1
|
Amona FM, Pang Y, Gong X, Wang Y, Fang X, Zhang C, Chen X. Mechanism of PRRSV infection and antiviral role of polyphenols. Virulence 2024; 15:2417707. [PMID: 39432383 PMCID: PMC11497994 DOI: 10.1080/21505594.2024.2417707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is associated with the endemic outbreak of fever, anorexia, and abortion in pregnant sows, resulting in an enormous economic impact on the global swine industry. Current mainstream prophylactic agents and therapies have been developed to prevent PRRSV infection; however, they have limited efficacy. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. The identification of new PRRSV entry mediators, such as MYH9 and HSPA8; viral apoptotic mimicry; and TIM-induced macropinocytosis, to facilitate infection has led to a novel molecular understanding of the PRRSV infection mechanism, which can be utilized in the development of prophylactic agents and therapies for PRRSV infection. Polyphenols, complex chemical molecules with abundant biological activities derived from microorganisms and plants, have demonstrated great potential for controlling PRRSV infection via different mechanisms. To explore new possibilities for treating PRRSV infection with polyphenols, this review focuses on summarizing the pathogenesis of PRRSV, reviewing the potential antiviral mechanisms of polyphenols against PRRSV, and addressing the challenges associated with the widespread use of polyphenols.
Collapse
Affiliation(s)
- Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Mohamed MA, Elsaman T, Mohamed MS, Eltayib EM. Computational investigations of flavonoids as ALDH isoform inhibitors for treatment of cancer. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024:1-39. [PMID: 39503629 DOI: 10.1080/1062936x.2024.2415593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024]
Abstract
Human aldehyde dehydrogenases (ALDHs) are a group of 19 isoforms often overexpressed in cancer stem cells (CSCs). These enzymes play critical roles in CSC protection, maintenance, cancer progression, therapeutic resistance, and poor prognosis. Thus, targeting ALDH isoforms offers potential for innovative cancer treatments. Flavonoids, known for their ability to affect multiple cancer-related pathways, have shown anticancer activity by downregulating specific ALDH isoforms. This study aimed to evaluate 830 flavonoids from the PubChem database against five ALDH isoforms (ALDH1A1, ALDH1A2, ALDH1A3, ALDH2, ALDH3A1) using computational methods to identify potent inhibitors. Extra precision (XP) Glide docking and MM-GBSA free binding energy calculations identified several flavonoids with high binding affinities. MD simulation highlighted flavonoids 1, 2, 18, 27, and 42 as potential specific inhibitors for each isoform, respectively. Flavonoid 10 showed high binding affinities for ALDH1A2, ALDH1A3, and ALDH3A1, emerging as a potential multi-ALDH inhibitor. ADMET property evaluation indicated that the promising hits have acceptable drug-like profiles, but further optimization is needed to enhance their therapeutic efficacy and reduce toxicity, making them more effective ALDH inhibitors for future cancer treatment.
Collapse
Affiliation(s)
- M A Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - T Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - M S Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - E M Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Sitarek P, Merecz-Sadowska A, Sikora J, Dudzic M, Wiertek-Płoszaj N, Picot L, Śliwiński T, Kowalczyk T. Flavonoids and their derivatives as DNA topoisomerase inhibitors with anti-cancer activity in various cell models: Exploring a novel mode of action. Pharmacol Res 2024; 209:107457. [PMID: 39389401 DOI: 10.1016/j.phrs.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Flavonoids, a diverse group of plant-derived secondary metabolites, have garnered significant attention for their potential anti-cancer properties. This review explores the role of flavonoids as inhibitors of DNA topoisomerases, key enzymes essential for DNA replication, transcription, and cell division. The article offers a comprehensive overview of flavonoid classification, biosynthesis, and their widespread natural occurrence. It further delves into the molecular mechanisms through which flavonoids exert their anti-cancer effects, emphasizing their interactions with topoisomerases. The review provides a thorough analysis of both in vitro and in vivo studies that highlight the topoisomerase inhibitory activities of various flavonoids and their derivatives. Key findings demonstrate that flavonoids can function as catalytic inhibitors, poisons, or DNA intercalators, affecting both type I and type II topoisomerases. The structure-activity relationships of flavonoids concerning their topoisomerase inhibitory potency are also examined. This review underscores the potential of flavonoids as promising lead compounds for the development of novel topoisomerase inhibitors, which could have important implications for cancer therapy. However, it also acknowledges the need for further research to fully understand the intricate interactions between flavonoids and topoisomerases within the cellular environment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland.
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, Lodz 90-214, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland
| | - Malwina Dudzic
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Natasza Wiertek-Płoszaj
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle 17042, France
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| |
Collapse
|
4
|
Wu TW, Chu YC, Chang CH, Hsieh YH, Tang MH, Hsu PH, Wu HY, Chen JJ, Shih TL. Flavonol-Ruthenium Complexes as Antioxidant and Anticancer Agents. ChemMedChem 2024:e202400313. [PMID: 39261284 DOI: 10.1002/cmdc.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Flavonol-metal complexes can enhance the biological activity of flavonols. Inspired by the potential of ruthenium-based drugs in pharmaceutical applications, seven flavonol-Ru (II) complexes were synthesized to evaluate their biological activities. Among these compounds, compounds 8, 11, and 12 showed potent antioxidant activities. Compound 12 exhibited superior anti-inflammatory activity to natural quercetin, which served as a positive control. This study is the first to report the free radical scavenging abilities and antioxidant activity of flavonol-Ru (II) complexes. Furthermore, compound 12 demonstrated comparable efficacy to 5-FU against human non-small-cell lung cancer cells (A549). These results strongly support the potential of flavonol-Ru (II) agents.
Collapse
Affiliation(s)
- Ting-Wei Wu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Yi-Cheng Chu
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, 300102, Hsinchu, Taiwan
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, 333324, Taoyuan, Taiwan
| | - Yu-Hui Hsieh
- Biomedical Industry Ph.D. Program School of Life Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
| | - Mei-Hsin Tang
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Pei-Hsuan Hsu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Hsin-Ying Wu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 404333, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, 110301, Taipei, Taiwan
| | - Tzenge-Lien Shih
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| |
Collapse
|
5
|
Hafez SM, Ibrahim HF, Abdelmohsen SR, Yasin NAE, Abouelela YS, Aboelsoud HA. The potential protective effect of propolis on diabetic nephropathy induced by streptozotocin in adult albino rats. Ultrastruct Pathol 2024; 48:338-350. [PMID: 39087752 DOI: 10.1080/01913123.2024.2386009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Diabetes mellitus is a common metabolic disorder. It is associated with serious life-threatening complications if not properly managed. The current study aimed at investigating the possible protective role of propolis on streptozotocin-induced diabetic nephropathy. A diabetic rat model was induced by a single intraperitoneal injection of 55 mg/kg streptozotocin. After 4 days, the diabetic rats received oral propolis (300 mg/kg/day) via gastric gavage for 28 days. Biochemical, histopathological and ultrastructural evaluations were performed. The results showed that: streptozotocin-induced diabetes was associated with a marked decrease in the serum high-density lipoproteins and antioxidant enzymes. However, a significant elevation in the levels of serum creatinine, blood urea nitrogen, uric acid, cholesterol, triglycerides and low-density lipoproteins was detected. Furthermore, streptozotocin treatment induced histopathological alterations of the renal cortex; in the form of distorted glomerular capillaries, widened Bowman's space and signs of epithelial tubular degeneration. Ultra-structurally, thickening and irregularity of the glomerular basement membrane and podocytes foot processes effacement were observed. The tubular epithelial cells showed swollen vacuolated mitochondria, scarce basal infoldings and loss of microvilli. Conversely, propolis partially restored the normal lipid profile, antioxidant biomarkers and renal cortical morphology. Propolis exhibited a sort of renoprotection through hypoglycemic, anti-hyperlipidemic and antioxidant effects.
Collapse
Affiliation(s)
- Shaimaa M Hafez
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Heba F Ibrahim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al- Kharj, Kingdom of Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Noha A E Yasin
- Cytology and Histology, Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yara S Abouelela
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba Abdelnaser Aboelsoud
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al- Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Singh A, Sinha S, Singh NK. Dietary Natural Flavonoids: Intervention for MAO-B Against Parkinson's Disease. Chem Biol Drug Des 2024; 104:e14619. [PMID: 39223743 DOI: 10.1111/cbdd.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) stands as the second most common neurological disorder after Alzheimer's disease, primarily affecting the elderly population and significantly compromising their quality of life. The precise etiology of PD remains elusive, but recent research has shed light on potential factors, including the formation of α-synuclein aggregates, oxidative stress, neurotransmitter imbalances, and dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) region of the brain, culminating in motor symptoms such as bradykinesia, akinesia, tremors, and rigidity. Monoamine oxidase (MAO) is an essential enzyme, comprising two isoforms, MAO-A and MAO-B, responsible for the oxidation of monoamines such as dopamine. Increased MAO-B activity is responsible for decreased dopamine levels in the SNpc region of mid brain which is remarkably associated with the pathogenesis of PD-like manifestations. Inhibitors of MAO-B enhance striatal neuronal responses to dopamine, making them valuable in treating PD, which involves dopamine deficiency. Clinically approved MAO-B inhibitors such as selegiline, L-deprenyl, pargyline, and rasagiline are employed in the management of neurodegenerative conditions associated with PD. Current therapeutic interventions including MAO-B inhibitors for PD predominantly aim to alleviate these motor symptoms but often come with a host of side effects that can be particularly challenging for the patients. While effective, they have limitations, prompting a search for alternative treatments, there is a growing interest in exploring natural products notably flavonoids as potential sources of novel MAO-B inhibitors. In line with that, the present review focuses on natural flavonoids of plant origin that hold promise as potential candidates for the development of novel MAO-B inhibitors. The discussion encompasses both in vitro and in vivo studies, shedding light on their potential therapeutic applications. Furthermore, this review underscores the significance of exploring natural products as valuable reservoirs of MAO-B inhibitors, offering new avenues for drug development and addressing the pressing need for improved treatments in PD-like pathological conditions. The authors of this review majorly explore the neuroprotective potential of natural flavonoids exhibiting notable MAO-B inhibitory activity and additionally multi-targeted approaches in the treatment of PD with clinical evidence and challenges faced in current therapeutic approaches.
Collapse
Affiliation(s)
- Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suman Sinha
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
7
|
Rosal RJZ, Paderes MC. Inhibiting SARS-CoV-2 viral entry by targeting spike:ACE2 interaction with O-modified quercetin derivatives. RSC Med Chem 2024:d4md00286e. [PMID: 39165908 PMCID: PMC11331306 DOI: 10.1039/d4md00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
The cell entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction between the receptor-binding domain of its spike (S) protein and human angiotensin-converting enzyme 2 (ACE2). Quercetin, a flavonoid found abundantly in plants, shows potential as a SARS-CoV-2 S:ACE2 inhibitor but is known to have low bioavailability. Modification of quercetin by capping its hydroxyl moieties could enhance the metabolic stability, solubility, and bioavailability, and reduce toxicity. In this study, sixteen (16) O-modified quercetin derivatives were synthesized by incorporating alkyl and acyl moieties of varying lengths, sizes, and polarities to the hydroxyl groups. The SARS-CoV-2 S:ACE2 inhibitory activity and toxicity of the synthesized derivatives were assessed in vitro, and their physicochemical properties, pharmacokinetics, and drug-likeness were predicted and evaluated using the SwissADME web tool. Results showed that functionalization of the hydroxyl moieties of quercetin generally resulted in more potent inhibitors (>50% inhibition). Five (5) derivatives displayed a dose-dependent inhibition against the SARS-CoV-2 S:ACE2 interaction with promising IC50 values (i.e., 2e (IC50 = 7.52 μM), 3a (IC50 = 5.00 μM), 3b (IC50 = 25.70 μM), 3c (IC50 = 2.22 μM), and 4b (IC50 = 3.28 μM)). Moreover, these compounds exhibited low hepato-, nephro-, and cardiotoxicity, and their SwissADME profiles indicated favorable physicochemical, pharmacokinetic, and drug-like properties, suggesting their potential as promising lead SARS-CoV-2 S:ACE2 inhibitors.
Collapse
Affiliation(s)
- Reuben James Z Rosal
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City 1101 Philippines
| | - Monissa C Paderes
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City 1101 Philippines
| |
Collapse
|
8
|
Rocha S, Luísa Corvo M, Freitas M, Fernandes E. Liposomal quercetin: A promising strategy to combat hepatic insulin resistance and inflammation in type 2 diabetes mellitus. Int J Pharm 2024; 661:124441. [PMID: 38977164 DOI: 10.1016/j.ijpharm.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Móritz AV, Kovács H, Jerzsele Á, Psáder R, Farkas O. Flavonoids in mitigating the adverse effects of canine endotoxemia. Front Vet Sci 2024; 11:1396870. [PMID: 39193369 PMCID: PMC11347451 DOI: 10.3389/fvets.2024.1396870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
In dogs, chronic enteropathies, and impaired gut integrity, as well as microbiome imbalances, are a major problem. These conditions may represent a continuous low endotoxin load, which may result in the development of diseases that are attributable to chronic inflammation. Flavonoids are polyphenolic plant compounds with numerous beneficial properties such as antioxidant, anti-inflammatory and antimicrobial effects. For our experiments, we isolated primary white blood cells (peripheral blood mononuclear cells and polymorphonuclear leukocytes) from healthy dogs and induced inflammation and oxidative stress with Escherichia coli and Salmonella enterica serovar Enteritidis lipopolysaccharide (LPS). In parallel, we treated the cell cultures with various flavonoids luteolin, quercetin and grape seed extract oligomeric proanthocyanidins (GSOP) alone and also in combination with LPS treatments. Then, changes in viability, reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels were measured in response to treatment with quercetin, luteolin and GSOP at 25 and 50 μg/mL concentrations. We found that ROS levels were significantly lower in groups which were treated by flavonoid and LPS at the same time compared to LPS-treated groups, whereas TNF-α levels were significantly reduced only by luteolin and quercetin treatment. In contrast, treatment with lower concentrations of GSOP caused an increase in TNF-α levels, while higher concentrations caused a significant decrease. These results suggest that the use of quercetin, luteolin and GSOP may be helpful in the management of chronic intestinal diseases in dogs with reduced intestinal barrier integrity or altered microbiome composition, or in the mitigation of chronic inflammatory processes maintained by endotoxemia. Further in vitro and in vivo studies are needed before clinical use.
Collapse
Affiliation(s)
- Alma V. Móritz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Hédi Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Roland Psáder
- Department of Internal Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
10
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
11
|
Eken H, Bektas Turkmen N, Senel B, Arslan R. Examination of the effects of vitexin and vitexin-loaded solid lipid nanoparticles on neuropathic pain and possible mechanisms of action. Neuropharmacology 2024; 253:109961. [PMID: 38657947 DOI: 10.1016/j.neuropharm.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
This research aims to investigate the possible antiallodynic and antihyperalgesic effects of pure vitexin and vitexin-loaded solid lipid nanoparticles (SLN) on neuropathic pain and the pathways mediating these effects. Chronic constriction nerve injury was induced in female rats, and the effects of vitexin at the doses of 5, 10, 20, 40 mg/kg were evaluated. Ketanserin, ondansetron, WAY-100635, yohimbine and bicuculin, which are antagonists of receptors on pain pathways. were used to examine the mechanisms of the effects of vitexin. Pure vitexin exhibited antiallodynic activity at all administered doses, whereas antihyperalgesic activity was not observed at 5 mg/kg vitexin dose. SLN formulation was prepared with 5 mg/kg vitexin, the lowest dose. Vitexin-loaded formulation significantly increased antiallodynic and antihyperalgesic effects. Ondansetron, WAY-100635, yohimbine, and bicuculine antagonized the antiallodynic and antihyperalgesic effects of vitexin. So, it was concluded that serotonin (5-hydroxtryptamine, 5-HT) receptor subtypes 5-HT3 and 5-HT1A, alpha-2 adrenergic, and γ-Aminobutyric acid type A (GABA-A) receptors are involved in the antiallodynic and antihyperalgesic activity of vitexin. In conclusion, vitexin and vitexin-loaded formulation have the potential for clinical use in neuropathic pain management, and different pain pathways contributed to this effect. And also, it is thought that vitexin-loaded SLN formulation is more effective than pure vitexin, which will provide an advantage in treatment.
Collapse
Affiliation(s)
- Hazal Eken
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| | - Nurcan Bektas Turkmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| | - Behiye Senel
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| | - Rana Arslan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| |
Collapse
|
12
|
Li Y, Selvaraj V, Saravanan S, Abullais SS, Wankhade V. Exploring the osteogenic potential of chitosan-quercetin bio-conjugate: In vitro and in vivo investigations in osteoporosis models. Int J Biol Macromol 2024; 274:133492. [PMID: 38944072 DOI: 10.1016/j.ijbiomac.2024.133492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Anti-osteoporotic agents are clinically employed to improve bone health and prevent osteoporotic fractures. In the current study, we investigated the potential of chitosan-quercetin bio-conjugate as an anti-osteoporotic agent. The conjugate was prepared and characterized by FTIR and found notable interactions between chitosan and quercetin. Treating mouse MSCs with the bioconjugate in osteogenic conditions for a week led to elevated expression of differentiation markers Runx2, ALP, and Col-I, as determined by real-time PCR analysis. Evaluation at the cellular level using alizarin red staining demonstrated enhanced calcium deposition in MSCs following treatment with the bioconjugate. Likewise, ELISA analysis showed significantly elevated levels of secretory osteocalcin and osteonectin in groups treated with the conjugate. To broaden our comprehension, we utilized a zebrafish-based in vivo model of dexamethasone-induced osteoporosis to investigate bone regeneration. Toxicity profiling with zebrafish larvae confirmed the bio-conjugate's compatibility at a concentration of 25 μg/ml, underscoring the significance of finding the right dosage. Furthermore, in zebrafish models of osteoporosis, the bio-conjugate demonstrated significant potential for bone regeneration, as indicated by improved bone calcification, callus formation, and overall bone healing in a tail fin fracture model. Additionally, the study revealed that the bio-conjugate inhibited osteoclastic activity, leading to reduced TRAP activity and hydroxyproline release, suggesting its effectiveness in mitigating bone resorption. In conclusion, our research provides compelling evidence for the osteogenic capabilities of the chitosan-quercetin bio-conjugate, highlighting its promising applications in regenerative medicine and the treatment of conditions like osteoporosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Joint Surgery and Sports Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai - 600 036, Tamil Nadu, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Science, King Khalid University, College of Dentistry, Abha, Saudi Arabia
| | - Varsha Wankhade
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
13
|
Ren J, Jackson K, Barton CD, Huang Y, Zhan J. Enhancing the physicochemical properties and bioactivities of 2'-hydroxyflavanone through fungal biotransformation. J Biosci Bioeng 2024; 138:144-152. [PMID: 38858130 DOI: 10.1016/j.jbiosc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Flavonoids comprise a group of natural compounds with diverse bioactivities; however, their low water solubility and limited bioavailability often impede their potential health benefits for humans. In this study, five derivatives, namely 2',5'-dihydroxyflavanone (1), 2'-dihydroxyflavanone-5'-O-4″-O-methyl-β-d-glucoside (2), 2'-dihydroxyflavanone-6-O-4″-O-methyl-β-d-glucoside (3), 2'-dihydroxyflavanone-3'-O-4″-O-methyl-β-d-glucoside (4) and hydroxyflavanone-2'-O-4″-O-methyl-β-d-glucoside (5), were biosynthesized from 2'-hydroxyflavanone through microbial transformation using Beauveria bassiana ATCC 7159. Product 1 was identified as a known compound while 2-5 were structurally characterized as new structures through extensive 1D and 2D NMR analysis. The water solubility of biotransformed products 1-5 was enhanced by 30-280 times compared to the substrate 2'-hydroxyflavanone. Moreover, the antioxidant assay revealed that 1 and 2 exhibited improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity relative to the substrate, decreasing the logIC50 from 8.08 ± 0.11 μM to 6.19 ± 0.08 μM and 7.15 ± 0.08 μM, respectively. Compound 5 displayed significantly improved anticancer activity compared to the substrate 2'-hydroxyflavanone against Glioblastoma 33 cancer stem cells, decreasing the IC50 from 25.05 μM to 10.59 μM. Overall, fungal biotransformation represents an effective tool to modify flavonoids for enhanced water solubility and bioactivities.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Kyle Jackson
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
14
|
Jawhara S. How Do Polyphenol-Rich Foods Prevent Oxidative Stress and Maintain Gut Health? Microorganisms 2024; 12:1570. [PMID: 39203412 PMCID: PMC11356206 DOI: 10.3390/microorganisms12081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, involves chronic inflammatory disorders of the digestive tract. Oxidative stress, associated with increased reactive oxygen species generation, is a major risk factor for IBD pathogenesis. Industrialized lifestyles expose us to a variety of factors that contribute to deteriorating gut health, especially for IBD patients. Many alternative therapeutic strategies have been developed against oxidative stress along with conventional therapy to alleviate IBD pathogenesis. Polyphenol-rich foods have attracted growing interest from scientists due to their antioxidant properties. Polyphenols are natural compounds found in plants, fruits, vegetables, and nuts that exhibit antioxidant properties and protect the body from oxidative damage. This review presents an overview of polyphenol benefits and describes the different types of polyphenols. It also discusses polyphenols' role in inhibiting oxidative stress and fungal growth prevention. Overall, this review highlights how a healthy and balanced diet and avoiding the industrialized lifestyles of our modern society can minimize oxidative stress damage and protect against pathogen infections. It also highlights how polyphenol-rich foods play an important role in protecting against oxidative stress and fungal growth.
Collapse
Affiliation(s)
- Samir Jawhara
- Centre National de la Recherche Scientifique, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; ; Tel.: +33-(0)3-20-62-35-46
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
15
|
López Méndez LJ, Martínez-Mota L, Cassani J, Mayagoitia-Novales L, Benítez-King G, Becerril-Villanueva LE, Dorantes-Barrón AM, Jurado-Hernández N, Estrada-Reyes R. Antidepressant-like and Beneficial Effects of a Neoponcirin-Beta-Cyclodextrin Inclusion Complex in Mice Exposed to Prolonged Stress. Int J Mol Sci 2024; 25:8289. [PMID: 39125857 PMCID: PMC11311795 DOI: 10.3390/ijms25158289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/12/2024] Open
Abstract
Neoponcirin causes anxiolytic-like effects in mice when administered intraperitoneally but not orally. Neoponcirin is non-water-soluble and insoluble in solvents, and in medium acid, it isomerizes, reducing its bioavailability. To improve the pharmacological properties of neoponcirin, we formed a neoponcirin complex with beta-cyclodextrin (NEO/βCD), which was characterized by FT-IR, UV-Vis, and NMR, and their solubility profile. We evaluated the antidepressant-like effects of NEO/βCD acutely administered to mice orally in the behavioral paradigms, the tail suspension (TST) and the forced swimming (FST) tests. We also analyzed the benefits of repeated oral doses of NEO/βCD on depression- and anxiety-like behaviors induced in mice by chronic unpredictable mild stress (CUMS), using the FST, hole board, and open field tests. We determined the stressed mice's expression of stress-related inflammatory cytokines (IL-1β, IL-6, and TNFα) and corticosterone. Results showed that a single or chronic oral administration of NEO/βCD caused a robust antidepressant-like effect without affecting the ambulatory activity. In mice under CUMS, NEO/βCD also produced anxiolytic-like effects and avoided increased corticosterone and IL-1β levels. The effects of the NEO/βCD complex were robust in both the acute and the stress chronic models, improving brain neurochemistry and recovering immune responses previously affected by prolonged stress.
Collapse
Affiliation(s)
- Luis José López Méndez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México 04690, Mexico; (L.J.L.M.); (J.C.)
| | - Lucía Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacionalde Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Julia Cassani
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México 04690, Mexico; (L.J.L.M.); (J.C.)
| | - Lilian Mayagoitia-Novales
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Luis Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (A.M.D.-B.); (N.J.-H.)
| | - Noé Jurado-Hernández
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (A.M.D.-B.); (N.J.-H.)
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (A.M.D.-B.); (N.J.-H.)
| |
Collapse
|
16
|
La Monica G, Bono A, Alamia F, Lauria A, Martorana A. Bioisosteric heterocyclic analogues of natural bioactive flavonoids by scaffold-hopping approaches: State-of-the-art and perspectives in medicinal chemistry. Bioorg Med Chem 2024; 109:117791. [PMID: 38870715 DOI: 10.1016/j.bmc.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy.
| |
Collapse
|
17
|
Hasibuan PAZ, Simanjuntak Y, Hey-Hawkins E, Lubis MF, Rohani AS, Park MN, Kim B, Syahputra RA. Unlocking the potential of flavonoids: Natural solutions in the fight against colon cancer. Biomed Pharmacother 2024; 176:116827. [PMID: 38850646 DOI: 10.1016/j.biopha.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, underscoring the importance of understanding the diverse molecular and genetic underpinnings of CRC to improve its diagnosis, prognosis, and treatment. This review delves into the adenoma-carcinoma-metastasis model, emphasizing the "APC-KRAS-TP53" signature events in CRC development. CRC is categorized into four consensus molecular subtypes, each characterized by unique genetic alterations and responses to therapy, illustrating its complexity and heterogeneity. Furthermore, we explore the role of chronic inflammation and the gut microbiome in CRC progression, emphasizing the potential of targeting these factors for prevention and treatment. This review discusses the impact of dietary carcinogens and lifestyle factors and the critical role of early detection in improving outcomes, and also examines conventional chemotherapy options for CRC and associated challenges. There is significant focus on the therapeutic potential of flavonoids for CRC management, discussing various types of flavonoids, their sources, and mechanisms of action, including their antioxidant properties, modulation of cell signaling pathways, and effects on cell cycle and apoptosis. This article presents evidence of the synergistic effects of flavonoids with conventional cancer therapies and their role in modulating the gut microbiome and immune response, thereby offering new avenues for CRC treatment. We conclude by emphasizing the importance of a multidisciplinary approach to CRC research and treatment, incorporating insights from genetic, molecular, and lifestyle factors. Further research is needed on the preventive and therapeutic potential of natural compounds, such as flavonoids, in CRC, underscoring the need for personalized and targeted treatment strategies.
Collapse
Affiliation(s)
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, Leipzig 04103, Germany
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Ade Sri Rohani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| |
Collapse
|
18
|
Thu Hang N, Thi Thu Ha D, Hang Nga N, Van Phuong N. Deep eutectic solvent combined with soybean as an efficient approach to enhance the content of apigenin in the Chrysanthemum indicum L. extract. Food Chem 2024; 445:138793. [PMID: 38382256 DOI: 10.1016/j.foodchem.2024.138793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Our research aimed to cost-effectively enhance apigenin content in Chrysanthemum indicum L. extract using soybeans combined with a deep eutectic solvent. First, various deep eutectic solvents were investigated for the extraction of apigenin, followed by soybean treatment to increase aglycon levels. Combining single factor experiments with response surface methodology and optimization algorithms (genetic algorithm and particle swarm optimization), the optimal conditions were also determined. The results revealed that choline chloride-propylene glycol emerged as the optimal solvent. The optimized treatment conditions involved a temperature of 54 °C, a time of 2 h, and the addition of 3 mL of soybean extract, yielding an apigenin content of 3.380 ± 0.031 mg/g - a remarkable eightfold increase compared to the initial extract. The computational study suggested that the deep eutectic solvent may play an important role in stabilizing β-glucosidase in soybeans. However, further research is needed to scale up and fully elucidate soybean's mechanism.
Collapse
Affiliation(s)
- Nguyen Thu Hang
- Department of Pharmacognosy, Faculty of Traditional Medicine and Pharmacognosy, Hanoi University of Pharmacy, 11000, Viet Nam.
| | - Dau Thi Thu Ha
- Department of Pharmacognosy, Faculty of Traditional Medicine and Pharmacognosy, Hanoi University of Pharmacy, 11000, Viet Nam.
| | - Ngo Hang Nga
- Department of Pharmacognosy, Faculty of Traditional Medicine and Pharmacognosy, Hanoi University of Pharmacy, 11000, Viet Nam.
| | - Nguyen Van Phuong
- Department of Pharmacognosy, Faculty of Traditional Medicine and Pharmacognosy, Hanoi University of Pharmacy, 11000, Viet Nam.
| |
Collapse
|
19
|
Krawczyk-Łebek A, Żarowska B, Dymarska M, Janeczko T, Kostrzewa-Susłow E. Synthesis, fungal biotransformation, and evaluation of the antimicrobial potential of chalcones with a chlorine atom. Sci Rep 2024; 14:15050. [PMID: 38951205 PMCID: PMC11217454 DOI: 10.1038/s41598-024-65054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-β-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.
Collapse
Affiliation(s)
- Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
20
|
Ioannou P, Baliou S. The Molecular Mechanisms and Therapeutic Potential of Cranberry, D-Mannose, and Flavonoids against Infectious Diseases: The Example of Urinary Tract Infections. Antibiotics (Basel) 2024; 13:593. [PMID: 39061275 PMCID: PMC11273536 DOI: 10.3390/antibiotics13070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The treatment of infectious diseases typically includes the administration of anti-infectives; however, the increasing rates of antimicrobial resistance (AMR) have led to attempts to develop other modalities, such as antimicrobial peptides, nanotechnology, bacteriophages, and natural products. Natural products offer a viable alternative due to their potential affordability, ease of access, and diverse biological activities. Flavonoids, a class of natural polyphenols, demonstrate broad anti-infective properties against viruses, bacteria, fungi, and parasites. Their mechanisms of action include disruption of microbial membranes, inhibition of nucleic acid synthesis, and interference with bacterial enzymes. This review explores the potential of natural compounds, such as flavonoids, as an alternative therapeutic approach to combat infectious diseases. Moreover, it discusses some commonly used natural products, such as cranberry and D-mannose, to manage urinary tract infections (UTIs). Cranberry products and D-mannose both, yet differently, inhibit the adhesion of uropathogenic bacteria to the urothelium, thus reducing the likelihood of UTI occurrence. Some studies, with methodological limitations and small patient samples, provide some encouraging results suggesting the use of these substances in the prevention of recurrent UTIs. While further research is needed to determine optimal dosages, bioavailability, and potential side effects, natural compounds hold promise as a complementary or alternative therapeutic strategy in the fight against infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
21
|
Mustafa NF, Cheng KK, Nadri MH, Razali SA, Zakaria II, Salin NH, Amran SI. Discovery of azaleatin as a potential allosteric inhibitor for dengue NS2B-NS3 protease using in vitro and in silico studies. J Biomol Struct Dyn 2024:1-12. [PMID: 38881303 DOI: 10.1080/07391102.2024.2335296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 06/18/2024]
Abstract
The rise in dengue cases in tropical and sub-tropical areas has become a significant health concern. At present, there is no definitive cure for dengue fever, which underscores the importance of identifying potent inhibitors. Dengue NS2B-NS3 protease is the prime drug target due to its vital function for replication. Quercetin, a flavone, has anti-dengue virus properties but is limited by low bioavailability. Previous studies have shown that methoxy substitution in flavones improves bioavailability and metabolic stability. Azaleatin is a derivative of quercetin with a methoxy substitution at the C5 position, however its ability to inhibit dengue is unknown. In this study, azaleatin was investigated for its inhibition against dengue NS2B-NS3 protease using in vitro and in silico techniques. The fluorescence assay was used to determine the IC50 value and inhibition kinetics. The molecular interaction between azaleatin and NS2B-NS3 was studied using CB-Dock2 and AutoDock Vina. The complex's stability was then analysed using GROMACS. Besides, the ADMETlab 2.0 was utilized to predict pharmacokinetic of the azaleatin. Results showed that azaleatin inhibits dengue NS2B-NS3 protease non-competitively with a Ki of 26.82 µg/ml and an IC50 of 38 µg/ml. Molecular docking indicated binding of the azaleatin to the allosteric pocket of NS2B-NS3 with a docking score of -8.2 kcal/mol. Azaleatin was found stable in the pocket along 100 ns, supporting its inhibitory mode. The compound has favourable pharmacokinetic profiles and conformed to Lipinski's Rule of Five. Taken together, azaleatin inhibits NS2B-NS3 protease in a non-competitive mode, suggesting its potential as safer anti-dengue compound.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nur Farhana Mustafa
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Kian-Kai Cheng
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Muhammad Helmi Nadri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Nerus, Kuala, Terengganu, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang Selangor, Malaysia
| | - Nurul Hanim Salin
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor, Pulau Pinang, Malaysia
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
22
|
Lee HJ, Lee SH, Hong SK, Gil BI, Lee KA. In Vitro Biological Activities of Hesperidin-Related Compounds with Different Solubility. Antioxidants (Basel) 2024; 13:727. [PMID: 38929166 PMCID: PMC11200626 DOI: 10.3390/antiox13060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The biological activities of hesperidin-related compounds, such as hesperetin laurate (HTL), hesperetin (HT), hesperidin (HD), and hesperidin glucoside (HDG), were investigated in vitro. The compounds showed different hydrophobicities, and the octanol-water partition coefficient log P were 7.28 ± 0.06 for HTL, 2.59 ± 0.04 for HT, 2.13 ± 0.03 for HD, and -3.45 ± 0.06 for HDG, respectively. In the DPPH assay and β-carotene bleaching assay to determine antioxidant capacity, all compounds tested showed antioxidant activity in a concentration-dependent manner, although to varying degrees. HTL and HT showed similarly high activities compared to HD or HDG. HD and HDG did not show a significant difference despite the difference in solubility between the two. Cytotoxicity was high; in the order of hydrophobicity-HTL > HT > HD > HDL in keratinocyte HaCaT cells. All compounds tested showed reducing effects on cellular inflammatory mediators and cytokines induced by UV irradiation. However, HTL and HT effectively reduced nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) levels compared to HD and HDG. The inhibitory effects of hesperidin-related compounds on skin-resident microorganisms were evaluated by measuring minimum inhibitory concentration (MIC). HTL showed the highest inhibitory effects against Staphylococcus aureus, Cutibacterium acnes, Candida albicans, and Malassezia furfur, followed by HT, while HD and HDF showed little effect. In conclusion, the hydrophobicity of hesperidin-related compounds was estimated to be important for biological activity in vitro, as was the presence or absence of the sugar moiety.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Graduate School of Biotechnology, College of Life Science, Kyunghee University, Yongin 17104, Republic of Korea
| | - Sun-Hyung Lee
- R&D Center, Youngjin Bio Co., Suwon 16614, Republic of Korea
| | - Sun-Ki Hong
- School of Law, Dongguk University, Seoul 04620, Republic of Korea
| | - Bog-Im Gil
- Department of Food and Nutrition, Anyang University, Anyang 14028, Republic of Korea
| | - Kyung-Ae Lee
- Department of Food and Nutrition, Anyang University, Anyang 14028, Republic of Korea
| |
Collapse
|
23
|
Ousaaid D, Bakour M, Laaroussi H, El Ghouizi A, Lyoussi B, El Arabi I. Fruit vinegar as a promising source of natural anti-inflammatory agents: an up-to-date review. Daru 2024; 32:307-317. [PMID: 38040916 PMCID: PMC11087403 DOI: 10.1007/s40199-023-00493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES Fruit vinegar is one of the most famous fruit byproducts worldwide with several unique properties. There are two types of fruit vinegar, artisanal and industrial, for consumers to choose from. This review aims to assess for the first time the phytochemistry of fruit vinegar and its anti-inflammatory effects. METHOD The present work was conducted based on a literature search that selected the relevant papers from indexed databases such as Scopus, Science Direct, MDPI, PubMed, Hindawi, and Web of Science. We used numerous terms to assure a good search in different databases, including fruit vinegar, phytochemistry, bioavailability and bioaccessibility, and anti-inflammatory effect. All articles were selected based on their relevance, quality, and problematic treatment. RESULTS Literature data have shown that vinegar has a long medicinal history and has been widely used by different civilizations, due to its richness in bioactive molecules, vinegar plays an important role in the prevention and treatment of various inflammatory diseases, including atopic dermatitis, mastitis, asthma, arthritis, acute pancreatitis, and colitis. Fruit vinegar consumption benefit is highly dependent on its chemical composition, especially organic acids and antioxidants, which can act as nutraceuticals. CONCLUSION Fruit vinegar has a rich chemical composition, including organic acids that can be transformed in the digestive system into compounds that play an important role in health-promoting features such as anti-inflammatory effects throughout the control of intestinal microbiota and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Ilham El Arabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
24
|
Xiong F, Zhang Y, Li T, Tang Y, Song SY, Zhou Q, Wang Y. A detailed overview of quercetin: implications for cell death and liver fibrosis mechanisms. Front Pharmacol 2024; 15:1389179. [PMID: 38855739 PMCID: PMC11157233 DOI: 10.3389/fphar.2024.1389179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Background Quercetin, a widespread polyphenolic flavonoid, is known for its extensive health benefits and is commonly found in the plant kingdom. The natural occurrence and extraction methods of quercetin are crucial due to its bioactive potential. Purpose This review aims to comprehensively cover the natural sources of quercetin, its extraction methods, bioavailability, pharmacokinetics, and its role in various cell death pathways and liver fibrosis. Methods A comprehensive literature search was performed across several electronic databases, including PubMed, Embase, CNKI, Wanfang database, and ClinicalTrials.gov, up to 10 February 2024. The search terms employed were "quercetin", "natural sources of quercetin", "quercetin extraction methods", "bioavailability of quercetin", "pharmacokinetics of quercetin", "cell death pathways", "apoptosis", "autophagy", "pyroptosis", "necroptosis", "ferroptosis", "cuproptosis", "liver fibrosis", and "hepatic stellate cells". These keywords were interconnected using AND/OR as necessary. The search focused on studies that detailed the bioavailability and pharmacokinetics of quercetin, its role in different cell death pathways, and its effects on liver fibrosis. Results This review details quercetin's involvement in various cell death pathways, including apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis, with particular attention to its regulatory influence on apoptosis and autophagy. It dissects the mechanisms through which quercetin affects these pathways across different cell types and dosages. Moreover, the paper delves into quercetin's effects on liver fibrosis, its interactions with hepatic stellate cells, and its modulation of pertinent signaling cascades. Additionally, it articulates from a physical organic chemistry standpoint the uniqueness of quercetin's structure and its potential for specific actions in the liver. Conclusion The paper provides a detailed analysis of quercetin, suggesting its significant role in modulating cell death mechanisms and mitigating liver fibrosis, underscoring its therapeutic potential.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Gastroenterology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yichen Zhang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Yiping Tang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Castillo-Arellano J, Stryker Z, Wyatt MD, León F. Synthesis and Monoamine Oxidase Inhibitory Activity of Halogenated Flavones. ACS Med Chem Lett 2024; 15:610-618. [PMID: 38746894 PMCID: PMC11089559 DOI: 10.1021/acsmedchemlett.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 06/16/2024] Open
Abstract
Small molecule neurotransmitters containing amines are metabolized by monoamine oxidase (MAO) in the nervous system. Monoamine oxidase inhibitors are a valuable class of drugs prescribed for the management of neurological disorders, including depression. A series of halogenated flavonoids similar to the dietary flavonoid acacetin were designed as selective MAO-B inhibitors. MAO-A and -B inhibition of 36 halogenated flavones were tested. The halogens (fluorine and chlorine) were placed at positions 5 and 7 on ring A of the flavone scaffold. All compounds were selective MAO-B inhibitors with micro- and nanomolar IC50 values. Compounds 9f, 10a-c, 11a-c, 11g,h, and 11l displayed inhibitory activity toward MAO-B with IC50 values between 16 to 74 nM. We conclude that halogenated flavonoids are promising molecules in pursuit of developing new agents for neurological disorders.
Collapse
Affiliation(s)
- Jorge
I. Castillo-Arellano
- Department
of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zachary Stryker
- Department
of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael D. Wyatt
- Department
of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Francisco León
- Department
of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
26
|
Bjune K, Halvorsen PS, Wangensteen H, Leren TP, Bogsrud MP, Strøm TB. Flavonoids regulate LDLR through different mechanisms tied to their specific structures. J Lipid Res 2024; 65:100539. [PMID: 38556050 PMCID: PMC11058080 DOI: 10.1016/j.jlr.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
Flavonoids, polyphenolic compounds found in plant-based diets, are associated with reduced risk of cardiovascular disease and longevity. These components are reported to reduce plasma levels of low-density lipoprotein (LDL) through an upregulation of the LDL receptor (LDLR), but the mechanism is still largely unknown. In this study, we have systematically screened the effect of 12 flavonoids from six different flavonoid subclasses on the effect on LDLR. This paper provides an in-depth analysis on how these flavonoids affect LDLR regulation and functionality. We found that most but not all of the tested flavonoids increased LDLR mRNA levels. Surprisingly, this increase was attributed to different regulatory mechanisms, such as enhanced LDLR promoter activity, LDLR mRNA stabilization, or LDLR protein stabilization, of which specific effectual parts of the flavonoid molecular structure could be assigned. These types of comparative analysis of various flavonoids enhance clarity and deepen the understanding of how the different structures of flavonoids affect LDLR regulation. Our data offer useful insights that may guide future research in developing therapeutic approaches for cardiovascular health.
Collapse
Affiliation(s)
- Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| | - Pia Skovholt Halvorsen
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
27
|
Elsaman T, Ahmad I, Eltayib EM, Suliman Mohamed M, Yusuf O, Saeed M, Patel H, Mohamed MA. Flavonostilbenes natural hybrids from Rhamnoneuron balansae as potential antitumors targeting ALDH1A1: molecular docking, ADMET, MM-GBSA calculations and molecular dynamics studies. J Biomol Struct Dyn 2024; 42:3249-3266. [PMID: 37261483 DOI: 10.1080/07391102.2023.2218936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Several studies have linked Cancer stem cells (CSCs) to cancer resistance development to chemotherapy and radiotherapy. ALDH1A1 is a key enzyme that regulates the gene expression of CSCs and creates an immunosuppressive tumor microenvironment. It was reported that quercetin and resveratrol were among the inhibitors of ALDH1A1. In early 2022, it was reported that new 11 flavonostilbenes (rhamnoneuronal D-N) were isolated from Rhamnoneuron balansae as potential antiaging natural products. Rhamnoneuronal H (5) could be envisioned as a natural hybrid of quercetin and resveratrol. It was therefore hypothesized that 5 and its analogous isolates rhamnoneuronal D-G (1-4) and rhamnoneuronal I-N (6-11) would have potential ALDH1A1 inhibitory activity. To this end, all isolates were subjected to molecular docking, MM-GBSA, ADMET, and molecular dynamics simulations studies to assess their potential as new leads for cancer treatment targeting ALDH1A1. In silico findings revealed that natural hybrid 5 has a similar binding affinity, judged by MM-GBSA, to the ALDH1A1 active site when compared to the co-crystalized ligand (-64.71 kcal/mole and -64.12 kcal/mole, respectively). Despite having lesser affinity than that of the co-crystalized ligand, the rest of the flavonostilbenes, except 2-4, displayed better binding affinities (-37.55 kcal/mole to -58.6 kcal/mole) in comparison to either resveratrol (-34.44 kcal/mole) or quercetin (-36.48 kcal/mole). Molecular dynamic simulations showed that the natural hybrids 1, 5-11 are of satisfactory stability up to 100 ns. ADMET outcomes indicate that these hybrids displayed acceptable properties and hence could represent an ideal starting point for the development of potent ALDH1A1 inhibitors for cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Osman Yusuf
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Neelain University, Khartoum, Sudan
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| |
Collapse
|
28
|
Edayadulla N, Divakaran D, Chandraraj SS, Suyambulingam I, Jayamani E, Sanjay MR, Siengchin S. Isolation and characterization of novel bioplasticizers from rose ( Rosa damascena Mill.) petals and its suitability investigation for poly (butylene adipate- co-terephthalate) biofilm applications. 3 Biotech 2024; 14:110. [PMID: 38486820 PMCID: PMC10933221 DOI: 10.1007/s13205-024-03956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/10/2024] [Indexed: 03/17/2024] Open
Abstract
The current growing environmental awareness has forced the use of biodegradable plasticizers, which are sustainable and abundant in plant resources. Rose petal plasticizers (RPP) act as an actual substitute for chemical plasticizers in this situation as they are biocompatible and biodegradable. Chemical procedures like amination, alkalization, and surface catalysis are used to extract the natural emollients from rose petals. XRD, FT-IR, and UV studies were used to understand the characteristics of the rose petal plasticizer. Based on the XRD data, the RPP's crystallinity size (CS) and crystallinity index (CI) values were determined to be 9.36 nm and 23.87%, respectively. The surface morphology of the isolated plasticizer is investigated using SEM, EDAX analysis and AFM. RPP surface pores with rough surfaces are visible in SEM images, which make them appropriate for plasticizing novel bioplastics with superior mechanical qualities. The plasticizer's heat degradation behaviour is investigated using thermogravimetric and differential thermogram analysis curves. Following the characterization of the synthesised molecules, the plasticization effect was examined using a biodegradable polymer matrix called poly (butylene adipate-co-terephthalate) (PBAT). The reinforcement interface was also examined using scanning electron microscopy analysis. RPP-reinforced films demonstrated greater flexibility and superior surface compatibility at a 5% loading compared to PBAT-only films. Based on a number of reported features, RPP could be a great plasticizer to address future environmental problems.
Collapse
Affiliation(s)
- Naushad Edayadulla
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062 India
| | - Divya Divakaran
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800 Thailand
| | - Shanmuga Sundari Chandraraj
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062 India
| | - Indran Suyambulingam
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800 Thailand
| | - Elammaran Jayamani
- Mechanical Engineering, Swinburne University of Technology Sarawak Campus (SUTS), Kuching, 93350 Sarawak, Malaysia
| | - M. R. Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800 Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800 Thailand
| |
Collapse
|
29
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
30
|
Gao Y, Huang R, Qiu Y, Liu Y, Chen L. Characterization of the chemical composition of different parts of Dolichos lablab L. and revelation of its anti-ulcerative colitis effects by modulating the gut microbiota and host metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117629. [PMID: 38135234 DOI: 10.1016/j.jep.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a non-specific inflammatory disease characterized by long duration and easy relapse. Dolichos lablab L. (DLL) belongs to the family Fabaceae, was listed in a famous Chinese medical classic, Compendium of Materia Medic, and described as possessing features that invigorate the spleen, alleviate dampness, provide diarrhea relief, and other effects. The DLL-dried white mature seeds (DS) and dried flower (DF), which hold significant medicinal value in China, were used in clinical prescriptions to prevent and treat UC. DS and DF have appeared in different editions of the Pharmacopoeia of the People's Republic of China from 1977 to 2020. However, their chemical composition, pharmacological effects, and mechanism of treating UC are unclear. AIM OF THE STUDY This study aimed to characterize the chemical composition of different parts of DLL (seeds and flowers), further explore their pharmacological effects, and elaborate its underlying mechanism of treating UC. METHODS The chemical composition of DS and DF crude polysaccharides (DSP and DFP) and ethanolic extracts (DSE and DFE) were characterized by high-performance anion-exchange chromatography (HPAEC), ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), and gas chromatography-mass spectrometry (GC-MS). Then, based on the acute UC mice model, the pharmacodynamic effects were investigated by Western blotting, ELISA, and other methods. Finally, the 16S rRNA gene sequencing and metabonomic analysis were used to explore the regulatory effects of DS and DF on intestinal microbiota and host metabolism. RESULTS DSE and DFE inhibited the oxidative stress response, reducing proinflammatory factor production and maintaining intestinal barrier integrity in UC mice. The 16S rRNA gene sequencing and metabonomic analysis revealed that DS and DF treated UC by regulating the intestinal microbiota structure and reversing the abnormal metabolism of the host. CONCLUSION This study suggested that different parts of DLL (flowers and seeds) may be potential medicines for treating UC, which exert their therapeutic effects through various active ingredients and might contribute significantly to reducing the economic pressures and challenges of UC treatment worldwide.
Collapse
Affiliation(s)
- Yanping Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruiting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongyi Qiu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Hu D, Wang HJ, Yu LH, Guan ZR, Jiang YP, Hu JH, Yan YX, Zhou ZH, Lou JS. The role of Ginkgo Folium on antitumor: Bioactive constituents and the potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117202. [PMID: 37742878 DOI: 10.1016/j.jep.2023.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
32
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
33
|
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42:e3964. [PMID: 38439154 DOI: 10.1002/cbf.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.
Collapse
Affiliation(s)
| | - Zahra Rasoulizadeh
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | | | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | | |
Collapse
|
34
|
Zhang L, Muscat JE, Chinchilli VM, Kris-Etherton PM, Al-Shaar L, Richie JP. Consumption of Berries and Flavonoids in Relation to Mortality in NHANES, 1999-2014. J Nutr 2024; 154:734-743. [PMID: 38184200 DOI: 10.1016/j.tjnut.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Berries are foods that are abundant in nutrients, especially flavonoids, that promote good health; however, the effects of total berries on mortality are not well characterized. OBJECTIVES We evaluated whether intakes of total berries and specific berry types including blueberries, strawberries, cranberries, flavonoids, and subclasses of flavonoids (anthocyanidins, flavonols, flavones, flavanones, flavan-3-ols, and isoflavones) in relation to mortality risk in United States adults. METHODS A nationally representative sample of the United States adult population was obtained using data from the 1994-2014 NHANES (n = 37,232). Intake of berries was estimated using 24-h food recalls (1999-2014), and flavonoids intake was calculated using the matched USDA's expanded flavonoid database. Mortality outcomes based on 8 y of follow-up were obtained using linked death certificates. RESULTS Compared with nonconsumers, the multivariable-adjusted hazard ratio for all-cause mortality was 0.79 [95% confidence intervals (CI): 0.7, 0.89] for any berry consumption, 0.86 (0.75, 0.99) for strawberry consumption 0.79 (0.66, 0.95) for blueberries, and 0.69 (0.51, 0.93) for cranberries. Compared with the lower median of intake, risk of all-cause mortality for greater intake was 0.85 (0.74, 0.97) for total flavonoids, 0.85 (0.76, 0.95) for anthocyanidins, 0.9 (0.82, 0.99) for flavan-3-ols, 0.89 (0.79, 0.9) for flavanols, and 0.89 (0.8, 0.99) for flavones. There was a dose-response relationship between intakes of total flavonoids, anthocyanidins, and flavones and lower all-cause mortality risks (Ptrend < 0.05). Risk for cardiometabolic mortality was 0.75 (0.58, 0.98) for berry consumers and 0.49 (0.25, 0.98) for cranberry consumers. For respiratory disease mortality, risk was 0.41 (0.2, 0.86), compared with blueberry nonconsumers. CONCLUSION Higher intakes of berries and flavonoids were associated with a lower overall mortality risk in adult Americans. Few adults regularly consume berries, indicating that increased intake of berries and flavonoid-rich foods may be beneficial to health.
Collapse
Affiliation(s)
- Li Zhang
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States.
| | - Joshua E Muscat
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Laila Al-Shaar
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| | - John P Richie
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
35
|
Martínez‐Coria H, Serrano‐García N, López‐Valdés HE, López‐Chávez GS, Rivera‐Alvarez J, Romero‐Hernández Á, Valverde FF, Orozco‐Ibarra M, Torres‐Ramos MA. Morin improves learning and memory in healthy adult mice. Brain Behav 2024; 14:e3444. [PMID: 38409930 PMCID: PMC10897355 DOI: 10.1002/brb3.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Morin is a flavonoid found in many edible fruits. The hippocampus and entorhinal cortex play crucial roles in memory formation and consolidation. This study aimed to characterize the effect of morin on recognition and space memory in healthy C57BL/6 adult mice and explore the underlying molecular mechanism. METHODS Morin was administered i.p. at 1, 2.5, and 5 mg/kg/24 h for 10 days. The Morris water maze (MWM), novel object recognition, novel context recognition, and tasks were conducted 1 day after the last administration. The mice's brains underwent histological characterization, and their protein expression was examined using immunohistochemistry and Western blot techniques. RESULTS In the MWM and novel object recognition tests, mice treated with 1 mg/kg of morin exhibited a significant recognition index increase compared to the control group. Besides, they demonstrated faster memory acquisition during MWM training. Additionally, the expression of pro-brain-derived neurotrophic factor (BDNF), BDNF, and postsynaptic density protein 95 proteins in the hippocampus of treated mice showed a significant increase. In the entorhinal cortex, only the pro-BDNF increased. Morin-treated mice exhibited a significant increase in the hippocampus's number and length of dendrites. CONCLUSION This study shows that morin improves recognition memory and spatial memory in healthy adult mice.
Collapse
Affiliation(s)
- Hilda Martínez‐Coria
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Serrano‐García
- Laboratorio de NeurofisiologíaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Héctor E. López‐Valdés
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Gabriela Sinaí López‐Chávez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - José Rivera‐Alvarez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ángeles Romero‐Hernández
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisca Fernández Valverde
- Laboratorio de Patología ExperimentalInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Marisol Orozco‐Ibarra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico
| | - Mónica Adriana Torres‐Ramos
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
36
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
37
|
Parsaei M, Akhbari K, Tylianakis E, Froudakis GE. Effects of Fluorinated Functionalization of Linker on Quercetin Encapsulation, Release and Hela Cell Cytotoxicity of Cu-Based MOFs as Smart pH-Stimuli Nanocarriers. Chemistry 2024; 30:e202301630. [PMID: 37581254 DOI: 10.1002/chem.202301630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlled delivery of target molecules is required in many medical and chemical applications. For such purposes, metal-organic frameworks (MOFs), which possess desirable features such as high porosity, large surface area, and adjustable functionalities, hold great potential as drug carriers. Herein, Quercetin (QU), as an anticancer drug, was loaded on Cu2 (BDC)2 (DABCO) and Cu2 (F4 BDC)2 )DABCO) MOFs (BDC=1,4-benzenedicarboxylate and DABCO=1,4-diazabicyclo[2.2.2]octane). As these Cu-MOFs have a high surface area, an appropriate pore size, and biocompatible ingredients, they can be utilized to deliver QU. The loading efficiency of QU in these MOFs was 49.5 % and 41.3 %, respectively. The drug-loaded compounds displayed sustained drug release over 15 days, remarkably high drug loading capacities and pH-controlled release behavior. The prepared nanostructures were characterized by different characterization technics including FT-IR, PXRD, ZP, TEM, FE-SEM, UV-vis, and BET. In addition, MTT assays were carried out on the HEK-293 and HeLa cell lines to investigate cytotoxicity. Cellular apoptosis analysis was performed to investigate the cell death mechanisms. Grand Canonical Monte Carlo simulations were conducted to analyze the interactions between MOFs and QU. Moreover, the stability of MOFs was also investigated during and after the drug release process. Ultimately, kinetic models of drug release were evaluated.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Emmanuel Tylianakis
- Department of Materials Science and Technology, Voutes Campus, University of Crete, GR-71003 Heraklion, Crete, Greece
| | - George E Froudakis
- Department of Chemistry, Voutes Campus, University of Crete, GR-71003 Heraklion, Crete, Greece
| |
Collapse
|
38
|
Pathak D, Mazumder A. Potential of Flavonoids as Promising Phytotherapeutic Agents to Combat Multidrug-Resistant Infections. Curr Pharm Biotechnol 2024; 25:1664-1692. [PMID: 38031767 DOI: 10.2174/0113892010271172231108190233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Considering the limited number of current effective treatments, Multidrug- Resistant (MDR) illnesses have grown to be a serious concern to public health. It has become necessary to look for new antimicrobial drugs because of the emergence of resistance to numerous kinds of antibiotics. The use of flavonoids is one phytotherapeutic strategy that has been researched as a potential remedy for this issue. Secondary plant compounds called flavonoids have been found to have an antibacterial effect against resistant microorganisms. OBJECTIVE This review seeks to give readers a glimpse into contemporary studies on flavonoids' potential to fight MDR infections. METHODS A systematic search was conducted on electronic databases (PubMed, Scopus, and Google Scholar) using relevant keywords such as flavonoids, MDR infections, antimicrobial activity, and resistance microbes. Studies that investigated the antimicrobial activity of flavonoids against resistant microbes were included in this review. RESULTS Most research found that flavonoids have antibacterial efficacy against resistant microorganisms, and some also showed that they have synergistic benefits with traditional antibiotics. The flavonoids quercetin, kaempferol, apigenin, and luteolin were the most often investigated ones. According to research, flavonoids affect microbial gene expression, inhibit microbial enzymes, and disrupt the integrity of microbial cell membranes. Additionally, a few studies have noted the flavonoids' low toxicity and safety. CONCLUSION For the treatment of infections that are resistant to many drugs, flavonoids constitute a promising class of phytotherapeutic agents. To develop flavonoid-based treatment methods for treating MDR illnesses and assess the potential of flavonoids as adjuvants to conventional antimicrobial drugs, more study is required.
Collapse
Affiliation(s)
- Deepika Pathak
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| |
Collapse
|
39
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
40
|
Sahoo L, Tripathy NS, Dilnawaz F. Naringenin Nanoformulations for Neurodegenerative Diseases. Curr Pharm Biotechnol 2024; 25:2108-2124. [PMID: 38347794 DOI: 10.2174/0113892010281459240118091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 09/10/2024]
Abstract
Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers to overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed that are as delivery systems, such as polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models as a potential treatment for brain disorders. This review nanoformulations of NRG can a possible therapeutic alternative for the treatment of neurological diseases are discussed.
Collapse
Affiliation(s)
- Liza Sahoo
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Nigam Sekhar Tripathy
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| |
Collapse
|
41
|
Kumar S, Chhabra V, Shenoy S, Daksh R, Ravichandiran V, Swamy RS, Kumar N. Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress. Mini Rev Med Chem 2024; 24:908-919. [PMID: 37861054 DOI: 10.2174/0113895575259219230920093214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Flavonoids are a widespread category of naturally occurring polyphenols distinguished by the flavan nucleus in plant-based foods and beverages, known for their various health benefits. Studies have suggested that consuming 150-500 mg of flavonoids daily is beneficial for health. Recent studies suggest that flavonoids are involved in maintaining mitochondrial activity and preventing impairment of mitochondrial dynamics by oxidative stress. OBJECTIVE This review emphasized the significance of studying the impact of flavonoids on mitochondrial dynamics, oxidative stress, and inflammatory response. METHODS This review analysed and summarised the findings related to the impact of flavonoids on mitochondria from publicly available search engines namely Pubmed, Scopus, and Web of Science. DESCRIPTION Any disruption in mitochondrial dynamics can contribute to cellular dysfunction and diseases, including cancer, cardiac conditions, and neurodegeneration. Flavonoids have been shown to modulate mitochondrial dynamics by regulating protein expression involved in fission and fusion events. Furthermore, flavonoids exhibit potent antioxidant properties by lowering the production of ROS and boosting the performance of antioxidant enzymes. Persistent inflammation is a characteristic of many different disorders. This is because flavonoids also alter the inflammatory response by controlling the expression of numerous cytokines and chemokines involved in the inflammatory process. Flavonoids exhibit an impressive array of significant health effects, making them an effective therapeutic agent for managing various disorders. Further this review summarised available mechanisms underlying flavonoids' actions on mitochondrial dynamics and oxidative stress to recognize the optimal dose and duration of flavonoid intake for therapeutic purposes. CONCLUSION This review may provide a solid foundation for developing targeted therapeutic interventions utilizing flavonoids, ultimately benefiting individuals afflicted with various disorders.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| |
Collapse
|
42
|
Günther M, Dabare S, Fuchs J, Gunesch S, Hofmann J, Decker M, Culmsee C. Flavonoid-Phenolic Acid Hybrids Are Potent Inhibitors of Ferroptosis via Attenuation of Mitochondrial Impairment. Antioxidants (Basel) 2023; 13:44. [PMID: 38247469 PMCID: PMC10812788 DOI: 10.3390/antiox13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cinnamic acid, ferulic acid, and the flavonoids quercetin and taxifolin (dihydroquercetin) are naturally occurring compounds found in plants. They are often referred to as polyphenols and are known, among others, for their pharmacological effects supporting health through the inhibition of aging processes and oxidative stress. To improve their bioavailability, pharmacological activities, and safety, the creation of novel flavonoid-phenolic acid hybrids is an area of active research. Previous work showed that such hybridization products of phenolic acids and flavonoids enhanced the resilience of neuronal cells against oxidative stress in vitro, and attenuated cognitive impairment in a mouse model of Alzheimer's disease (AD) in vivo. Notably, the therapeutic effects of the hybrid compounds we obtained were more pronounced than the protective activities of the respective individual components. The underlying mechanisms mediated by the flavonoid-phenolic acid hybrids, however, remained unclear and may differ from the signaling pathways activated by the originating structures of the respective individual phenolic acids or flavonoids. In this study, we characterized the effects of four previously described potent flavonoid-phenolic acid hybrids in models of oxidative cell death through ferroptosis. Ferroptosis is a type of iron-dependent regulated cell death characterized by lipid peroxidation and mitochondrial ROS generation and has been linked to neurodegenerative conditions. In models of ferroptosis induced by erastin or RSL3, we analyzed mitochondrial (lipid) peroxidation, mitochondrial membrane integrity, and Ca2+ regulation. Our results demonstrate the strong protective effects of the hybrid compounds against ROS formation in the cytosol and mitochondria. Importantly, these protective effects against ferroptosis were not mediated by radical scavenging activities of the phenolic hybrid compounds but through inhibition of mitochondrial complex I activity and reduced mitochondrial respiration. Our data highlight the effects of flavonoid-phenolic acid hybrids on mitochondrial metabolism and further important mitochondrial parameters that collectively determine the health and functionality of mitochondria with a high impact on the integrity and survival of the neuronal cells.
Collapse
Affiliation(s)
- Madeline Günther
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
| | - Samentha Dabare
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Jennifer Fuchs
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
43
|
Pavlović N, Milošević Sopta N, Mitrović D, Zaklan D, Tomas Petrović A, Stilinović N, Vukmirović S. Principal Component Analysis (PCA) of Molecular Descriptors for Improving Permeation through the Blood-Brain Barrier of Quercetin Analogues. Int J Mol Sci 2023; 25:192. [PMID: 38203364 PMCID: PMC10778702 DOI: 10.3390/ijms25010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Despite its beneficial pharmacological effects in the brain, partly by modulating inositol phosphate multikinase (IPMK) activity, the therapeutic use of quercetin is limited due to its poor solubility, low oral bioavailability, and low permeability through the blood-brain barrier (BBB). We aimed to identify quercetin analogues with improved BBB permeability and preserved binding affinities towards IPMK and to identify the molecular characteristics required for them to permeate the BBB. Binding affinities of quercetin analogues towards IPMK were determined by molecular docking. Principal component analysis (PCA) was applied to identify the molecular descriptors contributing to efficient permeation through the BBB. Among 34 quercetin analogues, 19 compounds were found to form more stable complexes with IPMK, and the vast majority were found to be more lipophilic than quercetin. Using two distinct in silico techniques, insufficient BBB permeation was determined for all quercetin analogues. However, using the PCA method, the descriptors related to intrinsic solubility and lipophilicity (logP) were identified as mainly responsible for clustering four quercetin analogues (trihydroxyflavones) with the highest BBB permeability. The application of PCA revealed that quercetin analogues could be classified with respect to their structural characteristics, which may be utilized in further analogue syntheses and lead optimization of BBB-penetrating IPMK modulators as neuroprotective agents.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | | | - Darko Mitrović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
- Accelsiors CRO, Háros Street 103, 1222 Budapest, Hungary;
| | - Dragana Zaklan
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Ana Tomas Petrović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (A.T.P.); (N.S.); (S.V.)
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (A.T.P.); (N.S.); (S.V.)
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (A.T.P.); (N.S.); (S.V.)
| |
Collapse
|
44
|
Xu QT, Zhang WX, Xu HX, Zhang QF. Fabrication of Luteolin Loaded Zein-Caseinate Nanoparticles and its Bioavailability Enhancement in Rats. J Pharm Sci 2023; 112:3056-3066. [PMID: 37356712 DOI: 10.1016/j.xphs.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Luteolin loaded zein nanoparticles (Lut-ZNP) were prepared by using sodium caseinate as an electrostatic stabilizer. The formulation of the nanoparticles was optimized. Lut-ZNP were spray-dried, and the physicochemical properties were characterized by SEM, XRD, FT-IR and DSC. Then, the bioavailability of luteolin in rats was determined. Under the formulation of luteolin, zein and sodium caseinate with mass ratio of 1:5:15, the particle size, ζ-potential, encapsulation efficiency and loading efficiency of Lut-ZNP were 171.8 nm, -49.05 mV, 85.85% and 3.15%, respectively. Luteolin existed in the nanoparticles with amorphous form. Lut-ZNP exhibited good redispersibility in water after drying. Compared with free luteolin, the solubility, stability and release of luteolin in Lut-ZNP were greatly improved. Besides, the fecal excretion of luteolin in rats was significantly reduced after oral administration of Lut-ZNP. In addition to native luteolin, its metabolites including sulfate, glucuronidate and methylated glucuronidate were found in rat plasma. Lut-ZNP significantly increased the plasma concentrations of luteolin and its metabolites, and the bioavailability of luteolin was enhanced by 2.92 times.
Collapse
Affiliation(s)
- Qiao-Ting Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen-Xuan Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hai-Xia Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
45
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
46
|
Kaag S, Lorentz A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023; 12:2602. [PMID: 37998337 PMCID: PMC10670325 DOI: 10.3390/cells12222602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Allergic diseases affect an estimated 30 percent of the world's population. Mast cells (MC) are the key effector cells of allergic reactions by releasing pro-inflammatory mediators such as histamine, lipid mediators, and cytokines/chemokines. Components of the daily diet, including certain fatty acids, amino acids, and vitamins, as well as secondary plant components, may have effects on MC and thus may be of interest as nutraceuticals for the prevention and treatment of allergies. This review summarizes the anti-inflammatory effects of dietary components on MC, including the signaling pathways involved, in in vitro and in vivo models. Butyrate, calcitriol, kaempferol, quercetin, luteolin, resveratrol, curcumin, and cinnamon extract were the most effective in suppressing the release of preformed and de novo synthesized mediators from MC or in animal models. In randomized controlled trials (RCT), vitamin D, quercetin, O-methylated epigallocatechin gallate (EGCG), resveratrol, curcumin, and cinnamon extract improved symptoms of allergic rhinitis (AR) and reduced the number of inflammatory cells in patients. However, strategies to overcome the poor bioavailability of these nutrients are an important part of current research.
Collapse
Affiliation(s)
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
47
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
48
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
49
|
Li Y, Su H, Wang W, Yin Z, Li J, Yuan E, Zhang Q. Fabrication of taxifolin loaded zein-caseinate nanoparticles and its bioavailability in rat. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
50
|
Daneshvar S, Zamanian MY, Ivraghi MS, Golmohammadi M, Modanloo M, Kamiab Z, Pourhosseini SME, Heidari M, Bazmandegan G. A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms. Food Sci Nutr 2023; 11:6789-6801. [PMID: 37970406 PMCID: PMC10630840 DOI: 10.1002/fsn3.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant-based foods. According to research, they have a potential role in the prevention and treatment of cancer. Apigenin is a flavonoid that is present in many fruits and vegetables. It has been used as a natural antioxidant for a long time and has been considered due to its anticancer effects and low toxicity. The results of this review study show that apigenin has potential anticancer effects on CC cells through various mechanisms. In this comprehensive review, we present the cellular targets and signaling pathways of apigenin indicated to date in in vivo and in vitro CC models. Among the most important modulated pathways, Wnt/β-catenin, PI3K/AKT/mTOR, MAPK/ERK, JNK, STAT3, Bcl-xL and Mcl-1, PKM2, and NF-kB have been described. Furthermore, apigenin suppresses the cell cycle in G2/M phase in CC cells. In CC cells, apigenin-induced apoptosis is increased by inhibiting the formation of autophagy. According to the results of this study, apigenin appears to have the potential to be a promising agent for CC therapy, but more research is required in the field of pharmacology and pharmacokinetics to establish the apigenin effects and its dosage for clinical studies.
Collapse
Affiliation(s)
- Siamak Daneshvar
- Department of General SurgerySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Yasin Zamanian
- Department of PhysiologySchool of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | | | - Mona Modanloo
- Pharmaceutical Sciences Research CenterMazandaran University of Medical SciencesSariIran
| | - Zahra Kamiab
- Clinical Research Development UnitAli‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
- Department of Community MedicineSchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Seyed Mohammad Ebrahim Pourhosseini
- Non‐Communicable Diseases Research CenterRafsanjan University of Medical SciencesRafsanjanIran
- Department of Internal MedicineSchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Mahsa Heidari
- Department of BiochemistryInstitute of Biochemistry and Biophysics (IBB)University of TehranTehranIran
| | - Gholamreza Bazmandegan
- Physiology‐Pharmacology Research CenterResearch Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
- Department of Physiology and PharmacologySchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|