1
|
Bowles EF, Burleigh M, Mira A, Van Breda SGJ, Weitzberg E, Rosier BT. Nitrate: "the source makes the poison". Crit Rev Food Sci Nutr 2024:1-27. [PMID: 39213282 DOI: 10.1080/10408398.2024.2395488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in the role of dietary nitrate in human health and disease has grown exponentially in recent years. However, consensus is yet to be reached as to whether consuming nitrate from various food sources is beneficial or harmful to health. Global authorities continue to recommend an acceptable daily intake (ADI) of nitrate of 3.7 mg/kg-bw/day due to concerns over its carcinogenicity. This is despite evidence showing that nitrate consumption from vegetable sources, exceeding the ADI, is associated with decreased cancer prevalence and improvements in cardiovascular, oral, metabolic and neurocognitive health. This review examines the paradox between dietary nitrate and health and disease and highlights the key role of the dietary source and food matrix in moderating this interaction. We present mechanistic and epidemiological evidence to support the notion that consuming vegetable-derived nitrate promotes a beneficial increase in nitric oxide generation and limits toxic N-nitroso compound formation seen with high intakes of nitrate added during food processing or present in contaminated water. We demonstrate the need for a more pragmatic approach to nitrate-related nutritional research and guidelines. Ultimately, we provide an overview of our knowledge in this field to facilitate the various therapeutic applications of dietary nitrate, whilst maintaining population safety.
Collapse
Affiliation(s)
- E F Bowles
- Department of Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - M Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - A Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - S G J Van Breda
- Department of Toxicogenomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
2
|
Radović Jakovljević M, Grujičić D, Stanković M, Milošević-Djordjević O. Artemisia vulgaris L., Artemisia alba Turra and their constituents reduce mitomycin C-induced genomic instability in human peripheral blood lymphocytes in vitro. Drug Chem Toxicol 2024; 47:156-165. [PMID: 36476306 DOI: 10.1080/01480545.2022.2154358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of aqueous and acetone extracts from Artemisia vulgaris L. (AV) and Artemisia alba Turra (AA), and two major polyphenols compounds (3,5-dihydroxybenzoic acid and quercetin-3-O-glucopyranoside) presented in both extracts of the plants against mitomycin C (MMC)-induced genomic instability. Genomic instability was measured using cytokinesis block micronucleus (MN) assay in human peripheral blood lymphocytes (PBLs) in vitro by analyzing two biomarkers - MN and nuclear division index (NDI). Extracts were tested in a concentration-dependent manner (10-250 µg/mL), while 3,5-dihydroxybenzoic acid and quercetin-3-O-glucopyranoside were tested in three different concentrations, in combination with 0.5 µg/mL of MMC. Aqueous and acetone extracts obtained from both plants significantly reduced MMC-induced MN frequency in PBLs, compared to positive control cells (p < 0.05). Extracts from AV did not affect NDI, whereas the concentrations of 10-100 μg/mL of aqueous and acetone AA extracts significantly elevated MMC-decreased NDI values in comparison to positive control cells (p < 0.05). Combined treatment of 3,5-dihydroxybenzoic acid and MMC showed a significant reduction of MMC-induced MN frequency, while quercetin-3-O-glucopyranoside increased MN frequency compared to positive control cells (p < 0.05). Both compounds decreased NDI values but only at the highest tested concentration of quercetin-3-O-glucopyranoside it was of greater significance. In conclusion, all extracts from AV and AA and 3,5-dihydroxybenzoic acid showed protective effect, whereby aqueous AA demonstrated the highest protective effect on MMC- induced genomic instability, while quercetin-3-O-glucopyranoside showed co-mutagen effect.
Collapse
Affiliation(s)
| | - Darko Grujičić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Milan Stanković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milošević-Djordjević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
3
|
Bebek Markovinović A, Brdar D, Putnik P, Bosiljkov T, Durgo K, Huđek Turković A, Brčić Karačonji I, Jurica K, Pavlić B, Granato D, Bursać Kovačević D. Strawberry tree fruits (Arbutus unedo L.): Bioactive composition, cellular antioxidant activity, and 3D printing of functional foods. Food Chem 2024; 433:137287. [PMID: 37708697 DOI: 10.1016/j.foodchem.2023.137287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The aim of this study was to investigate the use of Arbutus unedo L. fruits for the production of functional foods by three-dimensional printing (3DP). First, the biological activity of the fruits was investigated in vitro, followed by 3DP with different starch types and proportions using two 3DP programs. All 3DP samples were characterized for their bioactive, antioxidant, physicochemical and rheological properties. In terms of biological activity, the recommended daily dose of polyphenols from the aqueous extract of A. unedo can protect the integrity of DNA. Moreover, it could be useful as an antimicrobial agent. All 3DP parameters significantly affected bioactive compounds and antioxidant capacity. The 3DP products were found to be a good source of polyphenols (632.60 mg/100 g), among which condensed tannins were predominant (42 %). In conclusion, the fruits of A. unedo should be considered as a sustainable resource for the production of innovative functional foods with 3DP.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Dora Brdar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia.
| | - Tomislav Bosiljkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Ksenija Durgo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Ana Huđek Turković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia.
| | - Karlo Jurica
- Special Security Operations Directorate, Ministry of the Interior, Ulica grada Vukovara 33, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Michel P, Żbikowska HM, Rudnicka K, Gonciarz W, Krupa A, Gajewski A, Machała P, Olszewska MA. Anti-inflammatory, antioxidant and photoprotective activity of standardised Gaultheria procumbens L. leaf, stem, and fruit extracts in UVA-irradiated human dermal fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117219. [PMID: 37742876 DOI: 10.1016/j.jep.2023.117219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gaultheria procumbens L. is a polyphenolic-rich medicinal and food plant. Its leaves, stems, and fruits are traditional anti-inflammatory, antipyretic, antioxidant, and antimicrobial herbal medicines used to treat internal and external inflammation-related ailments, including rheumatic diseases, influenza, the common cold, fever, and skin and periodontal problems. Moreover, G. procumbens leaf extract is used for skin care as an anti-ageing and anti-wrinkle ingredient. AIM OF THE STUDY Various environmental factors, especially solar ultraviolet radiation, accelerate skin ageing by promoting oxidative stress and inflammation. Despite the dermoprotective and anti-ageing applications, the impact of G. procumbens on human dermal fibroblasts is unknown. Therefore, the study aimed to evaluate the anti-inflammatory, antioxidant, and photoprotective activity of G. procumbens standardised leaf, stem, and fruit extracts in cellular models, including human dermal fibroblasts (Hs68 cells) under UVA-irradiation, the primary pro-ageing skin stressor. MATERIALS AND METHODS Hs68 fibroblasts were pre-treated (24h) with G. procumbens extracts (0.5-100 μg/mL) or reference compounds followed by UVA-irradiation (8 J/cm2). Cell viability and metabolic activity were measured by CCK-8 and MTT assays in human Hs68 and mouse L929 fibroblasts, respectively. The ROS level, SOD, and GST activities were estimated by fluorescence and spectrophotometric techniques. The pro-inflammatory potential (NF-κB transcription factor activation) was checked using THP1-Blue™ NF-κB cells, and the anti-inflammatory activity was studied by measuring IL-8, ICAM-1, and NF-κB levels and phosphorylation of Erk kinase in LPS-stimulated Hs68 cells by spectrophotometry and confocal microscopy. The UVA-induced DNA damage and cell migration were evaluated by comet and scratch assays, respectively. RESULTS The extracts did not affect the metabolic activity of mouse L929 fibroblasts and the viability of unirradiated human Hs68 cells. Additionally, the extracts noticeably enhanced the viability of UVA-irradiated Hs68 cells up to 115-120% (p < 0.001) for stem and leaf extract at 25 μg/mL. All extracts in a wide concentration range (0.5-100 μg/mL) did not activate monocytes or induce the NF-κB transcription factor in LPS-stimulated Hs68 fibroblasts. On the other hand, the extracts (5-25 μg/mL) restored the activity of endogenous antioxidant enzymes, i.e., SOD and GST, up to 120-140% (p < 0.001) in the UVA-irradiated Hs68 cells. Moreover, a statistically significant reduction of ROS, IL-8, ICAM-1, and NF-κB levels by up to 48%, 88%, 43%, and 39%, respectively (p < 0.001) and strong suppression of Erk kinase activation was observed for the extracts (25-50 μg/mL) in LPS-stimulated human fibroblasts. The total DNA damage (% tail DNA) in irradiated Hs68 cells was also strongly decreased by up to 66-69% (p < 0.001) at 50 μg/mL. However, the treatment with the extracts did not relevantly enhance the cell migration of Hs68 fibroblasts. CONCLUSIONS The results suggest that G. procumbens may effectively protect human skin fibroblast from UVA irradiation. The leaf and stem extracts were the most potent antioxidants, while fruit and stem extracts revealed the strongest anti-inflammatory activity. The observed effects support the traditional use of aerial plant parts (leaves, stems, and fruits) in treating inflammation-related skin disorders cross-linked with oxidative stress and the topical application of Gaultheria extracts as anti-ageing agents intended for skin care.
Collapse
Affiliation(s)
- Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Halina Małgorzata Żbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Paulina Machała
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
5
|
Chittasupho C, Samee W, Na Takuathung M, Okonogi S, Nimkulrat S, Athikomkulchai S. Clerodendrum chinense Stem Extract and Nanoparticles: Effects on Proliferation, Colony Formation, Apoptosis Induction, Cell Cycle Arrest, and Mitochondrial Membrane Potential in Human Breast Adenocarcinoma Breast Cancer Cells. Int J Mol Sci 2024; 25:978. [PMID: 38256052 PMCID: PMC10815711 DOI: 10.3390/ijms25020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer stands out as the most widespread form of cancer globally. In this study, the anticancer activities of Clerodendrum chinense (C. chinense) stem ethanolic extract were investigated. High-performance liquid chromatography (HPLC) analysis identified verbascoside and isoverbascoside as the major bioactive compounds in the C. chinense stem extract. Successfully developed nanoparticles exhibited favorable hydrodynamic diameter, polydispersity index, and surface charge, thus ensuring stability after four months of storage. The total phenolic content and total flavonoid contents in the nanoparticles were reported as 88.62% and 95.26%, respectively. The C. chinense stem extract demonstrated a dose-dependent inhibitory effect on MCF-7, HeLa, A549, and SKOV-3 cancer cell lines, with IC50 values of 109.2, 155.6, 206.9, and 423 µg/mL, respectively. C. chinense extract and NPs exhibited dose-dependent cytotoxicity and the highest selectivity index values against MCF-7 cells. A dose-dependent reduction in the colony formation of MCF-7 cells was observed following treatment with the extract and nanoparticles. The extract induced cytotoxicity in MCF-7 cells through apoptosis and necrosis. C. chinense stem extract and nanoparticles decreased mitochondrial membrane potential (MMP) and induced G0/G1 phase arrest in MCF-7 cells. In conclusion, use of C. chinense stem extract and nanoparticles may serve as a potential therapeutic approach for breast cancer, thus warranting further exploration.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok 26120, Thailand;
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok 26120, Thailand
| |
Collapse
|
6
|
Hussain Y, Abdullah, Khan F, Alam W, Sardar H, Khan MA, Shen X, Khan H. Role of Quercetin in DNA Repair: Possible Target to Combat Drug Resistance in Diabetes. Curr Drug Targets 2024; 25:670-682. [PMID: 38752634 DOI: 10.2174/0113894501302098240430164446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 10/03/2024]
Abstract
Diabetes Mellitus (DM) is referred to as hyperglycemia in either fasting or postprandial phases. Oxidative stress, which is defined by an excessive amount of reactive oxygen species (ROS) production, increased exposure to external stress, and an excessive amount of the cellular defense system against them, results in cellular damage. Increased DNA damage is one of the main causes of genomic instability, and genetic changes are an underlying factor in the emergence of cancer. Through covalent connections with DNA and proteins, quercetin has been demonstrated to offer protection against the creation of oxidative DNA damage. It has been found that quercetin shields DNA from possible oxidative stress-related harm by reducing the production of ROS. Therefore, Quercetin helps to lessen DNA damage and improve the ability of DNA repair mechanisms. This review mainly focuses on the role of quercetin in repairing DNA damage and compensating for drug resistance in diabetic patients. Data on the target topic was obtained from major scientific databases, including SpringerLink, Web of Science, Google Scholar, Medline Plus, PubMed, Science Direct, and Elsevier. In preclinical studies, quercetin guards against DNA deterioration by regulating the degree of lipid peroxidation and enhancing the antioxidant defense system. By reactivating antioxidant enzymes, decreasing ROS levels, and decreasing the levels of 8-hydroxydeoxyguanosine, Quercetin protects DNA from oxidative damage. In clinical studies, it was found that quercetin supplementation was related to increased antioxidant capacity and decreased risk of type 2 diabetes mellitus in the experimental group as compared to the placebo group. It is concluded that quercetin has a significant role in DNA repair in order to overcome drug resistance in diabetes.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Fazlullah Khan
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
7
|
Yenigun S, Ipek Y, Marah S, Demirtas I, Ozen T. DNA protection, molecular docking, antioxidant, antibacterial, enzyme inhibition, and enzyme kinetic studies for parietin, isolated from Xanthoria parietina (L.) Th. Fr. J Biomol Struct Dyn 2024; 42:848-862. [PMID: 37021462 DOI: 10.1080/07391102.2023.2196693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Parietin was isolated from Xanthoria parietina (L.) Th. Fr.' (methanol:chloroform) extract, using a silica column. 13 C NMR and 1H NMR were used to confirm the structure of the isolated parietin. For the first time, parietin was investigated for its antioxidant, antibacterial and DNA protective activities. Molecular docking was carried out to determine the binding affinity and interactions between the enzymes and our molecule. Inhibition and kinetic mechanism studies for the action of the enzymes were performed too. Parietin exhibited high metal chelating activity. The MIC values of parietin were sufficient to inhibit different bacterial strains; E. coli, P. aeruginosa, K. pneumoniae and S. aureus. Molecular docking applications exhibited that acetylcholinesterase (AChE), butyrylcholinesterase (BChE), lipase, and tyrosinase have high potential for binding with the parietin. Especially, the parietin's highest binding affinity was recorded with AChE and tyrosinase. These results were confirmed by the inhibition and kinetics results, where, parietin observed a potent inhibition with an IC50 values between 0.013-0.003 µM. Moreover, parietin acts' as a non-competitive inhibitor against AChE, BChE, and lipase, and as a competitive inhibitor against tyrosinase with a high rate of inhibition stability. The promising biological properties of parietin revealed its effectiveness in terms of suitability in the food and pharmaceutical industries.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Semiha Yenigun
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Yasar Ipek
- Department of Biochemistry, Faculty of Science and Art, Cankiri Karatekin University, Cankiri, Turkey
| | - Sarmad Marah
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Ibrahim Demirtas
- Department of Biochemistry, Faculty of Science and Art, Igdir University, Igdir, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
8
|
Marçal R, Sousa P, Marques A, Pereira V, Guilherme S, Barreto A, Costas B, Rocha RJM, Pacheco M. Exploring the Antioxidant and Genoprotective Potential of Salicornia ramosissima Incorporation in the Diet of the European Seabass ( Dicentrarchus labrax). Animals (Basel) 2023; 14:93. [PMID: 38200822 PMCID: PMC10778275 DOI: 10.3390/ani14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of novel feed materials as a source of functional ingredients is a topical priority in the finfish aquaculture sector. Due to the agrotechnical practices associated and phytochemical profiling, halophytes emerge as a new source of feedstuff for aquafeeds, with the potential to boost productivity and environmental sustainability. Therefore, the present study aimed to assess the potential of Salicornia ramosissima incorporation (2.5, 5, and 10%), for 2 months, in the diet of juvenile European seabass, seeking antioxidant (in the liver, gills, and blood) and genoprotective (DNA and chromosomal integrity in blood) benefits. Halophyte inclusion showed no impairments on growth performance. Moreover, a tissue-specific antioxidant improvement was apparent, namely through the GSH-related defense subsystem, but revealing multiple and complex mechanisms. A genotoxic trigger (regarded as a pro-genoprotective mechanism) was identified in the first month of supplementation. A clear protection of DNA integrity was detected in the second month, for all the supplementation levels (and the most prominent melioration at 10%). Overall, these results pointed out a functionality of S. ramosissima-supplemented diets and a promising way to improve aquaculture practices, also unraveling a complementary novel, low-value raw material, and a path to its valorization.
Collapse
Affiliation(s)
- Raquel Marçal
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Pedro Sousa
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Ana Marques
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Vitória Pereira
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Sofia Guilherme
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - André Barreto
- Riasearch, Lda., 3870-168 Murtosa, Portugal; (A.B.); (R.J.M.R.)
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal;
- School of Medicine and Biomedical Sciences (ICBAS-UP), University of Porto, 4050-313 Porto, Portugal
| | - Rui J. M. Rocha
- Riasearch, Lda., 3870-168 Murtosa, Portugal; (A.B.); (R.J.M.R.)
| | - Mário Pacheco
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| |
Collapse
|
9
|
Wang L, Li W, Li X, Liu J, Chen Y. Antimicrobial Activity and Mechanisms of Walnut Green Husk Extract. Molecules 2023; 28:7981. [PMID: 38138470 PMCID: PMC10745604 DOI: 10.3390/molecules28247981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Walnut green husks (WGHs), by-products of walnut production, are believed to possess antimicrobial properties, making them a potential alternative to antibiotics. In this study, the antibacterial activities of three extracts, derived from WGH, against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli were investigated, and the antibacterial mechanisms of an anhydrous ethanol extract of WGH (WGHa) were examined. The results showed that WGHa exhibited inhibitory effects on all tested bacteria. The ultrahigh-performance liquid chromatography-tandem mass spectrometry analysis revealed that the major active compounds present in WGHa were terpenoids, phenols, and flavonoids. Treatment with WGHa resulted in the leakage of intracellular ions and alkaline phosphatase; a reduction in intracellular ATP content, ATPase activity, and nucleic acid content; as well as cellular metabolic viability. The transmission electron microscopy images showed varying degrees of cell deformation and membrane damage following WGHa treatment. The transcriptome sequencing and differentially expressed gene enrichment analyses revealed an up-regulation in pathways associated with RNA degradation, translation, protein export, and oxidative phosphorylation. Conversely, pathways involved in cell movement and localization, as well as cell wall organization and carbohydrate transport, were found to be down-regulated. These findings suggest that WGHa alters cell membrane permeability and causes damage to the cell wall. Additionally, WGHa interferes with cellular energy metabolism, compromises RNA integrity, and induces DNA replication stress, consequently inhibiting the normal growth and proliferation of bacteria. These findings unveiled the antimicrobial mechanisms of WGHa, highlighting its potential application as an antibiotic alternative.
Collapse
Affiliation(s)
| | | | | | | | - Yong Chen
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.W.); (W.L.); (X.L.); (J.L.)
| |
Collapse
|
10
|
Ibarra-Berumen J, Moreno-Eutimio MA, Rosales-Castro M, Ordaz-Pichardo C. Cytotoxic effect and induction of apoptosis in human cervical cancer cells by a wood extract from Prosopis laevigata. Drug Chem Toxicol 2023; 46:931-943. [PMID: 35950554 DOI: 10.1080/01480545.2022.2109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Cervical cancer ranks fourth in incidence among women worldwide. Cisplatin is currently the first-line drug of treatment for cervical cancer; however, it causes serious adverse effects. Therefore, it is crucial to explore natural products for cervical cancer treatment. Prosopis laevigata is a medicinal plant frequently used for ophthalmological and gastrointestinal infections. In this study, we used the MTT cell viability assay to evaluate the cytotoxic effect of a wood extract from Prosopis laevigata (Extract T7) in SiHa, HeLa, Ca Ski, and C-33 A cancer cell lines. Phosphatidylserine translocation and cell cycle evaluations were performed to determine the mechanism of cellular death. The extract's safety was evaluated using the Ames test with Salmonella typhimurium strains, in vivo acute toxicity assay, and repeated dose toxicity assay in mice. We also identified phenolic compounds of Extract T7 through liquid chromatography/mass spectrometry. Naringin, catechin, and eriodictyol demonstrated a higher concentration in Extract T7. Additionally, Extract T7 exhibited a cytotoxic effect against cervical cancer cells, where C-33 A was the most sensitive (IC50= 22.58 ± 1.10 µg/mL and 14.26 ± 1.11 µg/mL at 24 h and 48 h respectively). Extract T7 induced death by apoptosis and cell cycle arrest in the G2 phase in C-33 A. Extract T7 was not mutagenic. No toxicological effects were observed during acute toxicity and repeated dose toxicity for 28 days. Therefore, further evaluations of Extract T7 should be conducted to identify the complete mechanism of action for potential anti-tumoral activity and safety before conducting studies in animal models.
Collapse
Affiliation(s)
- Jorge Ibarra-Berumen
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Alc. Coyoacán, Ciudad de México, México
| | - Martha Rosales-Castro
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Cynthia Ordaz-Pichardo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Alc. Gustavo A. Madero, Ciudad de México, México
| |
Collapse
|
11
|
Di Salvo E, Gangemi S, Genovese C, Cicero N, Casciaro M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. PLANTS (BASEL, SWITZERLAND) 2023; 12:3579. [PMID: 37896042 PMCID: PMC10609915 DOI: 10.3390/plants12203579] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Polyphenols are a diverse class of natural compounds that are widely distributed in various fruits, vegetables, and herbs. They possess antioxidant and anti-inflammatory properties and bring benefits in the prevention and treatment of various diseases. Studies suggested that polyphenols may improve cardiovascular health and may have neuroprotective effects. The Mediterranean region is a vast area. Although the territory encompasses a wide variety of cultures and dietary patterns, there are some commonalities in terms of the plant-based foods and their polyphenol content. Such polyphenols have been studied for their potential photoprotective effects on the skin. We focused on nutraceutical effects of Mediterranean plants in skin photoprotection in atopic dermatitis, psoriasis, and chronic urticaria. Results highlight the importance of exploring natural compounds for therapeutic purposes. The wide variety of polyphenols found in different foods and plants allows for a diverse range of pharmacological effects. The Mediterranean diet, rich in polyphenol-containing foods, is associated with a lower incidence of various chronic diseases, including dermatological conditions. While more research is needed to fully understand the mechanisms of action and optimal dosing of polyphenols, there is initial evidence to support their potential use as adjunctive therapy for atopic dermatitis, psoriasis, and chronic urticaria.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.G.); (M.C.)
| | - Claudia Genovese
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy;
- Science4Life, Spin Off Company, University of Messina, 98168 Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.G.); (M.C.)
| |
Collapse
|
12
|
Maaroufi I, Jamsransuren D, Hashida K, Matsuda S, Ogawa H, Takeda Y. An Abies Extract Containing Nonvolatile Polyphenols Shows Virucidal Activity against SARS-CoV-2 That Is Enhanced in Increased pH Conditions. Pathogens 2023; 12:1093. [PMID: 37764901 PMCID: PMC10534523 DOI: 10.3390/pathogens12091093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Researching the beneficial health properties of wood byproducts can prevent wastage by turning them into valuable resources. In this study, the virucidal activity of two extracts from Abies sachalinensis byproducts, ASE1, and ASE2, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated. ASE1 is rich in monoterpenoid volatile compounds, whereas ASE2 contains nonvolatile polyphenols. SARS-CoV-2 solutions were mixed with ASE1 or ASE2, and viral titer reduction was evaluated. At their original acidic pH, ASE2 showed stronger virucidal activity than ASE1. The virucidal activity of ASE2 was also significantly enhanced when pH was increased to neutral or basic, which was not the case for ASE1. At a neutral pH, ASE2 induced statistically significant viral titer reduction in 1 min. HCl and NaOH solutions, which had a pH close to that of acidic and basic ASE2 test mixtures, respectively, exhibited no virucidal activity against SARS-CoV-2. Among the SARS-CoV-2 variants, Omicron showed the highest vulnerability to ASE2. Western blotting, RT-PCR, and electron microscopic analysis revealed that neutral ASE2 interacts with SARS-CoV-2 spike proteins and moderately disrupts the SARS-CoV-2 genome and viral envelope. These findings reveal the virucidal potential of ASE2.
Collapse
Affiliation(s)
- Imane Maaroufi
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Dulamjav Jamsransuren
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (D.J.); (S.M.)
| | - Koh Hashida
- Department of Forest Resources Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan;
| | - Sachiko Matsuda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (D.J.); (S.M.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (D.J.); (S.M.)
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| |
Collapse
|
13
|
Musto G, Schiano E, Iannuzzo F, Tenore GC, Novellino E, Stornaiuolo M. Genotoxicity Assessment of Nutraceuticals Extracted from Thinned Nectarine (Prunus persica L.) and Grape Seed (Vitis Vinifera L.) Waste Biomass. Foods 2023; 12:foods12061171. [PMID: 36981098 PMCID: PMC10048668 DOI: 10.3390/foods12061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Agri-food by-products represent a considerable portion of the waste produced in the world and especially when incorrectly disposed of, contribute to air, soil, and water pollution. Recently, recycling of food waste has proven to be an attractive area of research for pharmaceutical companies, that use agri-food by-products (leaves, bark, roots, seeds, second-best vegetables) as alternative raw material for the extraction of bioactive compounds. Developers and producers are however, advised to assess the safety of nutraceuticals obtained from biowaste that, in virtue of its chemical complexity, could undermine the overall safety of the final products. Here, in compliance with EFSA regulations, we use the Ames test (OECD 471) and the micronucleus test (OECD 487) to assess the mutagenicity of two nutraceuticals obtained from food waste. The first consists of grape seeds (Vitis vinifera L.) that have undergone a process of food-grade depolymerization of proanthocyanidins to release more bioavailable flavan-3-ols. The second nutraceutical product consists of thinned nectarines (Prunus persica L. var nucipersica) containing abscisic acid and polyphenols. The results presented here show that these products are, before as well as after metabolization, non-mutagenic, up to the doses of 5 mg and 100 μg per plate for the Ames and micronucleus test, respectively, and can be thus considered genotoxically safe.
Collapse
Affiliation(s)
- Giorgia Musto
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
14
|
Antigenotoxic properties of the halophyte Polygonum maritimum L. highlight its potential to mitigate oxidative stress-related damage. Sci Rep 2023; 13:3727. [PMID: 36878934 PMCID: PMC9988880 DOI: 10.1038/s41598-022-20402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023] Open
Abstract
Long-term exposure to dietary xenobiotics can induce oxidative stress in the gastrointestinal tract, possibly causing DNA damage and contributing to the initiation of carcinogenesis. Halophytes are exposed to constant abiotic stresses, which are believed to promote the accumulation of antioxidant metabolites like polyphenols. The aim of this study was to evaluate the antioxidant and antigenotoxic properties of the ethanol extract of the aerial part of the halophyte Polygonum maritimum L. (PME), which can represent a dietary source of bioactive compounds with potential to attenuate oxidative stress-related damage. The PME exhibited a high antioxidant potential, revealed by the in vitro capacity to scavenge the free radical DPPH (IC50 = 2.29 ± 0.10 μg/mL) and the improved viability of the yeast Saccharomyces cerevisiae under oxidative stress (p < 0.001, 10 min). An antigenotoxic effect of PME against H2O2-induced oxidative stress was found in S. cerevisiae (p < 0.05) with the dominant deletion assay. In vitro colorimetric assays and LC-DAD-ESI/MSn analysis showed that PME is a polyphenol-rich extract composed of catechin, (epi)catechin dimer and trimers, quercetin and myricetin glycosides. Hence, P. maritimum is a source of antioxidant and antigenotoxic metabolites for application in industries that develop products to provide health benefits.
Collapse
|
15
|
Cvetković S, Vuletić S, Vunduk J, Klaus A, Mitić-Ćulafić D, Nikolić B. The role of Gentiana lutea extracts in reducing UV-induced DNA damage. Mutagenesis 2023; 38:71-80. [PMID: 35253882 DOI: 10.1093/mutage/geac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV) radiation can result in DNA damage, mainly through direct formation of pyrimidine dimers and generation of reactive oxygen species, which can lead to the skin disorders including cancer. In accordance with this, the use of natural antigenotoxins and/or antioxidants could contribute to human health protection. Considering that plants are rich in both, the aim of this study was to investigate UV-protective and antioxidative properties of yellow gentian (Gentiana lutea), being well established in pharmacopeias and traditional medicine. Tested extracts were derived from root and shoot of the in vitro cultivated plants. Prescreening of the genotoxic properties of UVC, UVA, and the extracts, as well as the extracts' antigenotoxicity were estimated by applying alkaline comet assay on normal fetal lung fibroblast (MRC-5) and human melanoma cells (Hs 294T). Antioxidant potential was tested in ferrous ions chelating ferric reducing antioxidant power and cupric reducing antioxidant capacity assays. Genotoxicity testing, which revealed moderate DNA-damaging potential of root extract on MRC-5 cells and high genotoxicity of shoot extract on both cell lines, pointed out nongenotoxic concentrations that could be used in antigenotoxicity assay. Doses of 63 and 3 J/cm2 for UVC and UVA, respectively, were established for antigenotoxicity study, since they induced sufficient DNA damage without notable cytotoxicity. Results of antigenotoxicity revealed strong protective effect of both extracts against UVC (the highest inhibitions 58% and 47%) and UVA (the highest inhibitions 69% and 60%), in Hs 294T and MRC-5 cells, respectively. Study of the antioxidative properties demonstrated stronger activity of shoot extract. Results obtained proved to be encouraging but further research of the UV-protective role of Gentiana lutea extracts and underlying molecular mechanisms is recommended.
Collapse
Affiliation(s)
- Stefana Cvetković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Stefana Vuletić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Anita Klaus
- Faculty of Agriculture, Institute for Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
16
|
Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12:4380-4404. [PMID: 36156462 PMCID: PMC9972122 DOI: 10.1002/cam4.5274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
DNA damage response (DDR) signaling ensures genomic and proteomic homeostasis to maintain a healthy genome. Dysregulation either in the form of down- or upregulation in the DDR pathways correlates with various pathophysiological states, including cancer and cardiovascular diseases (CVDs). Impaired DDR is studied as a signature mechanism for cancer; however, it also plays a role in ischemia-reperfusion injury (IRI), inflammation, cardiovascular function, and aging, demonstrating a complex and intriguing relationship between cancer and pathophysiology of CVDs. Accordingly, there are increasing number of reports indicating higher incidences of CVDs in cancer patients. In the present review, we thoroughly discuss (1) different DDR pathways, (2) the functional cross talk among different DDR mechanisms, (3) the role of DDR in cancer, (4) the commonalities and differences of DDR between cancer and CVDs, (5) the role of DDR in pathophysiology of CVDs, (6) interventional strategies for targeting genomic instability in CVDs, and (7) future perspective.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Krishna K Singh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
El Gaamouch F, Chen F, Ho L, Lin HY, Yuan C, Wong J, Wang J. Benefits of dietary polyphenols in Alzheimer's disease. Front Aging Neurosci 2022; 14:1019942. [PMID: 36583187 PMCID: PMC9792677 DOI: 10.3389/fnagi.2022.1019942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disease affecting approximately 50 million people worldwide. It is estimated to reach 152 million by the year 2050. AD is the fifth leading cause of death among Americans age 65 and older. In spite of the significant burden the disease imposes upon patients, their families, our society, and our healthcare system, there is currently no cure for AD. The existing approved therapies only temporarily alleviate some of the disease's symptoms, but are unable to modulate the onset and/or progression of the disease. Our failure in developing a cure for AD is attributable, in part, to the multifactorial complexity underlying AD pathophysiology. Nonetheless, the lack of successful pharmacological approaches has led to the consideration of alternative strategies that may help delay the onset and progression of AD. There is increasing recognition that certain dietary and nutrition factors may play important roles in protecting against select key AD pathologies. Consistent with this, select nutraceuticals and phytochemical compounds have demonstrated anti-amyloidogenic, antioxidative, anti-inflammatory, and neurotrophic properties and as such, could serve as lead candidates for further novel AD therapeutic developments. Here we summarize some of the more promising dietary phytochemicals, particularly polyphenols that have been shown to positively modulate some of the important AD pathogenesis aspects, such as reducing β-amyloid plaques and neurofibrillary tangles formation, AD-induced oxidative stress, neuroinflammation, and synapse loss. We also discuss the recent development of potential contribution of gut microbiome in dietary polyphenol function.
Collapse
Affiliation(s)
- Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States
| | - Fiona Chen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lap Ho
- Department of Genetics and Genomic sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hsiao-Yun Lin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States
| | - Chongzhen Yuan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States
| | - Jean Wong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States,*Correspondence: Jun Wang,
| |
Collapse
|
18
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
19
|
Therapeutic and Nutraceutical Effects of Polyphenolics from Natural Sources. Molecules 2022; 27:molecules27196225. [PMID: 36234762 PMCID: PMC9572829 DOI: 10.3390/molecules27196225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of cardiovascular disease, oxidative stress-related complications, and chronic age-related illnesses is gradually increasing worldwide. Several causes include the ineffectiveness of medicinal treatment therapies, their toxicity, their inability to provide radical solutions in some diseases, and the necessity of multiple drug therapy in certain chronic diseases. It is therefore necessary for alternative treatment methods to be sought. In this review, polyphenols were identified and classified according to their chemical structure, and the sources of these polyphenol molecules are indicated. The cardioprotective, ROS scavenging, anti-aging, anticancer properties of polyphenolic compounds have been demonstrated by the results of many studies, and these natural antioxidant molecules are potential alternative therapeutic agents.
Collapse
|
20
|
Vingrys K, Mathai M, Ashton JF, Stojanovska L, Vasiljevic T, McAinch AJ, Donkor ON. The effect of malting on phenolic compounds and radical scavenging activity in grains and breakfast cereals. J Food Sci 2022; 87:4188-4202. [PMID: 35998111 DOI: 10.1111/1750-3841.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Breakfast cereals are popular grain foods and sources of polyphenols. Malting alters polyphenol content and activity; however, effects are varied. The total polyphenol content (TPC), radical scavenging activity (RSA), and polyphenol profile were analyzed in unmalted and malted grains (wheat, barley, and sorghum) and breakfast cereals (wheat, barley) by Folin Ciocalteu Reagent (FCR), % inhibition of the free radical 2,2-diphenyl-1-picryl-hydrazyl, and high performance liquid chromatography. Higher TPC was observed in all malted grains and breakfast cereals compared with unmalted samples (p < 0.05). Higher RSA was also observed in all malted samples compared to unmalted samples (p < 0.05) except for wheat grain to malted wheat grain. In this study, malting induced additional polyphenols and antioxidant activity in grains and cereal products. Malted grain breakfast cereals may be practical sources of polyphenol antioxidants. PRACTICAL APPLICATION: This study utilized malting in a unique way to investigate potential health benefits of polyphenols and antioxidant activity in grains (wheat, barley, and sorghum) and ready-to-eat breakfast cereals (wheat and barley). This study found that grains and breakfast cereals are important sources of antioxidant polyphenols, and these were significantly increased in malted varieties. Understanding this is important as grains and breakfast cereals are widely consumed staple foods. Consuming healthier grain products may be a practical strategy in reducing the risk of noncommunicable diseases such as colorectal cancer and type-2 diabetes, where wholegrain consumption may be important in prevention.
Collapse
Affiliation(s)
- Kristina Vingrys
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,First Year College, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - John F Ashton
- Sanitarium Development and Innovation, Cooranbong, NSW, Australia
| | - Lily Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Todor Vasiljevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Osaana N Donkor
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Gateva S, Jovtchev G, Angelova T, Dobreva A, Mileva M. The Anti-Genotoxic Activity of Wastewaters Produced after Water-Steam Distillation of Bulgarian Rosa damascena Mill. and Rosa alba L. Essential Oils. Life (Basel) 2022; 12:life12030455. [PMID: 35330206 PMCID: PMC8951631 DOI: 10.3390/life12030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The steam distillation of valuable rose essential oil from R. damascena Mill. and R. alba L. generates large volumes of wastewaters. Although such wastewaters are bio-pollutants, they contain valuable bioactive compounds. In this study we investigated the cytotoxic/genotoxic and anti-cytotoxic/anti-genotoxic potential of these products. We used cytogenetic methods for induction of chromosome aberrations and micronuclei in two different experimental test-systems: ahigher plant and human lymphocyte cultures. Different experimental schemes of treatment with the waste products showed that the genotoxic activity of wastewater from the distillation of oils from R. alba and R. damascena was low in both test–systems. Human lymphocytes showed a higher sensitivity to the products than plant cells. Both types of waste products manifested anti-genotoxic effect against N-methyl-N′-nitro-N-nitrosoguanidine, a direct mutagen. The wastewaters obtained from steam distillation of rose essential oil have cytoprotective/genoprotective effect and could decrease DNA damage. Data are promising for further use of these products in pharmacy and other areas of human life.
Collapse
Affiliation(s)
- Svetla Gateva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.)
| | - Gabriele Jovtchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.)
| | - Tsveta Angelova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.)
| | - Ana Dobreva
- Institute for Roses and Aromatic Plants, Agricultural Academy, 49 Osvobojdenie Blvd., 6100 Kazanlak, Bulgaria
- Correspondence: (A.D.); (M.M.); Tel.: +359-29793185 (M.M.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
- Correspondence: (A.D.); (M.M.); Tel.: +359-29793185 (M.M.)
| |
Collapse
|
22
|
In Silico Studies of Tumor Targeted Peptide-Conjugated Natural Products for Targeting Over-Expressed Receptors in Breast Cancer Cells Using Molecular Docking, Molecular Dynamics and MMGBSA Calculations. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, in silico studies were carried out for the design of diterpene and polyphenol-peptide conjugates to potentially target over-expressed breast tumor cell receptors. Four point mutations were induced into the known tumor-targeting peptide sequence YHWYGYTPQN at positions 1, 2, 8 and 10, resulting in four mutated peptides. Each peptide was separately conjugated with either chlorogenate, carnosate, gallate, or rosmarinate given their known anti-tumor activities, creating dual targeting compounds. Molecular docking studies were conducted with the epidermal growth factor receptor (EGFR), to which the original peptide sequence is known to bind, as well as the estrogen receptor (ERα) and peroxisome proliferator-activated receptor (PPARα) using both Autodock Vina and FireDock. Based on docking results, peptide conjugates and peptides were selected and subjected to molecular dynamics simulations. MMGBSA calculations were used to further probe the binding energies. ADME studies revealed that the compounds were not CYP substrates, though most were Pgp substrates. Additionally, most of the peptides and conjugates showed MDCK permeability. Our results indicated that several of the peptide conjugates enhanced binding interactions with the receptors and resulted in stable receptor-ligand complexes; Furthermore, they may successfully target ERα and PPARα in addition to EGFR and may be further explored for synthesis and biological studies for therapeutic applications.
Collapse
|
23
|
Wu L, Sowers JR, Zhang Y, Ren J. OUP accepted manuscript. Cardiovasc Res 2022; 119:691-709. [PMID: 35576480 DOI: 10.1093/cvr/cvac080] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) arise from a complex interplay among genomic, proteomic, and metabolomic abnormalities. Emerging evidence has recently consolidated the presence of robust DNA damage in a variety of cardiovascular disorders. DNA damage triggers a series of cellular responses termed DNA damage response (DDR) including detection of DNA lesions, cell cycle arrest, DNA repair, cellular senescence, and apoptosis, in all organ systems including hearts and vasculature. Although transient DDR in response to temporary DNA damage can be beneficial for cardiovascular function, persistent activation of DDR promotes the onset and development of CVDs. Moreover, therapeutic interventions that target DNA damage and DDR have the potential to attenuate cardiovascular dysfunction and improve disease outcome. In this review, we will discuss molecular mechanisms of DNA damage and repair in the onset and development of CVDs, and explore how DDR in specific cardiac cell types contributes to CVDs. Moreover, we will highlight the latest advances regarding the potential therapeutic strategies targeting DNA damage signalling in CVDs.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, MO 65212, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Almeida J, Ferreira T, Santos S, Pires MJ, da Costa RMG, Medeiros R, Bastos MM, Neuparth MJ, Faustino-Rocha AI, Abreu H, Pereira R, Pacheco M, Gaivão I, Rosa E, Oliveira PA. The Red Seaweed Grateloupia turuturu Prevents Epidermal Dysplasia in HPV16-Transgenic Mice. Nutrients 2021; 13:nu13124529. [PMID: 34960081 PMCID: PMC8707361 DOI: 10.3390/nu13124529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The role of dietary profiles in promoting or reducing the risk of multiple types of cancer is increasingly clear, driving the search for balanced foods and nutraceuticals. The red seaweed Grateloupia turuturu has been used as human food showing a balanced nutritional profile. This study aims to test in vivo chemopreventive effects of G. turuturu against cutaneous pre-malignant lesions in transgenic mice for the human papillomavirus type 16 (HPV16). Forty-four female HPV+/− or HPV−/− mice received a standard diet or were supplemented with 10% G. turuturu for 22 consecutive days. Cutaneous lesions (ear and chest skin) were identified histologically. Complementarily, the weights and histology of internal organs as well as blood biochemical and DNA integrity parameters were also assessed. G. turuturu consistently reduced the incidence of epidermal dysplasia induced by HPV16 on both cutaneous sites. Moreover, biochemical, DNA integrity and histological analyses confirmed G. turuturu edibility as no signs of toxicity were found. Dietary supplementation with G. turuturu is an effective and safe chemopreventive strategy in this model.
Collapse
Affiliation(s)
- José Almeida
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Tiago Ferreira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Susana Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Maria J. Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Maranhão Tumour and DNA Biobank (BTMA), Post-graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
- Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- LPCC Research Department, Portuguese League against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Margarida M.S.M. Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Maria J. Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Advanced Polytechnic and University Cooperative (CESPU), 4585 Gandra, Portugal
| | - Ana I. Faustino-Rocha
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Department of Zootechnics, School of Sciences and Technology, 7000-671 Évora, Portugal
| | - Helena Abreu
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal; (H.A.); (R.P.)
| | - Rui Pereira
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal; (H.A.); (R.P.)
- A4F Algae for Future, Estrada do Paço do Lumiar, Campus do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Mário Pacheco
- Portugal CESAM—Centre for Environmental and Marine Studies and Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Isabel Gaivão
- Department of Genetic and Biotechnology, CECAV, UTAD, 5001-801 Vila Real, Portugal;
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Department of Agronomy, UTAD, 5001-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Correspondence: ; Tel.: +351-259350000; Fax: +351-259325058
| |
Collapse
|
25
|
Radović Jakovljević M, Stanković M, Vuković N, Vukić M, Grujičić D, Milošević-Djordjević O. Comparative study of the genotoxic activity of Artemisia vulgaris L. and Artemisia alba Turra extracts in vitro. Drug Chem Toxicol 2021; 45:1915-1922. [PMID: 34844486 DOI: 10.1080/01480545.2021.2007025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, the genotoxic activity of acetone and aqueous extracts of two species of genus Artemisia (Artemisia vulgaris L. and Artemisia alba Turra), and possible role of their polyphenolic composition in the observed activities were investigated. Polyphenolic contents were evaluated by high-performance liquid chromatography (HPLC-PDA), while the genotoxic activity was tested using cytokinesis block micronucleus (CBMN) assay on human peripheral blood lymphocytes (PBLs) in vitro. HPLC-PDA showed that both A. alba extracts were richer in polyphenolic contents than A. vulgaris extracts. The acetone A. alba extract was the richest of polyphenolic content where we detected six phenolic acids and two flavonoids. CBMN assay showed that aqueous extract of A. vulgaris significantly increased micronucleus (MN) frequency in the PBLs treated with all tested concentrations (10, 50, 100, and 250 µg/mL), while A. alba did not significantly affect the mean MN frequency. Further, both acetone extracts were genotoxic in all tested concentrations, except the lowest tested (10 µg/mL) of A. alba. All tested extracts affected the nuclear division index (NDI) except the aqueous A. alba extract (p < 0.05). Based on our results, we can conclude that both acetone and aqueous A. vulgaris extracts and A. alba acetone extract were genotoxic in PBLs in vitro. A. alba aqueous extract was not genotoxic and cytotoxic in tested concentrations. We suggest that the aqueous extract of A. alba can be used in treatment, which has been confirmed by traditional medicine, but with a high dose of caution and not in high concentrations.
Collapse
Affiliation(s)
| | - Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Milena Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Darko Grujičić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milošević-Djordjević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
26
|
Diotallevi C, Fontana M, Latimer C, Ternan NG, Pourshahidi LK, Lawther R, O'Connor G, Conterno L, Gasperotti M, Angeli A, Lotti C, Bianchi M, Vrhovsek U, Fava F, Gobbetti M, Gill CIR, Tuohy KM. Ex Vivo Fecal Fermentation of Human Ileal Fluid Collected After Wild Strawberry Consumption Modulates Human Microbiome Community Structure and Metabolic Output and Protects Against DNA Damage in Colonic Epithelial Cells. Mol Nutr Food Res 2021; 66:e2100405. [PMID: 34821456 DOI: 10.1002/mnfr.202100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/09/2021] [Indexed: 11/06/2022]
Abstract
SCOPE Wild strawberries (Fragaria vesca) are richer in (poly)phenols than common commercial strawberry varieties, e.g., Fragaria × ananassa. (Poly)phenols and their microbiota-derived metabolites are hypothesized to exert bioactivity within the human gut mucosa. To address this, the effects of wild strawberries are investigated with respect to their bioactivity and microbiota-modulating capacity using both in vitro and ex vivo approaches. METHODS AND RESULTS Ileal fluids collected pre- (0h) and post-consumption (8h) of 225 g wild strawberries by ileostomates (n = 5) and also in vitro digested strawberry varieties (Fragaria vesca and Fragaria × ananassa Duchesne) supernatants are collected. Subsequent fermentation of these supernatants using an in vitro batch culture proximal colon model reveals significant treatment-specific changes in microbiome community structure in terms of alpha but not beta diversity at 24 h. Nutri-kinetic analysis reveals a significant increase in the concentration of gut microbiota catabolites, including 3-(4hydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propanoic acid, and benzoic acid. Furthermore, post-berry ileal fermentates (24 h) significantly (p < 0.01) decrease DNA damage (% Tail DNA, COMET assay) in both HT29 cells (∼45%) and CCD 841 CoN cells (∼25%) compared to untreated controls. CONCLUSIONS Post berry consumption fermentates exhibit increased overall levels of (poly)phenolic metabolites, which retains their bioactivity, reducing DNA damage in colonocytes.
Collapse
Affiliation(s)
- Camilla Diotallevi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy.,Freie Universität Bozen-Libera Università di Bolzano, Faculty of Science and Technology, Bolzano (BZ), Italy
| | - Massimiliano Fontana
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy.,Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Lorenza Conterno
- Fermentation and Distillation Group, Laimburg Research Centre, Vadena (BZ), Italy
| | - Mattia Gasperotti
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Andrea Angeli
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cesare Lotti
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Martina Bianchi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Francesca Fava
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Marco Gobbetti
- Freie Universität Bozen-Libera Università di Bolzano, Faculty of Science and Technology, Bolzano (BZ), Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| |
Collapse
|
27
|
Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9068850. [PMID: 34754365 PMCID: PMC8572616 DOI: 10.1155/2021/9068850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.
Collapse
|
28
|
Curcumin and Carnosic Acid Cooperate to Inhibit Proliferation and Alter Mitochondrial Function of Metastatic Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101591. [PMID: 34679726 PMCID: PMC8533243 DOI: 10.3390/antiox10101591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Anticancer activities of plant polyphenols have been demonstrated in various models of neoplasia. However, evidence obtained in numerous in vitro studies indicates that proliferation arrest and/or killing of cancer cells require quite high micromolar concentrations of polyphenols that are difficult to reach in vivo and can also be (geno)toxic to at least some types of normal cells. The ability of certain polyphenols to synergize with one another at low concentrations can be used as a promising strategy to effectively treat human malignancies. We have recently reported that curcumin and carnosic acid applied at non-cytotoxic concentrations synergistically cooperate to induce massive apoptosis in acute myeloid leukemia cells, but not in normal hematopoietic and non-hematopoietic cells, via sustained cytosolic calcium overload. Here, we show that the two polyphenols can also synergistically suppress the growth of DU145 and PC-3 metastatic prostate cancer cell cultures. However, instead of cell killing, the combined treatment induced a marked inhibition of cell proliferation associated with G0/G1 cell cycle arrest. This was preceded by transient elevation of cytosolic calcium levels and prolonged dissipation of the mitochondrial membrane potential, without generating oxidative stress, and was associated with defective oxidative phosphorylation encompassing mitochondrial dysfunction. The above effects were concomitant with a significant downregulation of mRNA and protein expression of the oncogenic kinase SGK1, the mitochondria-hosted mTOR component. In addition, a moderate decrease in SGK1 phosphorylation at Ser422 was observed in polyphenol-treated cells. The mTOR inhibitor rapamycin produced a similar reduction in SGK1 mRNA and protein levels as well as phosphorylation. Collectively, our findings suggest that the combination of curcumin and carnosic acid at potentially bioavailable concentrations may effectively target different types of cancer cells by distinct modes of action. This and similar combinations merit further exploration as an anticancer modality.
Collapse
|
29
|
The Involvement of Natural Polyphenols in the Chemoprevention of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168812. [PMID: 34445518 PMCID: PMC8396230 DOI: 10.3390/ijms22168812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
From all types of cancer, cervical cancer manages to be in top four most frequent types, with a 6.5% rate of occurrence. The infectious vector that induces the disease, the high-risk Human papillomavirus (HPV), which is a sexually transmitted virus, is capable of transforming the host cell by modulating some of the principal signaling pathways responsible for cell cycle arrest, proliferation, and survival. Fortunately, like other cancer types, cervical cancer can be treated by chirurgical interventions or chemoradiotherapy, but these methods are not exactly the lucky clover of modern medicine because of the adverse effects they have. That is the reason why in the last years the emphasis has been on alternative medicine, more specifically on phytochemicals, as a substantial number of studies showed that diet contributes to cancer prevention and treatment. All these studies are trying to find new chemopreventive agents with less toxicity but high effectiveness both in vitro and in vivo. The aim of this review is to evaluate the literature in order to underline the advantages and disadvantages of polyphenols, a class of dietary compounds, as chemopreventive and chemotherapeutic agents. This review also aims to present polyphenols from different perspectives, starting with mechanisms of action and ending with their toxicity. The bigger picture illustrates that polyphenols have great potential in cervical cancer prevention, with strong effects on gene modulation.
Collapse
|
30
|
Rosier BT, Palazón C, García-Esteban S, Artacho A, Galiana A, Mira A. A Single Dose of Nitrate Increases Resilience Against Acidification Derived From Sugar Fermentation by the Oral Microbiome. Front Cell Infect Microbiol 2021; 11:692883. [PMID: 34195102 PMCID: PMC8238012 DOI: 10.3389/fcimb.2021.692883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Tooth decay starts with enamel demineralization due to an acidic pH, which arises from sugar fermentation by acidogenic oral bacteria. Previous in vitro work has demonstrated that nitrate limits acidification when incubating complex oral communities with sugar for short periods (e.g., 1-5 h), driven by changes in the microbiota metabolism and/or composition. To test whether a single dose of nitrate can reduce acidification derived from sugar fermentation in vivo, 12 individuals received a nitrate-rich beetroot supplement, which was compared to a placebo in a blinded crossover setting. Sucrose-rinses were performed at baseline and 2 h after supplement or placebo intake, and the salivary pH, nitrate, nitrite, ammonium and lactate were measured. After nitrate supplement intake, the sucrose-induced salivary pH drop was attenuated when compared with the placebo (p < 0.05). Salivary nitrate negatively correlated with lactate production and positively with ΔpH after sucrose exposure (r= -0.508 and 0.436, respectively, both p < 0.05). Two additional pilot studies were performed to test the effect of sucrose rinses 1 h (n = 6) and 4 h (n = 6) after nitrate supplement intake. In the 4 h study, nitrate intake was compared with water intake and bacterial profiles were analysed using 16S rRNA gene Illumina sequencing and qPCR detection of Rothia. Sucrose rinses caused a significant pH drop (p < 0.05), except 1 h and 4 h after nitrate supplement intake. After 4 h of nitrate intake, there was less lactate produced compared to water intake (p < 0.05) and one genus; Rothia, increased in abundance. This small but significant increase was confirmed by qPCR (p < 0.05). The relative abundance of Rothia and Neisseria negatively correlated with lactate production (r = -0.601 and -0.669, respectively) and Neisseria positively correlated with pH following sucrose intake (r = 0.669, all p < 0.05). Together, these results show that nitrate can acutely limit acidification when sugars are fermented, which appears to result from lactate usage by nitrate-reducing bacteria. Future studies should assess the longitudinal impact of daily nitrate-rich vegetable or supplement intake on dental health.
Collapse
Affiliation(s)
- Bob T Rosier
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Carlos Palazón
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Sandra García-Esteban
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Alejandro Artacho
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Antonio Galiana
- Department of Microbiology, General University Hospital of Elche, FISABIO Foundation, Alicante, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| |
Collapse
|
31
|
Mehanović M, Ćetković T, Hadžić M, Čakar J, Zeljković SĆ, Haverić S, Haverić A. Genotoxic and cytotoxic assessment of two endemic Lamiaceae species from Bosnia and Herzegovina. Nat Prod Res 2021; 36:2888-2892. [PMID: 34018885 DOI: 10.1080/14786419.2021.1925275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Clinopodium alpinum subsp. orontium (K.Malý) Govaerts and Thymus bracteosus Vis. ex Benth. are endemic Lamiaceae species in Bosnia and Herzegovina with rather limited data about their cytotoxic and genotoxic effects. This study aimed to analyse phenolic compounds composition of C. alpinum subsp. orontium and T. bracteosus aqueous and dimethyl sulphoxide (DMSO) extracts and their cytotoxic and genotoxic potential in human peripheral blood lymphocyte cultures. Among 33 analytes, 17 were identified and quantified in the examined extracts with the rosmarinic and chlorogenic acids as main constituents. Genotoxic effects of extracts from both species are proven at the highest applied dose. T. bracteosus extracts and DMSO as a solvent exhibited stronger genotoxic potential that should be further investigated in tumour cell lines. Nevertheless, non-endemic species with similar phenolic composition and bioactivity should be the first choice for medicinal purposes.
Collapse
Affiliation(s)
- Mahira Mehanović
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Tamara Ćetković
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Maida Hadžić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Čakar
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.,Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Sanin Haverić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Anja Haverić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
32
|
Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B, Upadhyay NK, Cruz-Martins N, Bhardwaj P, Kuča K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021; 26:3005. [PMID: 34070179 PMCID: PMC8158490 DOI: 10.3390/molecules26103005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Square Aldo Moro, 5, 00185 Rome, Italy;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India;
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| |
Collapse
|
33
|
Del Bo’ C, Martini D, Bernardi S, Gigliotti L, Marino M, Gargari G, Meroño T, Hidalgo-Liberona N, Andres-Lacueva C, Kroon PA, Cherubini A, Guglielmetti S, Porrini M, Riso P. Association between Food Intake, Clinical and Metabolic Markers and DNA Damage in Older Subjects. Antioxidants (Basel) 2021; 10:antiox10050730. [PMID: 34066373 PMCID: PMC8148130 DOI: 10.3390/antiox10050730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The use of DNA damage as marker of oxidative stress, metabolic dysfunction and age-related diseases is debated. The present study aimed at assessing the level of DNA damage (evaluated as DNA strand-breaks, endogenous and oxidatively-induced DNA damage) in a group of older subjects with intestinal permeability enrolled within the MaPLE (Gut and Blood Microbiomics for Studying the Effect of a Polyphenol-Rich Dietary Pattern on Intestinal Permeability in the Elderly) intervention trial, to evaluate its association with clinical, metabolic and dietary markers. DNA damage in peripheral blood mononuclear cells was assessed by the comet assay in 49 older subjects participating in the study. Clinical and metabolic markers, markers of inflammation, vascular function and intestinal permeability were determined in serum. Food intake was estimated by weighted food diaries. On the whole, a trend towards higher levels of DNA damage was observed in men compared to women (p = 0.071). A positive association between DNA damage and clinical/metabolic markers (e.g., uric acid, lipid profile) and an inverse association with dietary markers (e.g., vitamin C, E, B6, folates) were found and differed based on sex. By considering the importance of DNA stability during aging, the results obtained on sex differences and the potential role of dietary and metabolic factors on DNA damage underline the need for further investigations in a larger group of older adults to confirm the associations found and to promote preventive strategies.
Collapse
Affiliation(s)
- Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Letizia Gigliotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Tomas Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, CIBERFES-ISCIII, 08028 Barcelona, Spain; (T.M.); (N.H.-L.); (C.A.-L.)
- Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, CIBERFES-ISCIII, 08028 Barcelona, Spain; (T.M.); (N.H.-L.); (C.A.-L.)
- Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, CIBERFES-ISCIII, 08028 Barcelona, Spain; (T.M.); (N.H.-L.); (C.A.-L.)
- Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Paul A. Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UG, UK;
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di ricerca per l’invecchiamento, IRCCS INRCA, 60127 Ancona, Italy;
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
- Correspondence: (M.P.); (P.R.); Tel.: +39-02-50316720 (M.P.); +39-02-50316726 (P.R.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
- Correspondence: (M.P.); (P.R.); Tel.: +39-02-50316720 (M.P.); +39-02-50316726 (P.R.)
| |
Collapse
|
34
|
Kim HJ, Herath KHINM, Dinh DTT, Kim HS, Jeon YJ, Kim HJ, Jee Y. Sargassum horneri ethanol extract containing polyphenols attenuates PM-induced oxidative stress via ROS scavenging and transition metal chelation. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Jung EJ, Paramanantham A, Kim HJ, Shin SC, Kim GS, Jung JM, Ryu CH, Hong SC, Chung KH, Kim CW, Lee WS. Artemisia annua L. Polyphenol-Induced Cell Death Is ROS-Independently Enhanced by Inhibition of JNK in HCT116 Colorectal Cancer Cells. Int J Mol Sci 2021; 22:1366. [PMID: 33573023 PMCID: PMC7866371 DOI: 10.3390/ijms22031366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is activated by chemotherapeutic reagents including natural plant polyphenols, and cell fate is determined by activated phospho-JNK as survival or death depending on stimuli and cell types. The purpose of this study was to elucidate the role of JNK on the anticancer effects of the Korean plant Artemisia annua L. (pKAL) polyphenols in p53 wild-type HCT116 human colorectal cancer cells. Cell morphology, protein expression levels, apoptosis/necrosis, reactive oxygen species (ROS), acidic vesicles, and granularity/DNA content were analyzed by phase-contrast microscopy; Western blot; and flow cytometry of annexin V/propidium iodide (PI)-, dichlorofluorescein (DCF)-, acridine orange (AO)-, and side scatter pulse height (SSC-H)/DNA content (PI)-stained cells. The results showed that pKAL induced morphological changes and necrosis or late apoptosis, which were associated with loss of plasma membrane/Golgi integrity, increased acidic vesicles and intracellular granularity, and decreased DNA content through downregulation of protein kinase B (Akt)/β-catenin/cyclophilin A/Golgi matrix protein 130 (GM130) and upregulation of phosphorylation of H2AX at Ser-139 (γ-H2AX)/p53/p21/Bak cleavage/phospho-JNK/p62/microtubule-associated protein 1 light chain 3B (LC3B)-I. Moreover, JNK inhibition by SP600125 enhanced ROS-independently pKAL-induced cell death through downregulation of p62 and upregulation of p53/p21/Bak cleavage despite a reduced state of DNA damage marker γ-H2AX. These findings indicate that phospho-JNK activated by pKAL inhibits p53-dependent cell death signaling and enhances DNA damage signaling, but cell fate is determined by phospho-JNK as survival rather than death in p53 wild-type HCT116 cells.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Anjugam Paramanantham
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Chung Ho Ryu
- Department of Food Technology, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Soon Chan Hong
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Ky Hyun Chung
- Department of Urology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Choong Won Kim
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| |
Collapse
|
36
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
37
|
Pigarev SE, Trashkov AP, Panchenko AV, Yurova MN, Bykov VN, Fedoros EI, Anisimov VN. Evaluation of the genotoxic and antigenotoxic potential of lignin-derivative BP-C2 in the comet assay in vivo. ENVIRONMENTAL RESEARCH 2021; 192:110321. [PMID: 33075358 DOI: 10.1016/j.envres.2020.110321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The genotoxic and antigenotoxic potential of BP-C2, a novel lignin-derived polyphenolic composition with ammonium molybdate, was investigated as a radioprotector/radiomitigator for civil applications and as a medical countermeasure for radiation emergencies. Using the alkaline comet assay and methyl methanesulfonate (MMS, 40 mg/kg) as the DNA-damaging agent, these effects of BP-C2 on liver, bone marrow cells and blood leukocytes in rats were studied. The DNA damage was estimated by the DNA content in the comet tail (TDNA, %) 1, 6 and 18 h post exposure to MMS. BP-C2 at doses of 20, 200 and 2000 mg/kg did not exert genotoxic activity in the tested tissues in rats. BP-C2 administered at doses of 20, 100 and 200 mg/kg 1 h before MMS significantly (p < 0.01) mitigated MMS-induced DNA damage, showing a strong genoprotective effect in the liver. In blood leukocytes and bone marrow samples of animals treated with BP-C2, the TDNA % was slightly higher than in the negative control (vehicle) but significantly lower than in the positive control (MMS). Thus, BP-C2 exerted a genoprotective effect against MMS-induced DNA damage to a greater extent towards liver cells, requiring further evaluation of this substance as a genoprotective agent.
Collapse
Affiliation(s)
- S E Pigarev
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia; Nobel LTD, Saint-Petersburg, Russia.
| | - A P Trashkov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Russia
| | - A V Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia; FSBSI "Research Institute of Medical Primatology", Sochi, Russian
| | - M N Yurova
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - V N Bykov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - E I Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia; Nobel LTD, Saint-Petersburg, Russia
| | - V N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| |
Collapse
|
38
|
Del Bo' C, Bernardi S, Cherubini A, Porrini M, Gargari G, Hidalgo-Liberona N, González-Domínguez R, Zamora-Ros R, Peron G, Marino M, Gigliotti L, Winterbone MS, Kirkup B, Kroon PA, Andres-Lacueva C, Guglielmetti S, Riso P. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clin Nutr 2020; 40:3006-3018. [PMID: 33388204 DOI: 10.1016/j.clnu.2020.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/02/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Increased intestinal permeability (IP) can occur in older people and contribute to the activation of the immune system and inflammation. Dietary interventions may represent a potential strategy to reduce IP. In this regard, specific food bioactives such as polyphenols have been proposed as potential IP modulator due to their ability to affect several critical targets and pathways that control IP. The trial aimed to test the hypothesis that a polyphenol-rich dietary pattern can decrease serum zonulin levels, an IP surrogate marker involved in tight junction modulation, and can beneficially alter the intestinal microbiota, and IP-associated biochemical and clinical markers in older subjects. METHODS A randomised, controlled, cross-over intervention trial was performed. Sixty-six subjects (aged ≥ 60 y) with increased IP based on serum zonulin levels, were randomly allocated to one of the two arms of the intervention consisting of a control diet (C-diet) vs. a polyphenol-rich diet (PR-diet). Each intervention was 8-week long and separated by an 8-week wash out period. At the beginning and at the end of each intervention period, serum samples were collected for the quantification of zonulin and other biological markers. Faecal samples were also collected to investigate the intestinal microbial ecosystem. In addition, anthropometrical/physical/biochemical parameters and food intake were evaluated. RESULTS Fifty-one subjects successfully completed the intervention and a high compliance to the dietary protocols was demonstrated. Overall, polyphenol intake significantly increased from a mean of 812 mg/day in the C diet to 1391 mg/day in the PR-diet. Two-way analysis of variance showed a significant effect of treatment (p = 0.008) and treatment × time interaction (p = 0.025) on serum zonulin levels, which decreased after the 8-week PR-diet. In addition, a treatment × time interaction was observed showing a reduction of diastolic blood pressure (p = 0.028) following the PR-diet, which was strongest in those not using antihypertensive drugs. A decrease in both diastolic (p = 0.043) and systolic blood pressure (p = 0.042) was observed in women. Interestingly, a significant increase in fibre-fermenting and butyrate-producing bacteria such as the family Ruminococcaceae and members of the genus Faecalibacterium was observed following the PR intervention. The efficacy of this dietary intervention was greater in subjects with higher serum zonulin at baseline, who showed more pronounced alterations in the markers under study. Furthermore, zonulin reduction was also stronger among subjects with higher body mass index and with insulin resistance at baseline, thus demonstrating the close interplay between IP and metabolic features. CONCLUSIONS These data show, for the first time, that a PR-diet can reduce serum zonulin levels, an indirect marker of IP. In addition, PR-diet reduced blood pressure and increased fibre-fermenting and butyrate-producing bacteria. These findings may represent an initial breakthrough for further intervention studies evaluating possible dietary treatments for the management of IP, inflammation and gut function in different target populations. THIS STUDY WAS REGISTERED AT WWW.ISRCTN. ORG AS ISRCTN10214981.
Collapse
Affiliation(s)
- Cristian Del Bo'
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy
| | - Stefano Bernardi
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento, IRCCS INRCA, 60127 Ancona, Italy
| | - Marisa Porrini
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy
| | - Giorgio Gargari
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Raul Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Spain
| | - Gregorio Peron
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Mirko Marino
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy
| | - Letizia Gigliotti
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy
| | - Mark S Winterbone
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Benjamin Kirkup
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Simone Guglielmetti
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy
| | - Patrizia Riso
- Università, degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), 20133 Milan, Italy.
| |
Collapse
|
39
|
Lewandowska H, Kalinowska M. New Polyphenol-Containing LDL Nano-Preparations in Oxidative Stress and DNA Damage: A Potential Route for Cell-Targeted PP Delivery. MATERIALS 2020; 13:ma13225106. [PMID: 33198280 PMCID: PMC7696759 DOI: 10.3390/ma13225106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022]
Abstract
Low-density lipoprotein (LDL) preparations of the chosen polyphenols (PPs) were prepared for the first time in the literature. The solubility of the PPs in the lipidic core of the LDL increased with the increase of their lipophilicity. The anti-/pro-oxidative properties and toxicity of LDL-entrapped PPs toward A 2780 human ovarian cancer cells were examined. The obtained preparations were found to be stable in PBS, and characterized by low toxicity. A binding affinity study revealed that the uptake of PP-loaded LDL particles is non-receptor-specific under experimental conditions. The antioxidative potential of the obtained PPs-doped LDL preparations was shown to be higher than for the PPs themselves, probably due to facilitating transport of LDL preparations into the cellular milieu, where they can interact with the cellular systems and change the redox status of the cell. The PPs-loaded LDL displayed the highest protective effect against Fenton-type reaction induced oxidative DNA damage.
Collapse
Affiliation(s)
- Hanna Lewandowska
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 16 Dorodna St., 03195 Warsaw, Poland
- Correspondence: ; Tel.: +48-225-041-084
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15351 Bialystok, Poland;
| |
Collapse
|
40
|
Rummun N, Rondeau P, Bourdon E, Pires E, McCullagh J, Claridge TDW, Bahorun T, Li WW, Neergheen VS. Terminalia bentzoë, a Mascarene Endemic Plant, Inhibits Human Hepatocellular Carcinoma Cells Growth In Vitro via G0/G1 Phase Cell Cycle Arrest. Pharmaceuticals (Basel) 2020; 13:ph13100303. [PMID: 33053825 PMCID: PMC7650599 DOI: 10.3390/ph13100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Tropical forests constitute a prolific sanctuary of unique floral diversity and potential medicinal sources, however, many of them remain unexplored. The scarcity of rigorous scientific data on the surviving Mascarene endemic taxa renders bioprospecting of this untapped resource of utmost importance. Thus, in view of valorizing the native resource, this study has as its objective to investigate the bioactivities of endemic leaf extracts. Herein, seven Mascarene endemic plants leaves were extracted and evaluated for their in vitro antioxidant properties and antiproliferative effects on a panel of cancer cell lines, using methyl thiazolyl diphenyl-tetrazolium bromide (MTT) and clonogenic cell survival assays. Flow cytometry and comet assay were used to investigate the cell cycle and DNA damaging effects, respectively. Bioassay guided-fractionation coupled with liquid chromatography mass spectrometry (MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopic analysis were used to identify the bioactive compounds. Among the seven plants tested, Terminaliabentzoë was comparatively the most potent antioxidant extract, with significantly (p < 0.05) higher cytotoxic activities. T. bentzoë extract further selectively suppressed the growth of human hepatocellular carcinoma cells and significantly halted the cell cycle progression in the G0/G1 phase, decreased the cells' replicative potential and induced significant DNA damage. In total, 10 phenolic compounds, including punicalagin and ellagic acid, were identified and likely contributed to the extract's potent antioxidant and cytotoxic activities. These results established a promising basis for further in-depth investigations into the potential use of T. bentzoë as a supportive therapy in cancer management.
Collapse
Affiliation(s)
- Nawraj Rummun
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Elisabete Pires
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - James McCullagh
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Timothy D. W. Claridge
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Theeshan Bahorun
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
- Correspondence: (W.-W.L.); (V.S.N.)
| | - Vidushi S. Neergheen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- Correspondence: (W.-W.L.); (V.S.N.)
| |
Collapse
|
41
|
Cvetković S, Nastasijević B, Mitić-Ćulafić D, Đukanović S, Tenji D, Knežević-Vukčević J, Nikolić B. New insight into the antigenotoxic activity of Gentiana lutea extracts – Protective effect against food borne mutagens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503251. [DOI: 10.1016/j.mrgentox.2020.503251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
|
42
|
Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, Mira A. Isolation and Characterization of Nitrate-Reducing Bacteria as Potential Probiotics for Oral and Systemic Health. Front Microbiol 2020; 11:555465. [PMID: 33042063 PMCID: PMC7522554 DOI: 10.3389/fmicb.2020.555465] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022] Open
Abstract
Recent evidence indicates that the reduction of salivary nitrate by oral bacteria can contribute to prevent oral diseases, as well as increase systemic nitric oxide levels that can improve conditions such as hypertension and diabetes. The objective of the current manuscript was to isolate nitrate-reducing bacteria from the oral cavity of healthy donors and test their in vitro probiotic potential to increase the nitrate-reduction capacity (NRC) of oral communities. Sixty-two isolates were obtained from five different donors of which 53 were confirmed to be nitrate-reducers. Ten isolates were selected based on high NRC as well as high growth rates and low acidogenicity, all being Rothia species. The genomes of these ten isolates confirmed the presence of nitrate- and nitrite reductase genes, as well as lactate utilization genes, and the absence of antimicrobial resistance, mobile genetic elements and virulence genes. The pH at which most nitrate was reduced differed between strains. However, acidic pH 6 always stimulated the reduction of nitrite compared to neutral pH 7 or slightly alkaline pH 7.5 (p < 0.01). We tested the effect of six out of 10 isolates on in vitro oral biofilm development in the presence or absence of 6.5 mM nitrate. The integration of the isolates into in vitro communities was confirmed by Illumina sequencing. The NRC of the bacterial communities increased when adding the isolates compared to controls without isolates (p < 0.05). When adding nitrate (prebiotic treatment) or isolates in combination with nitrate (symbiotic treatment), a smaller decrease in pH derived from sugar metabolism was observed (p < 0.05), which for some symbiotic combinations appeared to be due to lactate consumption. Interestingly, there was a strong correlation between the NRC of oral communities and ammonia production even in the absence of nitrate (R = 0.814, p < 0.01), which indicates that bacteria involved in these processes are related. As observed in our study, individuals differ in their NRC. Thus, some may have direct benefits from nitrate as a prebiotic as their microbiota naturally reduces significant amounts, while others may benefit more from a symbiotic combination (nitrate + nitrate-reducing probiotic). Future clinical studies should test the effects of these treatments on oral and systemic health.
Collapse
Affiliation(s)
| | | | | | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| |
Collapse
|
43
|
Nayak G, Rao A, Mullick P, Mutalik S, Kalthur SG, Adiga SK, Kalthur G. Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112922. [PMID: 32422360 DOI: 10.1016/j.jep.2020.112922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. is known for its nutritional and ethno medicinal values due to the presence of wide array of phytochemicals with multiple biological activities. We have previously reported that ethanolic extract of Moringa oleifera leaves (MOE) ameliorated cyclophosphamide (CP)-induced testicular toxicity and improved functional integrity of spermatozoa as well as spermatogenic cells. AIM OF THE STUDY The present study was planned to investigate whether the mitigation of CP-induced testicular toxicity by MOE is mediated via modulation of endocrine profile, genes associated with function of different cell types and enhancement of DNA repair response in spermatogonial cells. MATERIALS AND METHODS Adult Swiss albino mice (8 week) were injected with CP (100 mg/kg, one dose in a week for 3 weeks) and MOE (100 mg/kg, 5 doses in a week for 4 weeks) either alone or in combination intraperitoneally. At 35 day post CP injection (first dose), the functional characteristics such as count, motility, head morphology and DNA integrity were assessed in epididymal spermatozoa. Key reproductive hormones like testosterone, follicle stimulating hormone (FSH) and Inhibin B concentration were analyzed in serum and testis. In addition, mRNA expression of genes pertaining to the function of Leydig, Sertoli and spermatogonial cells as well as antioxidant enzymes were evaluated in the testis. To understand the DNA damage and repair process in germ cells, prepubertal (2 week) mice were administered with single dose of CP (200 mg/kg) and/or MOE (100 mg/kg) and analyzed for expression of DNA damage (γ-H2AX, P53 and Caspase3) and repair genes (Rad51 and Ku80) in isolated spermatogonial cells at various time points after treatment. RESULTS CP administration resulted in decrease in count, motility and increase in morphological defects and DNA damage in spermatozoa. Testosterone level was marginally decreased while there was a significant increase in FSH (p < 0.001) and decrease in inhibin B (p < 0.05) observed in CP treated mice. Administration of MOE prior to CP, improved sperm functional characteristics, decreased FSH and increased inhibin B levels. Expression of Abp was down-regulated while Transferrin, Fshr and Gata4 (Sertoli cell specific genes) were up-regulated in testis treated with CP. Administration of CP down-regulated the expression of Oct4 and Ddx4 (Spermatogonia specific genes). MOE administration was shown to ameliorate CP-induced damage by modulating the expression of genes specific to Sertoli and spermatogenic cells. Furthermore, MOE treatment reduced CP-induced DNA damage as evident from lower percentage of γ-H2AX positive spermatogonial cells. CONCLUSION Administration of MOE mitigated CP-induced testicular damage by improving blood and, intra-testicular hormonal milieu as well as modulating the expression of genes pertaining to Sertoli and spermatogonial cells.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Prashansha Mullick
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
44
|
|
45
|
Mitigating the Effects of Oxidative Sperm DNA Damage. Antioxidants (Basel) 2020; 9:antiox9070589. [PMID: 32640607 PMCID: PMC7402125 DOI: 10.3390/antiox9070589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/30/2022] Open
Abstract
Sperm DNA damage is correlated with reduced embryo development and increased miscarriage risk, reducing successful conception. Given its links with oxidative stress, antioxidants have been investigated as a potential treatment, yet results are conflicting. Importantly, individual antioxidants are not identical in composition, and some compounds may be more effective than others. We investigated the use of the polyphenol-rich, high-antioxidant-capacity fruit acai as a treatment for elevated sperm DNA fragmentation (>16%), measured by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Following ≥ 74 days of treatment, we observed a significant decrease in sperm DNA fragmentation (-17.0% ± 2.5%) to 11.9 ± 1.7% (0-37%), with a 68.6% success rate (defined as post-treatment TUNEL < 16%). Post-treatment decreases in DNA fragmentation and success rates were not significantly impacted by low motility and/or concentration, or exceptionally high (> 25%) TUNEL. Treatment significantly reduced concentration in men with normal semen parameters, but 88% remained normal. Overall, successful treatment was not associated with age, semen parameters or TUNEL result at baseline. However, body mass index was significantly higher in nonresponders at baseline. This study provides evidence of a low-cost, effective treatment for elevated sperm DNA damage using acai.
Collapse
|
46
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
47
|
DNA damage and DNA protection from digested raw and griddled green pepper (poly)phenols in human colorectal adenocarcinoma cells (HT-29). Eur J Nutr 2020; 60:677-689. [PMID: 32430553 DOI: 10.1007/s00394-020-02269-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To determine whether (poly)phenols from gastrointestinal-digested green pepper possess genoprotective properties in human colon cells and whether the application of a culinary treatment (griddling) on the vegetable influences the potential genoprotective activity. METHODS (Poly)phenols of raw and griddled green pepper (Capsicum annuum L.) submitted to in vitro-simulated gastrointestinal digestion were characterized by LC-MS/MS. Cytotoxicity (MTT, trypan blue and cell proliferation assays), DNA damage and DNA protection (standard alkaline and formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay) of different concentrations of (poly)phenolic extracts were assessed in colon HT-29 cells. RESULTS A total of 32 (poly)phenolic compounds were identified and quantified in digested raw and griddled green pepper. Twenty of them were flavonoids and 12 were phenolic acids. Griddled pepper doubled the (poly)phenol concentration compared to raw; luteolin 7-O-(2-apiosyl)-glucoside and quercitrin constituted the major (poly)phenols in both extracts. Raw and griddled pepper (poly)phenolic extracts impaired cell proliferation and induced low levels of Fpg-sensitive sites, in a dose-dependent manner, even at a non-cytotoxic concentration. None of the concentrations tested induced DNA strand breaks or alkaline labile sites. Nor did they show significant genoprotection against the DNA damage induced by H2O2 or KBrO3. CONCLUSIONS Green pepper (poly)phenols did not show genoprotection against oxidatively generated damage in HT-29 cells at simulated physiological concentrations, regardless of the application, or not, of a culinary treatment (griddling). Furthermore, high concentrations of (poly)phenolic extracts induced a slight pro-oxidant effect, even at a non-cytotoxic concentration.
Collapse
|
48
|
Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020; 12:nu12041066. [PMID: 32290535 PMCID: PMC7230471 DOI: 10.3390/nu12041066] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR), defined as an attenuated biological response to circulating insulin, is a fundamental defect in obesity and type 2 diabetes (T2D), and is also linked to a wide spectrum of pathological conditions, such as non-alcoholic fatty liver disease (NAFLD), cognitive impairment, endothelial dysfunction, chronic kidney disease (CKD), polycystic ovary syndrome (PCOS), and some endocrine tumors, including breast cancer. In obesity, the unbalanced production of pro- and anti-inflammatory adipocytokines can lead to the development of IR and its related metabolic complications, which are potentially reversible through weight-loss programs. The Mediterranean diet (MedDiet), characterized by high consumption of extra-virgin olive oil (EVOO), nuts, red wine, vegetables and other polyphenol-rich elements, has proved to be associated with greater improvement of IR in obese individuals, when compared to other nutritional interventions. Also, recent studies in either experimental animal models or in humans, have shown encouraging results for insulin-sensitizing nutritional supplements derived from MedDiet food sources in the modulation of pathognomonic traits of certain IR-related conditions, including polyunsaturated fatty acids from olive oil and seeds, anthocyanins from purple vegetables and fruits, resveratrol from grapes, and the EVOO-derived, oleacein. Although the pharmacological properties and clinical uses of these functional nutrients are still under investigation, the molecular mechanism(s) underlying the metabolic benefits appear to be compound-specific and, in some cases, point to a role in gene expression through an involvement of the nuclear high-mobility group A1 (HMGA1) protein.
Collapse
|
49
|
Vitelli-Storelli F, Zamora-Ros R, Molina AJ, Fernández-Villa T, Castelló A, Barrio JP, Amiano P, Ardanaz E, Obón-Santacana M, Gómez-Acebo I, Fernández-Tardón G, Molina-Barceló A, Alguacil J, Marcos-Gragera R, Ruiz-Moreno E, Pedraza M, Gil L, Guevara M, Castaño-Vinyals G, Dierssen-Sotos T, Kogevinas M, Aragonés N, Martín V. Association between Polyphenol Intake and Breast Cancer Risk by Menopausal and Hormone Receptor Status. Nutrients 2020; 12:nu12040994. [PMID: 32260135 PMCID: PMC7231201 DOI: 10.3390/nu12040994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
There is limited evidence of phenolic compounds acting as protective agents on several cancer types, including breast cancer (BC). Nevertheless, some polyphenol classes have not been investigated and there is a lack of studies assessing the effect on menopausal status and hormone receptor status as influenced by these compounds. The objective of this study is to evaluate the association between the intake of all polyphenol classes in relation to the BC risk by menopausal and hormone receptor status. We used data from a population-based multi-case-control study (MCC-Spain) including 1472 BC cases and 1577 controls from 12 different regions of Spain. The odds ratios (ORs) with 95% CI were calculated using logistic regression of mixed effects by quartiles and log2 of polyphenol intakes (adjusted for the residual method) of overall BC, menopausal and receptor status. No associations were found between total intake of polyphenols and BC risk. However, inverse associations were found between stilbenes and all BC risk (ORQ4 vs. Q1: 0.70, 95%CI: 0.56–0.89, Ptrend = 0.001), the consumption of hydroxybenzaldehydes (ORQ4 vs. Q1: 0.75, 95%CI: 0.59–0.93, Ptrend = 0.012) and hydroxycoumarins (ORQ4 vs. Q1: 0.73, 95%CI: 0.57–0.93; Ptrend = 0.005) were also inversely associated. The intake of stilbenes, hydroxybenzaldehydes and hydroxycoumarins can contribute to BC reduction risk on all menopausal and receptor statuses.
Collapse
Affiliation(s)
- Facundo Vitelli-Storelli
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Correspondence: ; Tel.: +34-932607401
| | - Antonio J. Molina
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Tania Fernández-Villa
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Adela Castelló
- School of Medicine, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain;
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
| | - Juan Pablo Barrio
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, 20014 San Sebastian, Spain
| | - Eva Ardanaz
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Public Health Institute of Navarra, IdiSNA, 31003 Pamplona, Spain
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain;
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Inés Gómez-Acebo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Oncology Institute, University of Oviedo, 33003 Oviedo, Spain
| | - Ana Molina-Barceló
- Cancer and Public Health Area, FISABIO—Public Health, 46035 Valencia, Spain;
| | - Juan Alguacil
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Centro de Investigación en Salud y Medio Ambiente (CYSMA), Universidad de Huelva, Campus Universitario de El Carmen, 21071 Huelva, Spain
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Catalan Institute of Oncology, Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology, 17007 Girona, Spain
- Descriptive Epidemiology, Genetics and Cancer Prevention Group, Biomedical Research Institute (IDIBGI), 17090 Girona, Spain
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, 17004 Girona, Spain
| | - Emma Ruiz-Moreno
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- National Center for Epidemiology, Carlos III Institute of Health, 20014 San Sebastián, Spain
| | - Manuela Pedraza
- Department of Oncology, Complejo Asistencial Universitario de León, 24071 León, Spain;
| | - Leire Gil
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Biodonostia Health Research Institute, 20013 San Sebastian, Spain
| | - Marcela Guevara
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Public Health Institute of Navarra, IdiSNA, 31003 Pamplona, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- ISGlobal, Barcelona, 08036 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Campus del Mar, 08003 Barcelona, Spain
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Universidad de Cantabria—IDIVAL, 39011 Santander, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- ISGlobal, Barcelona, 08036 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Campus del Mar, 08003 Barcelona, Spain
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Epidemiology Section, Public Health Division, Department of Health of Madrid, 28035 Madrid, Spain
| | - Vicente Martín
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
| |
Collapse
|
50
|
Singh N, Gupta VK, Doharey PK, Srivastava N, Kumar A, Sharma B. A Study on Redox Potential of Phytochemicals and their Impact on DNA. ACTA ACUST UNITED AC 2020. [DOI: 10.14302/issn.2575-7881.jdrr-20-3267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phytochemicals are endowed with antioxidant activities because of the presence of plentiful polyphenols and many other phytochemicals. However, some recent reports have suggested that phytochemicals from certain plant species exhibit DNA damaging properties mainly due to presence of alkaloids. In the present study, pBR322, Salmonella typhi DNA, insect DNA and human DNA were treated with hexanolic extract of Argemone mexicana and Thevesia peruviana leaves to assess their DNA damaging abilities. Another set of experiments was carried out using the methanolic extracts of Citrus lemon leaves to assess their DNA protecting abilities from damage of DNA by extracts of A. mexicana and T. peruviana at 150000 ppm for all DNAs used. The results indicated that the leaves extract of A. mexicanaand T. peruviana demonstrated significant DNA damaging potential at higher concentrations. In contrast, the extracts from C. limonat 15000 ppm showed maximum DNA protective properties for all DNAs used.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Pawan K. Doharey
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Neeharika Srivastava
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| |
Collapse
|