1
|
Duhan L, Pasrija R. Unveiling exogenous potential of phytohormones as sustainable arsenals against plant pathogens: molecular signaling and crosstalk insights. Mol Biol Rep 2025; 52:98. [PMID: 39747766 DOI: 10.1007/s11033-024-10206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Plants frequently confront pathogens that disrupt physiological and molecular functions, ultimately reducing agricultural yields. To counter these challenges, plants activate sophisticated defense mechanisms to recognize stress signals while optimizing growth. Phytohormones signaling pathways and their crosstalk are central to regulating plant growth, development and defense. Numerous proteins associated with phytohormone signaling pathways have been identified, including receptors for several vital hormones. Previous studies indicate that defense phytohormones, like salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), are crucial to pathogen defense. SA specifically mediates systemic acquired resistance against biotrophic pathogens, while induced systemic resistance relies on JA and ET signaling in response to necrotrophic pathogens. Other hormones, typically associated with growth and development, such as ethylene, abscisic acid, brassinosteroids, melatonin, gibberellins, auxin, and cytokinin, also interact in a complex network of synergistic and antagonistic relationships with defense phytohormones. Moreover, they can achieve effects that surpass conventional pathogen control methods, suggesting their potential as exogenous biocontrol agents. During the past decade, our knowledge of hormone signaling and stress response has become immense. Thus, this review is an attempt to summarize some of the advances in plant signaling and crosstalk mechanisms as well as their potential to be a future arsenal in biotic stress mitigation strategies. Ultimately, this work emphasizes using exogenous phytohormones as a viable alternative for controlling pathogens to enhance crop productivity in pathogen-affected regions.
Collapse
Affiliation(s)
- Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
2
|
Choudhary P, Aggarwal PR, Salvi P, Muthamilarasan M. Molecular insight into auxin signaling and associated network modulating stress responses in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109452. [PMID: 39733728 DOI: 10.1016/j.plaphy.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Phytohormones are vital regulators of various signaling networks in plants. Among different phytohormones, auxin has been thoroughly studied for its role in regulating plants' growth, development, and stress response. One major function of auxin is modulating the developmental processes in response to environmental cues. Although extensive studies on Arabidopsis have advanced the knowledge of auxin biology, several studies on rice have uncovered key players regulated by auxin that play critical roles in coordinating auxin homeostasis and signaling involved in defense response. The emerging knowledge on auxin biology, auxin-regulated gene expression, and auxin-signaling in rice during various environmental stresses has provided insights into the possible mechanism of rice susceptibility or resistance to different abiotic and biotic stresses. The current review enumerates the possible mechanisms of stress-induced auxin homeostasis in rice. In addition, we provide an overview of the state of knowledge on auxin-mediated defense signaling in rice, highlighting its pivotal role in stress response. In particular, we discuss the auxin pathways and the dynamic regulation in response to biotic and abiotic stress. We highlight the novel findings in the diversity of auxin signaling in the model plant Arabidopsis with an aim to emphasize the need to translate these findings into agronomically and economically important cereals like rice. Addressing the complexity of auxin induction, signaling, and its associated molecular network, an in-depth investigation in rice is required to comprehend auxin-mediated spatial-temporal regulation of developmental processes during stress.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, Uttar Pradesh, India.
| | - Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Praful Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
3
|
Yang H, Yao X, Wu W, He A, Ma C, Yang S, Ruan J. Genome-wide identification and gene expression pattern analysis of the glycoside hydrolase family 1 in Fagopyrum tataricum. BMC PLANT BIOLOGY 2024; 24:1183. [PMID: 39695944 DOI: 10.1186/s12870-024-05919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The β-glucosidases (BGLU) of glycoside hydrolase family 1 hydrolyze the glycosidic bond to release β-D-glucose and related ligands, which are widely involved in important physiological processes in plants. Genome-wide analysis of the BGLU genes in the model crops Arabidopsis thaliana and Oryza sativa revealed that they are functionally diverse. In contrast, the BGLU gene family in Tartary buckwheat remains unclear. RESULTS This study identified the FtBGLU gene family based on Tartary buckwheat genomic data and analyzed the biological function of the FtBGLU gene using bioinformatics methods and the expression pattern of the gene using fluorescence quantitative PCR. The results showed that 39 BGLU genes were identified in Tartary buckwheat, which were classified into 10 subfamilies and one unclassified group. They were unevenly distributed on 10 chromosomes, and seven tandem duplication events involving 19 FtBGLU genes were observed, which mainly occurred in subfamily II. Their physicochemical properties are highly variable; however, they have relatively conserved exon-intron structures and high sequence homology in the subfamily, and most of the FtBGLUs contain conserved motifs, among which the expression products FtBGLU1, FtBGLU17, FtBGLU19, FtBGLU21, FtBGLU22, and FtBGLU28 have no β-glucosidase activity. Additionally, we analyzed the tissue expression specificity of 10 FtBGLU genes during Tartary buckwheat growth and development and their expression patterns under adversity stress and hormone treatments. Revealing the important role of the BGLU gene family in Tartary buckwheat growth and development, as well as its response to adversity, provides strong support for further analysis of its regulatory mechanisms and functional applications. A total of 39 FtBGLU genes were identified. Bioinformatics analysis of the gene structure, evolutionary relationship, and expression pattern of the Fagopyrum tataricum BGLU gene family establishes a foundation for a better understanding and future research on the Tartary buckwheat BGLU gene family.
Collapse
Affiliation(s)
- Haizhu Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Ailing He
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chao Ma
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Wang Y, Jin G, Song S, Jin Y, Wang X, Yang S, Shen X, Gan Y, Wang Y, Li R, Liu JX, Hu J, Pan R. A peroxisomal cinnamate:CoA ligase-dependent phytohormone metabolic cascade in submerged rice germination. Dev Cell 2024; 59:1363-1378.e4. [PMID: 38579719 DOI: 10.1016/j.devcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.
Collapse
Affiliation(s)
- Yukang Wang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Gaochen Jin
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shuyan Song
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Yijun Jin
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaowen Wang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shuaiqi Yang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xingxing Shen
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yinbo Gan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuexing Wang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| |
Collapse
|
5
|
Mathura SR, Sutton F, Bowrin V. Genome-wide identification, characterization, and expression analysis of the sweet potato (Ipomoea batatas [L.] Lam.) ARF, Aux/IAA, GH3, and SAUR gene families. BMC PLANT BIOLOGY 2023; 23:622. [PMID: 38057702 DOI: 10.1186/s12870-023-04598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Auxins are known to have roles in the tuberization process in sweet potato (Ipomoea batatas [L.] Lam.) and these effects are mediated by various auxin signalling gene families. In this study, an analysis of the sweet potato genome was performed to identify the ARF, Aux/IAA, GH3, and SAUR auxin signalling gene family members in this crop. RESULTS A total of 29 ARF, 39 Aux/IAA, 13 GH3, and 200 SAUR sequences were obtained, and their biochemical properties and gene expression profiles were analysed. The sequences were relatively conserved based on exon-intron structure, motif analysis, and phylogenetic tree construction. In silico expression analyses of the genes in fibrous and storage roots indicated that many sequences were not differentially expressed in tuberizing and non-tuberizing roots. However, some ARF, Aux/IAA, and SAUR genes were up-regulated in tuberizing storage roots compared to non-tuberizing fibrous roots while many GH3 genes were down-regulated. Additionally, these genes were expressed in a variety of plant parts, with some genes being highly expressed in shoots, leaves, and stems while others had higher expression in the roots. Some of these genes are up-regulated during the plant's response to various hormone treatments and abiotic stresses. Quantitative RT-PCR confirmation of gene expression was also conducted, and the results were concordant with the in silico analyses. A protein-protein interaction network was predicted for the differentially expressed genes, suggesting that these genes likely form part of a complex regulatory network that controls tuberization. These results confirm those of existing studies that show that auxin signalling genes have numerous roles in sweet potato growth and development. CONCLUSION This study provides useful information on the auxin signalling gene families in Ipomoea batatas and suggests putative candidates for further studies on the role of auxin signalling in tuberization and plant development.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago.
| | | | - Valerie Bowrin
- The Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| |
Collapse
|
6
|
Wu L, Meng F, Su X, Chen N, Peng D, Xing S. Transcriptomic responses to cold stress in Dendrobium huoshanense C.Z. Tang et S.J. Cheng. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1633-1646. [PMID: 38162923 PMCID: PMC10754796 DOI: 10.1007/s12298-023-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Dendrobium huoshanense C.Z. Tang et S.J. Cheng is a perennial epiphytic herb of the family Orchidaceae. The main metabolites of D. huoshanense include polysaccharides and flavonoids. Low temperature is the main environmental factor that limits the growth and development of plants. However, changes that occur at the molecular level in response to low temperatures in D. huoshanense are poorly understood. We performed a transcriptome analysis at two time points of 0 d (control group) and 7 d (cold stress group) under culture of D. huoshanense at 4 °C. A total of 37.63 Gb transcriptomic data were generated using the MGI 2000 platform. These reads were assembled into 170,754 transcripts and 23,724 differentially expressed genes (DEGs) were obtained. Pathway analysis indicated that "flavonoid biosynthesis," "anthocyanin biosynthesis," "flavone and flavonol biosynthesis," and "plant hormone signal transduction" might play a vital role in the response of D. huoshanense to cold stress. Several important pathway genes were identified to be altered under cold stress, such as genes encoding polysaccharides, flavonoids, and plant hormone-signaling transduction kinase. In addition, the content of mannose and total flavonoids increased under cold stress. Twelve DEGs related to polysaccharides, flavonoid, and hormone pathways were selected from the transcriptome data for validation with real-time quantitative PCR (RT-qPCR). Our results provide a transcriptome database and candidate genes for further study of the response of D. huoshanense to cold stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01385-7.
Collapse
Affiliation(s)
- Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, 244000 China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Na Chen
- Institute of Health and Medicine, Joint Research Center for Chinese Herbal Medicine of Anhui, Hefei Comprehensive National Science Center, Bozhou, 236800 China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038 China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
7
|
Zhou M, Deng X, Jiang Y, Zhou G, Chen J. Genome-Wide Identification and an Evolution Analysis of Tonoplast Monosaccharide Transporter ( TMT) Genes in Seven Gramineae Crops and Their Expression Profiling in Rice. Genes (Basel) 2023; 14:1140. [PMID: 37372320 DOI: 10.3390/genes14061140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The tonoplast monosaccharide transporter (TMT) family plays essential roles in sugar transport and plant growth. However, there is limited knowledge about the evolutionary dynamics of this important gene family in important Gramineae crops and putative function of rice TMT genes under external stresses. Here, the gene structural characteristics, chromosomal location, evolutionary relationship, and expression patterns of TMT genes were analyzed at a genome-wide scale. We identified six, three, six, six, four, six, and four TMT genes, respectively, in Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Oryza rufipogon (Or), Oryza sativa ssp. japonica (Os), Sorghum bicolor (Sb), Setaria italica (Si), and Zea mays (Zm). All TMT proteins were divided into three clades based on the phylogenetic tree, gene structures, and protein motifs. The transcriptome data and qRT-PCR experiments suggested that each clade members had different expression patterns in various tissues and multiple reproductive tissues. In addition, the microarray datasets of rice indicated that different rice subspecies responded differently to the same intensity of salt or heat stress. The Fst value results indicated that the TMT gene family in rice was under different selection pressures in the process of rice subspecies differentiation and later selection breeding. Our findings pave the way for further insights into the evolutionary patterns of the TMT gene family in the important Gramineae crops and provide important references for characterizing the functions of rice TMT genes.
Collapse
Affiliation(s)
- Mingao Zhou
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Deng
- The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Yifei Jiang
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guoning Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jianmin Chen
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
8
|
de Tombeur F, Pélissier R, Shihan A, Rahajaharilaza K, Fort F, Mahaut L, Lemoine T, Thorne SJ, Hartley SE, Luquet D, Fabre D, Lambers H, Morel JB, Ballini E, Violle C. Growth-defence trade-off in rice: fast-growing and acquisitive genotypes have lower expression of genes involved in immunity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3094-3103. [PMID: 36840921 PMCID: PMC10199124 DOI: 10.1093/jxb/erad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023]
Abstract
Plant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth-defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow-fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence. We also quantified the concentration of silicon (Si) in leaves to estimate silica-based defences. Rice genotypes were aligned along a slow-fast continuum, with slow-growing, late-flowering genotypes versus fast-growing, early-flowering genotypes. Leaf dry matter content and leaf Si concentrations were not aligned with this axis and negatively correlated with each other. Live-fast genotypes exhibited greater expression of OsNPR1, a regulator of the salicylic acid pathway that promotes plant defence while suppressing plant growth. These genotypes also exhibited greater expression of SPL7 and GH3.2, which are also involved in both stress resistance and growth. Our results do not support the hypothesis of a growth-defence trade-off when leaf Si and leaf dry matter content are considered, but they do when hormonal pathway genes are considered. We demonstrate the benefits of combining ecological and molecular approaches to elucidate the growth-defence trade-off, opening new avenues for plant breeding and crop science.
Collapse
Affiliation(s)
- Felix de Tombeur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Rémi Pélissier
- PHIM Plant Health Institute, Univ Montpellier, Institut Agro, INRAE, CIRAD, Montpellier, France
| | - Ammar Shihan
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Koloina Rahajaharilaza
- Faculty of Sciences, DS Life and Environmental Sciences, University of Antananarivo 101, Antananarivo, Madagascar
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Univ Valéry, Montpellier, France
| | - Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Taïna Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Sarah J Thorne
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Sue E Hartley
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Delphine Luquet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Denis Fabre
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Jean-Benoît Morel
- PHIM Plant Health Institute, Univ Montpellier, Institut Agro, INRAE, CIRAD, Montpellier, France
| | - Elsa Ballini
- PHIM Plant Health Institute, Univ Montpellier, Institut Agro, INRAE, CIRAD, Montpellier, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
9
|
Lee KW, Chen JJW, Wu CS, Chang HC, Chen HY, Kuo HH, Lee YS, Chang YL, Chang HC, Shiue SY, Wu YC, Ho YC, Chen PW. Auxin plays a role in the adaptation of rice to anaerobic germination and seedling establishment. PLANT, CELL & ENVIRONMENT 2023; 46:1157-1175. [PMID: 36071575 DOI: 10.1111/pce.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Auxin is well known to stimulate coleoptile elongation and rapid seedling growth in the air. However, its role in regulating rice germination and seedling establishment under submergence is largely unknown. Previous studies revealed that excessive levels of indole-3-acetic acid(IAA) frequently cause the inhibition of plant growth and development. In this study, the high-level accumulation of endogenous IAA is observed under dark submergence, stimulating rice coleoptile elongation but limiting the root and primary leaf growth during anaerobic germination (AG). We found that oxygen and light can reduce IAA levels, promote the seedling establishment and enhance rice AG tolerance. miRNA microarray profiling and RNA gel blot analysis results show that the expression of miR167 is negatively regulated by submergence; it subsequently modulates the accumulation of free IAA through the miR167-ARF-GH3 pathway. The OsGH3-8 encodes an IAA-amido synthetase that functions to prevent free IAA accumulation. Reduced miR167 levels or overexpressing OsGH3-8 increase auxin metabolism, reduce endogenous levels of free IAA and enhance rice AG tolerance. Our studies reveal that poor seed germination and seedling growth inhibition resulting from excessive IAA accumulation would cause intolerance to submergence in rice, suggesting that a certain threshold level of auxin is essential for rice AG tolerance.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Shen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ho-Chun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hong-Yue Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hsin-Hao Kuo
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ya-Shan Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yan-Lun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hung-Chia Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Shiau-Yu Shiue
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Chen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Peng-Wen Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
10
|
Zhang X, Lai C, Xu L, Guan Q, Zhang S, Chen Y, Zhang Z, Chen Y, Lai Z, Lin Y. Integrated proteome and acetylome analyses provide novel insights into early somatic embryogenesis of Dimocarpus longan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:903-916. [PMID: 36878164 DOI: 10.1016/j.plaphy.2023.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Longan (Dimocarpus longan) is a precious subtropical fruit with high nutritional value. The somatic embryogenesis (SE) affects the quality and yield of fruit. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. Thus, understanding the molecular basis of embryogenesis in longan will help to develop strategies for mass production of quality planting material. Lysine acetylation (Kac) plays an important role in diverse cellular processes, but limited knowledge is available regarding acetylation modifications in plant early SE. In this study, the proteome and acetylome of longan embryogenic callus (ECs) and globular embryos (GEs) were investigated. In total, 7232 proteins and 14,597 Kac sites were identified, and this resulted in the discovery of 1178 differentially expressed proteins and 669 differentially expressed acetylated proteins. KEGG and GO analysis showed that glucose metabolism, carbon metabolism, fatty acid degradation, and oxidative phosphorylation pathways were influenced by Kac modification. Furthermore, sodium butyrate (Sb, a deacetylase inhibitor) led to reduced the proliferation and delayed the differentiation of ECs by regulating the homeostasis of reactive oxygen species (ROS) andindole-3-acetic acid (IAA). Our study provides a comprehensive proteomic and acetylomic analysis to aid in understanding the molecular mechanisms involved in early SE, representing a potential tool for genetic improvement of longan.
Collapse
Affiliation(s)
- Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luzhen Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Zeng Y, Wen J, Fu J, Geng H, Dan Z, Zhao W, Xu W, Huang W. Genome-wide identification and comprehensive analysis of tubby-like protein gene family in multiple crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1093944. [PMID: 36589128 PMCID: PMC9795058 DOI: 10.3389/fpls.2022.1093944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The highly conserved tubby-like proteins (TLPs) play key roles in animal neuronal development and plant growth. The abiotic stress tolerance function of TLPs has been widely explored in plants, however, little is known about comparative studies of TLPs within crops. METHODS Bioinformatic identification, phylogenetic analysis, Cis-element analysis, expression analysis, Cis-element analysis, expression analysis and so on were explored to analysis the TLP gene family of multiple crops. RESULTS In this study, a comprehensive analysis of TLP genes were carried out in seven crops to explore whether similar function of TLPs in rice could be achieved in other crops. We identified 20, 9, 14, 11, 12, 35, 14 and 13 TLP genes in Glycine max, Hordeum vulgare, Sorghum bicolor, Arabidopsis thaliana, Oryza sativa Japonica, Triticum aestivum, Setaria italic and Zea mays, respectively. All of them were divided into two groups and ten orthogroups (Ors) based on amino acids. A majority of TLP genes had two domains, tubby-like domain and F-box domain, while members of Or5 only had tubby-like domain. In addition, Or5 had more exons and shorter DNA sequences, showing that characteristics of different Ors reflected the differentiated function and feature of TLP genes in evolutionary process, and Or5 was the most different from the other Ors. Besides, we recognized 25 cis-elements in the promoter of TLP genes and explored multiple new regulation pathway of TLPs including light and hormone response. The bioinformatic and transcriptomic analysis implied the stresses induced expression and possible functional redundancy of TLP genes. We detected the expression level of 6 OsTLP genes at 1 to 6 days after seed germination in rice, and the most obvious changes in these days were appeared in OsTLP10 and OsTLP12. DISCUSSION Combined yeast two-hybrid system and pull down assay, we suggested that the TLP genes of Or1 may have similar function during seed germination in different species. In general, the results of comprehensive analysis of TLP gene family in multiple species provide valuable evolutionary and functional information of TLP gene family which are useful for further application and study of TLP genes.
Collapse
|
12
|
Li Y, Gao H, Zhang H, Yu R, Feng F, Tang J, Li B. Characterization and expression profiling of G protein-coupled receptors (GPCRs) in Spodoptera litura (Lepidoptera: Noctuidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101018. [PMID: 35994891 DOI: 10.1016/j.cbd.2022.101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
Spodoptera litura is a highly destructive omnivorous pest, and they caused serious damage to various crops. G protein-coupled receptors (GPCRs) mediate dozens of physiological processes including reproduction, development, life span and behaviors, but the information of these receptors has been lacking in S. litura. Here, we methodically identified 122 GPCRs in S. litura and made an assay of their expression patterns in different tissues. Comparing the identified GPCRs with homologous genes of other insects, it is obvious that the subfamily A2 (biogenic amine receptors) and the subfamily A3 (neuropeptide and protein hormone receptors) of S. litura have expanded to a certain extent, which may be related to the omnivorous nature and drought environment resistance of S. litura. Besides, the large Methuselah (Mth)/Methuselah-like (Mthl) subfamily of S. litura may be involved in many physiological functions such as longevity and stress response. Apart from duplicate receptors, the loss of parathyroid hormone receptor (PTHR) and the bride of sevenless (Boss) receptor in the lepidopteran insects may imply a new pattern of wing formation and energy metabolism in lepidopteran insects. In addition, the high expression level of GPCRs in different tissues reflects the functional diversity of GPCRs regulating. Systemic identification and initial characterization of GPCRs in S. litura provide a basis for further studies to reveal the functions of these receptors in regulating physiology and behavior.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
13
|
Ma C, Yuan S, Xie B, Li Q, Wang Q, Shao M. IAA Plays an Important Role in Alkaline Stress Tolerance by Modulating Root Development and ROS Detoxifying Systems in Rice Plants. Int J Mol Sci 2022; 23:ijms232314817. [PMID: 36499144 PMCID: PMC9740826 DOI: 10.3390/ijms232314817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin regulates plant growth and development, as well as helps plants to survive abiotic stresses, but the effects of auxin on the growth of alkaline-stressed rice and the underlying molecular and physiological mechanisms remain unknown. Through exogenous application of IAA/TIBA, this study explored the physiological and molecular mechanisms of alkaline stress tolerance enhancement using two rice genotypes. Alkaline stress was observed to damage the plant growth, while exogenous application of IAA mitigates the alkaline-stress-induce inhibition of plant growth. After application of exogenous IAA to alkaline-stressed rice, dry shoot biomass, foliar chlorophyll content, photosynthetic rate in the two rice genotypes increased by 12.6-15.6%, 11.7-40.3%, 51.4-106.6%, respectively. The adventitious root number, root surface area, total root length and dry root biomass in the two rice genotypes increased by 29.3-33.3%, 26.4-27.2%, 42.5-35.5% and 12.8-33.1%, respectively. The accumulation of H2O2, MAD were significantly decreased with the application of IAA. The activities of CAT, POD, and SOD in rice plants were significantly increased by exogenous application of IAA. The expression levels of genes controlling IAA biosynthesis and transport were significantly increased, while there were no significant effects on the gene expression that controlled IAA catabolism. These results showed that exogenous application of IAA could mitigate the alkaline-stress-induced inhibition of plant growth by regulating the reactive oxygen species scavenging system, root development and expression of gene involved in IAA biosynthesis, transport and catabolism. These results provide a new direction and empirical basis for improving crop alkaline tolerance with exogenous application of IAA.
Collapse
Affiliation(s)
- Changkun Ma
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Correspondence: (C.M.); (Q.W.)
| | - Shuai Yuan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Biao Xie
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Qian Li
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Quanjiu Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Correspondence: (C.M.); (Q.W.)
| | - Mingan Shao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Gou H, Nai G, Lu S, Ma W, Chen B, Mao J. Genome-wide identification and expression analysis of PIN gene family under phytohormone and abiotic stresses in Vitis Vinifera L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1905-1919. [PMID: 36484025 PMCID: PMC9723067 DOI: 10.1007/s12298-022-01239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transport proteins PIN-formed (PIN) has wide adaptability to hormone and abiotic stress, but the response mechanism of PINs in grape remains unclear. In this study, 12 members of VvPINs were identified and distributed on 8 chromosomes. The PIN genes of five species were divided into two subgroups, and the similarity of exons/introns and motifs of VvPIN genes were found in the same subgroup. Meanwhile, according to the examination of conserved motifs, the motif 3 included the conserved structure NPNTY. The promoter region of VvPIN gene family contained various cis-acting elements, which were related to light, abiotic stress, and hormones which are essential for growth and development. Additionally, VvPIN1, VvPIN9, and VvPIN11 proteins simultaneously interacted with the ARF, ABC, PINOID, GBF1, and VIT_08s0007g09010. The results of qRT-PCR revealed that the majority of the VvPINs were highly induced by NAA, GA3, ABA, MeJA, SA, NaCl, low-temperature (4 ℃), and PEG treatments, and the results were consistent with the prediction of the cis-acting elements. Moreover, the expression profile and quantitative real-time PCR (qRT-PCR) demonstrated that VvPIN genes were expressed in roots, stems, and leaves. The subcellular localization of VvPIN1 in Nicotiana benthamiana revealed that VvPIN1 was localized at the plasma membrane. Collectively, this study revealed that PIN genes could respond to various abiotic stresses, and provided a framework for regulating the expression of PIN genes to enhance the resistance of the grape. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01239-8.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| |
Collapse
|
15
|
Involvement of Auxin-Mediated CqEXPA50 Contributes to Salt Tolerance in Quinoa (Chenopodium quinoa) by Interaction with Auxin Pathway Genes. Int J Mol Sci 2022; 23:ijms23158480. [PMID: 35955612 PMCID: PMC9369402 DOI: 10.3390/ijms23158480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.
Collapse
|
16
|
Zheng K, Pang L, Xue X, Gao P, Zhao H, Wang Y, Han S. Genome-Wide Comprehensive Survey of the Subtilisin-Like Proteases Gene Family Associated With Rice Caryopsis Development. FRONTIERS IN PLANT SCIENCE 2022; 13:943184. [PMID: 35795345 PMCID: PMC9251471 DOI: 10.3389/fpls.2022.943184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Subtilisin-like proteases (SUBs), which are extensively distributed in three life domains, affect all aspects of the plant life cycle, from embryogenesis and organogenesis to senescence. To explore the role of SUBs in rice caryopsis development, we recharacterized the OsSUB gene family in rice (Oryza sativa ssp. japonica). In addition, investigation of the SUBs was conducted across cultivated and wild rice in seven other Oryza diploid species (O. brachyantha, O. glaberrima, O. meridionalis, O. nivara, O. punctata, O. rufipogon, and O. sativa ssp. indica). Sixty-two OsSUBs were identified in the latest O. sativa ssp. japonica genome, which was higher than that observed in wild species. The SUB gene family was classified into six evolutionary branches, and SUB1 and SUB3 possessed all tandem duplication (TD) genes. All paralogous SUBs in eight Oryza plants underwent significant purifying selection. The expansion of SUBs in cultivated rice was primarily associated with the occurrence of tandem duplication events and purifying selection and may be the result of rice domestication. Combining the expression patterns of OsSUBs in different rice tissues and qRT-PCR verification, four OsSUBs were expressed in rice caryopses. Moreover, OsSUBs expressed in rice caryopses possessed an earlier origin in Oryza, and the gene cluster formed by OsSUBs together with the surrounding gene blocks may be responsible for the specific expression of OsSUBs in caryopses. All the above insights were inseparable from the continuous evolution and domestication of Oryza. Together, our findings not only contribute to the understanding of the evolution of SUBs in cultivated and wild rice but also lay the molecular foundation of caryopsis development and engineering improvement of crop yield.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lu Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ping Gao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining, China
| |
Collapse
|
17
|
Genome-wide identification and expression analysis response to GA 3 stresses of WRKY gene family in seed hemp (Cannabis sativa L). Gene 2022; 822:146290. [PMID: 35176429 DOI: 10.1016/j.gene.2022.146290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
WRKY transcription factor is one of the largest transcription factor families in higher plants. However, the investigations of the WRKY gene family have not yet been reported in seed hemp. In the present study, we identified 39 CasWRKYs at the genome-wide level and analyzed phylogenetic relationship, chromosome location, cis-acting elements, gene structure, conserved motif, and expression pattern. Based on the gene structure and phylogenetic analyses, CasWRKY proteins were divided into 3 groups and 7 subgroups. The gene duplication investigation revealed that 6 and 5 pairs of CasWRKY genes underwent tandem and segmental duplication events, respectively. These events may contribute to the diversity and expansion of the CasWRKY gene family. The regulatory elements in the promoter regions of CasWRKYs contained diverse cis-regulatory elements, among which P-box cis-regulatory elements showed high frequency, indicating that CasWRKYs can respond to the regulation of gibberellin. The expression profiles derived from RNA-seq and qRT-PCR showed that 13 CasWRKY genes could respond to GA3 stress and affect fiber development, as well as play significant roles in stem growth and development. This study will serve as molecular basis and practical reference for further exploring the genetic evolution and biological function of CasWRKY genes in seed hemp.
Collapse
|
18
|
Zhang C, Nie X, Kong W, Deng X, Sun T, Liu X, Li Y. Genome-Wide Identification and Evolution Analysis of the Gibberellin Oxidase Gene Family in Six Gramineae Crops. Genes (Basel) 2022; 13:863. [PMID: 35627248 PMCID: PMC9141362 DOI: 10.3390/genes13050863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
The plant hormones gibberellins (GAs) regulate plant growth and development and are closely related to the yield of cash crops. The GA oxidases (GAoxs), including the GA2ox, GA3ox, and GA20ox subfamilies, play pivotal roles in GAs' biosynthesis and metabolism, but their classification and evolutionary pattern in Gramineae crops remain unclear. We thus conducted a comparative genomic study of GAox genes in six Gramineae representative crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa (Os). A total of 105 GAox genes were identified in these six crop genomes, belonging to the C19-GA2ox, C20-GA2ox, GA3ox, and GA20ox subfamilies. Based on orthogroup (OG) analysis, GAox genes were divided into nine OGs and the number of GAox genes in each of the OGs was similar among all tested crops, which indicated that GAox genes may have completed their family differentiations before the species differentiations of the tested species. The motif composition of GAox proteins showed that motifs 1, 2, 4, and 5, forming the 2OG-FeII_Oxy domain, were conserved in all identified GAox protein sequences, while motifs 11, 14, and 15 existed specifically in the GA20ox, C19-GA2ox, and C20-GA2ox protein sequences. Subsequently, the results of gene duplication events suggested that GAox genes mainly expanded in the form of WGD/SD and underwent purification selection and that maize had more GAox genes than other species due to its recent duplication events. The cis-acting elements analysis indicated that GAox genes may respond to growth and development, stress, hormones, and light signals. Moreover, the expression profiles of rice and maize showed that GAox genes were predominantly expressed in the panicles of the above two plants and the expression of several GAox genes was significantly induced by salt or cold stresses. In conclusion, our results provided further insight into GAox genes' evolutionary differences among six representative Gramineae and highlighted GAox genes that may play a role in abiotic stress.
Collapse
Affiliation(s)
- Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Xin Nie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| |
Collapse
|
19
|
Leftley N, Banda J, Pandey B, Bennett M, Voß U. Uncovering How Auxin Optimizes Root Systems Architecture in Response to Environmental Stresses. Cold Spring Harb Perspect Biol 2021; 13:a040014. [PMID: 33903159 PMCID: PMC8559545 DOI: 10.1101/cshperspect.a040014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since colonizing land, plants have developed mechanisms to tolerate a broad range of abiotic stresses that include flooding, drought, high salinity, and nutrient limitation. Roots play a key role acclimating plants to these as their developmental plasticity enables them to grow toward more favorable conditions and away from limiting or harmful stresses. The phytohormone auxin plays a key role translating these environmental signals into developmental outputs. This is achieved by modulating auxin levels and/or signaling, often through cross talk with other hormone signals like abscisic acid (ABA) or ethylene. In our review, we discuss how auxin controls root responses to water, osmotic and nutrient-related stresses, and describe how the synthesis, degradation, transport, and response of this key signaling hormone helps optimize root architecture to maximize resource acquisition while limiting the impact of abiotic stresses.
Collapse
Affiliation(s)
- Nicola Leftley
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Bipin Pandey
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Ute Voß
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
20
|
Cheng M, Yuan H, Wang R, Zou J, Liang T, Yang F, Li S. Genome-Wide Identification and Analysis of the Metallothionein Genes in Oryza Genus. Int J Mol Sci 2021; 22:ijms22179651. [PMID: 34502554 PMCID: PMC8431808 DOI: 10.3390/ijms22179651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022] Open
Abstract
Metallothionein (MT) proteins are low molecular mass, cysteine-rich, and metal-binding proteins that play an important role in maintaining metal homeostasis and stress response. However, the evolutionary relationships and functional differentiation of MT in the Oryza genus remain unclear. Here we identified 53 MT genes from six Oryza genera, including O. sativa ssp. japonica, O. rufipogon, O. sativa ssp. indica, O. nivara, O. glumaepatula, and O. barthii. The MT genes were clustered into four groups based on phylogenetic analysis. MT genes are unevenly distributed on chromosomes; almost half of the MT genes were clustered on chromosome 12, which may result from a fragment duplication containing the MT genes on chromosome 12. Five pairs of segmental duplication events and ten pairs of tandem duplication events were found in the rice MT family. The Ka/Ks values of the fifteen duplicated MT genes indicated that the duplicated MT genes were under a strong negative selection during evolution. Next, combining the promoter activity assay with gene expression analysis revealed different expression patterns of MT genes. In addition, the expression of OsMT genes was induced under different stresses, including NaCl, CdCl2, ABA, and MeJ treatments. Additionally, we found that OsMT genes were mainly located in chloroplasts. These results imply that OsMT genes play different roles in response to these stresses. All results provide important insights into the evolution of the MT gene family in the Oryza genus, and will be helpful to further study the function of MT genes.
Collapse
|
21
|
Huang J, Zhang Q, He Y, Liu W, Xu Y, Liu K, Xian F, Li J, Hu J. Genome-Wide Identification, Expansion Mechanism and Expression Profiling Analysis of GLABROUS1 Enhancer-Binding Protein (GeBP) Gene Family in Gramineae Crops. Int J Mol Sci 2021; 22:ijms22168758. [PMID: 34445464 PMCID: PMC8395763 DOI: 10.3390/ijms22168758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
The GLABROUS1 enhancer-binding protein (GeBP) gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the GeBP gene family is available in the case of the Gramineae crops. Here, 125 GeBP genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis. Evolutionary analyses showed that whole genome duplication (WGD) and segmental duplication play important roles in the expansion of the GeBP gene family. The various gene structures and protein motifs revealed that the GeBP genes play diverse functions in plants. In addition, the expression profile analysis of the GeBP genes showed that 13 genes expressed in all tested organs and stages of development in rice, with especially high levels of expression in the leaf, palea, and lemma. Furthermore, the hormone- and metal-induced expression patterns showed that the expression levels of most genes were affected by various biotic stresses, implying that the GeBP genes had an important function in response to various biotic stresses. Furthermore, we confirmed that OsGeBP11 and OsGeBP12 were localized to the nucleus through transient expression in the rice protoplast, indicating that GeBPs function as transcription factors to regulate the expression of downstream genes. This study provides a comprehensive understanding of the origin and evolutionary history of the GeBP genes family in Gramineae, and will be helpful in a further functional characterization of the GeBP genes.
Collapse
Affiliation(s)
- Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Qiannan Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Yurong He
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Wei Liu
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, UK;
| | - Yanghong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200000, China;
| | - Kejia Liu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Fengjun Xian
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Junde Li
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
- Correspondence:
| |
Collapse
|
22
|
Saini S, Kaur N, Marothia D, Singh B, Singh V, Gantet P, Pati PK. Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress. PLANTS 2021; 10:plants10081544. [PMID: 34451587 PMCID: PMC8399380 DOI: 10.3390/plants10081544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
Plants remodel their root architecture in response to a salinity stress stimulus. This process is regulated by an array of factors including phytohormones, particularly auxin. In the present study, in order to better understand the mechanisms involved in salinity stress adaptation in rice, we compared two contrasting rice cultivars—Luna Suvarna, a salt tolerant, and IR64, a salt sensitive cultivar. Phenotypic investigations suggested that Luna Suvarna in comparison with IR64 presented stress adaptive root traits which correlated with a higher accumulation of auxin in its roots. The expression level investigation of auxin signaling pathway genes revealed an increase in several auxin homeostasis genes transcript levels in Luna Suvarna compared with IR64 under salinity stress. Furthermore, protein profiling showed 18 proteins that were differentially regulated between the roots of two cultivars, and some of them were salinity stress responsive proteins found exclusively in the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting salinity stress tolerance. This included proteins related to the salt overly sensitive pathway, root growth, the reactive oxygen species scavenging system, and abscisic acid activation. Taken together, our results highlight that Luna Suvarna involves a combination of morphological and molecular traits of the root system that could prime the plant to better tolerate salinity stress.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Deeksha Marothia
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Baldev Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Pascal Gantet
- Université de Montpellier, UMR DIADE, Centre de Recherche de l’IRD, Avenue Agropolis, BP 64501, CEDEX 5, 34394 Montpellier, France
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (P.G.); (P.K.P.)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
- Correspondence: (P.G.); (P.K.P.)
| |
Collapse
|
23
|
Smolko A, Bauer N, Pavlović I, Pěnčík A, Novák O, Salopek-Sondi B. Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress. Int J Mol Sci 2021; 22:ijms22157993. [PMID: 34360759 PMCID: PMC8348202 DOI: 10.3390/ijms22157993] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.
Collapse
Affiliation(s)
- Ana Smolko
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (I.P.)
| | - Nataša Bauer
- Department for Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Iva Pavlović
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (I.P.)
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Branka Salopek-Sondi
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (I.P.)
- Correspondence: ; Tel.: +385-1-4561-143
| |
Collapse
|
24
|
Chen SP, Sun WH, Xiong YF, Jiang YT, Liu XD, Liao XY, Zhang DY, Jiang SZ, Li Y, Liu B, Ma L, Yu X, He L, Liu B, Feng JL, Feng LZ, Wang ZW, Zou SQ, Lan SR, Liu ZJ. The Phoebe genome sheds light on the evolution of magnoliids. HORTICULTURE RESEARCH 2020; 7:146. [PMID: 32922818 PMCID: PMC7459323 DOI: 10.1038/s41438-020-00368-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 05/09/2023]
Abstract
Lauraceae includes the genus Phoebe, and the family is linked to the evolution of magnoliids. We sequenced the genome of Phoebe bournei Nanmu. The assembled genome size was 989.19 Mb, with a contig N50 value of 2.05 Mb. A total of 28,198 protein-coding genes were annotated in P. bournei. Whole-genome duplication (WGD) analysis showed that Lauraceae has experienced two WGD events; the older WGD event occurred just before the divergence of Lauraceae and Magnoliales, and the more recent WGD was shared by all lineages of Lauraceae. The phylogenetic tree showed that magnoliids form a sister clade to monocots and eudicots. We also identified 63 MADS-box genes, including AGL12-like genes that may be related to the regulation of P. bournei roots and FIN219-like genes encoding GH3 proteins, which are involved in photomorphogenesis. SAUR50-like genes involved in light signal-mediated pedicel or stem development were also identified. Four ATMYB46- and three PtrEPSP-homologous genes related to lignin biosynthesis were identified. These genes may be associated with the formation of straight trunks in P. bournei. Overall, the P. bournei reference genome provides insight into the origin, evolution, and diversification of Phoebe and other magnoliids.
Collapse
Affiliation(s)
- Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Wei-Hong Sun
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yuan-Fang Xiong
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yu-Ting Jiang
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xue-Die Liu
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xing-Yu Liao
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Di-Yang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shu-Zhen Jiang
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yu Li
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Bin Liu
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Li He
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Bao Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jin-Lin Feng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Li-Zhen Feng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | | | - Shuang-Quan Zou
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Si-Ren Lan
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 325005 Wenzhou, China
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, 250100 Jinan, China
| |
Collapse
|
25
|
Genome-wide characterization and expression analyses of the auxin/indole-3-acetic acid (Aux/IAA) gene family in barley (Hordeum vulgare L.). Sci Rep 2020; 10:10242. [PMID: 32581321 PMCID: PMC7314776 DOI: 10.1038/s41598-020-66860-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/28/2020] [Indexed: 01/05/2023] Open
Abstract
Aux/IAA genes are early auxin-responsive genes and essential for auxin signaling transduction. There is little information about Aux/IAAs in the agriculturally important cereal, barley. Using in silico method, we identified and subsequently characterized 36 Aux/IAAs from the barley genome. Based on their genomic sequences and the phylogenic relationship with Arabidopsis and rice Aux/IAA, the 36 HvIAAs were categorized into two major groups and 14 subgroups. The indication of the presence or absence of these domains for the biological functions and acting mechanisms was discussed. The cis-element distributions in HvIAA promoters suggests that the HvIAAs expressions may not only regulated by auxin (the presence of AuxREs and TGA-element) but also by other hormones and developmental and environmental cues. We then studied the HvIAAs expression in response to NAA (1-Naphthaleneacetic acid) using quantitative real-time PCR (qRT-PCR). Like the promoter analysis, only 14 HvIAAs were upregulated by NAA over two-fold at 4 h. HvIAAs were clustered into three groups based on the spatiotemporal expression data. We confirmed by qRT-PCR that most HvIAAs, especially HvIAA3, HvIAA7, HvIAA8, HvIAA18, HvIAA24 and HvIAA34, are expressed in the developing barley spike compared within seedling, suggesting their roles in regulating spike development. Taken together, our data provide a foundation for further revealing the biological function of these HvIAAs.
Collapse
|
26
|
Kong W, Sun T, Zhang C, Qiang Y, Li Y. Micro-Evolution Analysis Reveals Diverged Patterns of Polyol Transporters in Seven Gramineae Crops. Front Genet 2020; 11:565. [PMID: 32636871 PMCID: PMC7317338 DOI: 10.3389/fgene.2020.00565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 01/11/2023] Open
Abstract
Polyol transporters (PLTs), also called polyol/monosaccharide transporters, is of significance in determining plant development and sugar transportation. However, the diverged evolutionary patterns of the PLT gene family in Gramineae crops are still unclear. Here a micro-evolution analysis was performed among the seven Gramineae representative crops using whole-genome sequences, i.e., Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Oryza rufipogon (Or), Oryza sativa (Os), Sorghum bicolor (Sb), Setaria italica (Si), and Zea mays (Zm), leading to the identification of 12, 11, 12, 15, 20, 24, and 20 PLT genes, respectively. In this study, all PLT genes were divided into nine orthogroups (OGs). However, the number of PLT genes and the distribution of PLT OGs were not the same in these seven Gramineae species, and different OGs were also subject to different purification selection pressures. These results indicated that the PLT OGs of the PLT gene family have been expanded or lost unevenly in all tested species. Then, our results of gene duplication events confirmed that gene duplication events promoted the expansion of the PLT gene family in some Gramineous plants, namely, Bd, Or, Os, Si, Sb, and Zm, but the degree of gene family expansion, the type of PLT gene duplication, and the differentiation time of duplicate gene pairs varied greatly among these species. In addition, the sequence alignment and the internal repeat analysis of all PLTs protein sequences implied that the PLT protein sequences may originate from an internal repeat duplication of an ancestral six transmembrane helical units. Besides that, the protein motifs result highlighted that the PLT protein sequences were highly conserved, whereas the functional differentiation of the PLT genes was characterized by different gene structures, upstream elements, as well as co-expression analysis. The gene expression analysis of rice and maize showed that the PLT genes have a wide range of expression patterns, suggesting diverse biological functions. Taken together, our finding provided a perspective on the evolution differences and the functional characterizations of PLT genes in Gramineae representative crops.
Collapse
Affiliation(s)
| | | | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
De novo RNA sequencing analysis of Aeluropus littoralis halophyte plant under salinity stress. Sci Rep 2020; 10:9148. [PMID: 32499577 PMCID: PMC7272644 DOI: 10.1038/s41598-020-65947-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 05/13/2020] [Indexed: 01/24/2023] Open
Abstract
The study of salt tolerance mechanisms in halophyte plants can provide valuable information for crop breeding and plant engineering programs. The aim of the present study was to investigate whole transcriptome analysis of Aeluropus littoralis in response to salinity stress (200 and 400 mM NaCl) by de novo RNA-sequencing. To assemble the transcriptome, Trinity v2.4.0 and Bridger tools, were comparatively used with two k-mer sizes (25 and 32 bp). The de novo assembled transcriptome by Bridger (k-mer 32) was chosen as final assembly for subsequent analysis. In general, 103290 transcripts were obtained. The differential expression analysis (log2FC > 1 and FDR < 0.01) showed that 1861 transcripts expressed differentially, including169 up and 316 down-regulated transcripts in 200 mM NaCl treatment and 1035 up and 430 down-regulated transcripts in 400 mM NaCl treatment compared to control. In addition, 89 transcripts were common in both treatments. The most important over-represented terms in the GO analysis of differentially expressed genes (FDR < 0.05) were chitin response, response to abscisic acid, and regulation of jasmonic acid mediated signaling pathway under 400 mM NaCl treatment and cell cycle, cell division, and mitotic cell cycle process under 200 mM treatment. In addition, the phosphatidylcholine biosynthetic process term was common in both salt treatments. Interestingly, under 400 mM salt treatment, the PRC1 complex that contributes to chromatin remodeling was also enriched along with vacuole as a general salinity stress responsive cell component. Among enriched pathways, the MAPK signaling pathway (ko04016) and phytohormone signal transduction (ko04075) were significantly enriched in 400 mM NaCl treatment, whereas DNA replication (ko03032) was the only pathway that significantly enriched in 200 mM NaCl treatment. Finally, our findings indicate the salt-concentration depended responses of A. littoralis, which well-known salinity stress-related pathways are induced in 400 mM NaCl, while less considered pathways, e.g. cell cycle and DNA replication, are highlighted under 200 mM NaCl treatment.
Collapse
|
28
|
Lang Y, Liu Z, Zheng Z. Retracted Article: Investigation of yellow horn ( Xanthoceras sorbifolia Bunge) transcriptome in response to different abiotic stresses: a comparative RNA-Seq study. RSC Adv 2020; 10:6512-6519. [PMID: 35496033 PMCID: PMC9049705 DOI: 10.1039/c9ra09535g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
Yellow horn (Xanthoceras sorbifolia Bunge) is a well-known oil-rich seed shrub which can grow well in barren and arid environments in the northern part of China. Yellow horn has received worldwide attention because of its excellent economic and environmental value. However, because of its limited genetic data, little information can be found regarding the molecular defense mechanisms of yellow horn exposed to various abiotic stresses. In view of this, the current study aims to investigate the impact of different abiotic stresses (i.e. NaCl, ABA and low temperature) on the transcriptome of yellow horn using RNA-Seq. Based on the transcriptome sequencing data, approximately 27% to 45% of stress-responsive genes were found highly expressed after stress treatment for 24 h. In addition, these genes were found to be still expressed after stress treatment for 48 h. However, many additional genes were stress-regulated after 48 h treatment compared with the 24 h treatment. GO enrichment analysis revealed that the expression patterns of the stress-responsive, type-specific terms were generally down-regulated. Most shared GO terms were primarily involved in protein folding, unfolding protein binding, protein transport and protein modification. Further, transcription factors (TFs), such as ERFs, bHLH, GRAS and NAC, were found to be enriched only in the low temperature treatment group, particularly the ERF TFs families. These combined results suggested that yellow horn may have developed specific molecular defense systems against diverse abiotic stresses.
Collapse
Affiliation(s)
- Yanhe Lang
- State Key Laboratory of Tree Genetics and Breeding Laboratory, Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), College of Life Science, Northeast Forestry University Harbin Heilongjiang Province China +86-151-0453-8096
| | - Zhi Liu
- State Key Laboratory of Tree Genetics and Breeding Laboratory, Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), College of Life Science, Northeast Forestry University Harbin Heilongjiang Province China +86-151-0453-8096
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding Laboratory, Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), College of Life Science, Northeast Forestry University Harbin Heilongjiang Province China +86-151-0453-8096
| |
Collapse
|
29
|
Jadamba C, Kang K, Paek NC, Lee SI, Yoo SC. Overexpression of Rice Expansin7 ( Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. Int J Mol Sci 2020; 21:ijms21020454. [PMID: 31936829 PMCID: PMC7013816 DOI: 10.3390/ijms21020454] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.
Collapse
Affiliation(s)
- Chuluuntsetseg Jadamba
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea
- Correspondence: (S.I.L.); (S.-C.Y.)
| | - Soo-Cheul Yoo
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
- Correspondence: (S.I.L.); (S.-C.Y.)
| |
Collapse
|
30
|
Wei H, Liu J, Zheng J, Zhou R, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Deng M, Chen Y, Wan H. Sugar transporter proteins in Capsicum: identification, characterization, evolution and expression patterns. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1749529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huawei Wei
- College of Horticulture, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu, China
| | - Jiaqiu Zheng
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Agro Food Park, Denmark
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Minghua Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Yougen Chen
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
31
|
Xie Z, Wang J, Wang W, Wang Y, Xu J, Li Z, Zhao X, Fu B. Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin. FRONTIERS IN PLANT SCIENCE 2020; 11:618680. [PMID: 33519878 PMCID: PMC7840565 DOI: 10.3389/fpls.2020.618680] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
High salinity is one of the major abiotic stresses limiting rice production. Melatonin has been implicated in the salt tolerance of rice. However, the molecular basis of melatonin-mediated salt tolerance in rice remains unclear. In the present study, we performed an integrated transcriptome and metabolome profiling of rice seedlings treated with salt, melatonin, or salt + melatonin. The application of exogenous melatonin increased the salt tolerance of rice plants by decreasing the sodium content to maintain Na+/K+ homeostasis, alleviating membrane lipid oxidation, and enhancing chlorophyll contention. A comparative transcriptome analysis revealed that complex molecular pathways contribute to melatonin-mediated salt tolerance. More specifically, the AP2/EREBP-HB-WRKY transcriptional cascade and phytohormone (e.g., auxin and abscisic acid) signaling pathways were activated by an exogenous melatonin treatment. On the basis of metabolome profiles, 64 metabolites, such as amino acids, organic acids, nucleotides, and secondary metabolites, were identified with increased abundances only in plants treated with salt + melatonin. Several of these metabolites including endogenous melatonin and its intermediates (5-hydroxy-L-tryptophan, N 1-acetyl-N 2-formyl-5-methoxykynuramine), gallic acid, diosmetin, and cyanidin 3-O-galactoside had antioxidant functions, suggesting melatonin activates multiple antioxidant pathways to alleviate the detrimental effects of salt stress. Combined transcriptome and metabolome analyses revealed a few gene-metabolite networks related to various pathways, including linoleic acid metabolism and amino acid metabolism that are important for melatonin-mediated salt tolerance. The data presented herein may be useful for further elucidating the multiple regulatory roles of melatonin in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Ziyan Xie
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yanru Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiuqin Zhao,
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Binying Fu,
| |
Collapse
|
32
|
Identification of Superior Alleles for Seedling Stage Salt Tolerance in the USDA Rice Mini-Core Collection. PLANTS 2019; 8:plants8110472. [PMID: 31694217 PMCID: PMC6918172 DOI: 10.3390/plants8110472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
Salt stress is a major constraint to rice acreage and production worldwide. The purpose of this study was to evaluate the natural genetic variation available in the United States Department of Agriculture (USDA) rice mini-core collection (URMC) for early vigor traits under salt stress and identify quantitative trait loci (QTLs) for seedling-stage salt tolerance via a genome-wide association study (GWAS). Using a hydroponic system, the seedlings of 162 accessions were subjected to electrical conductivity (EC) 6.0 dS m−1 salt stress at the three-to-four leaf stage. After completion of the study, 59.4% of the accessions were identified as sensitive, 23.9% were identified as moderately tolerant, and 16.7% were identified as highly tolerant. Pokkali was the most tolerant variety, while Nerica-6 was the most sensitive. Adapting standard International Rice Research Institute (IRRI) protocols, eight variables associated with salt tolerance were determined. The GWAS of the URMC, using over three million single-nucleotide polymorphisms (SNPs), identified nine genomic regions associated with salt tolerance that were mapped to five different chromosomes. Of these, none were in the known Saltol QTL region, suggesting different probable genes and mechanisms responsible for salt tolerance in the URMC. The study uncovered genetic loci that explained a large portion of the variation in salt tolerance at the seedling stage. Fourteen highly salt-tolerant accessions, six novel loci, and 16 candidate genes in their vicinity were identified that may be useful in breeding for salt stress tolerance. Identified QTLs can be targeted for fine mapping, candidate gene verification, and marker-assisted breeding in future studies.
Collapse
|
33
|
Kong W, An B, Zhang Y, Yang J, Li S, Sun T, Li Y. Sugar Transporter Proteins (STPs) in Gramineae Crops: Comparative Analysis, Phylogeny, Evolution, and Expression Profiling. Cells 2019; 8:cells8060560. [PMID: 31181814 PMCID: PMC6628381 DOI: 10.3390/cells8060560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Sugar transporter proteins (STPs), such as H+/sugar symporters, play essential roles in plants’ sugar transport, growth, and development, and possess an important potential to enhance plants’ performance of multiple agronomic traits, especially crop yield and stress tolerance. However, the evolutionary dynamics of this important gene family in Gramineae crops are still not well-documented and functional differentiation of rice STP genes remain unclear. To address this gap, we conducted a comparative genomic study of STP genes in seven representative Gramineae crops, which are Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Setaria italica (Si), Sorghum bicolor (Sb), Zea mays (Zm), Oryza rufipogon (Or), and Oryza sativa ssp. japonica (Os). In this case, a total of 177 STP genes were identified and grouped into four clades. Of four clades, the Clade I, Clade III, and Clade IV showed an observable number expansion compared to Clade II. Our results of identified duplication events and divergence time of duplicate gene pairs indicated that tandem, Whole genome duplication (WGD)/segmental duplication events play crucial roles in the STP gene family expansion of some Gramineae crops (expect for Hv) during a long-term evolutionary process. However, expansion mechanisms of the STP gene family among the tested species were different. Further selective force studies revealed that the STP gene family in Gramineae crops was under purifying selective forces and different clades and orthologous groups with different selective forces. Furthermore, expression analysis showed that rice STP genes play important roles not only in flower organs development but also under various abiotic stresses (cold, high-temperature, and submergence stresses), blast infection, and wounding. The current study highlighted the expansion and evolutionary patterns of the STP gene family in Gramineae genomes and provided some important messages for the future functional analysis of Gramineae crop STP genes.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yue Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Yue.Zhang-@whu.edu.cn
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuangmiao Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Tong Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
34
|
Kong W, Gong Z, Zhong H, Zhang Y, Zhao G, Gautam M, Deng X, Liu C, Zhang C, Li Y. Expansion and Evolutionary Patterns of Glycosyltransferase Family 8 in Gramineae Crop Genomes and Their Expression under Salt and Cold Stresses in Oryza sativa ssp. japonica. Biomolecules 2019; 9:E188. [PMID: 31096659 PMCID: PMC6571792 DOI: 10.3390/biom9050188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls play a fundamental role in several ways, providing structural support for cells, resistance against pathogens and facilitating the communication between cells. The glycosyltransferase family 8 (GT8) is involved in the formation of the plant cell wall. However, the evolutionary relationship and the functional differentiation of this important gene family remain obscure in Gramineae crop genomes. In the present investigation, we identified 269 GT8 genes in the seven Gramineae representative crop genomes, namely, 33 in Hordeum vulgare, 37 in Brachypodium distachyon, 40 in Oryza sativa ssp. japonica, 41 in Oryza rufipogon, 36 in Setaria italica, 37 in Sorghum bicolor, and 45 in Zea mays. Phylogenetic analysis suggested that all identified GT8 proteins belonged to seven subfamilies: galacturonosyltransferase (GAUT), galacturonosyltransferase-like (GATL), GATL-related (GATR), galactinol synthase (GolS), and plant glycogenin-like starch initiation proteins A (PGSIP-A), PGSIP-B, and PGSIP-C. We estimated that the GAUT subfamily might be further divided into four subgroups (I-IV) due to differentiation of gene structures and expression patterns. Our orthogroup analysis identified 22 orthogroups with different sizes. Of these orthogroups, several orthogroups were lost in some species, such as S. italica and Z. mays. Moreover, lots of duplicate pairs and collinear pairs were discovered among these species. These results indicated that multiple duplication modes led to the expansion of this important gene family and unequal loss of orthogroups and subfamilies might have happened during the evolutionary process. RNA-seq, microarray analysis, and qRT-PCR analyses indicated that GT8 genes are critical for plant growth and development, and for stresses responses. We found that OsGolS1 was significantly up-regulated under salt stress, while OsGAUT21, OsGATL2, and OsGATL5 had remarkable up-regulation under cold stress. The current study highlighted the expansion and evolutionary patterns of the GT8 gene family in these seven Gramineae crop genomes and provided potential candidate genes for future salt- and cold- resistant molecular breeding studies in O. sativa.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Ziyun Gong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yue Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Yue.Zhang-@whu.edu.cn
| | - Gangqing Zhao
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mayank Gautam
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoxiao Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chang Liu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chenhao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
35
|
Deng X, An B, Zhong H, Yang J, Kong W, Li Y. A Novel Insight into Functional Divergence of the MST Gene Family in Rice Based on Comprehensive Expression Patterns. Genes (Basel) 2019; 10:genes10030239. [PMID: 30897847 PMCID: PMC6470851 DOI: 10.3390/genes10030239] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023] Open
Abstract
Sugars are critical for plant growth and development as suppliers of carbon and energy, as signal molecules, or as solute molecules for osmotic homeostasis. Monosaccharide transporter (MST) genes are involved in various processes of plant growth and development as well as in response to abiotic stresses. However, the evolution and their roles of MST genes in growth and development and in coping with abiotic stresses in rice are poorly known. Here, we identified 64 MST genes in rice genome, which are classified into seven subfamilies: STP, PLT, AZT, ERD, pGlcT, INT, and XTPH. MST genes are not evenly distributed between chromosomes (Chrs) with a bias to Chr 3, 4, 7, and 11, which could be a result of duplication of fragments harboring MST genes. In total, 12 duplication events were found in the rice MST family, among which, two pairs were derived from fragmental duplications and ten pairs were from tandem duplications. The synonymous and nonsynonymous substitution rates of duplicate gene pairs demonstrated that the MST family was under a strong negative selection during the evolution process. Furthermore, a comprehensive expression analysis conducted in 11 different tissues, three abiotic stresses, five hormone treatments, and three sugar treatments revealed different expression patterns of MST genes and indicated diversified functions of them. Our results suggest that MST genes play important roles not only in various abiotic stresses but also in hormone and sugar responses. The present results will provide a vital insight into the functional divergence of the MST family in the future study.
Collapse
Affiliation(s)
- Xiaolong Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
36
|
Meta-Analysis of Salt Stress Transcriptome Responses in Different Rice Genotypes at the Seedling Stage. PLANTS 2019; 8:plants8030064. [PMID: 30871082 PMCID: PMC6473595 DOI: 10.3390/plants8030064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important staple food crops worldwide, while its growth and productivity are threatened by various abiotic stresses, especially salt stress. Unraveling how rice adapts to salt stress at the transcription level is vital. It can provide valuable information on enhancing the salt stress tolerance performance of rice via genetic engineering technologies. Here, we conducted a meta-analysis of different rice genotypes at the seedling stage based on 96 public microarray datasets, aiming to identify the key salt-responsive genes and understand the molecular response mechanism of rice under salt stress. In total, 5559 genes were identified to be differentially expressed genes (DEGs) under salt stress, and 3210 DEGs were identified during the recovery process. The Gene Ontology (GO) enrichment results revealed that the salt-response mechanisms of shoots and roots were different. A close-knit signaling network, consisting of the Ca2+ signal transduction pathway, the mitogen-activated protein kinase (MAPK) cascade, multiple hormone signals, transcription factors (TFs), transcriptional regulators (TRs), protein kinases (PKs), and other crucial functional proteins, plays an essential role in rice salt stress response. In this study, many unreported salt-responsive genes were found. Besides this, MapMan results suggested that TNG67 can shift to the fermentation pathway to produce energy under salt stress and may enhance the Calvin cycle to repair a damaged photosystem during the recovery stage. Taken together, these findings provide novel insights into the salt stress molecular response and introduce numerous candidate genes for rice salt stress tolerance breeding.
Collapse
|
37
|
Kong W, Zhang Y, Deng X, Li S, Zhang C, Li Y. Comparative Genomic and Transcriptomic Analysis Suggests the Evolutionary Dynamic of GH3 Genes in Gramineae Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:1297. [PMID: 31681387 PMCID: PMC6803601 DOI: 10.3389/fpls.2019.01297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/18/2019] [Indexed: 05/18/2023]
Abstract
Glycoside hydrolase 3 (GH3) gene family belongs to auxin-responsive gene families and is tightly linked with hormone homeostasis and signaling pathways. However, our knowledge about the evolutionary dynamic of GH3 genes in Gramineae crops is limited. In this study, a comparative genomic and transcriptomic analysis was conducted to study evolutionary patterns and the driving selective forces of GH3 gene family in six representative Gramineae crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa ssp. japonica (Os). A total of 17, 13, 11, 9, 8, and 11 GH3 proteins (GH3s) were identified in Si, Zm, Sb, Hv, Bd, and Os, respectively. Phylogenetic, conserved motif, and gene structural analyses could divide all GH3s into two groups (I and II), and all GH3s consisted of seven orthogroups (Ors) on the basis of Or identification result. We further found that genes in the same Or showed similar sequence and structural features, whereas genes in the same groups exhibited intrinsic differences in exon numbers and intron lengths. These results revealed GH3 genes in the same groups have been differentiated. Obvious differences in total numbers of GH3 genes, Ors, and duplication events among these six tested Gramineae crops reflected lineage-specific expansions and homologous gene loss/gain of GH3 gene family during the evolutionary process. In addition, selective force and expression analyses indicated that all GH3 genes were constrained by strong purifying selection, and GH3 genes in conserved Ors showed higher expression levels than that in unconserved Ors. The current study highlighted different evolutionary patterns of GH3 genes in Gramineae crops resulted from different evolutionary rates and duplication events and provided a vital insight into the functional divergence of GH3 genes.
Collapse
|