Branched chain amino acids (BCAA), with vitamin B6 have been reported to improve fat metabolism and muscle synthesis. We hypothesized that supplementation with BCAA and vitamin B6 would result in more weight loss and improve body composition and blood markers related to cardiovascular diseases. Our aim was to determine whether the mentioned supplementation would affect weight loss, body composition, and cardiovascular risk factors during weight loss intervention. To this end, we performed a placebo-controlled randomized clinical trial in 42 overweight and obese women (BMI = 25-34.9 kg/m2). Taking a four-week moderate deficit calorie diet (-500 kcal/day), participants were randomized to receive BCAA (6 g/day) with vitamin B6 (40 mg/day) or placebo. Body composition variables measured with the use of bioelectrical impedance analysis, homeostatic model assessment, and plasma insulin, Low density lipoprotein, High density lipoprotein, Total Cholesterol, Triglyceride, and fasting blood sugar were measured. The result indicated that, weight loss was not significantly affected by BCAA and vitamin B6 supplementation (-2.43 ± 1.02 kg) or placebo (-1.64 ± 1.48 kg). However, significant time × treatment interactions in waist to hip ratio (P = 0.005), left leg lean (P = 0.004) and right leg lean (P = 0.023) were observed. Overall, supplementation with BCAA and vitamin B6 could preserve legs lean and also attenuated waist to hip ratio.
Collapse
|
24
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
25
|
Pujia A, Mazza E, Ferro Y, Gazzaruso C, Coppola A, Doldo P, Grembiale RD, Pujia R, Romeo S, Montalcini T. Lipid Oxidation Assessed by Indirect Calorimetry Predicts Metabolic Syndrome and Type 2 Diabetes. Front Endocrinol (Lausanne) 2018; 9:806. [PMID: 30687238 PMCID: PMC6335247 DOI: 10.3389/fendo.2018.00806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023] Open
Abstract
Purpose: Diabetes has been linked to an impaired ability to oxidize fatty acids. Fat oxidation can be assessed clinically by a respiratory quotient measurement during fasting. We hypothesized that a respiratory quotient might predict metabolic syndrome and type 2 diabetes onset. Methods: In this longitudinal study we used an existing database of 233 individuals who had complete nutritional and biochemical data at baseline and after 12-month follow-up. All participants underwent an indirect calorimetry to measure the respiratory quotient. We excluded participants with diabetes, metabolic syndrome, chronic diseases, and those who had changed food habits in the previous 3 months. Only 88 subjects met the inclusion criteria. Results: Two individuals developed type 2 diabetes and 10 metabolic syndrome after 1 year. Participants in the high respiratory quotient group (>0.91) had a higher incidence of metabolic syndrome/diabetes than those in the low quotient group (25 vs. 8% p = 0.04). In this group, mean basal respiratory quotient was 0.97 ± 0.04. In the high respiratory quotient group, Kaplan-Meier curves showed a greater probability of having metabolic syndrome/diabetes than those in the low respiratoryquotient group (log Rank χ2-test = 8.44; p = 0.004). A multivariable Cox proportional hazards model demonstrated that energy expenditure and weight increase did not predict metabolic syndrome/diabetes [HR (95% CI) = 1 (0.996-1.005), p = 0.86 and 3.9 (0.407-38.061), p = 0.23, respectively). Conclusions: A greater probability of metabolic syndrome/diabetes was found in individuals with a basal respiratory quotient of >0.91 than in those with a respiratoryquotient of ≤ 0.91 after 1 year. In the short-term anthropometric measurements and their variation overtime were not correlated with metabolic syndrome/diabetes.
Collapse
Affiliation(s)
- Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| | | | | | - Patrizia Doldo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| | | | - Roberta Pujia
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tiziana Montalcini
- Nutrition Unit, Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro, Italy
- *Correspondence: Tiziana Montalcini
| |
Collapse
|
26
|
Da Silva MS, Bilodeau JF, Larose J, Greffard K, Julien P, Barbier O, Rudkowska I. Modulation of the biomarkers of inflammation and oxidative stress by ruminant trans fatty acids and dairy proteins in vascular endothelial cells (HUVEC). Prostaglandins Leukot Essent Fatty Acids 2017; 126:64-71. [PMID: 29031397 DOI: 10.1016/j.plefa.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022]
Abstract
This study aimed to determine whether dairy macronutrients alter markers of inflammation and oxidative stress in endothelial cells. Human endothelial cells (HUVEC) were treated with ruminant trans fatty acids (rTFA), either trans-vaccenic acid (tVA) or trans-palmitoleic acid (tPA), whey protein hydrolysate, leucine or combinations of rTFA and dairy protein compounds. Industrial TFA elaidic acid (EA) was also investigated and compared with rTFA. Inflammatory prostaglandins (PG) and F2-isoprostanes (F2-isoP) isomers, markers of oxidative stress, were assessed in cell supernatants by LC-MS/MS. Both tVA and tPA, as well as whey protein hydrolysate, decreased TNFα-induced PG excretion. Combinations of rTFA and dairy protein compounds decreased inflammation to a similar extent than rTFA alone. EA increased class VI F2-isoP isomers, whereas tVA mostly raised class III isomers. In summary, rTFA decreased inflammatory markers and increased oxidative stress markers in endothelial cells. Combinations of rTFA with whey proteins or leucine showed no additive effect.
Collapse
Affiliation(s)
- Marine S Da Silva
- Endocrinology and Nephrology, Centre de recherche du CHU de Québec, Université Laval and the Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Jean-François Bilodeau
- Endocrinology and Nephrology, Centre de recherche du CHU de Québec, Université Laval and the Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Jessica Larose
- Endocrinology and Nephrology, Centre de recherche du CHU de Québec, Université Laval and the Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Karine Greffard
- Endocrinology and Nephrology, Centre de recherche du CHU de Québec, Université Laval and the Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Pierre Julien
- Endocrinology and Nephrology, Centre de recherche du CHU de Québec, Université Laval and the Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology and Nephrology, Centre de recherche du CHU de Québec, Université Laval and the Faculty of Pharmacy, Université Laval, Québec, QC, Canada G1V 4G2
| | - Iwona Rudkowska
- Endocrinology and Nephrology, Centre de recherche du CHU de Québec, Université Laval and the Faculty of Medicine, Université Laval, Quebec, Quebec, Canada.
| |
Collapse
|
27
|
Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E. Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. GENES & NUTRITION 2017; 12:27. [PMID: 29043007 PMCID: PMC5628494 DOI: 10.1186/s12263-017-0582-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/17/2017] [Indexed: 01/12/2023]
Abstract
Dietary supplementation of essential amino acids (EAAs) has been shown to promote healthspan. EAAs regulate, in fact, glucose and lipid metabolism and energy balance, increase mitochondrial biogenesis, and maintain immune homeostasis. Basic science and epidemiological results indicate that dietary macronutrient composition affects healthspan through multiple and integrated mechanisms, and their effects are closely related to the metabolic status to which they act. In particular, EAA supplementation can trigger different and even opposite effects depending on the catabolic and anabolic states of the organisms. Among others, gut-associated microbial communities (referred to as gut microbiota) emerged as a major regulator of the host metabolism. Diet and host health influence gut microbiota, and composition of gut microbiota, in turn, controls many aspects of host health, including nutrient metabolism, resistance to infection, and immune signals. Altered communication between the innate immune system and the gut microbiota might contribute to complex diseases. Furthermore, gut microbiota and its impact to host health change largely during different life phases such as lactation, weaning, and aging. Here we will review the accumulating body of knowledge on the impact of dietary EAA supplementation on the host metabolic health and healthspan from a holistic perspective. Moreover, we will focus on the current efforts to establish causal relationships among dietary EAAs, gut microbiota, and health during human development.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
28
|
Jiao J, Han SF, Zhang W, Xu JY, Tong X, Yin XB, Yuan LX, Qin LQ. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr Res 2016; 60:31304. [PMID: 27616737 PMCID: PMC5018683 DOI: 10.3402/fnr.v60.31304] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Background Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD). Design C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group) or 3% leucine (HFCD+3% Leu group) for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC), triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT) browning were determined. Results Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase) and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion This study demonstrated that chronic leucine supplementation reduced the body weight and improved the lipid profile of mice fed with a HFCD. This beneficial effect was ascribed to hepatic lipogenesis, adipocyte lipolysis, and WAT browning.
Collapse
Affiliation(s)
- Jun Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Shu-Fen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xing Tong
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Xue-Bin Yin
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China
| | - Lin-Xi Yuan
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China;
| |
Collapse
|
29
|
Yao K, Duan Y, Li F, Tan B, Hou Y, Wu G, Yin Y. Leucine in Obesity: Therapeutic Prospects. Trends Pharmacol Sci 2016; 37:714-727. [DOI: 10.1016/j.tips.2016.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
30
|
Ticinesi A, Meschi T, Lauretani F, Felis G, Franchi F, Pedrolli C, Barichella M, Benati G, Di Nuzzo S, Ceda GP, Maggio M. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins. Nutrients 2016; 8:186. [PMID: 27043616 PMCID: PMC4848655 DOI: 10.3390/nu8040186] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Tiziana Meschi
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Fulvio Lauretani
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Giovanna Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| | - Fabrizio Franchi
- Geriatric Unit, "Guglielmo da Saliceto" Hospital, AUSL Piacenza, Via Taverna 49, Piacenza 29121, Italy.
| | - Carlo Pedrolli
- Dietetics and Clinical Nutrition Unit, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari Provincia Autonoma di Trento, Largo Medaglie d'Oro 9, Trento 38122, Italy.
| | - Michela Barichella
- Parkinson Institute, Azienda Socio-Sanitaria Territoriale "Gaetano Pini"-C.T.O., Via Bignami 1, Milan 20126, Italy.
| | - Giuseppe Benati
- Geriatric Unit, Ospedale G.B. Morgagni-L. Pierantoni, Via Carlo Forlanini 34, Forlì 47121, Italy.
| | - Sergio Di Nuzzo
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Gian Paolo Ceda
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Clinical Geriatrics Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Marcello Maggio
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Clinical Geriatrics Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| |
Collapse
|
31
|
Pujia A, Gazzaruso C, Ferro Y, Mazza E, Maurotti S, Russo C, Lazzaro V, Romeo S, Montalcini T. Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals. Nutrients 2016; 8:E2. [PMID: 26742056 PMCID: PMC4728616 DOI: 10.3390/nu8010002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
The mechanisms underlying the change in phenotype from metabolically healthy to metabolically unhealthy obesity are still unclear. The aim of this study is to investigate whether a difference in fasting fat utilization exists between overweight/obese individuals with a favorable cardiovascular risk profile and those with Metabolic Syndrome and Type 2 diabetes. Furthermore, we sought to explore whether there is an association between fasting fat utilization and insulin resistance. In this cross-sectional study, 172 overweight/obese individuals underwent a nutritional assessment. Those with fasting glucose ≥ 126 mg/dL or antidiabetic treatment were considered to be diabetics. If at least three of the NCEP criteria were present, they had Metabolic Syndrome, while those with less criteria were considered to be healthy overweight/obese. An indirect calorimetry was performed to estimate Respiratory Quotient, an index of nutrient utilization. A lower Respiratory Quotient (i.e., higher fat utilization) was found in healthy overweight/obese individuals than in those with Metabolic Syndrome and Type 2 diabetes (0.85 ± 0.05; 0.87 ± 0.06; 0.88 ± 0.05 respectively, p = 0.04). The univariate and multivariable analysis showed a positive association between the Respiratory Quotient and HOMA-IR (slope in statistic (B) = 0.004; β = 0.42; p = 0.005; 95% Confidence interval = 0.001-0.006). In this study, we find, for the first time, that the fasting Respiratory Quotient is significantly lower (fat utilization is higher) in individuals who are metabolically healthy overweight/obese than in those with metabolically unhealthy obesity. In addition, we demonstrated the association between fat utilization and HOMA-IR, an insulin resistance index.
Collapse
Affiliation(s)
- Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | | | - Yvelise Ferro
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Samantha Maurotti
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Cristina Russo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Veronica Lazzaro
- Department of Health Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg 40530, Sweden.
| | - Tiziana Montalcini
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| |
Collapse
|
32
|
Li YC, Li Y, Liu LY, Chen Y, Zi TQ, Du SS, Jiang YS, Feng RN, Sun CH. The Ratio of Dietary Branched-Chain Amino Acids is Associated with a Lower Prevalence of Obesity in Young Northern Chinese Adults: An Internet-Based Cross-Sectional Study. Nutrients 2015; 7:9573-89. [PMID: 26593945 PMCID: PMC4663614 DOI: 10.3390/nu7115486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 12/27/2022] Open
Abstract
This study aims to examine the association between the ratio of dietary branched chain amino acids (BCAA) and risk of obesity among young northern Chinese adults. A total of 948 randomly recruited participants were asked to finish our internet-based dietary questionnaire for the Chinese (IDQC). Associations between dietary BCAA ratio and prevalence of overweight/obesity and abdominal obesity were analyzed. Furthermore, 90 subjects were randomly selected to explore the possible mechanism. Dietary BCAA ratio in obese participants was significantly lower than non-obese participants. We found negative correlations between the ratio of dietary BCAA and body mass index (BMI) (r = −0.197, p < 0.001) or waist circumference (r = −0.187, p < 0.001). Compared with those in the first quartile, the multivariable-adjusted OR (95% CI) of the 3rd and 4th quartiles of dietary BCAA ratio for overweight/obesity were 0.508 (0.265–0.972) and 0.389 (0.193–0.783), respectively (all p < 0.05). After stratification by gender, the significance still existed in the 3rd and 4th quartile in males and the 4th quartile in females. For abdominal obesity, the multivariable-adjusted OR (95% CI) of the 3rd and 4th quartile of dietary BCAA ratio were 0.351 (0.145–0.845) and 0.376 (0.161–0.876), respectively (all p < 0.05). This significance was stronger in males. Further studies indicated that dietary BCAA ratio was inversely associated with 2-h postprandial glucose (2 h-PG) and status of inflammation. In conclusion, a higher ratio of dietary BCAA is inversely associated with prevalence of obesity, postprandial glucose and status of inflammation in young northern Chinese adults.
Collapse
Affiliation(s)
- Yan-Chuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Yang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Tian-Qi Zi
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Shan-Shan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Yong-Shuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.
| | - Ren-Nan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Chang-Hao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
33
|
Dong J, Li YJ, Xu R, Ikizler TA, Wang HY. Ketoacid Supplementation Partially Improves Metabolic Parameters in Patients on Peritoneal Dialysis. Perit Dial Int 2015; 35:736-42. [PMID: 26374833 DOI: 10.3747/pdi.2014.00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED ♦ BACKGROUND A low protein diet supplemented with ketoacids has been shown to improve the metabolic profile, including insulin resistance, in patients with chronic kidney disease (CKD), but whether ketoacids alone exert similar effects is unknown. In this prospective randomized controlled trial, we aimed to evaluate the effects of ketoacid supplementation on insulin resistance, systemic inflammation, oxidative stress and endothelial dysfunction among 100 CKD patients undergoing peritoneal dialysis (PD). ♦ METHODS Patients from one Chinese PD center were randomly assigned to take ketoacids (12 tablets per day) (n = 50) versus a control group (n = 50) for 6 months in an open-label parallelarm design. Daily protein intake of 0.8 - 1.2 g/kg/d and daily energy intake of 25 - 35 kcal/kg/d was prescribed to both groups. Insulin resistance was evaluated using homeostatic model assessment (HOMA-IR) index as the primary outcome. We assessed systemic inflammation using high-sensitive C-reactive protein (hs-CRP) and interleukin-6 (IL-6), oxidative stress using plasma oxidized low density lipoprotein (oxLDL), adipokines using leptin and adiponectin and endothelial dysfunction using serum soluble intercellular adhesion molecule-1 (sICAM) and soluble vascular adhesion molecule-1 (sVCAM) as secondary outcomes. ♦ RESULTS There were no significant differences in baseline characteristics between the 2 groups except a slightly higher age in patients assigned to the intervention. A total of 89% of participants completed the 6-month intervention. There was no significant difference in the change of HOMA-IR values from baseline between groups after adjusting for baseline age, gender, body mass index and HOMA-IR. For secondary outcomes, hs-CRP varied significantly between groups (p = 0.02), increasing over time for the control group while remaining stable for the ketoacid group. Similarly, the leptin/adiponectin ratio (LAR) differed between groups (p < 0.001), remaining stable in the ketoacid group but increasing in the control group. ♦ CONCLUSION Ketoacid therapy administered for 6 months had no effect on HOMA-IR but resulted in improvements in hs-CRP and LAR, suggesting metabolic benefit. Future studies are needed to confirm these results and any potential benefit in vascular health of PD patients.
Collapse
Affiliation(s)
- Jie Dong
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| | - Yan-Jun Li
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| | - Rong Xu
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| | - Talat Alp Ikizler
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hai-Yan Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| |
Collapse
|
34
|
Kolahian S, Sadri H, Shahbazfar AA, Amani M, Mazadeh A, Mirani M. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats. PLoS One 2015; 10:e0133374. [PMID: 26185997 PMCID: PMC4506042 DOI: 10.1371/journal.pone.0133374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase, glutathione peroxidase, myeloperoxidase, and superoxide dismutase in the diabetic rats. The present results demonstrate beneficial effects and amelioration of inflammation in the respiratory system of type 2 diabetic rats by leucine, zinc, and chromium supplements, probably due to their hypoglycaemic and antioxidant properties. Using safe and effective nutritional supplements, such as leucine, chromium and zinc, to replace proven conventional medical treatments may help to control diabetes and/or its complications.
Collapse
Affiliation(s)
- Saeed Kolahian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- * E-mail:
| | - Hassan Sadri
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Morvarid Amani
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Anis Mazadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mehdi Mirani
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
35
|
Montalcini T, De Bonis D, Ferro Y, Carè I, Mazza E, Accattato F, Greco M, Foti D, Romeo S, Gulletta E, Pujia A. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians. Nutrients 2015; 7:5933-47. [PMID: 26193314 PMCID: PMC4517036 DOI: 10.3390/nu7075259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
It has been demonstrated that a vegetarian diet may be effective in reducing body weight, however, the underlying mechanisms are not entirely clear. We investigated whether there is a difference in resting energy expenditure between 26 vegetarians and 26 non-vegetarians and the correlation between some nutritional factors and inflammatory markers with resting energy expenditure. In this cross-sectional study, vegetarians and non-vegetarians were matched by age, body mass index and gender. All underwent instrumental examinations to assess the difference in body composition, nutrient intake and resting energy expenditure. Biochemical analyses and 12 different cytokines and growth factors were measured as an index of inflammatory state. A higher resting energy expenditure was found in vegetarians than in non-vegetarians (p = 0.008). Furthermore, a higher energy from diet, fibre, vegetable fats intake and interleukin-β (IL-1β) was found between the groups. In the univariate and multivariable analysis, resting energy expenditure was associated with vegetarian diet, free-fat mass and vegetable fats (p < 0.001; Slope in statistic (B) = 4.8; β = 0.42). After adjustment for cytokines, log10 interleukin-10 (IL-10) still correlated with resting energy expenditure (p = 0.02). Resting energy expenditure was positively correlated with a specific component of the vegetarian's diet, i.e., vegetable fats. Furthermore, we showed that IL-10 was positively associated with resting energy expenditure in this population.
Collapse
Affiliation(s)
- Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro 88100, Italy.
| | - Daniele De Bonis
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Yvelise Ferro
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Ilaria Carè
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Francesca Accattato
- Department of Health Sciences, University Magna Grecia, Catanzaro 88100, Italy.
| | - Marta Greco
- Department of Health Sciences, University Magna Grecia, Catanzaro 88100, Italy.
| | - Daniela Foti
- Department of Health Sciences, University Magna Grecia, Catanzaro 88100, Italy.
| | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg SE-413 45, Sweden.
| | - Elio Gulletta
- Department of Health Sciences, University Magna Grecia, Catanzaro 88100, Italy.
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| |
Collapse
|
36
|
Reviewing the Effects of L-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis. Nutrients 2015; 7:3914-37. [PMID: 26007339 PMCID: PMC4446786 DOI: 10.3390/nu7053914] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/30/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Leucine is a well-known activator of the mammalian target of rapamycin (mTOR). Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss.
Collapse
|
37
|
Zhou LM, Xu JY, Rao CP, Han S, Wan Z, Qin LQ. Effect of whey supplementation on circulating C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients 2015; 7:1131-43. [PMID: 25671415 PMCID: PMC4344580 DOI: 10.3390/nu7021131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI −0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI −0.97, −0.47) among trials with a daily whey dose ≥20 g/day and by 0.67 mg/L (95% CI −1.21, −0.14) among trials with baseline CRP ≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels.
Collapse
Affiliation(s)
- Ling-Mei Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Jia-Ying Xu
- Key Laboratory of Radiation Biology, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Chun-Ping Rao
- Suzhou Health College, 28 Kehua Road, Suzhou 215009, China.
| | - Shufen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
38
|
Montalcini T, Lamprinoudi T, Gorgone G, Ferro Y, Romeo S, Pujia A. Subclinical cardiovascular damage and fat utilization in overweight/obese individuals receiving the same dietary and pharmacological interventions. Nutrients 2014; 6:5560-71. [PMID: 25470378 PMCID: PMC4276983 DOI: 10.3390/nu6125560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 01/19/2023] Open
Abstract
Subclinical organ damage precedes the occurrence of cardiovascular events in individuals with obesity and hypertension. The aim of this study was to assess the relationship between fuel utilization and subclinical cardiovascular damage in overweight/obese individuals free of established cardiovascular disease receiving the same diet and pharmacological intervention. In this retrospective study a total of 35 subjects following a balanced diet were enrolled. They underwent a complete nutritional and cardiovascular assessment. Echocardiography and ultrasonography of the carotid arteries was performed. The respiratory quotient (fuel utilization index) was assessed by indirect calorimetry. A total of 18 had left ventricular concentric remodeling, 17 were normal. Between these two groups, a significant difference of intima-media thickness was showed (p = 0.015). Also a difference of respiratory quotient was shown with the highest value in those with remodeling (p = 0.038). At univariate and multivariate analysis, cardiac remodeling was associated with respiratory quotient (RQ) (p = 0.04; beta = 0.38; SE = 0.021; B = 0.044). The area under the receiver operating characteristic (ROC) curve for respiratory quotient to predict remodeling was 0.72 (SE = 0.093; p = 0.031; RQ = 0.87; 72% sensitivity, 84% specificity). The respiratory quotient is significantly different between those participants with and without cardiac remodeling. Its measurement may help for interpreting the (patho)physiological mechanisms in the nutrients utilization of obese people with different response to dietary or pharmacological interventions.
Collapse
Affiliation(s)
- Tiziana Montalcini
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Theodora Lamprinoudi
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Gaetano Gorgone
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Yvelise Ferro
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Stefano Romeo
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy.
| |
Collapse
|
39
|
Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes. J Nutr Metab 2014; 2014:239750. [PMID: 25400942 PMCID: PMC4220583 DOI: 10.1155/2014/239750] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/17/2014] [Indexed: 12/19/2022] Open
Abstract
Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB), a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM), alanine (0.5 mM), valine (0.5 mM), EX527 (SIRT1 inhibitor, 25 μM), and Compound C (AMPK inhibitor, 25 μM) alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD(+), SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event.
Collapse
|
40
|
The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr 2014; 113:25-34. [PMID: 25234223 DOI: 10.1017/s0007114514002475] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, we performed a meta-analysis to assess the ability of leucine supplementation to increase the muscle protein fraction synthetic rate and to augment lean body mass or leg lean mass in elderly patients. A literature search was conducted on Medline, Cochrane, EMBASE and Google Scholar databases up to 31 December 2013 for clinical trials that investigated the administration of leucine as a nutrient that affects muscle protein metabolism and muscle mass in elderly subjects. The included studies were randomised controlled trials. The primary outcome for the meta-analysis was the protein fractional synthetic rate. Secondary outcomes included lean body mass and leg lean mass. A total of nine studies were included in the meta-analysis. The results showed that the muscle protein fractional synthetic rate after intervention significantly increased in the leucine group compared with the control group (pooled standardised difference in mean changes 1·08, 95% CI 0·50, 1·67; P< 0·001). No difference was found between the groups in relation to lean body mass (pooled standardised difference in mean changes 0·18, 95% CI - 0·18, 0·54; P= 0·318) or leg lean mass (pooled standardised difference in mean changes 0·006, 95% CI - 0·32, 0·44; P= 0·756). These findings suggest that leucine supplementation is useful to address the age-related decline in muscle mass in elderly individuals, as it increases the muscle protein fractional synthetic rate.
Collapse
|
41
|
L-leucine supplementation worsens the adiposity of already obese rats by promoting a hypothalamic pattern of gene expression that favors fat accumulation. Nutrients 2014; 6:1364-73. [PMID: 24699194 PMCID: PMC4011039 DOI: 10.3390/nu6041364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 01/03/2023] Open
Abstract
Several studies showed that l-leucine supplementation reduces adiposity when provided before the onset of obesity. We studied rats that were exposed to a high-fat diet (HFD) for 10 weeks before they started to receive l-leucine supplementation. Fat mass was increased in l-leucine-supplemented rats consuming the HFD. Accordingly, l-leucine produced a hypothalamic pattern of gene expression that favors fat accumulation. In conclusion, l-leucine supplementation worsened the adiposity of rats previously exposed to HFD possibly by central mechanisms.
Collapse
|
42
|
Binder E, Bermúdez-Silva FJ, Elie M, Leste-Lasserre T, Belluomo I, Clark S, Duchampt A, Mithieux G, Cota D. Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice. Obesity (Silver Spring) 2014; 22:713-20. [PMID: 23894080 DOI: 10.1002/oby.20578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE High-protein diets favor weight loss and its maintenance. Whether these effects might be recapitulated by certain amino acids is unknown. Therefore, the impact of leucine supplementation on energy balance and associated metabolic changes in diet-induced obese (DIO) mice during and after weight loss was investigated. METHODS DIO C57BL/6J mice were fed a normocaloric diet to induce weight loss while receiving or not the amino acid leucine in drinking water. Body weight, food intake, body composition, energy expenditure, glucose tolerance, insulin, and leptin sensitivity were evaluated. Q-PCR analysis was performed on muscle, brown and white adipose tissues. RESULTS DIO mice decreased body weight and fat mass in response to chow, but supplementation with leucine did not affect these parameters. During weight maintenance, mice supplemented with leucine had improved glucose tolerance, increased leptin sensitivity, and lower respiratory quotient. The latter was associated with changes in the expression of several genes modulating fatty acid metabolism and mitochondrial activity in the epididymal white and the brown adipose tissues, but not muscle. CONCLUSIONS Leucine supplementation might represent an adjuvant beneficial nutritional therapy during weight loss and maintenance, because it improves lipid and glucose metabolism and restores leptin sensitivity in previously obese animals.
Collapse
Affiliation(s)
- Elke Binder
- NeuroCentre Magendie, INSERM, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France; NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux, U862, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nutrients utilization in obese individuals with and without hypertriglyceridemia. Nutrients 2014; 6:790-8. [PMID: 24566437 PMCID: PMC3942732 DOI: 10.3390/nu6020790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 11/24/2022] Open
Abstract
Background: Low fat utilization is linked to weight gain and to the presence of certain atherosclerosis markers. It is not clear whether the presence of hyperlipidemia can further affect nutrients utilization. The main objective of this study was to investigate the fasting fuel utilization of obese subjects suffering from hypertriglyceridemia, and to compare it with that of individuals that are solely obese. Method: We recruited 20 obese individuals with hypertriglyceridemia and 20 matched individuals not affected by hypertriglyceridemia. The fuel utilization (respiratory quotient) was measured by respiratory gas exchange, by Indirect Calorimetry. Results: There was a significant difference in fuel utilization and HDL-cholesterol between cases and controls (respiratory quotient 0.89 ± 0.07 vs. 0.84 ± 0.06; p = 0.020 respectively). The univariate and multivariate linear regression analysis confirmed that hypertrygliceridemia was positively correlated to the respiratory quotient (p = 0.035). Conclusion: obese subjects with hypertriglyceridemia had a higher respiratory quotient in comparison to unaffected subjects. This could suggest a limitation in the beta-oxidation mechanisms; this could actually imply that fatty acids may be redirected from oxidation to reesterification into triglycerides. The study could suggest the presence of different mechanisms unrelated to obesity and also a potential new therapeutic target for hypertriglyceridemia management.
Collapse
|
44
|
Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus. PLoS One 2013; 8:e84094. [PMID: 24349566 PMCID: PMC3862776 DOI: 10.1371/journal.pone.0084094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.
Collapse
|
45
|
Ferrarini A, Rupérez FJ, Erazo M, Martínez MP, Villar-Álvarez F, Peces-Barba G, González-Mangado N, Troncoso MF, Ruiz-Cabello J, Barbas C. Fingerprinting-based metabolomic approach with LC-MS to sleep apnea and hypopnea syndrome: a pilot study. Electrophoresis 2013; 34:2873-81. [PMID: 23775633 DOI: 10.1002/elps.201300081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/19/2013] [Accepted: 05/04/2013] [Indexed: 11/05/2022]
Abstract
Sleep apnea and hypopnea syndrome (SAHS) is a multicomponent disorder, with associated cardiovascular and metabolic alterations, second in order of frequency among respiratory disorders. Sleep apnea is diagnosed with an overnight sleep test called a polysomnogram, which requires having the patient in hospital. In addition, a more clear classification of patients according to mild and severe presentations would be desirable. The aim of the present study was to assess the relative metabolic changes in SAHS to identify new potential biomarkers for diagnosis, able to evaluate disease severity to establish response to therapeutic interventions and outcomes. For this purpose, metabolic fingerprinting represents a valuable strategy to monitor, in a nontargeted manner, the changes that are at the base of the pathophysiological mechanism of SAHS. Plasma samples of 33 SAHS patients were collected after polysomnography and analyzed with LC coupled to MS (LC-QTOF-MS). After data treatment and statistical analysis, signals differentiating nonsevere and severe patients were detected. Putative identification of 14 statistically significant features was obtained and changes that can be related to the episodes of hypoxia/reoxygenation (inflammation) have been highlighted. Among them, the patterns of variation of platelet activating factor and lysophospholipids, together with some compounds related to differential activity of the gut microflora (bile pigments and pipecolic acid) open new lines of research that will benefit our understanding of the alterations, offering new possibilities for adequate monitoring of the stage of the disease.
Collapse
Affiliation(s)
- Alessia Ferrarini
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferro Y, Gazzaruso C, Coppola A, Romeo S, Migliaccio V, Giustina A, Pujia A, Montalcini T. Fat utilization and arterial hypertension in overweight/obese subjects. J Transl Med 2013; 11:159. [PMID: 23815947 PMCID: PMC3708740 DOI: 10.1186/1479-5876-11-159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/27/2013] [Indexed: 11/12/2022] Open
Abstract
Background The Respiratory Quotient is a parameter reflecting the utilization of the nutrients by a subject. It is associated with an high rate of subsequent weight gain and with the atherosclerosis. Subjects tending to burn less fat have an increased Respiratory Quotient. Aim of this study was to investigate on the relationship between the Respiratory Quotient and the cardiovascular risk factors. Methods In this cross-sectional study we enrolled 223 individuals of both sexes aged 45–75 ys that were weight stable, receiving a balanced diet, and not affected by debilitating disease or cardiovascular disease. The Respiratory Quotient was measured by Indirect Calorimetry. The measurement of the Blood Pressure was obtained by a mercury sphygmomanometer. Results We enrolled 133 female and 90 male. Systolic blood pressure only was positively correlated to the Respiratory Quotient in univariate and multivariate regression analysis (p=0,017). The prevalence of hypertension was significatively different between the quartiles of the Respiratory Quotient, with the highest prevalence in the IV quartile (p=0,024). Conclusion High value of the Respiratory Quotient, an index of nutrients utilization, is associated to an high prevalence of Hypertension. It is possible that in the subjects with high Respiratory Quotient and high body mass index, the activation of the renin angiotensin system, in concert to the reduction of the utilization of the endogenous fat stores, could increase the risk of hypertension.
Collapse
Affiliation(s)
- Yvelise Ferro
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Viale S, Venuta, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci 2013; 14:10497-538. [PMID: 23698776 PMCID: PMC3676851 DOI: 10.3390/ijms140510497] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.
Collapse
Affiliation(s)
- Isabella Savini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | |
Collapse
|
48
|
Prasertsri P, Roengrit T, Kanpetta Y, Tong-Un T, Muchimapura S, Wattanathorn J, Leelayuwat N. Cashew apple juice supplementation enhanced fat utilization during high-intensity exercise in trained and untrained men. J Int Soc Sports Nutr 2013; 10:13. [PMID: 23497120 PMCID: PMC3610290 DOI: 10.1186/1550-2783-10-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exercise training is known to increase fat utilization during exercise. Diets containing antioxidants and branch chain amino acids (BCAAs) are also reported to have potential effects on fat utilization. Cashew apple juice (CAJ) comprises many nutritional components including vitamin C and BCAAs. This study aimed to investigate the effect of CAJ supplementation on substrate utilization during high-intensity exercise in trained and untrained subjects. METHODS Ten trained and ten untrained men were randomly supplemented with either placebo (PLA) or CAJ at 3.5 ml/kg body mass (BM) /day for 4 weeks with a 4-week washout between treatments in a randomized cross-over design. Before and after the 4-week supplementations all subjects performed cycling exercise at 85% of maximal oxygen consumption for 20 minutes. At rest, before, and immediately after the exercise, venous blood samples were taken to determine glucose, insulin and lipid concentrations. Expired air was collected during the 20 minutes of exercise to calculate substrate utilization. RESULTS During the exercise in both trained and untrained groups, there were lower carbohydrate (CHO) and higher fat oxidation rates and contributions to total energy expenditure after the CAJ supplementation compared to the PLA supplementation (p<0.05). These values were greater in the trained group than the untrained group except CHO oxidation rates (p<0.05), which were not significantly different. Moreover, in both trained and untrained groups, resting plasma vitamin C concentrations were significantly higher after the CAJ supplementation compared to the PLA supplementation, without any change after the PLA supplementation. These values were greater in the trained group than the untrained group (p<0.05). There were no significant differences in glucose, insulin or lipid concentrations between the groups' blood samples. CONCLUSION The findings of this study suggest that CAJ supplementation enhanced fat oxidation during exercise may enhance endurance performance, but specific studies are needed to assess this possibility.
Collapse
Affiliation(s)
- Piyapong Prasertsri
- Department of physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zemel MB, Bruckbauer A. Effects of a leucine and pyridoxine-containing nutraceutical on body weight and composition in obese subjects. Diabetes Metab Syndr Obes 2013; 6:309-15. [PMID: 24003309 PMCID: PMC3755702 DOI: 10.2147/dmso.s49623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We recently demonstrated leucine to modulate energy partitioning between adipose tissue and muscle. Further, leucine exhibits a synergy with B6, resulting in reduced adipocyte lipid storage coupled with increased muscle fat oxidation. Accordingly, a nutraceutical (NuShape™) containing 2.25 g leucine and 30 mg B6 increased fat oxidation by >30 g/day in a 28-day randomized controlled trial. The present study evaluated the long-term efficacy of this combination in modulating body weight and composition. METHODS Two 24-week, placebo-controlled, randomized trials, one with weight maintenance (n = 20) and one hypocaloric (-500 kcal/day; n = 24), were conducted using the nutraceutical Nushape in obese subjects. RESULTS The supplement resulted in fat loss in the maintenance study (-1.12 ± 0.36 and -1.82 ± 0.70 kg at 12 and 24 weeks, P < 0.01 versus placebo) while no change was found in the placebo group. In the hypocaloric study, the supplement group lost up to twice as much weight (6.18 ± 1.02 versus 3.40 ± 0.81 kg at 12 weeks and 8.15 ± 1.33 versus 5.25 ± 1.13 kg at 24 weeks, P < 0.01) and fat (4.96 ± 0.61 versus 2.31 ± 0.53 kg at 12 weeks and 7.00 ± 0.95 versus 4.22 ± 0.74 kg at 24 weeks, P < 0.01) than the placebo group. CONCLUSION This nutraceutical combination results in significant fat loss in the absence of caloric restriction and markedly enhances weight and fat loss by 50%-80% over a 24-week period.
Collapse
Affiliation(s)
- Michael B Zemel
- NuSirt Sciences, Inc., The University of Tennessee, Knoxville, TN, USA
- Nutrition Department, The University of Tennessee, Knoxville, TN, USA
- Correspondence: Michael B Zemel, NuSirt Sciences, Inc., 11020 Solway School Road, Suite 109, Knoxville, TN 37931, USA, Tel +1 865 206 6154, Email
| | - Antje Bruckbauer
- NuSirt Sciences, Inc., The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|