1
|
Tay SH, Pang JKS, Ng W, Ng CY, Khong ZJ, Chong ZS, Soh BS, Ng SY. iPSC-derived human sensory neurons reveal a subset of TRPV1 antagonists as anti-pruritic compounds. Sci Rep 2024; 14:31182. [PMID: 39732807 DOI: 10.1038/s41598-024-82549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Signaling interplay between the histamine 1 receptor (H1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in mediating histaminergic itch has been well-established in mammalian models, but whether this is conserved in humans remains to be confirmed due to the difficulties in obtaining human sensory neurons (SNs) for experimentation. Additionally, previously reported species-specific differences in TRPV1 function indicate that use of human SNs is vital for drug candidate screening to have a higher chance of identifying clinically effective TRPV1 antagonists. In this study, we built a histamine-dependent itch model using peripheral SNs derived from human induced pluripotent stem cells (hiPSC-SNs), which provides an accessible source of human SNs for pre-clinical drug screening. We validated channel functionality using immunostaining, calcium imaging, and multielectrode array (MEA) recordings, and confirmed the interdependence of H1R and TRPV1 signalling in human SNs. We further tested the amenability of our model for pre-clinical studies by screening multiple TRPV1 antagonists in parallel, identifying SB366791 as a potent inhibitor of H1R activation and potential candidate for alleviating histaminergic itch. Notably, some of the results using our model corroborated with efficacy and side effect findings from human clinical trials, underscoring the importance of this species-specific platform. Taken together, our results present a robust in vitro human model for histaminergic itch, which can be used to further interrogate the molecular basis of human SN function as well as screen for TRPV1 activity-modifying compounds for a number of clinical indications.
Collapse
Affiliation(s)
- Shermaine Huiping Tay
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Winanto Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Chong Yi Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Zi Jian Khong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Zheng-Shan Chong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Boon Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Yong Loo Lin School of Medicine (Physiology), National University of Singapore, Singapore, 117456, Republic of Singapore.
- National Neuroscience Institute, Singapore, 308433, Republic of Singapore.
| |
Collapse
|
2
|
Brennan F. The Pathogenesis of CKD-Associated Pruritus: A Theoretical Model and Relevance for Treatment. KIDNEY360 2024; 5:1727-1738. [PMID: 39230964 DOI: 10.34067/kid.0000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Our understanding of the pathogenesis of uremic pruritus (also known as CKD-associated pruritus [CKD-aP]) remains elusive. Although multiple discrete changes in the immunochemical milieu of the skin of patients with CKD-aP have been described, a coherent theory of mechanism is absent. This article proposes a theoretical model of mechanism. It concentrates on the initiation phase of CKD-aP and its three parts: ( 1 ) genesis, triggered by first precipitants; ( 2 ) cascade of cytokine release that follows and the cross-talking of multiple skin cells with each other and afferent nerve fibers; and ( 3 ) enhancement. The limitation of the model will be described and ideas for future research proposed. Implications for management shall be examined.
Collapse
Affiliation(s)
- Frank Brennan
- Department of Nephrology, St George Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Sun M, Chen ZR, Ding HJ, Feng J. Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets. Acta Pharmacol Sin 2024:10.1038/s41401-024-01400-x. [PMID: 39424975 DOI: 10.1038/s41401-024-01400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Itch is an uncomfortable feeling that evokes a desire to scratch. This protective reflex can effectively eliminate parasites that invade the skin. When itchy skin becomes severe or lasts for more than six weeks, it has deleterious effects on both quality of life and productivity. Despite decades of research, the complete molecular and cellular coding of chronic itch remains elusive. This persistent condition often defies treatment, including with antihistamines, and poses a significant societal challenge. Obtaining pathophysiological insights into the generation of chronic itch is essential for understanding its mechanisms and the development of innovative anti-itch medications. In this review we provide a systematic overview of the recent advancement in itch research, alongside the progress made in drug discovery within this field. We have examined the diversity and complexity of the classification and mechanisms underlying the complex sensation of itch. We have also delved into recent advancements in the field of itch mechanism research and how these findings hold potential for the development of new itch treatment medications. But the treatment of clinical itch symptoms still faces significant challenges. Future research needs to continue to delve deeper, not only to discover more itch-related pathways but also to explore how to improve treatment efficacy through multitarget or combination therapy.
Collapse
Affiliation(s)
- Meng Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-Ru Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Yang D. TRPA1-Related Diseases and Applications of Nanotherapy. Int J Mol Sci 2024; 25:9234. [PMID: 39273183 PMCID: PMC11395144 DOI: 10.3390/ijms25179234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Transient receptor potential (TRP) channels, first identified in Drosophila in 1969, are multifunctional ion channels expressed in various cell types. Structurally, TRP channels consist of six membrane segments and are classified into seven subfamilies. Transient receptor potential ankyrin 1 (TRPA1), the first member of the TRPA family, is a calcium ion affinity non-selective cation channel involved in sensory transduction and responds to odors, tastes, and chemicals. It also regulates temperature and responses to stimuli. Recent studies have linked TRPA1 to several disorders, including chronic pain, inflammatory diseases, allergies, and respiratory problems, owing to its activation by environmental toxins. Mutations in TRPA1 can affect the sensory nerves and microvasculature, potentially causing nerve pain and vascular problems. Understanding the function of TRPA1 is important for the development of treatments for these diseases. Recent developments in nanomedicines that target various ion channels, including TRPA1, have had a significant impact on disease treatment, providing innovative alternatives to traditional disease treatments by overcoming various adverse effects.
Collapse
Affiliation(s)
- Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Seldeslachts A, Undheim EAB, Vriens J, Tytgat J, Peigneur S. Exploring oak processionary caterpillar induced lepidopterism (part 2): ex vivo bio-assays unmask the role of TRPV1. Cell Mol Life Sci 2024; 81:281. [PMID: 38940922 PMCID: PMC11335206 DOI: 10.1007/s00018-024-05318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.
Collapse
Affiliation(s)
- Andrea Seldeslachts
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | | | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
6
|
Dong ZS, Zhang XR, Xue DZ, Liu JH, Yi F, Zhang YY, Xian FY, Qiao RY, Liu BY, Zhang HL, Wang C. FGF13 enhances the function of TRPV1 by stabilizing microtubules and regulates acute and chronic itch. FASEB J 2024; 38:e23661. [PMID: 38733310 DOI: 10.1096/fj.202400096r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.
Collapse
Affiliation(s)
- Zi-Shan Dong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Xue-Rou Zhang
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Da-Zhong Xue
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Jia-Hui Liu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Fan Yi
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Yi-Yi Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Fu-Yu Xian
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Ruo-Yang Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bo-Yi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Hai-Lin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
8
|
Luo M, He J, Yin L, Zhan P, Zhao Z, Xiong H, Mei Z. Borneol exerts its antipruritic effects by inhibiting TRPA1 and activating TRPM8. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117581. [PMID: 38103845 DOI: 10.1016/j.jep.2023.117581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Borneol is a long-established traditional Chinese medicine that has been found to be effective in treating pain and itchy skin. However, whether borneol has a therapeutic effect on chronic itch and its related mechanisms remain unclear. AIM OF THE STUDY To investigate the antipruritic effect of borneol and its molecular mechanism. MATERIALS AND METHODS DrugBAN framework and molecular docking were applied to predict the targets of borneol, and the calcium imaging or patch-clamp recording analysis were used to detect the effects of borneol on TRPA1, TRPM8 or TRPV3 channels in HEK293T cells. In addition, various mouse models of acute itch and chronic itch were established to evaluate the antipruritic effects of borneol on C57BL/6J mice. Then, the borneol-induced pruritic relief was further investigated in Trpa1-/-, Trpm8-/-, or Trpa1-/-/Trpm8-/- mice. The effects of borneol on the activation of TRPM8 and the inhibition of TRPA1 were also measured in dorsal root ganglia neurons of wild-type (WT), Trpm8-/- and Trpv1-/- mice. Lastly, a randomized, double-blind study of adult patients was conducted to evaluate the clinical antipruritic effect of borneol. RESULTS TRPA1, TRPV3 and TRPM8 are the potential targets of borneol according to the results of DrugBAN algorithm and molecular docking. Calcium imaging and patch-clamp recording analysis demonstrated that borneol activates TRPM8 channel-induced cell excitability and inhibits TRPA1 channel-mediated cell excitability in transfected HEK293T cells. Animal behavior analysis showed that borneol can significantly reduce acute and chronic itch behavior in C57BL/6J mice, but this effect was eliminated in Trpa1-/-, Trpm8-/- mice, or at least in Trpa1-/-/Trpm8-/- mice. Borneol elicits TRPM8 channel induced [Ca2+]i responses but inhibits AITC or SADBE-induced activation of TRPA1 channels in dorsal root ganglia neurons of WT and Trpv1-/- mice, respectively. Furthermore, the clinical results indicated that borneol could reduce itching symptoms in patients and its efficacy is similar to that of menthol. CONCLUSION Borneol has therapeutic effects on multiple pruritus models in mice and patients with chronic itch, and the mechanism may be through inhibiting TRPA1 and activating TRPM8.
Collapse
Affiliation(s)
- Miao Luo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinfeng He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Liang Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ping Zhan
- Dermatology Hospital of Jiangxi Province, Nanchang, 330000, China
| | | | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; Ethnopharmacology Level 3 Laboratory of National Administration of Traditional Chinese Medicine, South-Central Minzu University, Wuhan, 430074, China.
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Serra Fabregat X, de Pablo MÁ, Hernán-Pérez C, Diéguez E, Valero Coppin O, Genové Corominas E. Efficacy and tolerance of a novel topical TRPV-1 channel antagonist in dogs with allergic pododermatitis. Vet Dermatol 2023; 34:514-522. [PMID: 37309264 DOI: 10.1111/vde.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pruritus due to allergic skin disease is one of the most common reasons for dermatological consultations in the veterinary clinic. Treatment is usually multimodal and requires continuous monitoring and reassessment. New therapies are needed to broaden the therapeutic arsenal. HYPOTHESIS/OBJECTIVES The aim of this study was to evaluate the efficacy of a novel transient receptor potential vanilloid 1 (TRPV1) channel antagonist for allergic pododermatitis in dogs. ANIMALS Twenty-four client-owned dogs with allergic pododermatitis. MATERIALS AND METHODS The study was an open, prospective, multi-centre clinical trial with client-owned dogs. All dogs were treated twice daily with a spray containing hydroxymethoxyiodobenzyl glycolamide pelargonate for 28 days. Clinical assessments included pruritus Visual Analog Scale (PVAS), pedal skin lesion score, evaluation of quality of life (QoL), presence of secondary infections and a four-point subjective efficacy assessment by the veterinarian and the dog owner. RESULTS There was more than 50% improvement in all scores by the conclusion of the study. Secondary infections were reduced (p < 0.001). Both the veterinarians and dog owners evaluated the efficacy of the product positively. The product was well-tolerated. CONCLUSIONS AND CLINICAL RELEVANCE This study demonstrated the tolerability and efficacy of a TRPV1 antagonist on pruritic pododermatitis in 24 dogs.
Collapse
|
10
|
Wei X, Yang Q, Yang Z, Huang T, Yang H, Wang L, Pan L, Ding J. Discovery of novel TRPV1 modulators through machine learning-based molecular docking and molecular similarity searching. Chem Biol Drug Des 2023; 102:409-423. [PMID: 37489095 DOI: 10.1111/cbdd.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 07/26/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel belongs to the transient receptor potential channel superfamily and participates in many physiological processes. TRPV1 modulators (both agonists and antagonists) can effectively inhibit pain caused by various factors and have curative effects in various diseases, such as itch, cancer, and cardiovascular diseases. Therefore, the development of TRPV1 channel modulators is of great importance. In this study, the structure-based virtual screening and ligand-based virtual screening methods were used to screen compound databases respectively. In the structure-based virtual screening route, a full-length human TRPV1 protein was first constructed, three molecular docking methods with different precisions were performed based on the hTRPV1 structure, and a machine learning-based rescoring model by the XGBoost algorithm was constructed to enrich active compounds. In the ligand-based virtual screening route, the ROCS program was used for 3D shape similarity searching and the EON program was used for electrostatic similarity searching. Final 77 compounds were selected from two routes for in vitro assays. The results showed that 8 of them were identified as active compounds, including three hits with IC50 values close to capsazepine. In addition, one hit is a partial agonist with both agonistic and antagonistic activity. The mechanisms of some active compounds were investigated by molecular dynamics simulation, which explained their agonism or antagonism.
Collapse
Affiliation(s)
- Xinmiao Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Qifan Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Zhijiang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Tengxin Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Hang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
11
|
Gatmaitan JG, Lee JH. Challenges and Future Trends in Atopic Dermatitis. Int J Mol Sci 2023; 24:11380. [PMID: 37511138 PMCID: PMC10380015 DOI: 10.3390/ijms241411380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis represents a complex and multidimensional interaction that represents potential fields of preventive and therapeutic management. In addition to the treatment armamentarium available for atopic dermatitis, novel drugs targeting significant molecular pathways in atopic dermatitis biologics and small molecules are also being developed given the condition's complex pathophysiology. While most of the patients are expecting better efficacy and long-term control, the response to these drugs would still depend on numerous factors such as complex genotype, diverse environmental triggers and microbiome-derived signals, and, most importantly, dynamic immune responses. This review article highlights the challenges and the recently developed pharmacological agents in atopic dermatitis based on the molecular pathogenesis of this condition, creating a specific therapeutic approach toward a more personalized medicine.
Collapse
Affiliation(s)
- Julius Garcia Gatmaitan
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Gatmaitan Medical and Skin Center, Baliuag 3006, Bulacan, Philippines
- Skines Aesthetic and Laser Center, Quezon City 1104, Metro Manila, Philippines
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Elsayed MM, Elgohary IE, Abdelhamid HHS, Zaki SA. The effectiveness of sertraline in alleviating uremic pruritus in hemodialysis patients: a randomized clinical trial. BMC Nephrol 2023; 24:155. [PMID: 37270517 DOI: 10.1186/s12882-023-03212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
INTRODUCTION Uremic pruritus (UP) is a common and distressing symptom in end stage renal disease (ESRD) patients. Many approaches have been tested to improve UP without a clear success. We aimed to assess the effect of sertraline on UP in hemodialysis (HD) patients. METHODS This research is a double-blinded, placebo-controlled, multicentric randomized clinical trial which included sixty patients maintained on regular HD. Patients were allocated to receive sertraline 50 mg twice daily or placebo for 8 weeks. The Visual analogue scale (VAS) and the 5-D itch scale were used to assess pruritus before and after the course of treatment. RESULTS At study end in sertraline group, there was a significant decrease from baseline findings in the VAS score (p < 0.001), and the 5-D itch scale (p < 0.001). On the other hand, in placebo group the VAS score showed a slight non-significant decrease (p = 0.469), and the 5-D scale (p = 0.584) increased from baseline measurements. The percentage of patients with severe and very severe pruritus decreased significantly in the sertraline group in both scores [(VAS score: p = 0.004), (5-D itch score: p = 0.002)] with no significant change in the placebo group [(VAS score: p = 0.739), (5-D itch scale: p = 0.763)]. There was a significant positive relation between the VAS and 5-D itch scores and serum urea with p value of 0.002 and 0.001 respectively, and serum ferritin with p value of < 0.001 with both. CONCLUSIONS Patients treated with sertraline had a significant improvement in pruritus as compared with those who received placebo suggesting a potential role for sertraline to treat uremic pruritus in HD patients. Larger randomized clinical trials are needed to confirm these findings. TRIAL REGISTRATION ClinicalTrials.gov NCT05341843. First registration date: 22/04/2022.
Collapse
Affiliation(s)
- Mohamed Mamdouh Elsayed
- Nephrology and Internal Medicine Department, Faculty of Medicine, Alexandria University, Alkhartoom Square, El Azareeta, Alexandria, 21131, Egypt.
| | - Iman Ezzat Elgohary
- Nephrology and Internal Medicine Department, Faculty of Medicine, Alexandria University, Alkhartoom Square, El Azareeta, Alexandria, 21131, Egypt
| | | | - Sherif Aziz Zaki
- Nephrology and Internal Medicine Department, Faculty of Medicine, Alexandria University, Alkhartoom Square, El Azareeta, Alexandria, 21131, Egypt
| |
Collapse
|
13
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Martins MS, Almeida IF, Cruz MT, Sousa E. Chronic pruritus: from pathophysiology to drug design. Biochem Pharmacol 2023; 212:115568. [PMID: 37116666 DOI: 10.1016/j.bcp.2023.115568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Pruritus, the most common symptom in dermatology, is an innate response capable of protecting skin against irritants. Nonetheless, when it lasts more than six weeks it is assumed to be a chronic pathology having a negative impact on people's lives. Chronic pruritus (CP) can occur in common and rare skin diseases, having a high prevalence in global population. The existing therapies are unable to counteract CP or are associated with adverse effects, so the development of effective treatments is a pressing issue. The pathophysiological mechanisms underlying CP are not yet completely dissected but, based on current knowledge, involve a wide range of receptors, namely neurokinin 1 receptor (NK1R), Janus kinase (JAK), and transient receptor potential (TRP) ion channels, especially transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1). This review will address the relevance of these molecular targets for the treatment of CP and molecules capable of modulating these receptors that have already been studied clinically or have the potential to possibly alleviate this pathology. According to scientific and clinical literature, there is an increase in the expression of these molecular targets in the lesioned skin of patients experiencing CP when compared with non-lesioned skin, highlighting their importance for the development of potential efficacious drugs through the design of antagonists/inhibitors.
Collapse
Affiliation(s)
- Márcia S Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isaobel F Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria T Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Emília Sousa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Nattkemper LA, Lipman ZM, Ingrasci G, Maldonado C, Garces JC, Loayza E, Yosipovitch G. Neuroimmune Mediators of Pruritus in Hispanic Scalp Psoriatic Itch. Acta Derm Venereol 2023; 103:adv4463. [PMID: 36967545 PMCID: PMC10074283 DOI: 10.2340/actadv.v103.4463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023] Open
Abstract
Scalp psoriatic itch is a common, bothersome, yet understudied, condition with numerous associated treatment challenges. The aim of this study was to enhance our understanding of the pathophysiology of scalp psoriatic itch. Immunohistochemical analysis of known neuroimmune mediators of pruritus was conducted using scalp biopsies from 27 Hispanic psoriatic patients. Patients were categorized into mild/moderate or severe itch groups according to their itch intensity rating of scalp itch. Protease activated receptor (PAR2), substance P, transient receptor potential (TRP)V3, TRPM8 and interleukin-23 expression all correlated significantly with itch intensity. The pathophysiology of scalp psoriasis is largely non-histaminergic, mediated by PAR2, interleukin-23, transient receptor potential channels, and substance P.
Collapse
Affiliation(s)
- Leigh A Nattkemper
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Zoe M Lipman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Giuseppe Ingrasci
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Claudia Maldonado
- Departamento de Dermatología, Hospital Luis Vernaza, Guayaquil, Ecuador
| | | | | | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
16
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
17
|
Atluri K, Manne S, Nalamothu V, Mantel A, Sharma PK, Babu RJ. Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis. Crit Rev Ther Drug Carrier Syst 2023; 40:1-87. [PMID: 37585309 DOI: 10.1615/critrevtherdrugcarriersyst.2023042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with a complex pathophysiology. Treatment of AD remains challenging owing to the presence of a wide spectrum of clinical phenotypes and limited response to existing therapies. However, recent genetic, immunological, and pathophysiological insights into the disease mechanism resulted in the invention of novel therapeutic drug candidates. This review provides a comprehensive overview of current therapies and assesses various novel drug delivery strategies currently under clinical investigation. Further, this review majorly emphasizes on various topical treatments including emollient therapies, barrier repair agents, topical corticosteroids (TCS), phosphodiesterase 4 (PDE4) inhibitors, calcineurin inhibitors, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors. It also discusses biological and systemic therapies, upcoming treatments based on ongoing clinical trials. Additionally, this review scrutinized the use of pharmaceutical inactive ingredients in the approved topical dosage forms for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Fan J, Hu L, Yue Z, Liao D, Guo F, Ke H, Jiang D, Yang Y, Lei X. Structural basis of TRPV3 inhibition by an antagonist. Nat Chem Biol 2023; 19:81-90. [PMID: 36302896 DOI: 10.1038/s41589-022-01166-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022]
Abstract
The TRPV3 channel plays vital roles in skin physiology. Dysfunction of TRPV3 causes skin diseases, including Olmsted syndrome. However, the lack of potent and selective inhibitors impedes the validation of TRPV3 as a therapeutic target. In this study, we identified Trpvicin as a potent and subtype-selective inhibitor of TRPV3. Trpvicin exhibits pharmacological potential in the inhibition of itch and hair loss in mouse models. Cryogenic electron microscopy structures of TRPV3 and the pathogenic G573S mutant complexed with Trpvicin reveal detailed ligand-binding sites, suggesting that Trpvicin inhibits the TRPV3 channel by stabilizing it in a closed state. Our G573S mutant structures demonstrate that the mutation causes a dilated pore, generating constitutive opening activity. Trpvicin accesses additional binding sites inside the central cavity of the G573S mutant to remodel the channel symmetry and block the channel. Together, our results provide mechanistic insights into the inhibition of TRPV3 by Trpvicin and support TRPV3-related drug development.
Collapse
Affiliation(s)
- Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Linghan Hu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
19
|
Transient Receptor Potential Channels and Itch. Int J Mol Sci 2022; 24:ijms24010420. [PMID: 36613861 PMCID: PMC9820407 DOI: 10.3390/ijms24010420] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Transient Receptor Potential (TRP) channels are multifunctional sensory molecules that are abundant in the skin and are involved in the sensory pathways of itch, pain, and inflammation. In this review article, we explore the complex physiology of different TRP channels, their role in modulating itch sensation, and their contributions to the pathophysiology of acute and chronic itch conditions. We also cover small molecule and topical TRP channel agents that are emerging as potential anti-pruritic treatments; some of which have shown great promise, with a few treatments advancing into clinical trials-namely, TRPV1, TRPV3, TRPA1, and TRPM8 targets. Lastly, we touch on possible ethnic differences in TRP channel genetic polymorphisms and how this may affect treatment response to TRP channel targets. Further controlled studies on the safety and efficacy of these emerging treatments is needed before clinical use.
Collapse
|
20
|
Feng J, Xie Z, Hu H. Ion channel regulation of gut immunity. J Gen Physiol 2022; 155:213734. [PMID: 36459135 PMCID: PMC9723512 DOI: 10.1085/jgp.202113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mounting evidence indicates that gastrointestinal (GI) homeostasis hinges on communications among many cellular networks including the intestinal epithelium, the immune system, and both intrinsic and extrinsic nerves innervating the gut. The GI tract, especially the colon, is the home base for gut microbiome which dynamically regulates immune function. The gut's immune system also provides an effective defense against harmful pathogens entering the GI tract while maintaining immune homeostasis to avoid exaggerated immune reaction to innocuous food and commensal antigens which are important causes of inflammatory disorders such as coeliac disease and inflammatory bowel diseases (IBD). Various ion channels have been detected in multiple cell types throughout the GI tract. By regulating membrane properties and intracellular biochemical signaling, ion channels play a critical role in synchronized signaling among diverse cellular components in the gut that orchestrates the GI immune response. This work focuses on the role of ion channels in immune cells, non-immune resident cells, and neuroimmune interactions in the gut at the steady state and pathological conditions. Understanding the cellular and molecular basis of ion channel signaling in these immune-related pathways and initial testing of pharmacological intervention will facilitate the development of ion channel-based therapeutic approaches for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China,Correspondence to Jing Feng:
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Hongzhen Hu:
| |
Collapse
|
21
|
Caballero J. A new era for the design of TRPV1 antagonists and agonists with the use of structural information and molecular docking of capsaicin-like compounds. J Enzyme Inhib Med Chem 2022; 37:2169-2178. [PMID: 35975286 PMCID: PMC9387342 DOI: 10.1080/14756366.2022.2110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The design of TRPV1 antagonists and agonists has reached a new era since TRPV1 structures at near-atomic resolution are available. Today, the ligand-binding forms of several classical antagonists and agonists are known; therefore, the specific role of key TRPV1’s residues in binding of ligands can be elucidated. It is possible to place the well-defined pharmacophore of TRPV1 ligands, conformed by head, neck, and tail groups, in the right pocket regions of TRPV1. It will allow a more thorough use of molecular modelling methods to conduct more effective rational drug design protocols. In this work, important points about the interactions between TRPV1 and capsaicin-like compounds are spelled out, based on the known pharmacophore of the ligands and the already available TRPV1 structures. These points must be addressed to generate reliable poses of novel candidates and should be considered during the design of novel TRPV1 antagonists and agonists.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
22
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
23
|
Fernández-Carvajal A, Fernández-Ballester G, Ferrer-Montiel A. TRPV1 in chronic pruritus and pain: Soft modulation as a therapeutic strategy. Front Mol Neurosci 2022; 15:930964. [PMID: 36117910 PMCID: PMC9478410 DOI: 10.3389/fnmol.2022.930964] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic pain and pruritus are highly disabling pathologies that still lack appropriate therapeutic intervention. At cellular level the transduction and transmission of pain and pruritogenic signals are closely intertwined, negatively modulating each other. The molecular and cellular pathways involved are multifactorial and complex, including peripheral and central components. Peripherally, pain and itch are produced by subpopulations of specialized nociceptors that recognize and transduce algesic and pruritogenic signals. Although still under intense investigation, cumulative evidence is pointing to the thermosensory channel TRPV1 as a hub for a large number of pro-algesic and itchy agents. TRPV1 appears metabolically coupled to most neural receptors that recognize algesic and pruritic molecules. Thus, targeting TRPV1 function appears as a valuable and reasonable therapeutic strategy. In support of this tenet, capsaicin, a desensitizing TRPV1 agonist, has been shown to exhibit clinically relevant analgesic, anti-inflammatory, and anti-pruritic activities. However, potent TRPV1 antagonists have been questioned due to an hyperthermic secondary effect that prevented their clinical development. Thus, softer strategies directed to modulate peripheral TRPV1 function appear warranted to alleviate chronic pain and itch. In this regard, soft, deactivatable TRPV1 antagonists for topical or local application appear as an innovative approach for improving the distressing painful and itchy symptoms of patients suffering chronic pain or pruritus. Here, we review the data on these compounds and propose that this strategy could be used to target other peripheral therapeutic targets.
Collapse
|
24
|
Lewis CM, Griffith TN. The mechanisms of cold encoding. Curr Opin Neurobiol 2022; 75:102571. [DOI: 10.1016/j.conb.2022.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022]
|
25
|
Feng J, Zhao Y, Xie Z, Zang K, Sviben S, Hu X, Fitzpatrick JAJ, Wen L, Liu Y, Wang T, Lawson K, Liu Q, Yan Y, Dong X, Han L, Wu GF, Kim BS, Hu H. Miswiring of Merkel cell and pruriceptive C fiber drives the itch-scratch cycle. Sci Transl Med 2022; 14:eabn4819. [PMID: 35857641 PMCID: PMC9888006 DOI: 10.1126/scitranslmed.abn4819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Itch sensation provokes the scratch reflex to protect us from harmful stimuli in the skin. Although scratching transiently relieves acute itch through activation of mechanoreceptors, it propagates the vicious itch-scratch cycle in chronic itch by further aggravating itch over time. Although well recognized clinically, the peripheral mechanisms underlying the itch-scratch cycle remain poorly understood. Here, we show that mechanical stimulation of the skin results in activation of the Piezo2 channels on Merkel cells that pathologically promotes spontaneous itch in experimental dry skin. Three-dimensional reconstruction and immunoelectron microscopy revealed structural alteration of MRGPRA3+ pruriceptor nerve endings directed toward Merkel cells in the setting of dry skin. Our results uncover a functional miswiring mechanism under pathologic conditions, resulting in touch receptors triggering the firing of pruriceptors in the skin to drive the itch-scratch cycle.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.,Corresponding author: and
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Xueming Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Lu Wen
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Yifei Liu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Ting Wang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Katy Lawson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qin Liu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Yan Yan
- Department of Surgery, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Brian S Kim
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Corresponding author: and
| |
Collapse
|
26
|
Lesslar OJL, Smith PK. Itch Beyond the Skin-Mucosal Itch. FRONTIERS IN ALLERGY 2022; 2:700368. [PMID: 35386995 PMCID: PMC8974814 DOI: 10.3389/falgy.2021.700368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Itch is a nociceptive sensation linked with reflexes and cognitive motor actions. We traditionally think of itch as a sensation of the skin related to allergy, an insect sting or interestingly, anxiety and frustration. Less understood and considered are the physiological processes involved in the itching sensation that occurs at mucosal and junctional dermal sites, which is extraordinary as from an evolutionary point of view these sites serve important guardian roles, rich in sensory nerves and inflammatory cells. Despite itch being an ancient reflex and evolutionarily conserved phenomenon, better clinical understanding of the nuances between sites of itch sensation may lead to improved clinical outcomes. This review invites readers to appreciate itch beyond the skin by highlighting several specific itch patterns-nasal, oral, auricular, vulvovaginal, anal, and perineal itch-the pathophysiological mechanisms that underlie them, the clinical patterns these may cause, and some unique treatments.
Collapse
Affiliation(s)
- Olivia J Ly Lesslar
- LifeSpan Medicine, Los Angeles, CA, United States.,Cingulum Health, Sydney, NSW, Australia
| | - Peter K Smith
- Clinical Medicine, Griffith University, Southport, QLD, Australia
| |
Collapse
|
27
|
Habgood M, Seiferth D, Zaki AM, Alibay I, Biggin PC. Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Sci Rep 2022; 12:4929. [PMID: 35322090 PMCID: PMC8943162 DOI: 10.1038/s41598-022-08824-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open ‘pockets’ in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.
Collapse
Affiliation(s)
- Matthew Habgood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. .,AWE Aldermaston, Reading, Berkshire, RG7 4PR, UK.
| | - David Seiferth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Afroditi-Maria Zaki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
28
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
29
|
Desensitization of TRPV1 Involved in the Antipruritic Effect of Osthole on Histamine-Induced Scratching Behavior in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4012812. [PMID: 34691215 PMCID: PMC8528571 DOI: 10.1155/2021/4012812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Osthole has been isolated from the fruits of Cnidium monnieri (L.) Cusson, which has been used in Chinese traditional medicine to treat pruritic disorders for a long time. However, the antipruritic mechanism of osthole is not fully understood. In the present study, using calcium imaging, molecular docking, and animal scratching behavior, we analyzed the pharmacological effects of osthole on transient receptor potential vanilloid 1 (TRPV1). The results showed that osthole significantly induced calcium influx in a dose-dependent manner in dorsal root ganglion (DRG) neurons. Osthole-induced calcium influx was inhibited by AMG9810, an antagonist of TRPV1. Osthole and the TRPV1 agonist capsaicin-induced calcium influx were desensitized by pretreatment with osthole. Furthermore, molecular docking results showed that osthole could bind to TRPV1 with a hydrogen bond by anchoring to the amino acid residue ARG557 in the binding pocket of TRPV1. In addition, TRPV1 is a downstream ion channel for the histamine H1 and H4 receptors to transmit itch signals. Osthole attenuated scratching behavior induced by histamine, HTMT (histamine H1 receptor agonist), and VUF8430 (histamine H4 receptor agonist) in mice. These results suggest that osthole inhibition of histamine-dependent itch may be due to the activation and subsequent desensitization of TRPV1 in DRG neurons.
Collapse
|
30
|
Usage of Synthetic Peptides in Cosmetics for Sensitive Skin. Pharmaceuticals (Basel) 2021; 14:ph14080702. [PMID: 34451799 PMCID: PMC8400021 DOI: 10.3390/ph14080702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022] Open
Abstract
Sensitive skin is characterized by symptoms of discomfort when exposed to environmental factors. Peptides are used in cosmetics for sensitive skin and stand out as active ingredients for their ability to interact with skin cells by multiple mechanisms, high potency at low dosage and the ability to penetrate the stratum corneum. This study aimed to analyze the composition of 88 facial cosmetics for sensitive skin from multinational brands regarding usage of peptides, reviewing their synthetic pathways and the scientific evidence that supports their efficacy. Peptides were found in 17% of the products analyzed, namely: acetyl dipeptide-1 cetyl ester, palmitoyl tripeptide-8, acetyl tetrapeptide-15, palmitoyl tripeptide-5, acetyl hexapeptide-49, palmitoyl tetrapeptide-7 and palmitoyl oligopeptide. Three out of seven peptides have a neurotransmitter-inhibiting mechanism of action, while another three are signal peptides. Only five peptides present evidence supporting their use in sensitive skin, with only one clinical study including volunteers having this condition. Noteworthy, the available data is mostly found in patents and supplier brochures, and not in randomized placebo-controlled studies. Peptides are useful active ingredients in cosmetics for sensitive skin. Knowing their efficacy and synthetic pathways provides meaningful insight for the development of new and more effective ingredients.
Collapse
|
31
|
Zhang Q, Henry G, Chen Y. Emerging Role of Transient Receptor Potential Vanilloid 4 (TRPV4) Ion Channel in Acute and Chronic Itch. Int J Mol Sci 2021; 22:7591. [PMID: 34299208 PMCID: PMC8307539 DOI: 10.3390/ijms22147591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
Itch is a clinical problem that leaves many sufferers insufficiently treated, with over 20 million cases in the United States. This is due to incomplete understanding of its molecular, cellular, and cell-to-cell signaling mechanisms. Transient receptor potential (TRP) ion channels are involved in several sensory modalities including pain, vision, taste, olfaction, hearing, touch, and thermosensation, as well as itch. Relative to the extensive studies on TRPV1 and TRPA1 ion channels in itch modulation, TRPV4 has received relatively little research attention and its mechanisms have remained poorly understood until recently. TRPV4 is expressed in ganglion sensory neurons and a variety of skin cells. Growing evidence in the past few years strongly suggests that TRPV4 in these cells contributes to acute and chronic disease-associated itch. This review focuses on the current experimental evidence involving TRPV4 in itch under pathophysiological conditions and discusses its possible cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC 27710, USA; (Q.Z.); (G.H.)
| | - Gwendolyn Henry
- Department of Neurology, Duke University, Durham, NC 27710, USA; (Q.Z.); (G.H.)
| | - Yong Chen
- Department of Neurology, Duke University, Durham, NC 27710, USA; (Q.Z.); (G.H.)
- Department of Anesthesiology, Duke University, Durham, NC 27710, USA
- Department of Pathology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
32
|
Abstract
The transient receptor potential (TRP) channel superfamily consists of a large group of non-selective cation channels that serve as cellular sensors for a wide spectrum of physical and environmental stimuli. The 28 mammalian TRPs, categorized into six subfamilies, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin) and TRPP (polycystin), are widely expressed in different cells and tissues. TRPs exhibit a variety of unique features that not only distinguish them from other superfamilies of ion channels, but also confer diverse physiological functions. Located at the plasma membrane or in the membranes of intracellular organelles, TRPs are the cellular safeguards that sense various cell stresses and environmental stimuli and translate this information into responses at the organismal level. Loss- or gain-of-function mutations of TRPs cause inherited diseases and pathologies in different physiological systems, whereas up- or down-regulation of TRPs is associated with acquired human disorders. In this Cell Science at a Glance article and the accompanying poster, we briefly summarize the history of the discovery of TRPs, their unique features, recent advances in the understanding of TRP activation mechanisms, the structural basis of TRP Ca2+ selectivity and ligand binding, as well as potential roles in mammalian physiology and pathology.
Collapse
Affiliation(s)
- Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Meng J, Li Y, Fischer MJM, Steinhoff M, Chen W, Wang J. Th2 Modulation of Transient Receptor Potential Channels: An Unmet Therapeutic Intervention for Atopic Dermatitis. Front Immunol 2021; 12:696784. [PMID: 34276687 PMCID: PMC8278285 DOI: 10.3389/fimmu.2021.696784] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a multifaceted, chronic relapsing inflammatory skin disease that affects people of all ages. It is characterized by chronic eczema, constant pruritus, and severe discomfort. AD often progresses from mild annoyance to intractable pruritic inflammatory lesions associated with exacerbated skin sensitivity. The T helper-2 (Th2) response is mainly linked to the acute and subacute phase, whereas Th1 response has been associated in addition with the chronic phase. IL-17, IL-22, TSLP, and IL-31 also play a role in AD. Transient receptor potential (TRP) cation channels play a significant role in neuroinflammation, itch and pain, indicating neuroimmune circuits in AD. However, the Th2-driven cutaneous sensitization of TRP channels is underappreciated. Emerging findings suggest that critical Th2-related cytokines cause potentiation of TRP channels, thereby exaggerating inflammation and itch sensation. Evidence involves the following: (i) IL-13 enhances TRPV1 and TRPA1 transcription levels; (ii) IL-31 sensitizes TRPV1 via transcriptional and channel modulation, and indirectly modulates TRPV3 in keratinocytes; (iii) The Th2-cytokine TSLP increases TRPA1 synthesis in sensory neurons. These changes could be further enhanced by other Th2 cytokines, including IL-4, IL-25, and IL-33, which are inducers for IL-13, IL-31, or TSLP in skin. Taken together, this review highlights that Th2 cytokines potentiate TRP channels through diverse mechanisms under different inflammatory and pruritic conditions, and link this effect to distinct signaling cascades in AD. This review strengthens the notion that interrupting Th2-driven modulation of TRP channels will inhibit transition from acute to chronic AD, thereby aiding the development of effective therapeutics and treatment optimization.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Kaifeng, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Yanqing Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar.,Qatar University, College of Medicine, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Weiwei Chen
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Kaifeng, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
34
|
Morris EM, Kitts-Morgan SE, Spangler DM, Gebert J, Vanzant ES, McLeod KR, Harmon DL. Feeding Cannabidiol (CBD)-Containing Treats Did Not Affect Canine Daily Voluntary Activity. Front Vet Sci 2021; 8:645667. [PMID: 33996972 PMCID: PMC8118201 DOI: 10.3389/fvets.2021.645667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Growing public interest in the use of cannabidiol (CBD) for companion animals has amplified the need to elucidate potential impacts. The purpose of this investigation was to determine the influence of CBD on the daily activity of adult dogs. Twenty-four dogs (18.0 ± 3.4 kg, 9 months-4 years old) of various mixed breeds were utilized in a randomized complete block design with treatments targeted at 0 and 2.5 mg (LOW) and at 5.0 mg (HIGH) CBD/kg body weight (BW) per day split between two treats administered after twice-daily exercise (0700-0900 and 1,700-1,900 h). Four hours each day [1,000-1,200 h (a.m.) and 1,330-1,530 h (p.m.)] were designated as times when no people entered the kennels, with 2 h designated as Quiet time and the other 2 h as Music time, when calming music played over speakers. Quiet and Music sessions were randomly allotted to daily a.m. or p.m. times. Activity monitors were fitted to dogs' collars for continuous collection of activity data. Data were collected over a 14-day baseline period to establish the activity patterns and block dogs by activity level (high or low) before randomly assigning dogs within each block to treatments. After 7 days of treatment acclimation, activity data were collected for 14 days. Data were examined for differences using the MIXED procedure in SAS including effects of treatment, day, session (Quiet or Music), time of day (a.m. or p.m.), and accompanying interactions. CBD (LOW and HIGH) did not alter the total daily activity points (P = 0.985) or activity duration (P = 0.882). CBD tended (P = 0.071) to reduce total daily scratching compared with the control. Dogs were more active in p.m. sessions than in a.m. sessions (P < 0.001). During the p.m. session, dogs receiving HIGH tended (P = 0.091) to be less active than the control (CON). During the a.m. and p.m. sessions, CBD reduced scratching compared with CON (P = 0.030). CBD did not affect the activity duration during exercise periods (P = 0.143). These results indicate that, when supplemented with up to 4.5 mg CBD/kg BW/day, CBD does not impact the daily activity of adult dogs, but may exert an antipruritic effect.
Collapse
Affiliation(s)
- Elizabeth M. Morris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | | | - Dawn M. Spangler
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Jessica Gebert
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Eric S. Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
35
|
Mechanisms of Broad-Band UVB Irradiation‒Induced Itch in Mice. J Invest Dermatol 2021; 141:2499-2508.e3. [PMID: 33812858 DOI: 10.1016/j.jid.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022]
Abstract
Although sunburn can produce severe uncontrollable itching, the underlying mechanisms of UV irradiation‒induced itch are poorly understood because of a lack of experimental animal models of sunburn itch. In this study, we established a sunburn-related mouse model and found that broad-band UVB irradiation elicited scratching but not wiping behavior in mice. Using a combination of live-cell calcium ion imaging and quantitative RT-PCR on dorsal root ganglion neurons, H&E staining, immunofluorescence staining of skin preparations, and behavioral testing, in combination with genetic and pharmacological approaches, we showed that TRPV1-positive dorsal root ganglion neurons but not mast cells are involved in broad-band UVB irradiation‒induced itch. Moreover, both genetic and pharmacological inhibition of TRPV1 function significantly alleviated the broad-band UVB irradiation‒induced itch response. Collectively, our results suggest that broad-band UVB irradiation evokes itch sensation in mice by promoting TRPV1 channel function in dorsal root ganglion neurons and provide potential therapeutic targets for sunburn-related itch.
Collapse
|
36
|
Abstract
Introduction: Transient receptor potential vanilloid 4 (TRPV4) is an ion channel that is widely expressed and is activated by numerous chemical, osmotic and mechanical stimuli. By modulating Ca2+ entry, TRPV4 regulates cellular signaling associated with a variety of (patho)physiological processes and is a target of interest for treatment of human diseases including heart failure, respiratory diseases, gastrointestinal disorders, dermatological conditions, pain and cancer, among others.Areas covered: This article reviews small molecule TRPV4 antagonists and new therapeutic use claims disclosed in the patent literature from 2015 to 2020, including applications covering the first potent and selective TRPV4 clinical candidate and other advanced chemotypes.Expert opinion: TRPV4 has proven to be a tractable target and significant progress in discovery of TRPV4 antagonists has been realized in recent years. Several unique chemical templates with drug-like properties inhibit the channel and show efficacy in models that suggest their potential for treatment of a variety of diseases. While compelling clinical efficacy has not yet been seen in the limited early studies conducted with GSK2798745, evaluation of TRPV4 antagonists in larger trials across several indications is warranted given the availability of high-quality candidates and the promise of therapeutic benefit based on pre-clinical evidence.
Collapse
Affiliation(s)
- Brian G Lawhorn
- Medicinal Chemistry, Medicine Design, and Early Development Leaders, GlaxoSmithKline, Collegeville, Pennsylvania, United States
| | - Edward J Brnardic
- Medicinal Chemistry, Medicine Design, and Early Development Leaders, GlaxoSmithKline, Collegeville, Pennsylvania, United States
| | - David J Behm
- Medicinal Chemistry, Medicine Design, and Early Development Leaders, GlaxoSmithKline, Collegeville, Pennsylvania, United States
| |
Collapse
|
37
|
Langedijk JAGM, Beuers UH, Oude Elferink RPJ. Cholestasis-Associated Pruritus and Its Pruritogens. Front Med (Lausanne) 2021; 8:639674. [PMID: 33791327 PMCID: PMC8006388 DOI: 10.3389/fmed.2021.639674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Pruritus is a debilitating symptom of various cholestatic disorders, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and inherited progressive familial intrahepatic cholestasis (PFIC). The molecular mechanisms leading to cholestasis-associated pruritus are still unresolved and the involved pruritogens are indecisive. As a consequence of pruritus, patients suffer from sleep deprivation, loss of daytime concentration, auto-mutilation and sometimes even suicidal ideations. Current guideline-approved therapy of cholestasis-associated pruritus includes stepwise administration of several medications, which may alleviate complaints in some, but not all affected patients. Therefore, also experimental therapeutic approaches are required to improve patients' quality of life. This article reviews the current state of research on pruritogens and their receptors, and shortly discusses the most recent experimental therapies.
Collapse
Affiliation(s)
| | | | - Ronald P. J. Oude Elferink
- Amsterdam University Medical Centers, Tytgat Institute for Liver and Intestinal Research, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Jia X, Dai MH, Ren AJ, Wang TT, Zhang WJ, Zhang L. ZBTB20 in Nociceptive Neurons of the Trigeminal Ganglia Regulates Pruritus. Front Med (Lausanne) 2021; 8:626554. [PMID: 33748159 PMCID: PMC7969640 DOI: 10.3389/fmed.2021.626554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown that ZBTB20, a zinc-finger protein containing transcription factor, is highly expressed in small-diameter primary sensory neurons in mice, and modulates pain through regulating TRP channels. However, whether ZBTB20 regulates itch sensation has not been demonstrated. In this study, small-diameter primary sensory neuron-specific ZBTB20 knockout (PN-ZB20KO) mice were used to investigate the role of ZBTB20 in the regulation of itch sensation. First, both histamine-dependent and non-histamine-dependent itch behaviors induced by injection of histamine and chloroquine (CQ) into the cheek were significantly diminished in PN-ZB20KO mice. Second, double immunohistochemistry showed that ZBTB20 was mainly expressed in CGRP-labeled small peptidergic neurons and was expressed at low levels in IB4-labeled small non-peptidergic and NF200-labeled large neurons in the trigeminal ganglia (TG). ZBTB20 was also expressed in most TRPV1+ and TRPA1+ neurons and to a lesser extent in TRPM8+ neurons in the TG. Furthermore, cheek injection of histamine and CQ enhanced the mRNA expression of TRPV1 and TRPA1 but not TRPM8 in the TG. Moreover, TRPV1 and TRPA1 knockout (KO) mice exhibited attenuation of itch behavior induced by histamine and CQ, respectively. Finally, silencing endogenous ZBTB20 with recombinant lentivirus expressing a short hairpin RNA against ZBTB20 (LV-shZBTB20) in TG neurons attenuated histamine- and non-histamine-induced itch and downregulated TRP channels in the TG. Our study suggests that ZBTB20 plays an important role in mediating itch in small primary sensory neurons.
Collapse
Affiliation(s)
- Xin Jia
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Han Dai
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China.,Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Ting-Ting Wang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China.,Department of Dermatology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Ling Zhang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
40
|
Liu X, Zhang JT, Hu Y, Shan WQ, Wang ZH, Fu QY, Fu DN, Ji J, Liu T. Formalin Itch Test: Low-Dose Formalin Induces Histamine-Independent, TRPA1-Mediated Itch in Mice. Front Med (Lausanne) 2021; 8:627725. [PMID: 33681255 PMCID: PMC7928323 DOI: 10.3389/fmed.2021.627725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic itch is a common distressing symptom of many diseases, which reduced patient's quality of life. The mechanistic study on itch and screening for new anti-itch drugs require the development of new pre-clinical itch animal models. Herein, we established an acute itch model by intradermal (i.d.) injection of low-dose formalin into the neck or cheek in mice. In mice, i.d. injection of formalin (0.1–5%) in the nape of the neck evoked robust scratching behavior in a dose-dependent manner and the dose–response curves showed an inverted “U” shape. I.d. injection of formalin (0.3–0.6%) into the cheek evoked scratching in mice but wiping in rats, while formalin (1.25–5%) induced mixed wiping and scratching behavior in both mice and rats. Further, we found that 0.3% formalin-induced scratching was histamine-independent and significantly attenuated by transient receptor potential ion channel A1 (TRPA1) inhibitor (HC030031) or in TRPA1 knockout (KO) mice, but not affected by transient receptor potential ion channel V1 (TRPV1) inhibitor (capsazepine) or in TRPV1 KO mice. Additionally, 0.3% formalin-induced up-regulation of phosphorylation of extracellular regulated protein kinases (p-ERK) in the dorsal root ganglion (DRG) and scratching were suppressed by intrathecal injection of MEK inhibitor U0126 in mice. Incubation of 0.03% formalin induced the accumulation of intracellular reactive oxygen species (ROS) in the cultured DRG-derived cell line ND7-23, and formalin-induced itch was suppressed by antioxidants in mice. Finally, perfusion of 0.03% formalin induced elevation of intracellular calcium in a subset of primary cultured DRG neurons of mice. Thus, these results indicate that low-dose formalin induced non-histaminergic itch by activation of TRPA1 in mice, which may be employed as a useful acute itch model for screening potential anti-itch drugs.
Collapse
Affiliation(s)
- Xu Liu
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yue Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wen-Qi Shan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China
| |
Collapse
|
41
|
Suo Y, Lee SY. Sample preparation of the human TRPA1 ion channel for cryo-EM studies. Methods Enzymol 2021; 653:75-87. [PMID: 34099182 DOI: 10.1016/bs.mie.2020.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a member of the TRP channel family that is involved in sensing noxious stimuli that elicit pain and inflammation. Because of its critical physiological role and therapeutic importance, great efforts have been made to understand the structure and mechanism of TRPA1. Several human TRPA1 structures have been reported using single particle cryo-electron microscopy (cryo-EM) over the last 6 years. Here, we present a protocol for the heterologous expression, large-scale purification, and nanodisc reconstitution of the human TRPA1 channel for cryo-EM and biochemical studies.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
42
|
Kelemen B, Pinto S, Kim N, Lisztes E, Hanyicska M, Vládar A, Oláh A, Pénzes Z, Shu B, Vriens J, Bíró T, Rohács T, Voets T, Tóth BI. The TRPM3 ion channel mediates nociception but not itch evoked by endogenous pruritogenic mediators. Biochem Pharmacol 2021; 183:114310. [PMID: 33130130 PMCID: PMC8086171 DOI: 10.1016/j.bcp.2020.114310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.
Collapse
Affiliation(s)
- Balázs Kelemen
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Laboratory of Ion Channel Research (VIB-KU Leuven Center for Brain & Disease Research) Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Silvia Pinto
- Laboratory of Ion Channel Research (VIB-KU Leuven Center for Brain & Disease Research) Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nawoo Kim
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Hanyicska
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Vládar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pénzes
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Brian Shu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Rohács
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Thomas Voets
- Laboratory of Ion Channel Research (VIB-KU Leuven Center for Brain & Disease Research) Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
43
|
Baswan SM, Klosner AE, Glynn K, Rajgopal A, Malik K, Yim S, Stern N. Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clin Cosmet Investig Dermatol 2020; 13:927-942. [PMID: 33335413 PMCID: PMC7736837 DOI: 10.2147/ccid.s286411] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Though there is limited research confirming the purported topical benefits of cannabinoids, it is certain that cutaneous biology is modulated by the human endocannabinoid system (ECS). Receptors from the ECS have been identified in the skin and systemic abuse of synthetic cannabinoids, and their analogs, have also been associated with the manifestation of dermatological disorders, indicating the effects of the ECS on cutaneous biology. In particular, cannabidiol (CBD), a non-psychoactive compound from the cannabis plant, has garnered significant attention in recent years for its anecdotal therapeutic potential for various pathologies, including skin and cosmetic disorders. Though a body of preclinical evidence suggests topical application of CBD may be efficacious for some skin disorders, such as eczema, psoriasis, pruritis, and inflammatory conditions, confirmed clinical efficacy and elucidation of underlying molecular mechanisms have yet to be fully identified. This article provides an update on the advances in CBD research to date and the potential areas of future exploration.
Collapse
Affiliation(s)
- Sudhir M Baswan
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Allison E Klosner
- Innovation and Science, Nutrilite Health Institute, Amway Corporation, Buena Park, CA, 90621, USA
| | - Kelly Glynn
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Arun Rajgopal
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Kausar Malik
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Sunghan Yim
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Nathan Stern
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| |
Collapse
|
44
|
Martin CE, Clotet-Freixas S, Farragher JF, Hundemer GL. Have We Just Scratched the Surface? A Narrative Review of Uremic Pruritus in 2020. Can J Kidney Health Dis 2020; 7:2054358120954024. [PMID: 33117546 PMCID: PMC7573751 DOI: 10.1177/2054358120954024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose of review: Uremic pruritus is a highly prevalent and debilitating symptom in patients with chronic kidney disease (CKD) and end-stage kidney disease (ESKD). The purpose of this review is to examine current evidence on the mechanisms and treatments of pruritus in CKD and highlight promising areas for future research. Sources of information: Published literature, including randomized controlled trials, cohort studies, case reports, and review articles, was searched for evidence pertaining to the pathophysiology and treatment of uremic pruritus. Methods: A comprehensive narrative review was conducted to explore the molecular mechanisms underlying uremic pruritus, as well as the evidence (or lack thereof) supporting pharmacological and nonpharmacological treatments for uremic pruritus. The potential role of patient sex in the pathophysiology and management of uremic pruritus is also discussed. Key findings: The pathophysiology of uremic pruritus involves a complex interplay of uremic toxins, systemic inflammation, mast cell activation, and imbalance of opioid receptors. Classic treatment strategies for uremic pruritus include optimization of dialysis parameters, amelioration of CKD-related mineral and bone disease, topical emollients and analgesics, antihistamines, the anticonvulsant medications gabapentin and pregabalin, and ultraviolet light B (UV-B) phototherapy. Strong data to support many of these classical treatments for uremic pruritus are limited. Newly evolving treatment approaches for uremic pruritus include opioid receptor modulators, neurokinin-1 inhibitors, and cannabinoids. Further studies regarding their efficacy, pharmacodynamics, and safety in the CKD and ESKD population are needed before these agents are accepted into widespread use. Additional nonpharmacological strategies aimed at treating uremic pruritus include psychotherapy, acupuncture, omega-3 fatty acids, and exercise. Finally, sex differences may exist regarding uremic pruritus, but studies directly addressing sex-specific mechanisms of uremic pruritus remain absent. Limitations: High-quality evidence in the management of uremic pruritus remains lacking. Most recommendations are based on expert opinion or studies involving small numbers of patients. In addition, our understanding of the pathophysiological mechanisms behind uremic pruritus is incomplete and continues to evolve over time. Implications: Uremic pruritus is a common symptom which reduces quality of life in CKD and ESKD. The identification of novel targeted treatment approaches may ease the burden of uremic pruritus in the future.
Collapse
Affiliation(s)
- Claire E Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Janine F Farragher
- Department of Community Health Sciences, University of Calgary, AB, Canada
| | - Gregory L Hundemer
- Division of Nephrology, The Ottawa Hospital and University of Ottawa, ON, Canada
| |
Collapse
|
45
|
Yu Y, Liang Q, Du L, Jiang H, Gu J, Hu H, Tu Z. Synthesis and Characterization of a Specific Iodine-125-Labeled TRPC5 Radioligand. ChemMedChem 2020; 15:1854-1860. [PMID: 32717096 PMCID: PMC8544919 DOI: 10.1002/cmdc.202000339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/11/2022]
Abstract
The nonselective Ca2+ -permeable transient receptor potential channel subfamily member 5 (TRPC5) belongs to the transient receptor potential canonical (TRPC) superfamily and is widely expressed in the brain. Compelling evidence reveals that TRPC5 plays crucial roles in depression and other psychiatric disorders. To develop a TRPC5 radioligand, following up on our previous effort, we synthesized the iodine compound TZ66127 and its iodine-125-labeled counterpart [125 I]TZ66127. The synthesis of TZ66127 was achieved by replacing chloride with iodide in the structure of HC608, and the [125 I]TZ66127 was radiosynthesized using its corresponding tributylstannylated precursor. We established a stable human TRPC5-overexpressed HEK293-hTRPC5 cell line and performed Ca2+ imaging and a cell-binding assay study of TZ66127; these indicated that TZ66127 had good inhibition activity for TRPC5, and the inhibitory efficiency of TZ66127 toward TRPC5 presented in a dose-dependent manner. An in vitro autoradiography and immunohistochemistry study of rat brain sections suggested that [125 I]TZ66127 had binding specificity toward TRPC5. Altogether, [125 I]TZ66127 has high potential to serve as a radioligand for screening the binding activity of other new compounds toward TRPC5. The availability of [125 I]TZ66127 might facilitate the development of therapeutic drugs and PET imaging agents that target TRPC5.
Collapse
Affiliation(s)
- Yanbo Yu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qianwa Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lixia Du
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Sanjel B, Shim WS. Recent advances in understanding the molecular mechanisms of cholestatic pruritus: A review. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165958. [PMID: 32896605 DOI: 10.1016/j.bbadis.2020.165958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Cholestasis, a condition characterized by an abnormal decrease in bile flow, is accompanied by various symptoms such as pruritus. Although cholestatic pruritus is a prominent condition, its precise mechanisms have largely been elusive. Recently, advancements have been made for understanding the etiology and pathogenesis of cholestatic pruritus. The current review therefore focuses on summarizing the overall progress made in the elucidation of its molecular mechanisms. We have reviewed the available animal models on cholestasis to compare the differences between them, characterized potential pruritogens involved in cholestatic pruritus, and have summarized the receptor and ion channels implicated in the condition. Finally, we have discussed the available treatment options for alleviation of cholestatic pruritus. As our understanding of the mechanisms of cholestatic pruritus deepens, novel strategies to cure this condition are awaited.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
47
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
48
|
Boudaka A, Al-Yazeedi M, Al-Lawati I. Role of Transient Receptor Potential Vanilloid 4 Channel in Skin Physiology and Pathology. Sultan Qaboos Univ Med J 2020; 20:e138-e146. [PMID: 32655905 PMCID: PMC7328835 DOI: 10.18295/squmj.2020.20.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channel responds to temperature, as well as various mechanical and chemical stimuli. This non-selective cation channel is expressed in several organs, including the blood vessels, kidneys, oesophagus and skin. In the skin, TRPV4 channel is present in various cell types such as keratinocytes, melanocytes and sensory neurons, as well as immune and inflammatory cells, and engages in several physiological actions, from skin homeostasis to sensation. In addition, there is substantial evidence implicating dysfunctional TRPV4 channel—in the form of either deficient or excessive channel activity—in pathological cutaneous conditions such as skin barrier compromise, pruritus, pain, skin inflammation and carcinogenesis. These varied functions, combined with the fact that TRPV4 channel owns pharmacologically-accessible sites, make this channel an attractive therapeutic target for skin disorders. In this review, we summarize the different physiological and pathophysiological effects of TRPV4 in the skin.
Collapse
Affiliation(s)
- Ammar Boudaka
- Department of Physiology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mallak Al-Yazeedi
- Department of Physiology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Intisar Al-Lawati
- Department of Physiology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
49
|
Sharif B, Ase AR, Ribeiro-da-Silva A, Séguéla P. Differential Coding of Itch and Pain by a Subpopulation of Primary Afferent Neurons. Neuron 2020; 106:940-951.e4. [PMID: 32298640 DOI: 10.1016/j.neuron.2020.03.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/21/2019] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Itch and pain are distinct unpleasant sensations that can be triggered from the same receptive fields in the skin, raising the question of how pruriception and nociception are coded and discriminated. Here, we tested the multimodal capacity of peripheral first-order neurons, focusing on the genetically defined subpopulation of mouse C-fibers that express the chloroquine receptor MrgprA3. Using optogenetics, chemogenetics, and pharmacology, we assessed the behavioral effects of their selective stimulation in a wide variety of conditions. We show that metabotropic Gq-linked stimulation of these C-afferents, through activation of native MrgprA3 receptors or DREADDs, evokes stereotypical pruriceptive rather than nocifensive behaviors. In contrast, fast ionotropic stimulation of these same neurons through light-gated cation channels or native ATP-gated P2X3 channels predominantly evokes nocifensive rather than pruriceptive responses. We conclude that C-afferents display intrinsic multimodality, and we provide evidence that optogenetic and chemogenetic interventions on the same neuronal populations can drive distinct behavioral outputs.
Collapse
Affiliation(s)
- Behrang Sharif
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel R Ase
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada
| | - Alfredo Ribeiro-da-Silva
- Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Philippe Séguéla
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
50
|
Lee SH, Tonello R, Choi Y, Jung SJ, Berta T. Sensory Neuron-Expressed TRPC4 Is a Target for the Relief of Psoriasiform Itch and Skin Inflammation in Mice. J Invest Dermatol 2020; 140:2221-2229.e6. [PMID: 32289348 DOI: 10.1016/j.jid.2020.03.959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Psoriasis is an inflammatory skin disease associated with itch, which is a troublesome symptom with a few therapeutic options. TRPC4 is highly expressed in dorsal root ganglia (DRGs). Recently, we have revealed itch signaling in DRG neurons by which TRPC4 mediates itch to serotonergic antidepressants and demonstrated the antipruritic effect of the TRPC4 inhibitor ML204. However, the role of TRPC4 in acute and chronic itch is still largely unknown. Here, we have characterized the expression of TRPC4 in peptidergic DRG neurons and showed that acute itch induced by serotonin and histamine was attenuated in Trpc4-knockout mice and ML204-treated mice. We have also shown that silencing TRPC4 in DRG and its inhibition by intradermal injections were also effective in decreasing psoriatic itch after the repeated application of imiquimod, which is a preclinical model of psoriasis. Of clinical relevance, intradermal injections of ML204 in psoriasiform skin significantly reversed imiquimod-established chronic itch and cutaneous inflammation. Given that TRPC4 is expressed in human DRGs and a specific inhibitor is in clinical trials, our data not only expand our understanding of itch and psoriasis, but also reveal TRPC4 as a potential therapeutic target with considerable translational benefits.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Youngin Choi
- Department of Physiology, Medical School, Hanyang University, Seoul, Korea
| | - Sung Jun Jung
- Department of Physiology, Medical School, Hanyang University, Seoul, Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|