1
|
Li XJ, Zhou XH, Bao AK. Genome-wide analysis of the R2R3-MYB gene family and identification of candidate genes that regulate isoflavone biosynthesis in red clover (Trifolium pratense). Int J Biol Macromol 2024; 282:137182. [PMID: 39489260 DOI: 10.1016/j.ijbiomac.2024.137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Red clover (Trifolium pratense) is a perennial legume with high feeding and medicinal value attributed to its abundant isoflavone content. Previous studies reported that R2R3-MYB transcription factors are involved in the biosynthesis of isoflavones; however, their specific role in red clover remains poorly understood. Through comprehensive genome-wide and transcriptome analyses, a total of 138 TpR2R3-MYB genes were identified and classified into 30 distinct subgroups within a phylogenetic tree. Importantly, six of these subgroups showed associations with isoflavone biosynthesis in red clover. The majority of segmental duplication events (Ka/Ks < 1) indicated that the TpR2R3-MYB gene underwent strong purifying selection during evolution. The qRT-PCR analysis demonstrated high expression levels of TpMYB79 and TpMYB53 in Minshan red clover at full flowering stage, consistent with the trend for isoflavone content determination, suggesting that TpMYB79 and TpMYB53 might be important regulators of isoflavone biosynthesis in red clover. Additionally, we observed nucleus and vacuole membrane localization of TpMYB53 and TpMYB79, with TpMYB53 primarily exerting transcriptional activation through its C-terminal activation motifs while TpMYB79 exhibited no transcriptional activity. These findings provided a foundation for the study of the biological function of R2R3-MYB transcription factors in red clover.
Collapse
Affiliation(s)
- Xiao-Jia Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xue-Hui Zhou
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Habrowska-Górczyńska DE, Kozieł MJ, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW. FOXO3a/PI3K/Akt pathway participates in the ROS- induced apoptosis triggered by α-ZEL and β-ZEL. Sci Rep 2024; 14:13281. [PMID: 38858492 PMCID: PMC11164887 DOI: 10.1038/s41598-024-64350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and β-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.
Collapse
Affiliation(s)
| | - Marta Justyna Kozieł
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| | - Kinga Anna Urbanek
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| |
Collapse
|
3
|
Mandal P, Mortensen DA, Brito AF, Wallingford AK, Lima MRM, Warren ND, Smith RG. Water Stress Influences Phytoestrogen Levels in Red Clover ( Trifolium pratense) but Not Kura Clover ( T. ambiguum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10247-10256. [PMID: 38683760 DOI: 10.1021/acs.jafc.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Some forage legumes synthesize phytoestrogens. We conducted a glasshouse study to investigate how water stress (drought and waterlogging) influences phytoestrogen accumulation in red clover and kura clover. Compared to the red clover control, the 20 day drought resulted in an over 100% increase in the phytoestrogens formononetin and biochanin A, which together accounted for 91-96% of the total phytoestrogens measured. Waterlogging resulted in elevated concentrations of daidzein, genistein, and prunetin but not formononetin or biochanin A. Concentrations of phytoestrogens in kura clover were low or undetectable, regardless of water stress treatment. Leaf water potential was the most explanatory single-predictor of the variation in concentrations of formononetin, biochanin A, and total phytoestrogens in red clover. These results suggest that drought-stressed red clover may have higher potential to lead to estrogenic effects in ruminant livestock and that kura clover is a promising alternative low- or no-phytoestrogen perennial forage legume.
Collapse
Affiliation(s)
- Palash Mandal
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - David A Mortensen
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - André F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - Anna K Wallingford
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 129 Main Street, Durham, New Hampshire 03824, United States
| | - Marta R M Lima
- School of Plant and Environmental Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, Virginia 24061, United States
| | - Nicholas D Warren
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, New Hampshire 03824, United States
| | - Richard G Smith
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, New Hampshire 03824, United States
| |
Collapse
|
4
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
5
|
Hu YF, Luo S, Wang SQ, Chen KX, Zhong WX, Li BY, Cao LY, Chen HH, Yin YS. Exploring functional genes' correlation with ( S)-equol concentration and new daidzein racemase identification. Appl Environ Microbiol 2024; 90:e0000724. [PMID: 38501861 PMCID: PMC11022573 DOI: 10.1128/aem.00007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.
Collapse
Affiliation(s)
- Yun-Fei Hu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Shu Luo
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sheng-Qi Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke-Xin Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wei-Xuan Zhong
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bai-Yuan Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin-Yan Cao
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hua-Hai Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Ye-Shi Yin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| |
Collapse
|
6
|
Singh PK, Kumar BS, Nandi S, Gupta PSP, Mondal S. Genistein effect in cultured ovine ovarian granulosa cells. J Biochem Mol Toxicol 2024; 38:e23697. [PMID: 38578078 DOI: 10.1002/jbt.23697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17β-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17β-estradiol in the cultured GCs.
Collapse
Affiliation(s)
- Poonam K Singh
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
- Department of Biotechnology, Jain University, Bengaluru, India
| | - Bogapathi Sampath Kumar
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
- Veterinary College, KVAFSU, Bengaluru, India
| | - Sumanta Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Paluru S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sukanta Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| |
Collapse
|
7
|
Lambo MT, Ma H, Zhang H, Song P, Mao H, Cui G, Dai B, Li Y, Zhang Y. Mechanism of action, benefits, and research gap in fermented soybean meal utilization as a high-quality protein source for livestock and poultry. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:130-146. [PMID: 38357571 PMCID: PMC10864219 DOI: 10.1016/j.aninu.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
Animal nutritionists have incessantly worked towards providing livestock with high-quality plant protein feed resources. Soybean meal (SBM) has been an essential and predominantly adopted vegetable protein source in livestock feeding for a long time; however, several SBM antinutrients could potentially impair the animal's performance and growth, limiting its use. Several processing methods have been employed to remove SBM antinutrients, including fermentation with fungal or bacterial microorganisms. According to the literature, fermentation, a traditional food processing method, could improve SBM's nutritional and functional properties, making it more suitable and beneficial to livestock. The current interest in health-promoting functional feed, which can enhance the growth of animals, improve their immune system, and promote physiological benefits more than conventional feed, coupled with the ban on the use of antimicrobial growth promoters, has caused a renewed interest in the use of fermented SBM (FSBM) in livestock diets. This review details the mechanism of SBM fermentation and its impacts on animal health and discusses the recent trend in the application and emerging advantages to livestock while shedding light on the research gap that needs to be critically addressed in future studies. FSBM appears to be a multifunctional high-quality plant protein source for animals. Besides removing soybean antinutrients, beneficial bioactive peptides and digestive enzymes are produced during fermentation, providing probiotics, antioxidants, and immunomodulatory effects. Critical aspects regarding FSBM feeding to animals remain uncharted, such as the duration of fermentation, the influence of feeding on digestive tissue development, choice of microbial strain, and possible environmental impact.
Collapse
Affiliation(s)
- Modinat T. Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haokai Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peng Song
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Hongxiang Mao
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baisheng Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Penagos-Tabares F, Khiaosa-Ard R, Faas J, Steininger F, Papst F, Egger-Danner C, Zebeli Q. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. J Dairy Sci 2024; 107:1124-1142. [PMID: 37709039 DOI: 10.3168/jds.2023-23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
We recently reported the ubiquitous occurrence of mycotoxins and their secondary metabolites in dairy rations and a substantial variation in the feeding management among Austrian dairy farms. The present study aimed to characterize to which extent these factors contribute to the fertility, udder health traits, and performance of dairy herds. During 2019 and 2020, we surveyed 100 dairy farms, visiting each farm 2 times and collecting data and feed samples. Data collection involved information on the main feed ingredients, nutrient composition, and the levels of mycotoxin and other metabolites in the diet. The annual fertility and milk data of the herds were obtained from the national reporting agency. Calving interval was the target criterion for fertility performance, whereas the percentage of primiparous and multiparous cows in the herd with somatic cell counts above 200,000 cells/mL was the criterion for impaired udder health. For each criterion, herds were classified into 3 groups: high/long, mid, and low/short, with the cut-off corresponding to the <25th and >75th percentiles and the rest of the data, respectively. Accordingly, for the calving interval, the cut-offs for the long and short groups were ≥400 and ≤380 d, for the udder health in primiparous cows were ≥20% and ≤8% of the herd, and for the udder health in multiparous cows were ≥35% and ≤20% of the herd, respectively. Quantitative approaches were further performed to define potential risk factors in the herds. The high somatic cell count group had higher dietary exposure to enniatins (2.8 vs. 1.62 mg/cow per d), deoxynivalenol (4.91 vs. 2.3 mg/cow per d), culmorin (9.48 vs. 5.72 mg/cow per d), beauvericin (0.32 vs. 0.18 mg/cow per d), and siccanol (13.3 vs. 5.15 mg/cow per d), and total Fusarium metabolites (42.8 vs. 23.2 mg/cow per d) and used more corn silage in the ration (26.9% vs. 17.3% diet DM) compared with the low counterparts. Beauvericin was the most substantial contributing variable among the Fusarium metabolites, as indicated by logistic regression and modeling analyses. Logistic analysis indicated that herds with high proportions of cows with milk fat-to-protein ratio >1.5 had an increased odds for a longer calving interval, which was found to be significant for primiparous cows (odds ratio = 5.5, 95% confidence interval = 1.65-21.7). As well, herds with high proportions of multiparous cows showing levels of milk urea nitrogen >30 mg/dL had an increased odds for longer calving intervals (odds ratio = 2.96, 95% confidence interval = 1.22-7.87). In conclusion, the present findings suggest that dietary contamination of Fusarium mycotoxins (especially emerging ones), likely due to increased use of corn silage in the diet, seems to be a risk factor for impairing the udder health of primiparous cows. Mismatching dietary energy and protein supply of multiparous cows contributed to reduced herd fertility performance.
Collapse
Affiliation(s)
- F Penagos-Tabares
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - R Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - J Faas
- DSM-BIOMIN Research Center, Tulln a.d., 3430 Donau, Austria
| | - F Steininger
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - F Papst
- Institute of Technical Informatics, TU Graz/CSH Vienna, 8010 Graz, Austria
| | - C Egger-Danner
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - Q Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
9
|
Grgic D, Novak B, Varga E, Marko D. Estrogen receptor α interaction of zearalenone and its phase I metabolite α-zearalenol in combination with soy isoflavones in hERα-HeLa-9903 cells. Mycotoxin Res 2024; 40:97-109. [PMID: 37847468 PMCID: PMC10834624 DOI: 10.1007/s12550-023-00506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/10/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Risk assessment primarily relies on toxicological data of individual substances, with limited information on combined effects. Recent in vitro experiments using Ishikawa cells, an endometrial carcinoma cell line expressing both estrogen receptor isoforms, demonstrated interactive effects of phyto- and mycoestrogens. The mycoestrogens, zearalenone (ZEN), and α-zearalenol (α-ZEL) exhibited significantly enhanced estrogenic responses in the presence of isoflavones (ISF), depending on substance ratios and concentrations. This study investigated the impact of phyto- and mycoestrogen combinations on estrogenic response following OECD guideline 455, utilizing hERα-HeLa-9903 cells. Test substances included mycoestrogens (ZEN and α-ZEL) and isoflavones (genistein (GEN), daidzein (DAI), and S-equol (EQ), a gut microbial metabolite of DAI). Mycoestrogens were tested in the range of 0.001 to 100 nM, while isoflavones were used at concentrations 1000 times higher based on relevant occurrence ratios. Results showed that ZEN and α-ZEL induced ERα-dependent luciferase expression in concentrations above 1 nM and 0.01 nM, respectively. However, ISF caused a superinduction of the luciferase signal above 1 µM. A superinduction is characterized by an unusually strong or heightened increase in the activity of the luciferase enzyme. This signal is not affected by the estrogen receptor antagonist 4-hydroxytamoxifen (4-OH-TAM), which was additionally used to verify whether the increase of signal is a true reflection of receptor activation. This superinduction was observed in all combinations of ZEN and α-ZEL with ISFs. Contrary to the luciferase activity findings, RT-qPCR experiments and a stability approach revealed lower real ERα activation by ISFs than measured in the ONE-Glo™ luciferase test system. In conclusion, the OECD protocol 455 appears unsuitable for testing ISFs due to their superinduction of luciferase and interactions with the test system, resulting in experimental artifacts. Further studies are necessary to explore structure-activity relationships within polyphenols and clarify the test system's applicability.
Collapse
Affiliation(s)
- Dino Grgic
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- University of Vienna, Doctoral School in Chemistry, Währinger Str. 38-42, 1090, Vienna, Austria
| | - Barbara Novak
- dsm-firmenich, ANH R&D center, Technopark 1, 3430, Tulln, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria.
- Present address: Unit Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| |
Collapse
|
10
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
11
|
Guo Z, Liu Y, Xiang J, Liang X. Mechanochemical preparation of red clover extract/β-cyclodextrin dispersion: Enhanced water solubility and activities in alleviating high-fat diet-induced lipid accumulation and gut microbiota dysbiosis in mice. Food Chem 2023; 420:136084. [PMID: 37060670 DOI: 10.1016/j.foodchem.2023.136084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Red clover (RC) extract is rich in isoflavones (formononetin and biochanin A) that have various biological functions. However, its low water solubility limits its bioavailability. In this study, an RC extract/β-cyclodextrin (RC/β-CD) dispersion was prepared by ball milling to enhance its water solubility and biological availability. The water solubility of formononetin and biochanin A was 34.45 and 13.65 μg/mL (increased to 3.11 and 2.14 times higher than that of RC alone), respectively. The alleviating effects of the dispersion on lipid accumulation and gut microbiota were evaluated in mice. The RC/β-CD dispersion showed a better effect on inhibiting lipid accumulation, especially on total triglycerides. The dispersion group had a higher relative abundance of Akkermansia, Muribaculaceae, and Bacteroides than RC alone, along with a higher level of acetic and butyric acid. The study provides a feasible way for improving the bioaccessibility and bioactivity of RC isoflavones in red clover.
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yilin Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiani Xiang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xianrui Liang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Penagos-Tabares F, Sulyok M, Artavia JI, Flores-Quiroz SI, Garzón-Pérez C, Castillo-Lopez E, Zavala L, Orozco JD, Faas J, Krska R, Zebeli Q. Mixtures of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Whole-Plant Corn Silages and Total Mixed Rations of Dairy Farms in Central and Northern Mexico. Toxins (Basel) 2023; 15:153. [PMID: 36828467 PMCID: PMC9965745 DOI: 10.3390/toxins15020153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites have been neglected and underestimated. This study analyzed a broad spectrum (>800) of mycotoxins, phytoestrogens, and fungal, plant, and unspecific secondary metabolites in whole-plant corn silages (WPCSs) and total mixed rations (TMRs) collected from 19 Mexican dairy farms. A validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was used. Our results revealed 125 of >800 tested (potentially toxic) secondary metabolites. WPCSs/TMRs in Mexico presented ubiquitous contamination with mycotoxins, phytoestrogens, and other metabolites. The average number of mycotoxins per TMR was 24, ranging from 9 to 31. Fusarium-derived secondary metabolites showed the highest frequencies, concentrations, and diversity among the detected fungal compounds. The most frequently detected mycotoxins in TMRs were zearalenone (ZEN) (100%), fumonisin B1 (FB1) (84%), and deoxynivalenol (84%). Aflatoxin B1 (AFB1) and ochratoxin A (OTA), previously reported in Mexico, were not detected. All TMR samples tested positive for phytoestrogens. Among the investigated dietary ingredients, corn stover, sorghum silage, and concentrate proportions were the most correlated with levels of total mycotoxins, fumonisins (Fs), and ergot alkaloids, respectively.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | | | - Samanta-Irais Flores-Quiroz
- Facultad de Estudios Superiores Cuautitlán, Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - César Garzón-Pérez
- Facultad de Estudios Superiores Cuautitlán, Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Ezequías Castillo-Lopez
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Luis Zavala
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | | | - Johannes Faas
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Qendrim Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
13
|
Immunohistochemical Expression (IE) of Oestrogen Receptors in the Intestines of Prepubertal Gilts Exposed to Zearalenone. Toxins (Basel) 2023; 15:toxins15020122. [PMID: 36828436 PMCID: PMC9967477 DOI: 10.3390/toxins15020122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to determine if a low monotonic dose of zearalenone (ZEN) affects the immunohistochemical expression (IE) of oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) in the intestines of sexually immature gilts. Group C (control group; n = 18) gilts were given a placebo. Group E (experimental group; n = 18) gilts were dosed orally with 40 μg ZEN /kg body weight (BW), each day before morning feeding. Samples of intestinal tissue were collected post-mortem six times. The samples were stained to analyse the IE of ERα and Erβ in the scanned slides. The strongest response was observed in ERα in the duodenum (90.387-average % of cells with ERα expression) and in ERβ in the descending colon (84.329-average % of cells with ERβ expression); the opposite response was recorded in the caecum (2.484-average % of cells with ERα expression) and the ascending colon (2.448-average % of cells with ERα expression); on the first two dates of exposure, the digestive tract had to adapt to ZEN in feed. The results of this study, supported by a mechanistic interpretation of previous research findings, suggest that ZEN performs numerous functions in the digestive tract.
Collapse
|
14
|
Penagos-Tabares F, Sulyok M, Nagl V, Faas J, Krska R, Khiaosa-Ard R, Zebeli Q. Mixtures of mycotoxins, phytoestrogens and pesticides co-occurring in wet spent brewery grains (BSG) intended for dairy cattle feeding in Austria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1855-1877. [PMID: 36129729 DOI: 10.1080/19440049.2022.2121430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Spent brewery grains (BSG) are the main by-product of beer production and are incorporated in rations of food-delivering animals, mainly dairy cows. Like other agricultural commodities, BSG can be contaminated by a broad spectrum of natural and synthetic undesirable substances, which can be hazardous to animal and human health as well as to the environment. The co-occurrence of mycotoxins, phytoestrogens, other fungal and plant secondary metabolites, along with pesticides, was investigated in 21 BSG samples collected in dairy farms in Austria. For this purpose, a validated multi-metabolite liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) was employed. Metabolites derived from Fusarium, Aspergillus, Alternaria and pesticide residues, were ubiquitous in the samples. Zearalenone (ZEN), T-2 and HT-2 toxins were the only regulated mycotoxin detected, albeit at concentrations below the European guidance values for animal feeds. Ergot alkaloids, Penicillium-derived metabolites, and phytoestrogens had occurrence rates of 90, 48 and 29%, respectively. Penicillium metabolites presented the highest levels among the fungal compounds, indicating contamination during storage. Aflatoxins (AFs), ochratoxins and deoxynivalenol (DON) were not detected. Out of the 16 detected pesticides, two fungicides, ametoctradin (9.5%) and mandipropamid (14.3%) revealed concentrations exceeding their respective maximum residue level (MRL) (0.01 mg kg-1) for barley in two samples. Although based on European guidance and MRL values the levels of the detected compounds probably do not pose acute risks for cattle, the impact of the long-time exposure to such mixtures of natural and synthetic toxicants on animal health and food safety are unknown and must be elucidated.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Veronika Nagl
- DSM Animal Nutrition and Health - BIOMIN Research Center, Tulln an der Donau, Austria
| | - Johannes Faas
- DSM Animal Nutrition and Health - BIOMIN Research Center, Tulln an der Donau, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria.,Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, UK
| | - Ratchaneewan Khiaosa-Ard
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria.,Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
15
|
Estrogenic in vitro evaluation of zearalenone and its phase I and II metabolites in combination with soy isoflavones. Arch Toxicol 2022; 96:3385-3402. [PMID: 35986755 PMCID: PMC9584851 DOI: 10.1007/s00204-022-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
AbstractHumans and animals are exposed to multiple substances in their food and feed that might have a negative health impact. Among these substances, the Fusarium mycoestrogen zearalenone (ZEN) and its metabolites α-zearalenol (α-ZEL) and α-zearalanol (α-ZAL) are known to possess endocrine disruptive properties. In a mixed diet or especially animal feed, these potential contaminants might be ingested together with naturally occurring phytoestrogens such as soy isoflavones. So far, risk assessment of potential endocrine disruptors is usually based on adverse effects of single compounds whereas studies investigating combinatorial effects are scarce. In the present study, we investigated the estrogenic potential of mycoestrogens and the isoflavones genistein (GEN), daidzein (DAI) and glycitein (GLY) as well as equol (EQ), the gut microbial metabolite of DAI, in vitro alone or in combination, using the alkaline phosphatase (ALP) assay in Ishikawa cells. In the case of mycoestrogens, the tested concentration range included 0.001 to 10 nM with multiplication steps of 10 in between, while for the isoflavones 1000 times higher concentrations were investigated. For the individual substances the following order of estrogenicity was obtained: α-ZEL > α-ZAL > ZEN > GEN > EQ > DAI > GLY. Most combinations of isoflavones with mycoestrogens enhanced the estrogenic response in the investigated concentrations. Especially lower concentrations of ZEN, α-ZEL and α-ZAL (0.001—0.01 nM) in combination with low concentrations of GEN, DAI and EQ (0.001—0.1 µM) strongly increased the estrogenic response compared to the single substances.
Collapse
|
16
|
Penagos-Tabares F, Khiaosa-ard R, Schmidt M, Bartl EM, Kehrer J, Nagl V, Faas J, Sulyok M, Krska R, Zebeli Q. Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors. Toxins (Basel) 2022; 14:toxins14070493. [PMID: 35878231 PMCID: PMC9318294 DOI: 10.3390/toxins14070493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, plant, and unspecific secondary metabolites, including regulated, emerging, and modified mycotoxins, phytoestrogens, and cyanogenic glucosides, in complete diets of lactating cows from 100 Austrian dairy farms. To achieve this, a validated multi-metabolite liquid chromatography/electrospray ionization−tandem mass spectrometric (LC/ESI−MS/MS) method was employed, detecting 155 of >800 tested metabolites. Additionally, the most influential dietary and geo-climatic factors related to the dietary mycotoxin contamination of Austrian dairy cattle were recognized. We evidenced that the diets of Austrian dairy cows presented ubiquitous contamination with mixtures of mycotoxins and phytoestrogens. Metabolites derived from Fusarium spp. presented the highest concentrations, were the most recurrent, and had the highest diversity among the detected fungal compounds. Zearalenone, deoxynivalenol, and fumonisin B1 were the most frequently occurring mycotoxins considered in the EU legislation, with detection frequencies >70%. Among the investigated dietary factors, inclusion of maize silage (MS) and straw in the diets was the most influential factor in contamination with Fusarium-derived and other fungal toxins and metabolites, and temperature was the most influential among the geo-climatic factors.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Ratchaneewan Khiaosa-ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
- Correspondence:
| | - Marlene Schmidt
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Eva-Maria Bartl
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Johanna Kehrer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Veronika Nagl
- DSM—BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.)
| | - Johannes Faas
- DSM—BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.)
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, University Road, Belfast BT7 1NN, UK
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|