1
|
Wakhle B, Sharma S, Patel KS, Pandey PK, Blažević A, Fiket Ž, Yurdakul S, Varol S, Martín-Ramos P, Al-Yousef HM, Mothana RA. Multi-Element Exposure and Health Risks of Grains from Ambagarh Chowki, Chhattisgarh, India. TOXICS 2025; 13:56. [PMID: 39853054 PMCID: PMC11769171 DOI: 10.3390/toxics13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Rice, wheat, and maize grains are staple foods, widely consumed for their mineral and nutritional values. However, they can accumulate toxic elements from contaminated soils, posing health risks. This study investigates the bioaccumulation patterns of 52 elements (including nutrients, heavy metals, and rare earth elements) in various parts (grain, husk, straw, and root) of cereals grown in a heavily polluted region. The results revealed that rice grains exhibited a higher accumulation (Σ33.4 mg/kg) of toxic elements (As, Cu, Cr, Ni, and Pb) than wheat (Σ26.6 mg/kg) and maize (Σ16.2 mg/kg) grains, with the high-yield RI64 cultivar (Σ47.0 mg/kg) being the most susceptible. Across the rice plant, accumulation increased in the order of grain < husk < straw < root. Elements like P, K, Cu, and Zn showed the highest enrichment. Worryingly, the most toxic elements, such as As, Pb, and Cd, exceeded permissible limits across grains, straws, and husks. Health risk assessment indicated that wheat and maize pose greater non-cancer and cancer risks than rice. Despite being grown in a highly contaminated region, the study identifies some rice cultivars like Luchai and Sarna as relatively safer options due to a lower accumulation of toxic elements.
Collapse
Affiliation(s)
- Bhagyashri Wakhle
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, G. E. Road, Raipur CG 492010, India; (B.W.); (S.S.)
| | - Saroj Sharma
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, G. E. Road, Raipur CG 492010, India; (B.W.); (S.S.)
| | - Khageshwar Singh Patel
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur CG 493225, India;
| | - Piyush Kant Pandey
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur CG 493225, India;
| | - Antonela Blažević
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.B.); (Ž.F.)
| | - Željka Fiket
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.B.); (Ž.F.)
| | - Sema Yurdakul
- Environmental Engineering Department, Suleyman Demirel University, 32260 Isparta, Turkey;
| | - Simge Varol
- Geological Engineering Department, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260 Isparta, Turkey;
| | - Pablo Martín-Ramos
- ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain;
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.-Y.); (R.A.M.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.-Y.); (R.A.M.)
| |
Collapse
|
2
|
C M, N M, N K S, M D, C IR, E S. Evaluation of high temperature impacts and nanotechnology as a shield against temperature stress on tomatoes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177551. [PMID: 39557167 DOI: 10.1016/j.scitotenv.2024.177551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rising temperature due to changing climate significantly impacts the production of tomato. The morpho-physiological functions of tomato such as gas exchange, growth and development, flowering, fruit setting, quality, fruit size, weight that can influence the yield and production is drastically affected by higher temperatures. Among the growth stages of tomato, flowering and fruit setting stage is highly vulnerable to high temperature resulting in reduced flower numbers, increased flower abortion, stigma exertion, abnormal ovule, reduced pollen germination, pollen numbers, pollen tube development, pollen viability and increased male sterility. The flower to fruit ratio and duration also highly influenced by higher temperatures. It significantly reduced fruit set, fruit number, weight and quality (Lycopene, carotenoids), changing sugars and acids ratio. Apart from day temperature, the asymmetrically rising night temperature and difference in day and night temperature pattern plays a considerable role in physiological and biochemical processes of tomato. Nanotechnology proves to be a successful tool for sustainable production of tomato than many other alternative mitigation strategies due to its localized action, low quantity requirement, minimal wastage, less residues, eco friendliness, biodegradability, multifunctionality, synergistic capabilities and higher plant productivity. It imitates the antioxidant enzymes playing active role in physiological functions in tomato thereby inducing tolerance mechanisms for managing high temperature stress. Further research should focus on use of several other nanoparticles that have potential but not yet experimented on tomato to mitigate heat stress and producing biodegradable, green synthesized nanoparticles that are cost effective and affordable to farmers.
Collapse
Affiliation(s)
- Musierose C
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Maragatham N
- Centre for Students Welfare, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Sathyamoorthy N K
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Indu Rani C
- Department of Vegetable Sciences, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Somasundaram E
- Agri Business Management, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
3
|
Puente De La Cruz LN, Giorgione R, Marini F, Astolfi ML. Rice sample preparation method for ICP-MS and CV-AFS analysis: Elemental levels and estimated intakes. Food Chem 2024; 461:140831. [PMID: 39226795 DOI: 10.1016/j.foodchem.2024.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Eight sample digestion procedures were compared to determine 41 elements in rice samples by ICP-MS and CV-AFS. Analytical methods were evaluated using certified rice flour reference material (NIST 1568b) and recovery experiments. The microwave-assisted digestion of 0.5 g rice sample and reagent mixture of 2 mL HNO3, 0.5 mL H2O2, and 0.5 mL deionized water yielded the best recovery for all elements ranging from 90 to 120% at three different levels, bias% within 10%, and precision (coefficient of variation percent, CV% intra- and inter-day) below 15%. The best analytical method was applied to the elemental determination in nine types of rice available on the Italian market. Daily or weekly rice consumption meets the nutritional and safety requirements of EFSA and WHO. The present study allows extensive and detailed knowledge of the content of essential and non-essential/toxic elements in different types of rice produced or packaged in Italy.
Collapse
Affiliation(s)
- Laura Natalia Puente De La Cruz
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Roberta Giorgione
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Xia Y, Liu J, Yang X, Ling X, Fang Y, Xu Z, Liu F. Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability. TOXICS 2024; 12:839. [PMID: 39771054 PMCID: PMC11679552 DOI: 10.3390/toxics12120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The distribution of trace metals (TMs) in a continuous water body often exhibits watershed attributes, but the tidal gates of the coastal rivers may alter their transformation and accumulation patterns. Therefore, a tidal gate-controlled coastal river was selected to test the distribution and accumulation risks of Al, As, Cr, Cu, Fe, Mn, Ni, Sr, and Zn in the catchment area (CA), estuarine area (EA), and offshore area (OA). Associations between TMs and bacterial communities were analyzed to assess the feasibility of using bacterial parameters as ecological indicators. The results showed that As and Cr were the key pollutants due to the higher enrichment factor and geoaccumulation index, reaching slight to moderate pollution levels. The Nemero index was highest in EAs (14.93), indicating a higher pollution risk in sediments near tide gates. Although the TM dynamics can be explained by the metal-indicating effects of Fe and Mn, they have no linear relationships with toxic metals. Interestingly, the metabolic abundance of bacterial communities showed good correlations with different TMs in the sediment. These results highlight bacterial community characteristics as effective biomarkers for assessing TM pollution and practical tools for managing pollution control in coastal environment.
Collapse
Affiliation(s)
- Yuanfen Xia
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Jiayuan Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Xuechun Yang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Xiaofeng Ling
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Yan Fang
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Zhen Xu
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Fude Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| |
Collapse
|
5
|
Madesh S, Sudhakaran G, Meenatchi R, Guru A, Arockiaraj J. Interconnected environmental challenges: heavy metal-drug interactions and their impacts on ecosystems. Drug Chem Toxicol 2024; 47:1282-1299. [PMID: 38658397 DOI: 10.1080/01480545.2024.2342956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
6
|
Arinzechi C, Dong C, Huang P, Zhao P, Liao Q, Li Q, Yang Z. Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:435. [PMID: 39316186 DOI: 10.1007/s10653-024-02209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Rice is susceptible to cadmium (Cd) accumulation, which poses a threat to human health. Traditional methods for mitigating moderately contaminated soils can be impractical or prohibitively expensive, necessitating innovative approaches to reduce Cd uptake in rice. Nutrient management has emerged as a promising solution by leveraging the antagonistic interactions between nutrients and cadmium. However, the research on the synergistic effects of multiple nutrients on Cd toxicity in rice is limited. To address this limitation, pot experiments was utilized to investigate the combined effects of selenium (Se), calcium (Ca), and magnesium (Mg) denoted as (SeCM) on Cd uptake and translocation in rice. The synergistic application of SeCM reduced grain Cd levels by 55.0%, surpassing the individual effects of Se (42.1%) and CM (40.5%), and bringing Cd content below the safe consumption limits. SeCM treatment exhibited multiple beneficial effects: it decreased malondialdehyde (MDA) levels, enhanced catalase (CAT), peroxidase (POD) and glutathione (GSH) enzyme activities, limited Cd translocation from roots to shoots, promoted iron plaque formation, and reduced Cd transfer from soil to iron plaque and subsequently to rice grains. Correlation analysis revealed strong negative relationships between rice Cd content, Cd translocation factors, and the translocation factors of selenium, calcium, and magnesium. These findings suggest that selenium, calcium, and magnesium collaboratively mitigate Cd toxicity through antagonistic and competitive interactions. These nutrients enhance the uptake of beneficial elements, while competitively inhibiting the translocation and accumulation of Cd in rice plants. SeCM application offers a promising strategy for producing nutrient-rich, and Cd-safe rice in contaminated soils.
Collapse
Affiliation(s)
- Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410125, People's Republic of China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
7
|
Khan P, Ali S, Jan R, Kim KM. Lignin Nanoparticles: Transforming Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1541. [PMID: 39330697 PMCID: PMC11435067 DOI: 10.3390/nano14181541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
In the face of escalating environmental challenges driven by human activities, the quest for innovative solutions to counter pollution, contamination, and ecological degradation has gained paramount importance. Traditional approaches to environmental remediation often fall short in addressing the complexity and scale of modern-day environmental problems. As industries transition towards sustainable paradigms, the exploration of novel materials and technologies becomes crucial. Lignin nanoparticles have emerged as a promising avenue of exploration in this context. Once considered a mere byproduct, lignin's unique properties and versatile functional groups have propelled it to the forefront of environmental remediation research. This review paper delves into the resurgence of lignin from an environmental perspective, examining its pivotal role in carbon cycling and its potential to address various environmental challenges. The paper extensively discusses the synthesis, properties, and applications of lignin nanoparticles in diverse fields such as water purification and soil remediation. Moreover, it highlights the challenges associated with nanoparticle deployment, ranging from Eco toxicological assessments to scalability issues. Multidisciplinary collaboration and integration of research findings with real-world applications are emphasized as critical factors for unlocking the transformative potential of lignin nanoparticles. Ultimately, this review underscores lignin nanoparticles as beacons of hope in the pursuit of cleaner, healthier, and more harmonious coexistence between humanity and nature through innovative environmental remediation strategies.
Collapse
Affiliation(s)
- Pirzada Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Martinez-Morata I, Schilling K, Glabonjat RA, Domingo-Relloso A, Mayer M, McGraw K, Fernandez MG, Sanchez T, Nigra AE, Kaufman J, Vaidya D, Jones MR, Bancks MP, Barr R, Shimbo D, Post WS, Valeri L, Shea S, Navas-Acien A. Association of Urinary Metals With Cardiovascular Disease Incidence and All-Cause Mortality in the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2024; 150:758-769. [PMID: 39087344 PMCID: PMC11371385 DOI: 10.1161/circulationaha.124.069414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Exposure to metals has been associated with cardiovascular disease (CVD) end points and mortality, yet prospective evidence is limited beyond arsenic, cadmium, and lead. In this study, we assessed the prospective association of urinary metals with incident CVD and all-cause mortality in a racially diverse population of US adults from MESA (the Multi-Ethnic Study of Atherosclerosis). METHODS We included 6599 participants (mean [SD] age, 62.1 [10.2] years; 53% female) with urinary metals available at baseline (2000 to 2001) and followed through December 2019. We used Cox proportional hazards models to estimate the adjusted hazard ratio and 95% CI of CVD and all-cause mortality by baseline urinary levels of cadmium, tungsten, and uranium (nonessential metals), and cobalt, copper, and zinc (essential metals). The joint association of the 6 metals as a mixture and the corresponding 10-year survival probability was calculated using Cox Elastic-Net. RESULTS During follow-up, 1162 participants developed CVD, and 1844 participants died. In models adjusted by behavioral and clinical indicators, the hazard ratios (95% CI) for incident CVD and all-cause mortality comparing the highest with the lowest quartile were, respectively: 1.25 (1.03, 1.53) and 1.68 (1.43, 1.96) for cadmium; 1.20 (1.01, 1.42) and 1.16 (1.01, 1.33) for tungsten; 1.32 (1.08, 1.62) and 1.32 (1.12, 1.56) for uranium; 1.24 (1.03, 1.48) and 1.37 (1.19, 1.58) for cobalt; 1.42 (1.18, 1.70) and 1.50 (1.29, 1.74) for copper; and 1.21 (1.01, 1.45) and 1.38 (1.20, 1.59) for zinc. A positive linear dose-response was identified for cadmium and copper with both end points. The adjusted hazard ratios (95% CI) for an interquartile range (IQR) increase in the mixture of these 6 urinary metals and the corresponding 10-year survival probability difference (95% CI) were 1.29 (1.11, 1.56) and -1.1% (-2.0, -0.05) for incident CVD and 1.66 (1.47, 1.91) and -2.0% (-2.6, -1.5) for all-cause mortality. CONCLUSIONS This epidemiological study in US adults indicates that urinary metal levels are associated with increased CVD risk and mortality. These findings can inform the development of novel preventive strategies to improve cardiovascular health.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Ronald A. Glabonjat
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Arce Domingo-Relloso
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Melanie Mayer
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Katlyn McGraw
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Marta Galvez Fernandez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Tiffany Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Anne E. Nigra
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Joel Kaufman
- Department of Epidemiology, University of Washington, Seattle, WA
| | | | - Miranda R. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - R.Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Daichi Shimbo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Wendy S. Post
- Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Steven Shea
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
9
|
Wang X, Zhang J, Shen J, Zhang L, Wei P, Liu A, Song H. The alleviating effect on the growth, chlorophyll synthesis, and biochemical defense system in sunflowers under cadmium stress achieved through foliar application of humic acid. BMC PLANT BIOLOGY 2024; 24:792. [PMID: 39169292 PMCID: PMC11340089 DOI: 10.1186/s12870-024-05516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND With the progress of industrialization and urbanization, cadmium (Cd) pollution in farmland is increasingly severe, greatly affecting human health. Sunflowers possess high resistance to Cd stress and great potential for phytoremediation of Cd-contaminated soil. Previous studies have shown that humic acid (HA) effectively mitigates plant damage induced by Cd; however, its alleviating effects on sunflower plants under Cd stress remain largely unknown. RESULTS We employed four different concentrations of HA (50, 100, 200, and 300 mg L-1) via foliar application to examine their ability to alleviate Cd stress on sunflower plants' growth, chlorophyll synthesis, and biochemical defense system. The results revealed that Cd stress not only reduced plant height, stem diameter, fresh and dry weight, and chlorophyll content in sunflower plants but also altered their chlorophyll fluorescence characteristics compared to the control group. After Cd stress, the photosynthetic structure was damaged and the number of PSII reactive centers per unit changed. Application of 200 mg L-1 HA promotes sunflower growth and increases chlorophyll content. HA significantly enhances antioxidant enzyme activities (SOD, POD, CAT, and APX) and reduces ROS content (O2 -, H2O2 and -OH). Totally, Application of 200 mg L-1 HA had the best effect than other concentrations to alleviate the Cd-induced stress in sunflower plants. CONCLUSIONS The foliar application of certain HA concentration exhibited the most effective alleviation of Cd-induced stress on sunflower plants. It can enhance the light energy utilization and antioxidant enzyme activities, while reduce ROS contents in sunflower plants. These findings provide a theoretical basis for using HA to mitigate Cd stress in sunflowers.
Collapse
Affiliation(s)
- Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Jinghui Zhang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Linran Zhang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China.
| | - Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China.
| |
Collapse
|
10
|
Zhang D, Liu Z. Employing dolomite as magnesium source to prepare calcined layered double hydroxides for chromium contaminated soil treatment: Exploring the influence of temperature, bioavailability, and microbial diversity. Heliyon 2024; 10:e34664. [PMID: 39170300 PMCID: PMC11336319 DOI: 10.1016/j.heliyon.2024.e34664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Layered double hydroxides (LDH-D) and their calcined counterparts, using dolomite as a source of magnesium, were utilized for the immobilization of chromium (Cr(VI)) in soil. The results indicate that LDH-D, both with and without varying calcination temperatures, can effectively immobilize Cr(VI) in soil. Among the different calcination temperatures tested, LDH-D subjected to calcination at 500 °C (LDH-D-500) showed particularly high efficacy. Long-term TCLP experiments demonstrated the inhibition of soil-to-plant transmission of Cr(VI), thereby highlighting the long-lasting immobilization capacity of LDH-D and its calcined derivatives. Furthermore, the analysis of the microbial community's adaptation in post-remediation soil confirmed the durability and bioavailability of LDH-D-500 for Cr immobilization. Examination of the material's morphology and structure after immobilization shed light on the mechanism of immobilization in soil. The results revealed that interlayer anion exchange and surface adsorption were the main factors responsible for the effective immobilization of LDH-D and LDH-D-300. On the other hand, LDH-D-900, with a dominant spinel (MgAl2O4) structure, faced challenges in returning to its original layered configuration, making surface adsorption the primary mechanism for immobilization. LDH-D-500 primarily relied on the structure memory effects of LDHs to immobilize Cr(VI) through structural recovery processes, facilitated by electrostatic attraction and surface adsorption. It is also important to note that CaCO3 plays an important role in adsorption. Additionally, a portion of Cr(VI) was converted to Cr(III) through phenomena such as isomer substitution and complexation adsorption. The proficiency of LDH-D-500 in immobilizing Cr, its ability for instantaneous separation, and the potential for regeneration make it a promising material for remediation of heavy metal-contaminated soil. The investigations suggest that the use of dolomite to create hydrotalcite and calcining it at 500 °C could effectively render environmental Cr inactive, thereby optimizing resource utilization.
Collapse
Affiliation(s)
- Donghua Zhang
- Department of Mining Engineering, College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhimeng Liu
- Shanxi Coal Institute of Planing &design (group) Co.,ltd., Taiyuan, 030024, China
| |
Collapse
|
11
|
Hosen MM, Alam MNE, Tonni FS, Khan SR, Maksud MA, Lutfa LN, Ullah AKMA, Begum R, Nahar Q, Quraishi SB. Exploration of Toxic and Essential Metals in Popular Rice Grains of Bangladesh and Associated Human Health Risk Implications. Biol Trace Elem Res 2024; 202:3851-3867. [PMID: 37989930 DOI: 10.1007/s12011-023-03962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
In order to evaluate the benefits as well as the impacts of essential and toxic metals regarding human health, the six common rice grains (katarivhog, bashful, banglamoti, najirshail, branded miniket and loose miniket) were collected from four wholesale markets in Dhaka, the capital of Bangladesh, and were analyzed with different atomic absorption spectroscopy (AAS) techniques. The mean concentrations of the toxic metals Pb, Cd, Cr, and As had 0.299 ± 0.017, 0.157 ± 0.012, 1.33 ± 0.084, and 0.120 ± 0.006 mg/kg, respectively, while those of the essential metals Fe, Cu, Zn, Na, Ca, and Mg had 7.90 ± 0.447, 3.11 ± 0.097, 10.6 ± 0.340, 37.4 ± 0.622, 90.1 ± 7.70, and 115.8 ± 1.61 mg/kg, respectively. Among them, the mean concentrations of toxic metals (Pb, Cd, Cr, and As) exceeded the maximum allowable concentration in rice set by the Codex Alimentarius Commission (CAC). Risk assessment of the heavy metals Pb, Cd, Cr, As, Fe, Cu, and Zn showed that their estimated daily intakes were below the daily reference doses for adults. However, Cd and Cr individually were found to have the target hazard quotient value close to 1 (threshold limit), indicating that they alone are capable of potential health hazards from continuous rice consumption, while the hazard index has surpassed three units signifying greater danger associated with the current trend of consumption. A very high chance of developing cancer in the near future is predicted by incremental lifetime carcinogenic risk (ILCR) analysis for continued intake of Cr (ILCR > 1E-03), and a moderate to high risk is predicted for other carcinogenic substances (Pb, Cd, and As) (ILCR in between 1E-03 and 1E-05) with present rice consumption. The contribution of the essential metals to the RNI revealed that Cu from rice contributes more than 100% in most samples, and the overall contribution is in the following order: Cu > Zn > Fe > Mg > Ca > Na. To ensure the safety of staple foods for human health, it ought to be necessary to design a plan to measure the budget of hazardous metals from all sources with proper surveillance by relevant authorities.
Collapse
Affiliation(s)
- M Mozammal Hosen
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission (BAEC), 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka-1000, Bangladesh
| | - M Nur E Alam
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission (BAEC), 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka-1000, Bangladesh.
| | - F S Tonni
- Department of Food and Nutrition, College of Home Economics, University of Dhaka (DU), Shahbag, Dhaka-1000, Bangladesh
| | - S R Khan
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission (BAEC), 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka-1000, Bangladesh
| | - M A Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission (BAEC), 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka-1000, Bangladesh
| | - L N Lutfa
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission (BAEC), 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka-1000, Bangladesh
| | - A K M Atique Ullah
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission (BAEC), 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka-1000, Bangladesh
| | - Rehena Begum
- Department of Food and Nutrition, College of Home Economics, University of Dhaka (DU), Shahbag, Dhaka-1000, Bangladesh
| | - Quamrun Nahar
- Department of Endocrine and Metabolic Disorder, Bangladesh Institute of Research and Rehabilitation in Diabetes (BIRDEM), Shahbag, Dhaka-1000, Bangladesh
| | - Shamshad B Quraishi
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission (BAEC), 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka-1000, Bangladesh
| |
Collapse
|
12
|
Zareei J, Juraev N, Hassan Widatalla ST, Kerwad M, Olegovich Bokov D, Alkhuzai KA, Rodriguez-Benites C, Alhadrawi M, Zain Al-Abdeen SH. Investigation of the potential of pomegranate peel as a treatment option for heavy metal contaminated wastewater: Experimental and modeling approaches. Heliyon 2024; 10:e34619. [PMID: 39149004 PMCID: PMC11325058 DOI: 10.1016/j.heliyon.2024.e34619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Heavy metals can cause serious environmental and human health problems, and their removal from wastewater is critical to protect our planet and communities. This study investigated the ability of crushed pomegranate peel to remove mercury and cadmium ions from contaminated water as a function of different experimental parameters. The experimental results showed that the pH of the solution influenced the adsorptive removal of heavy metals, with the best performance observed at pH 4.8. Optimization studies and process balance modeling were performed to optimize the process for commercial use. The performance of pomegranate peel was compared with that of other materials, and the highest adsorption capacities for both cadmium (Ca (II)) and mercury (Hg (II)) ions were observed to be 89.59 and 42.125 mg/g, respectively. The results were interpreted using the Langmuir model, which provided the best fit to describe the behavior of the process.
Collapse
Affiliation(s)
- Javad Zareei
- Department of Biosystem Engineering, Ferdowsi University of Mashhad, Iran
| | - Nizomiddin Juraev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan
- Scientific and Innovation Department, Tashkent State Pedagogical University, Uzbekistan
| | | | - M Kerwad
- General Department, Faculty of Information Technology, Misurata University, Misurata, Libya
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Russia
| | - Khalid A Alkhuzai
- Department of Civil Engineering, Al-Baha University, Al-Baha, Saudi Arabia
| | - Carlos Rodriguez-Benites
- Direccion de investigacion, Centro de investigacion de la Creatividad, Univesidad de Ciencias y artes de America Latina Lima, 15026, Peru
| | - Merwa Alhadrawi
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
13
|
Song J, Wang X, Huang Q, Wei C, Yang D, Wang C, Fan K, Cheng S, Guo X, Wang J. Predictors of urinary heavy metal concentrations among pregnant women in Jinan, China. J Trace Elem Med Biol 2024; 84:127444. [PMID: 38581744 DOI: 10.1016/j.jtemb.2024.127444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Toxic heavy metal exposure and insufficiency or excess of essential heavy metals may have negative effects on pregnant women's health and fetal growth. To date, the predictors of pregnant women's heavy metal exposure levels remain unclear and vary with different regions. The study intended to explore potential predictors of exposure to heavy metals individually and high co-exposure to heavy metal mixtures. METHODS We recruited 298 pregnant women in first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected spot urine samples and questionnaire data on their demographic characteristics, lifestyle habits, consumption of food and dietary supplement, and residential environment. All urine samples were analyzed for seven heavy metals: cobalt (Co), molybdenum (Mo), strontium (Sr), arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg). RESULTS Factors associated with single heavy metal concentration were as follows: a) urinary As, Sr and Cd increased with women's age respectively; b) pregnant women with higher monthly household income per capita had lower Sr and Mo levels; c) pregnant women with intermittent folic acid supplementation and those not taking tap water as domestic drinking water had lower Sr concentrations; d) Cd was positively linked with consumption frequency of rice; e) Hg was adversely related to consumption frequency of egg and the women who took purified water as domestic drinking water had lower Hg exposure. In addition, pregnant women's age was positively associated with odds of high co-exposure to Co, As, Sr, Mo, Cd and Pb; while those with an educational level of college had lower odds of high exposure to such a metal mixture compared with those whose educational levels were lower than high school. CONCLUSION Predictors of single urinary heavy metal concentration included pregnant women's age (As, Sr and Cd), monthly household income per capita (Sr and Mo), folic acid supplementation (Sr), rice consumption frequency (Cd), egg consumption frequency (Hg) and the type of domestic drinking water (Sr and Hg). Pregnant women with older age, lower educational level tended to have high co-exposure to Co, As, Sr, Mo, Cd and Pb.
Collapse
Affiliation(s)
- Jiayi Song
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Qichen Huang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Chuanling Wei
- Department of Gynecology, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, China
| | - Dongxia Yang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Cuilan Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Kefeng Fan
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Shuang Cheng
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Guo
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Ju Wang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
14
|
Luo Y, Wang N, Liu Z, Sun Y, Lu N. Characteristics and risk assessment of potentially toxic elements pollution in river water and sediment in typical gold mining areas of Northwest China. Sci Rep 2024; 14:12715. [PMID: 38830984 PMCID: PMC11148130 DOI: 10.1038/s41598-024-63723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
To assess the concentration characteristics and ecological risks of potential toxic elements (PTEs) in water and sediment, 17 water samples and 17 sediment samples were collected in the Xiyu River to analyze the content of Cr, Ni, As, Cu, Zn, Pb, Cd and Hg, and the environmental risks of PTEs was evaluated by single-factor pollution index, Nemerow comprehensive pollution index, potential ecological risk, and human health risk assessment. The results indicated that Hg in water and Pb, Cu, Cd in sediments exceeded the corresponding environmental quality standards. In the gold mining factories distribution river section (X8-X10), there was a significant increase in PTEs in water and sediments, indicating that the arbitrary discharge of tailings during gold mining flotation is the main cause of PTEs pollution. The increase in PTEs concentration at the end of the Xiyu River may be related to the increased sedimentation rate, caused by the slowing of the riverbed, and the active chemical reactions at the estuary. The single-factor pollution index and Nemerow pollution index indicated that the river water was severely polluted by Hg. Potential ecological risk index indicated that the risk of Hg in sediments was extremely high, the risk of Cd was high, and the risk of Pb and Cu was moderate. The human health risk assessment indicated that As in water at point X10 and Hg in water at point X9 may pose non-carcinogenic risk to children through ingestion, and As at X8-X10 and Cd at X14 may pose carcinogenic risk to adults through ingestion. The average HQingestion value of Pb in sediments was 1.96, indicating that the ingestion of the sediments may poses a non-carcinogenic risk to children, As in the sediments at X8-X10 and X15-X17 may pose non-carcinogenic risk to children through ingestion.
Collapse
Affiliation(s)
- Yuhu Luo
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China.
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China.
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, China.
| | - Na Wang
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, China
| | - Zhe Liu
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, China
| | - Yingying Sun
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, China
| | - Nan Lu
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, China
| |
Collapse
|
15
|
Barde BG, Adeleye AO, Oladeji AA, Duhu YB. Heavy metals pollution and ecological risk assessment around artisanal gold mines in Zamfara, Nigeria. Environ Anal Health Toxicol 2024; 39:e2024016-0. [PMID: 39054830 PMCID: PMC11294666 DOI: 10.5620/eaht.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/17/2024] [Indexed: 07/27/2024] Open
Abstract
Heavy metals pollution and potential ecological risk index were assessed in artisanal gold mining areas of Zamfara state, Nigeria. Soil samples were collected from three mines namely Kwali (05°45.49'E-11°59.66'N), Duke (06°19.56'E-12°21.45'N) and Maraba (06°22.43'E-12°20.26'N) while a non-mining area; Kadauri (06°08.71'E-12°13.56'N) was also chosen as a control. Samples were analysed using atomic absorption spectrophotometer and the results obtained showed that; the most abundant metal was Pb (148.59 mg/kg) in Kwali and the least was Ni (1.25 mg/kg) in Kadauri while the metals generally occurred in the order; Pb > Fe > Au > Al > Zn followed by other metals in an unspecified manner. All metal concentrations differed significantly (P<0.05) across sampling stations except Mn and Zn and they were all above the WHO limit which portrays a health risk. A strong positive correlation was found between metal pairs with r ≥ 0.5 (*p<0.05) in about 70% of them indicating commonality of source. Pb, Cd, Al and Au had contamination factors > 1in all sampling locations indicating increment in their concentrations above the pre-anthropogenic activities reference levels. Geoaccumulation index showed concentrations above background values of Pb, Cd, Al and Au while potential ecological risk index was highest (782.79) in Kwali and lowest (142.15) in Kadauri. Two principal components accounted for about 99.64% of the total variation in metals concentration with PC1 (95.21%) and PC2 (4.43%). This study showed the influence of artisanal gold mining on heavy metals concentration and suggested regulation of these practices.
Collapse
Affiliation(s)
- Bate Garba Barde
- Department of Environmental Sciences, Federal University Dutse, Jigawa State, Nigeria
| | | | - Amoo Afeez Oladeji
- Department of Environmental Sciences, Federal University Dutse, Jigawa State, Nigeria
| | - Yunana Bitrus Duhu
- Department of Biological Sciences, University of Maiduguri, Borno State, Nigeria
| |
Collapse
|
16
|
Ugur K, Dogan M. Effectiveness of light-emitting diodes for arsenic and mercury accumulation by Ceratophyllum demersum L.: An innovative advancement in phytoremediation technology. CHEMOSPHERE 2024; 358:142064. [PMID: 38677617 DOI: 10.1016/j.chemosphere.2024.142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Light Emitting Diodes (LEDs) have emerged as a tool with great potential in the field of phytoremediation, offering a novel approach to enhance the efficiency of plant-based remediation techniques. In this work investigated the influence of LEDs on the phytoremediation of arsenic (As) and mercury (Hg) by Ceratophyllum demersum L., propagated using tissue culture methods. In addition, the biochemical properties of the plants exposed to metal toxicity were examined. Phytoremediation experiments employed concentrations of As (0.01-1.0 mg/L) and Hg (0.002-0.2 mg/L), with application periods set at 1, 7, 14, and 21 days. In addition to white, red and blue LEDs, white fluorescent light was used for control purposes in the investigations. A positive correlation was observed between higher metal concentrations, extended exposure times, and increased metal accumulation in the plants. Red LED light yielded the highest level of heavy metal accumulation, while white fluorescent light resulted in the lowest accumulation level. Examination of the biochemical parameters of the plants, including photosynthetic pigment levels, protein quantities, and lipid peroxidation, revealed a pronouncedly enhanced performance in specimens subjected to red and blue LED illumination, surpassing outcomes observed in other light treatments. The findings of this study introduce innovative avenues for the effective utilization of red and blue LED lights in the realm of phytoremediation research. Thus, the interaction between LEDs, tissue culture, and the phytoremediation process could lead to synergistic effects that contribute to more effective and sustainable remediation strategies.
Collapse
Affiliation(s)
- Kubra Ugur
- Department of Biology, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey University, Yunus Emre Campus, 70200, Karaman, Turkey
| | - Muhammet Dogan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
17
|
Mohammadi MJ, Kiani F, Farhadi M, Ghanbari S, Jalili D, Mirzaei L. Evaluation of carcinogenic risk of heavy metals due to consumption of rice in Southwestern Iran. Toxicol Rep 2024; 12:578-583. [PMID: 38798985 PMCID: PMC11127030 DOI: 10.1016/j.toxrep.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pollution by heavy metals is a serious global problem due to its toxicity, abiotic characteristics, abundant sources, and cumulative behavior. On the other hand, considering the importance of rice consumption as an important part of nutrition in Lordegan and Ahvaz cities, this study was conducted to evaluate the carcinogenic risk of heavy metals lead, cadmium, zinc, nickel and in local Champa rice cultivated in these two cities. 16 Champa rice samples were collected from the fields of Lordegan and Ahvaz cities. The elements were read in three replicates by Varian 710-ES atomic emission device. The results showed that the concentration of cadmium and nickel in the cultivated rice in the two studied cities was within the range of the national standard of Iran and the Codex standard. Carcinogenic risk values for lead, cadmium and nickel in Champa Lordegan and Ahvaz rice were within the safe range. Also, the non-carcinogenic risk for these heavy metals in the two studied areas was less than 1 and was in the safe range. Rice pollution in Champa in Ahvaz can be due to the industrial nature of this city, and in Lordegan, it is due to pollution through pesticides, chemical fertilizers, and transportation. Long-term consumption of contaminated rice may endanger the health of residents of these areas. It is recommended to carry out regular and up-to-date monitoring strategies in these two cities to prevent the entry of these toxic heavy metals into the human food chain. Also, more studies are needed to evaluate the complete scenario and make definitive decisions.
Collapse
Affiliation(s)
- Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Kiani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Majid Farhadi
- Department of Environmental Health, School of Health and Nutrition, Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saeed Ghanbari
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Davood Jalili
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Mirzaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
18
|
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133951. [PMID: 38492385 DOI: 10.1016/j.jhazmat.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, β-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.
Collapse
Affiliation(s)
- Bagyalakshmi Muthan
- Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bikash Deo
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Subhiksha Khatiwada
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sanju A Sanjaya
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
19
|
Mngadi S, Nomngongo PN, Moja S. Elemental composition and potential health risk of vegetable cultivated in residential area situated close to abandoned gold mine dump: Characteristics of soil quality on the vegetables. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:300-314. [PMID: 38619427 DOI: 10.1080/03601234.2024.2339779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
The presence of toxic metals in residential areas near abandoned gold mine tailings is a major environmental issue. This study mainly aimed to investigate the elemental distribution of both toxic and essential elements in soils and leafy vegetables (Brassica oleracea) collected from eight different sites around the Davidsonville residential area, located closer to the abandoned Princess gold mine dump, Johannesburg, South Africa. The nutritional value of vegetables in the human diet was determined to assess their value to their health. The vegetables contained metals in the following descending order: Ca > Mg > Ca > Sb > Pb > Fe > Mo > Cr > Se > As > V > Ni > Co > Cd. The bioaccumulation factor (BAF) revealed that vegetables tend to accumulate most metals even (toxic) during the transfer and translocation process. Based on the recommended daily allowance (%RDA) the vegetables showed to contribute 152%, 84% and 75% toward RDA for Se, V and Ca, respectively for most adults and these play a role in human metabolic activities. The vegetables were found to be a good source of essential elements (Ca, Mg, Ni, Na, Fe) but with some traces of toxic metals such as Pb, As and Sb. Based on the health risk assessment, the vegetable posed an adverse health hazard for human consumption due to metals with high HRI >1.
Collapse
Affiliation(s)
- Sihle Mngadi
- Department of Applied Chemistry, University of Johannesburg, South Africa, South Africa
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
- Scientific Services, Laboratories, Chemical Sciences, uMngeni-uThukela Water, Pietermaritzburg, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Applied Chemistry, University of Johannesburg, South Africa, South Africa
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - Shadung Moja
- Water and Environmental Unit & Applied Geoscience Division, Council for Geoscience, Pretoria, South Africa
| |
Collapse
|
20
|
Yang J, Zhao X, Wang X, Xia M, Ba S, Lim BL, Hou H. Biomonitoring of heavy metals and their phytoremediation by duckweeds: Advances and prospects. ENVIRONMENTAL RESEARCH 2024; 245:118015. [PMID: 38141920 DOI: 10.1016/j.envres.2023.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Heavy metals (HMs) contamination of water bodies severely threatens human and ecosystem health. There is growing interest in the use of duckweeds for HMs biomonitoring and phytoremediation due to their fast growth, low cultivation costs, and excellent HM uptake efficiency. In this review, we summarize the current state of knowledge on duckweeds and their suitability for HM biomonitoring and phytoremediation. Duckweeds have been used for phytotoxicity assays since the 1930s. Some toxicity tests based on duckweeds have been listed in international guidelines. Duckweeds have also been recognized for their ability to facilitate HM phytoremediation in aquatic environments. Large-scale screening of duckweed germplasm optimized for HM biomonitoring and phytoremediation is still essential. We further discuss the morphological, physiological, and molecular effects of HMs on duckweeds. However, the existing data are clearly insufficient, especially in regard to dissection of the transcriptome, metabolome, proteome responses and molecular mechanisms of duckweeds under HM stresses. We also evaluate the influence of environmental factors, exogenous substances, duckweed community composition, and HM interactions on their HM sensitivity and HM accumulation, which need to be considered in practical application scenarios. Finally, we identify challenges and propose approaches for improving the effectiveness of duckweeds for bioremediation from the aspects of selection of duckweed strain, cultivation optimization, engineered duckweeds. We foresee great promise for duckweeds as phytoremediation agents, providing environmentally safe and economically efficient means for HM removal. However, the primary limiting issue is that so few researchers have recognized the outstanding advantages of duckweeds. We hope that this review can pique the interest and attention of more researchers.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaoyu Wang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Sang Ba
- Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa, 850000, China; Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, 850000, China.
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
21
|
Calvo Salamanca AM, Mayorga Mogollon OL, Chaali N, Ariza-Nieto C, Beltran-Medina JI, Ortiz Cuadros RE, Duran Cruz EN. ICP-OES analysis of total As and Cd in Columbian Oryza sativa L. rice. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:16-27. [PMID: 38111355 DOI: 10.1080/19393210.2023.2278805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023]
Abstract
Arsenic (As) and cadmium (Cd) are considered toxic elements, even at trace levels. Their accurate quantification in crops can be complex at low levels and due to interference with other elements. The aim of this work was to develop and validate an analytical method for As and Cd quantification in rice stem and grains from the production systems "Irrigated Rice Ecosystems" (IRE) and "Rainfed Rice Ecosystems" (RRE) in Colombia. Mineralisation was carried out by acid digestion using an open system with a heating plate. Metal detection was performed by inductively coupled plasma optical emission spectrometry (ICP-OES). Method adjustment, calibration, and validation were performed in accordance with AOAC standards, considering sensitivity, precision, accuracy, and selectivity parameters. The obtained method was applied to quantify levels in 259 rice stem and 443 grain samples from IRE and RRE.
Collapse
Affiliation(s)
- Ana María Calvo Salamanca
- Tibaitatá Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Mosquera, Colombia
| | | | - Nesrine Chaali
- Nataima Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Tolima, Colombia
| | - Claudia Ariza-Nieto
- Tibaitatá Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Mosquera, Colombia
| | | | | | - Erika Natalia Duran Cruz
- Tibaitatá Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Mosquera, Colombia
| |
Collapse
|
22
|
Yang K, Liu Y, Zhang M. The Diverse Roles of Reactive Astrocytes in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2024; 14:158. [PMID: 38391732 PMCID: PMC10886687 DOI: 10.3390/brainsci14020158] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Astrocytes displaying reactive phenotypes are characterized by their ability to remodel morphologically, molecularly, and functionally in response to pathological stimuli. This process results in the loss of their typical astrocyte functions and the acquisition of neurotoxic or neuroprotective roles. A growing body of research indicates that these reactive astrocytes play a pivotal role in the pathogenesis of amyotrophic lateral sclerosis (ALS), involving calcium homeostasis imbalance, mitochondrial dysfunction, abnormal lipid and lactate metabolism, glutamate excitotoxicity, etc. This review summarizes the characteristics of reactive astrocytes, their role in the pathogenesis of ALS, and recent advancements in astrocyte-targeting strategies.
Collapse
Affiliation(s)
- Kangqin Yang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
24
|
Wei H, Hashmi MZ, Wang Z. The interactions between aquatic plants and antibiotics: Progress and prospects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123004. [PMID: 38006994 DOI: 10.1016/j.envpol.2023.123004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Antibiotics have emerged as a widespread pollutant in the aquatic environment. Aquatic phytoremediation to remove antibiotic pollution in water has aroused increasing research. Due to complex interaction between aquatic plants and antibiotics in the aquatic environment, it is essential to summarize the present research progress and point out the shortcomings to better use aquatic plants to remediate antibiotic pollution. A growing body of evidence indicates roots are the most important tissues for aquatic plants to absorb and accumulate antibiotics and antibiotics can be transferred in aquatic plants. LogKow value is an important factor to affecting the antibiotic absorption by aquatic plant. The study showed that antibiotics have toxic effects on aquatic plants, including metabolic interference, oxidative damage, damage to photosynthetic system, and inhibition of growth. However, the species sensitivity distribution model indicated that the general environmental concentrations of antibiotics pose no risk to aquatic plant growth. Aquatic plants can significantly reduce the antibiotics concentration in water and the removal efficiency is affected by many factors, such as the type of aquatic plants and antibiotics. Macrolide antibiotics are most easily removed by plants. This study reviewed the current research progress and provides valuable scientific recommendations for further research.
Collapse
Affiliation(s)
- Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
25
|
Di Duca F, Montuori P, De Rosa E, De Simone B, Russo I, Nubi R, Triassi M. Assessing Heavy Metals in the Sele River Estuary: An Overview of Pollution Indices in Southern Italy. TOXICS 2024; 12:38. [PMID: 38250994 PMCID: PMC10819315 DOI: 10.3390/toxics12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Rapid industrialization, coupled with a historical lack of understanding in toxicology, has led in an increase in estuary pollution, frequently resulting in unexpected environmental situations. Therefore, the occurrence of heavy metals (HMs) constitutes a major environmental issue, posing a serious risk both to aquatic ecosystems and public health. This study aimed to evaluate the levels of eight HMs (As, Hg, Cd, Cr, Cu, Ni, Pb, and Zn) in water, suspended particles, and sediment near the Sele River estuary (Italy) in order to assess their environmental impacts on the sea and health risks for humans. The results revealed an increasing order of HM concentration according to the scheme suspended particulate matter (SPM) > sediment (SED) > dissolved phase (DP) and a moderate contamination status in sediment. The health risk assessment indicated that the non-carcinogenic risk was negligible. Carcinogenic risk, expressed as the incremental lifetime cancer risk (ILCR), was negligible for Cd and Ni and within tolerable limits for As, Pb, and Cr. The findings suggested that, even if there are currently no specific limits for chemical parameters in the transitional waters of Italy, monitoring systems should be implemented to determine pollution levels and implement effective steps to improve river water quality and reduce human health risks.
Collapse
Affiliation(s)
| | - Paolo Montuori
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy (R.N.)
| | | | | | | | | | | |
Collapse
|
26
|
Surendran D, Varghese GK, Zafiu C. Characterization and source apportionment of microplastics in Indian composts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:5. [PMID: 38044370 DOI: 10.1007/s10661-023-12177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MP), small plastic particles under 5 mm, are pollutants known to carry heavy metals in ecosystems. Composts are a significant source of soil microplastics. This study examined MSW composts from Kochi and Kozhikode in India for microplastic concentrations and heavy metals' accumulation thereon. Microplastics were isolated using zinc chloride density separation, with Fenton's reagent used for organic matter oxidation. Resin types were identified using FTIR analysis that showed the presence of PE, PP, PS, nylon, PET, and allyl alcohol copolymer. In Kozhikode's compost, the average concentration of microplastics was 840 ± 30 items/kg, while Kochi had 1600 ± 111 items/kg, mainly polyethylene films. PE was the most prevalent resin, comprising 58.3% in Kozhikode and 73.37% in Kochi. Heavy metal analysis of MP showed significant concentrations of lead, cadmium, zinc, copper, and manganese adsorbed on the surface of microplastics. The concentrations of heavy metals in the MP before Fenton oxidation ranged from 1.02 to 2.02 times the corresponding concentrations in compost for Kozhikode and 1.23 to 2.85 times for Kochi. Source apportionment studies revealed that 64% of microplastics in Kozhikode and 77% in Kochi originated from single-use plastics. Ecological risk indices, PLI and PHI, showed that composts from both locations fall under hazard level V. The study revealed that compost from unsegregated MSW can act as a significant source of microplastics and heavy metals in the soil environment, with single-use plastics contributing major share of the issue.
Collapse
Affiliation(s)
| | | | - Christian Zafiu
- Institute of Waste Management and Circularity, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
27
|
Li X, Gao Y, Ning X, Li Z. Research progress and hotspots on microbial remediation of heavy metal-contaminated soil: a systematic review and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118192-118212. [PMID: 37936038 DOI: 10.1007/s11356-023-30655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Microbial remediation technology has received much attention as a green, ecological, and inexpensive technology, and there is great potential for the application of microbial remediation technology for heavy metals (HMs) contaminated soil alone and in conjunction with other technologies in environmental remediation. To gain an in-depth understanding of the latest research progress, research hotspots, and development trends on microbial remediation of HMs-contaminated soil, and to objectively reflect the scientific contributions and impacts of relevant countries/regions, institutions, and individuals of this field, in this manuscript, ISI Web of Knowledge's Web of Science™ core collection database, data visualization, and analysis software Bibliometrix, VOSviewer, and HistCite Pro were used to collect and analyze the relevant literature from 2000 to 2022, and 1409 publications were subjected to scientometric analyses. It involved 327 journals, 5150 authors, 75 countries/regions, and 2740 keywords. The current progress and hotspots on microbial remediation of HMs-contaminated soil since the twenty-first century were analyzed in terms of the top 10 most productive countries (regions), high-yielding authors, source journals, important research institutions, and hotspots of research directions. Over the past 22 years, China, India, and the USA have been the countries with the most articles. The institution and author with the most publications are the Chinese Acad Sci and Zhu YG, respectively. Journal of Hazardous Materials is the most productive journal. The keywords showed 6 co-occurrence clusters. These findings revealed the research hotspots, knowledge gaps, and future exploration trends related to microbial remediation of HMs-contaminated soil.
Collapse
Affiliation(s)
- Xianhong Li
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Yang Gao
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Xiaolin Ning
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Zhonghong Li
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
28
|
Lai L, Yan F, Chen G, Huang Y, Huang L, Li D. Recent Progress on Fluorescent Probes in Heavy Metal Determinations for Food Safety: A Review. Molecules 2023; 28:5689. [PMID: 37570660 PMCID: PMC10420214 DOI: 10.3390/molecules28155689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
One of the main challenges faced in food safety is the accumulation of toxic heavy metals from environmental sources, which can sequentially endanger human health when they are consumed. It is invaluable to establish a practical assay for the determination of heavy metals for food safety. Among the current detection methods, technology based on fluorescent probes, with the advantages of sensitivity, convenience, accuracy, cost, and reliability, has recently shown pluralistic applications in the food industry, which is significant to ensure food safety. Hence, this review systematically presents the recent progress on novel fluorescent probes in determining heavy metals for food safety over the past five years, according to fluorophores and newly emerging sensing cores, which could contribute to broadening the prospects of fluorescent materials and establishing more practical assays for heavy metal determinations.
Collapse
Affiliation(s)
- Liqing Lai
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Fang Yan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Geng Chen
- Fujian Fishery Resources Monitoring Center, Fuzhou 350117, China; (G.C.); (Y.H.)
| | - Yiwen Huang
- Fujian Fishery Resources Monitoring Center, Fuzhou 350117, China; (G.C.); (Y.H.)
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Daliang Li
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| |
Collapse
|
29
|
Rao M, Li X, Xu X, Zhang D, Ma J, Huang J, Xu J, Zheng Q, Ji J, Lu S. Trace elements in aquatic products from Shenzhen, China and their implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163726. [PMID: 37116806 DOI: 10.1016/j.scitotenv.2023.163726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Aquatic organisms in industrially polluted areas can accumulate large quantities of heavy metals. To assess the resulting health risks, 11 trace elements in 184 aquatic products representing 14 species of fish, crustaceans, and bivalves collected from Shenzhen, China were determined. Aluminum (Al), chromium (Cr), nickel (Ni), selenium (Se), antimony (Sb), manganese (Mn), copper (Cu), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) were determined by inductively coupled plasma mass spectrometry. The pollution levels of each product and the human health risk resulting from their consumption were then assessed. The concentrations of As in 57 % of samples and Cd in 11 % of samples exceeded the upper limits stipulated by the Chinese National Food Safety Standards (GB 2762-2017), which was mainly due to high concentrations of trace elements in crustaceans and bivalves. The Nemerow integrated pollution index indicated that the aquatic products accumulated high levels of As and Cd. Health risk assessments using the target hazard quotient (THQ) and hazard index (HI) suggested that As and Cd exposure due to consumption of aquatic products presents a potential health risk for residents of Shenzhen.
Collapse
Affiliation(s)
- Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoqiong Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
30
|
Kumari A, Mandzhieva SS, Minkina TM, Rajput VD, Shuvaeva VA, Nevidomskaya DG, Kirichkov MV, Veligzhanin AA, Svetogorov RD, Khramov EV, Ahmed B, Singh J. Speciation of macro- and nanoparticles of Cr 2O 3 in Hordeum vulgare L. and subsequent toxicity: A comparative study. ENVIRONMENTAL RESEARCH 2023; 223:115485. [PMID: 36775087 DOI: 10.1016/j.envres.2023.115485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) is reported to be hazardous to environmental components and surrounding biota when levels exceed allowable thresholds. As Cr is extensively utilized in different industries, thereby comprehensively studied for its toxicity. Along with Cr, the applications of nano-Cr or chromium oxide nanoparticles (Cr2O3-NPs) are also expanding; however, the literature is scarce or limited on their phytotoxicity. Thereby, the current work investigated the morpho-physiological insights of macro- and nanoparticles of Cr in Hordeum vulgare L. plants. The increased accumulation and translocation of Cr under the exposure of both forms disturbed the cellular metabolism that might have inhibited germination and growth as well as interfered with the photosynthesis of plants. The overall extent of toxicity was noticeably higher under nanoparticles' exposure than macroparticles of Cr. The potential cue for such phytotoxic consequences mediated by Cr nanoparticles could be an increased bioavailability of Cr ions which was also supported by their total content, mobility, and factor toxicity index. Besides, to support further these findings, synchrotron X-ray technique was used to reliably identify Cr-containing compounds in the plant tissues. The X-ray spectra of the near spectral region and the far region of the spectrum of K-edge of Cr were obtained, and it was established that the dominant crystalline phase corresponds to Cr2O3 (eskolaite) from the recorded observations. Thus, the obtained results would allow revealing the mechanism of macro- and nanoparticles of Cr induced impacts on plant at the tissue, cellular- and sub-cellular levels.
Collapse
Affiliation(s)
- Arpna Kumari
- Southern Federal University, Rostov-on-Don, 344006, Russia; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | | | | | | | | - Alexei A Veligzhanin
- National Research Center "Kurchatov Institute", Pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Rоman D Svetogorov
- National Research Center "Kurchatov Institute", Pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Evgeniy V Khramov
- National Research Center "Kurchatov Institute", Pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jagpreet Singh
- University Centre for Research & Development Chandigarh University, Mohali, 140413, Punjab, India
| |
Collapse
|
31
|
Jiang H, Wu S, Zhou J. Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review. Int J Biol Macromol 2023; 236:123916. [PMID: 36898461 DOI: 10.1016/j.ijbiomac.2023.123916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Heavy metals are a notable pollutant in aquatic ecosystems that results in many deadly diseases of the human body after enrichment through the food chain. As an environmentally friendly renewable resource, nanocellulose can be competitive with other materials at removing heavy metal ions due to its large specific surface area, high mechanical strength, biocompatibility and low cost. In this review, the research status of modified nanocellulose for heavy metal adsorbents is primarily reviewed. Two primary forms of nanocellulose are cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). The preparation process of nanocellulose was derived from natural plants, and the preparation process included noncellulosic constituent removal and extraction of nanocellulose. Focusing on heavy metal adsorption, the modification of nanocellulose was explored in depth, including direct modification methods, surface grafting modification methods based on free radical polymerization and physical activation. The adsorption principles of nanocellulose-based adsorbents when removing heavy metals are analyzed in detail. This review may further facilitate the application of the modified nanocellulose in the field of heavy metal removal.
Collapse
Affiliation(s)
- Haoyuan Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| | - Jizhi Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| |
Collapse
|
32
|
Santos ADSE, Saraiva RDDS, de Oliveira APN, Costa MA, Alonzo HGA, Campolina D, André LC, Peixoto SV, Câmara VDM, Asmus CIRF. Metal exposure in a child population after a mine tailings dam failure. Projeto Bruminha. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2023; 26:e230017. [PMID: 36820754 PMCID: PMC9949485 DOI: 10.1590/1980-549720230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/22/2022] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE This study aimed to analyze the urinary concentrations of As, Cd, Pb, Hg, and Mn in children living in areas directly affected by the tailings of the Brumadinho disaster. METHODS We performed a cross-sectional descriptive study on a population of 217 children aged 0 to 6 years, living in Córrego do Feijão (CF), Parque da Cachoeira (PC), Aranha (AR), and Tejuco (TJ), enrolled in the Longitudinal Study of Child Health in Brumadinho (Minas Gerais) - Projeto Bruminha. Socioeconomic data and urine samples were collected to determine the concentration of selected metals. RESULTS Children living in locations not directly affected by the disaster (AR and TJ) had higher concentrations of As and Mn than those in directly affected areas (CF and PC). Additionally, children living in locations not potentially exposed to dust from tailings mud or mining activity (AR) showed higher urinary As concentrations than those potentially exposed (CF, PC, and TJ). CONCLUSION Our results suggest the need to investigate possible sources of As exposure in children living in areas not directly affected by the disaster and not potentially exposed to dust.
Collapse
Affiliation(s)
| | | | | | | | | | - Délio Campolina
- Fundação Hospitalar do Estado de Minas Gerais – Belo Horizonte (MG), Brazil
| | | | | | | | | |
Collapse
|
33
|
Tang Y, Zhang B, Li Z, Deng P, Deng X, Long H, Wang X, Huang K. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 2023; 120:1334-1345. [PMID: 36776103 DOI: 10.1002/bit.28350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Hexavalent chromium [Cr(Ⅵ)] is a highly toxic contaminant in aquatic systems, and microalgae represent promising bioremediators of metal-containing wastewater. However, the metal-binding capacity of algal cells is limited. Therefore, we improved the cellular Cr(Ⅵ) biosorption capacity of Chlamydomonas reinhardtii by overexpressing the sulfate transporter gene SULTR2. SULTR2 was predominantly located in the cytoplasm of the cell, and few proteins mobilized to the cell membrane as a Cr transporter under Cr stress conditions. Intracellular Cr accumulation was almost doubled in SULTR2-overexpressing transgenic strains after exposure to 30 μM K2 Cr2 O7 for 4 d. Alginate-based immobilization increased the rate of Cr removal from 43.81% to 88.15% for SULTR2-overexpressing transgenic strains after exposure to 10 μM K2 Cr2 O7 for 6 d. The immobilized cells also displayed a significant increase in nutrient removal efficiency compared to that of free-swimming cells. Therefore, SULTR2 overexpression in algae has a great potential for the bioremediation of Cr(Ⅵ)-containing wastewater.
Collapse
Affiliation(s)
- Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhaoyang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
34
|
Wen S, Yin F, Liu C, Dang Y, Sun D, Li P. Integrated analysis of transcriptomic and protein-protein interaction data reveals cadmium stress response in Geobacter sulfurreducens. ENVIRONMENTAL RESEARCH 2023; 218:115063. [PMID: 36528045 DOI: 10.1016/j.envres.2022.115063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Bacteria have evolved several mechanisms to resist Cd toxicity, which are crucial for Cd detoxication and have the potential to be used for bioremediation of Cd. Geobacter species are widely found in anaerobic environments and play important roles in natural biogeochemical cycles. However, the transcriptomic response of Geobacter sulfurreducens under Cd stress have not been fully elucidated. Through integrated analysis of transcriptomic and protein-protein interaction (PPI) data, we uncovered a global view of mRNA changes in Cd-induced cellular processes in this study. We identified 182 differentially expressed genes (|log2(fold change)| > 1, adjusted P < 0.05) in G. sulfurreducens exposed to 0.1 mM CdCl2 using RNA sequencing (RNA-seq). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that CdCl2 significantly affected sulfur compound metabolic processes. In addition, through PPI network analysis, hub genes related to molecular chaperones were identified to play important role in Cd stress response. We also identified a Cd-responsive transcriptional regulator ArsR2 (coded by GSU2149) and verified the function of ArsR2-ParsR2 regulatory circuit in Escherichia coli. This study provides new insight into Cd stress response in G. sulfurreducens, and identified a potential sensor element for Cd detection.
Collapse
Affiliation(s)
- Su Wen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fei Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chunmao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
35
|
Anisimov V, Anisimova L, Krylenkin D, Dikarev D, Sanzharov A, Korneev YN, Kostyukov I, Kolyagin YG. A Study on the Behavior of Cadmium in the Soil Solution-Plant System by the Lysimeter Method Using the 109Cd Radioactive Tracer. PLANTS (BASEL, SWITZERLAND) 2023; 12:649. [PMID: 36771736 PMCID: PMC9921949 DOI: 10.3390/plants12030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In soils, cadmium (Cd) and its compounds, originating from industrial activities, differ both in mobility as well as in their ability to permeate the soil solution from naturally occurring cadmium compounds (native Cd). Therefore, the determination of the parameters of cadmium mobility in soils and its accumulation by plants in the soil-soil solution-plant system is very important from both scientific and practical viewpoints. 109Cd was used as a radioactive tracer to study the processes of the transition of Cd into the aqueous phase and its uptake by plants over the course of a vegetative lysimeter experiment. Using sequential extraction according to the Tessier-Förstner procedure and modified BCR schemes, certain patterns were determined in the distribution of Cd/109Cd among their forms in various compounds in the soil, along with the coefficients of the enrichment of native stable Cd with radioactive 109Cd. It was shown that the labile pool of stable Cd compounds (29%) was significantly smaller than that of radioactive 109Cd (69%). The key parameters characterizing the migration capacity of Cd in the soil-soil solution-plant system were determined. It was found that the distribution coefficient of native Cd between the soil and the quasi-equilibrium lysimeter solution exceeded the similar value for the 109Cd radionuclide by 2.2 times, and the concentration coefficients of Cd and 109Cd in the barley roots were 9 times higher than in its vegetative parts. During the experiment, the average removal of Cd (109Cd) from the soil by each barley plant was insignificant: 0.002 (0.004)%. Based on the results of 13C nuclear magnetic resonance (NMR) spectroscopy of a lyophilized sample of the high-molecular-weight dissolved organic matter (HMWDOM) of the soil solution, its components were determined. It transpired that the isolated lyophilized samples of HMWDOM with different molecular weights had an identical structural and functional composition. The selective sorption parameters of the HMWDOM and humic acid (HA) with respect to Cd2+ ions were determined by the isotope dilution method.
Collapse
Affiliation(s)
- Vyacheslav Anisimov
- Russian Institute of Radiology and Agroecology, Kievskoe sh., 109th km, Kaluga Region, 249032 Obninsk, Russia
| | - Lydia Anisimova
- Russian Institute of Radiology and Agroecology, Kievskoe sh., 109th km, Kaluga Region, 249032 Obninsk, Russia
| | - Dmitry Krylenkin
- Russian Institute of Radiology and Agroecology, Kievskoe sh., 109th km, Kaluga Region, 249032 Obninsk, Russia
| | - Dmitry Dikarev
- Russian Institute of Radiology and Agroecology, Kievskoe sh., 109th km, Kaluga Region, 249032 Obninsk, Russia
| | - Andrey Sanzharov
- Russian Institute of Radiology and Agroecology, Kievskoe sh., 109th km, Kaluga Region, 249032 Obninsk, Russia
| | - Yuri N. Korneev
- Russian Institute of Radiology and Agroecology, Kievskoe sh., 109th km, Kaluga Region, 249032 Obninsk, Russia
| | - Ilya Kostyukov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Yuri G. Kolyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| |
Collapse
|
36
|
Pu W, Chu X, Guo H, Huang G, Cui T, Huang B, Dai X, Zhang C. The activated ATM/AMPK/mTOR axis promotes autophagy in response to oxidative stress-mediated DNA damage co-induced by molybdenum and cadmium in duck testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120574. [PMID: 36351481 DOI: 10.1016/j.envpol.2022.120574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) have multiple organ toxicity, and testis is one of their important target organs, but the reproductive toxicity of Mo and Cd combined treatment is still unclear. To explore the effects of Mo and Cd co-exposure on DNA damage and autophagy from the insight of ATM/AMPK/mTOR axis in duck testes, we randomly assigned 40 healthy 8-day-old ducks to control, Mo (100 mg/kg Mo), Cd (4 mg/kg Cd), and Mo + Cd groups for 16 weeks. Results found that Mo and/or Cd exposure caused trace elements imbalance, oxidative stress with a decrease in the activities of GSH-Px, CAT, T-SOD and GSH content, an increase in the concentrations of H2O2 and MDA and pathological damage. Additionally, Mo and/or Cd markedly raised DNA damage-related factors expression levels and 8-OHdG content, caused G1/S arrest followed by decreasing CDK2 and Cyclin E protein levels and increasing CDK1 and Cyclin B protein levels, and activated ATM/AMPK/mTOR axis by enhancing p-ATM/ATM, p-AMPK/AMPK and reducing p-mTOR/mTOR protein levels, eventually triggered autophagy by elevating LC3A, LC3B, Atg5, Beclin-1 mRNA levels and LC3II/LC3I, Beclin-1 protein levels and reducing P62, Dynein, mTOR mRNA levels and P62 protein level. Moreover, these changes were most apparent in the combined group. Altogether, the results reveal that autophagy caused by Mo and/or Cd may be associated with activating the DNA damage-mediated ATM/AMPK/mTOR axis in duck testes, and Mo and Cd co-exposure exacerbates these changes.
Collapse
Affiliation(s)
- Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
37
|
Yahaya T, Oladele E, Salisu T, Orji E, Zakari Z, Liman UU, Gomo CB, Abdullahi M. Toxic metals in cement induced hematological and DNA damage as well as carcinogenesis in occupationally-Exposed block-factory workers in Lagos, Nigeria. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 9:499-509. [DOI: 10.1080/2314808x.2022.2106097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2025]
Affiliation(s)
- Tajudeen Yahaya
- Department of Biological Sciences, Federal University, Birnin Kebbi, Nigeria
| | - Esther Oladele
- Biology Unit, Distance Learning Institute, University of Lagos, Lagos, Nigeria
| | - Titilola Salisu
- Department of Zoology and Environmental Biology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Esther Orji
- Department of Environmental Science and Resource Management, National Open University of Nigeria, Lagos, Nigeria
| | - Zafira Zakari
- Department of Biological Sciences, Federal University, Birnin Kebbi, Nigeria
| | - Umar Usman Liman
- Department of Biochemistry and Molecular Biology, Federal University, Birnin Kebbi, Nigeria
| | - Clement Boniface Gomo
- Department of Biochemistry and Molecular Biology, Federal University, Birnin Kebbi, Nigeria
| | - Mustapha Abdullahi
- Department of Biochemistry and Molecular Biology, Federal University, Birnin Kebbi, Nigeria
| |
Collapse
|
38
|
Balíková K, Farkas B, Matúš P, Urík M. Prospects of Biogenic Xanthan and Gellan in Removal of Heavy Metals from Contaminated Waters. Polymers (Basel) 2022; 14:polym14235326. [PMID: 36501719 PMCID: PMC9737242 DOI: 10.3390/polym14235326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Biosorption is considered an effective technique for the treatment of heavy-metal-bearing wastewaters. In recent years, various biogenic products, including native and functionalized biopolymers, have been successfully employed in technologies aiming for the environmentally sustainable immobilization and removal of heavy metals at contaminated sites, including two commercially available heteropolysaccharides-xanthan and gellan. As biodegradable and non-toxic fermentation products, xanthan and gellan have been successfully tested in various remediation techniques. Here, to highlight their prospects as green adsorbents for water decontamination, we have reviewed their biosynthesis machinery and chemical properties that are linked to their sorptive interactions, as well as their actual performance in the remediation of heavy metal contaminated waters. Their sorptive performance in native and modified forms is promising; thus, both xanthan and gellan are emerging as new green-based materials for the cost-effective and efficient remediation of heavy metal-contaminated waters.
Collapse
|
39
|
Amin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, Islam MR, Saha SR, Sharker Y, Mahmud ZH, Navab-Daneshmand T, Kile ML, Levy K, Julian TR, Islam MA. Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh. PLoS Pathog 2022; 18:e1010952. [PMID: 36480516 PMCID: PMC9731454 DOI: 10.1371/journal.ppat.1010952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is a leading cause of hospitalization and death worldwide. Heavy metals such as arsenic have been shown to drive co-selection of antibiotic resistance, suggesting arsenic-contaminated drinking water is a risk factor for antibiotic resistance carriage. This study aimed to determine the prevalence and abundance of antibiotic-resistant Escherichia coli (AR-Ec) among people and drinking water in high (Hajiganj, >100 μg/L) and low arsenic-contaminated (Matlab, <20 μg/L) areas in Bangladesh. Drinking water and stool from mothers and their children (<1 year) were collected from 50 households per area. AR-Ec was detected via selective culture plating and isolates were tested for antibiotic resistance, arsenic resistance, and diarrheagenic genes by PCR. Whole-genome sequencing (WGS) analysis was done for 30 E. coli isolates from 10 households. Prevalence of AR-Ec was significantly higher in water in Hajiganj (48%) compared to water in Matlab (22%, p <0.05) and among children in Hajiganj (94%) compared to children in Matlab (76%, p <0.05), but not among mothers. A significantly higher proportion of E. coli isolates from Hajiganj were multidrug-resistant (83%) compared to isolates from Matlab (71%, p <0.05). Co-resistance to arsenic and multiple antibiotics (MAR index >0.2) was observed in a higher proportion of water (78%) and child stool (100%) isolates in Hajiganj than in water (57%) and children (89%) in Matlab (p <0.05). The odds of arsenic-resistant bacteria being resistant to third-generation cephalosporin antibiotics were higher compared to arsenic-sensitive bacteria (odds ratios, OR 1.2-7.0, p <0.01). WGS-based phylogenetic analysis of E. coli isolates did not reveal any clustering based on arsenic exposure and no significant difference in resistome was found among the isolates between the two areas. The positive association detected between arsenic exposure and antibiotic resistance carriage among children in arsenic-affected areas in Bangladesh is an important public health concern that warrants redoubling efforts to reduce arsenic exposure.
Collapse
Affiliation(s)
- Mohammed Badrul Amin
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prabhat Kumar Talukdar
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Muhammad Asaduzzaman
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Subarna Roy
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Brandon M. Flatgard
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Md. Rayhanul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sumita Rani Saha
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yushuf Sharker
- Center for Data Research and Analytics LLC, Bethesda, Maryland, United States of America
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States of America
| | - Molly L. Kile
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Washington, United States of America
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mohammad Aminul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
40
|
de Vasconcellos ACS, Ferreira SRB, de Sousa CC, de Oliveira MW, de Oliveira Lima M, Basta PC. Health Risk Assessment Attributed to Consumption of Fish Contaminated with Mercury in the Rio Branco Basin, Roraima, Amazon, Brazil. TOXICS 2022; 10:516. [PMID: 36136481 PMCID: PMC9504189 DOI: 10.3390/toxics10090516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to assess the health risk attributable to the consumption of mercury-contaminated fish for the urban and non-urban populations living in the Roraima state, Amazon, Brazil. Seventy-five fish specimens distributed across twenty different species, comprising four trophic levels (i.e., herbivore, omnivore, detritivore, and carnivore), were collected at four locations in the Branco River Basin. The fish samples were sent to the Toxicology Laboratory at Evandro Chagas Institute to determine the total-Hg levels by using the cold vapor atomic system (CVAAS). The total-Hg levels ranged from 0 to 3.159 µg/g. The average concentration in non-carnivorous species (n = 32) was 0.116 µg/g, and among carnivorous fish (n = 43), it was 0.869 µg/g. The weighted average of contamination levels for all samples was 0.545 µg/g. The health risk assessment was conducted according to the methodology proposed by the World Health Organization and different scenarios of human exposure were considered, based on three levels of fish consumption (low: 50 g/day; moderate: 100 g/day and high: 200 g/day). Women of childbearing age ingest 5 to 21 times more mercury than the dose considered safe by the U.S. EPA and intake a dose from 2 to 9 times higher than the safe dose proposed by FAO/WHO. Children under 5 years of age ingest from 18 to 75 times the dose proposed by the U.S. EPA and from 8 to 32 more mercury than the limit proposed by FAO/WHO. In summary, regardless of the level of fish consumption, type of residency (urban or non-urban), and the subset of the population analyzed, anyone who consumes fish from the locations sampled is at high risk attributable to mercury ingestion, with the only exception of adult men, who consume an average of 50 g of fish per day.
Collapse
Affiliation(s)
- Ana Claudia Santiago de Vasconcellos
- Laboratory of Professional Education on Health Surveillance, Joaquim Venâncio Polytechnic School of Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sylvio Romério Briglia Ferreira
- Postgraduate Program in Natural Resources (Pronat), Federal University of Roraima, Campus Paricarana, Boa Vista 69310-000, RR, Brazil
| | | | | | - Marcelo de Oliveira Lima
- Environmental Section, Evandro Chagas Institute, Secretariat of Science, Technology and Strategic Products, Ministry of Health of Brazil, Belém 70723-040, PA, Brazil
| | - Paulo Cesar Basta
- Department of Endemic Diseases Samuel Pessoa, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
41
|
Shao R, Zhang J, Shi W, Wang Y, Tang Y, Liu Z, Sun W, Wang H, Guo J, Meng Y, Kang G, Jagadish KS, Yang Q. Mercury stress tolerance in wheat and maize is achieved by lignin accumulation controlled by nitric oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119488. [PMID: 35597486 DOI: 10.1016/j.envpol.2022.119488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is an important phytohormone for plant adaptation to mercury (Hg) stress. The effect of Hg on lignin synthesis, NO production in leaf, sheath and root and their relationship were investigated in two members of the grass family - wheat and maize. Hg stress decreased growth and lignin contents, significantly affected phenylpropanoid and monolignol pathways (PAL, phenylalanine ammonia-lyase; 4-coumarate: CoA ligase, 4CL; cinnamyl alcohol dehydrogenase, CAD), with maize identified to be more sensitive to Hg stress than wheat. Among the tissue types, sheath encountered severe damage compared to leaves and roots. Hg translocation in maize was about twice that in wheat. Interestingly, total NO produced under Hg stress was significantly decreased compared to control, with maximum reduction of 43.4% and 42.9% in wheat and maize sheath, respectively. Regression analysis between lignin and NO contents or the activities of three enzymes including CAD, 4CL and PAL displayed the importance of NO contents, CAD, 4CL and PAL for lignin synthesis. Further, the gene expression profiles encoding CAD, 4CL and PAL provided support for the damaging effect of Hg on wheat sheath, and maize shoot. To validate NO potential to mitigate Hg toxicity in maize and wheat, NO donor and NO synthase inhibitor were supplemented along with Hg. The resulting phenotype, histochemical analysis and lignin contents showed that NO mitigated Hg toxicity by improving growth and lignin synthesis and accumulation. In summary, Hg sensitivity was higher in maize seedlings compared to wheat, which was associated with the lower lignin contents and reduced NO contents. External supplementation of NO is proposed as a sustainable approach to mitigate Hg toxicity in maize and wheat.
Collapse
Affiliation(s)
- Ruixin Shao
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Junjie Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Weiyu Shi
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Yulou Tang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Zikai Liu
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Wei Sun
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Hao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Jiameng Guo
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Yanjun Meng
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Guozhang Kang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Krishna Sv Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79410, USA.
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
42
|
Jeong H, Ra K. Seagrass and green macroalgae Halimeda as biomonitoring tools for metal contamination in Chuuk, Micronesia: Pollution assessment and bioaccumulation. MARINE POLLUTION BULLETIN 2022; 178:113625. [PMID: 35381460 DOI: 10.1016/j.marpolbul.2022.113625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, we evaluated metal accumulation in different species and tissues of seagrasses and green macroalgae Halimeda and assessed metal pollution levels in Chuuk, Micronesia. In seagrass, the concentrations of Ni, Cu, Zn, Cd, Pb, and Hg were higher in leaves than in roots, whereas Cr and As concentrations were higher in roots. Halimeda had higher concentrations of Ni than of the other metals, and the mean Ni concentration was approximately 2.1 times higher in Halimeda than in seagrass leaves. The concentrations of Cr, As, Cu, Pb, and Hg in Halimeda were similar to those in seagrasses, whereas the Zn and Cd concentrations in Halimeda were very low. Significant correlations in metal concentrations between sediment and both seagrasses and Halimeda were observed for Cr, Ni, Cu, Zn, and Pb. This study suggests that seagrasses and Halimeda are useful indicators for monitoring metal pollution in coastal environments.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
43
|
Zhou M, Li Z. Recent Advances in Minimizing Cadmium Accumulation in Wheat. TOXICS 2022; 10:toxics10040187. [PMID: 35448448 PMCID: PMC9025478 DOI: 10.3390/toxics10040187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
Cadmium (Cd), a toxic heavy metal, affects the yield and quality of crops. Wheat (Triticum aestivum L.) can accumulate high Cd content in the grain, which poses a major worldwide hazard to human health. Advances in our understanding of Cd toxicity for plants and humans, different parameters influencing Cd uptake and accumulation, as well as phytoremediation technologies to relieve Cd pollution in wheat have been made very recently. In particular, the molecular mechanisms of wheat under Cd stress have been increasingly recognized. In this review, we focus on the recently described omics and functional genes uncovering Cd stress, as well as different mitigation strategies to reduce Cd toxicity in wheat.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
- Correspondence: (M.Z.); (Z.L.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
- Correspondence: (M.Z.); (Z.L.)
| |
Collapse
|