1
|
Metibemu DS, Adeyinka OS, Falode J, Crown O, Ogungbe IV. Inhibitors of the Structural and Nonstructural Proteins of Alphaviruses. ACS Infect Dis 2024; 10:2507-2524. [PMID: 38992989 DOI: 10.1021/acsinfecdis.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olawale Samuel Adeyinka
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| |
Collapse
|
2
|
Loaiza-Cano V, Hernández-Mira E, Pastrana-Restrepo M, Galeano E, Pardo-Rodriguez D, Martinez-Gutierrez M. The Mechanism of Action of L-Tyrosine Derivatives against Chikungunya Virus Infection In Vitro Depends on Structural Changes. Int J Mol Sci 2024; 25:7972. [PMID: 39063216 PMCID: PMC11277544 DOI: 10.3390/ijms25147972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Although the disease caused by chikungunya virus (CHIKV) is of great interest to public health organizations around the world, there are still no authorized antivirals for its treatment. Previously, dihalogenated anti-CHIKV compounds derived from L-tyrosine (dH-Y) were identified as being effective against in vitro infection by this virus, so the objective of this study was to determine the mechanisms of its antiviral action. Six dH-Y compounds (C1 to C6) dihalogenated with bromine or chlorine and modified in their amino groups were evaluated by different in vitro antiviral strategies and in silico tools. When the cells were exposed before infection, all compounds decreased the expression of viral proteins; only C4, C5 and C6 inhibited the genome; and C1, C2 and C3 inhibited infectious viral particles (IVPs). Furthermore, C1 and C3 reduce adhesion, while C2 and C3 reduce internalization, which could be related to the in silico interaction with the fusion peptide of the E1 viral protein. Only C3, C4, C5 and C6 inhibited IVPs when the cells were exposed after infection, and their effect occurred in late stages after viral translation and replication, such as assembly, and not during budding. In summary, the structural changes of these compounds determine their mechanism of action. Additionally, C3 was the only compound that inhibited CHIKV infection at different stages of the replicative cycle, making it a compound of interest for conversion as a potential drug.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (V.L.-C.); (E.H.-M.)
| | - Estiven Hernández-Mira
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (V.L.-C.); (E.H.-M.)
| | - Manuel Pastrana-Restrepo
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellin 050010, Colombia; (M.P.-R.); (E.G.)
| | - Elkin Galeano
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellin 050010, Colombia; (M.P.-R.); (E.G.)
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogota 111711, Colombia;
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (V.L.-C.); (E.H.-M.)
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellin 050010, Colombia
| |
Collapse
|
3
|
Ng WH, Amaral K, Javelle E, Mahalingam S. Chronic chikungunya disease (CCD): clinical insights, immunopathogenesis and therapeutic perspectives. QJM 2024; 117:489-494. [PMID: 38377410 PMCID: PMC11290245 DOI: 10.1093/qjmed/hcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Chikungunya virus, an arthropod-borne pathogen is recognized by the World Health Organization as a top priority Emerging Infectious Disease and is ranked fourth in public health needs according to the Coalition for Epidemic Preparedness Innovations. Despite its substantial impact, as evidenced by an annual estimate of 120 274 disability-adjusted life years, our understanding of the chronic aspects of chikungunya disease remains limited. This review focuses on chronic chikungunya disease, emphasizing its clinical manifestations, immunopathogenesis, therapeutic options and disease burden.
Collapse
Affiliation(s)
- W H Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - K Amaral
- Department of Health Sciences, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - E Javelle
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France
- Unit of Infectious Diseases and Tropical Medicine, IHU Méditerranée Infection, Marseille, France
- Service de Pathologie Infectieuse et Tropicale, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - S Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
4
|
Vieux N, Perrier Q, Bedouch P, Epaulard O. Much ado about nothing? Discrepancy between the available data on the antiviral effect of hydroxychloroquine in March 2020 and its inclusion in COVID-19 clinical trials and outpatient prescriptions. Public Health 2023; 225:35-44. [PMID: 37918175 DOI: 10.1016/j.puhe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Many of the 2020 COVID-19 clinical trials included an (hydroxy)chloroquine ((H)CQ) arm. We aimed to juxtapose the state of science before April 2020 regarding the benefits of (H)CQ for viral infections with the number and size of the clinical trials studying (H)CQ and the volume of (H)CQ dispensed in France. STUDY DESIGN We identified and analysed published scientific material regarding the antiviral activity of (H)CQ and publicly available data regarding clinical trials and drug dispensation in France. METHODS We conducted a review of scientific publications available before April 2020 and a systematic analysis of COVID-19 clinical trials featuring (H)CQ registered on clinicaltrials.gov. RESULTS Before April 2020, 894 scientific publications mentioning (H)CQ for viruses other than coronaviruses were available, including 35 in vitro studies (reporting an inconstant inhibition of viral replication), 11 preclinical studies (reporting no or disputable positive effects), and 32 clinical trials (reporting no or disputable positive effects). Moreover, 67 publications on (H)CQ and coronavirus infections were available, including 12 in vitro studies (reporting an inconstant inhibition of viral replication), two preclinical studies (reporting contradictory results), and no clinical trials. Meanwhile, 253 therapeutic clinical trials featuring an HCQ arm were registered in 2020, intending to enrol 246,623 patients. CONCLUSIONS The number and size of (H)CQ clinical trials for COVID-19 launched in 2020 were not supported by the literature published before April 2020.
Collapse
Affiliation(s)
- N Vieux
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Q Perrier
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetic (LBFA), INSERM U1055, Grenoble, France
| | - P Bedouch
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - O Epaulard
- Infectious Disease Department, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France; Groupe de Recherche en Infectiologie Clinique, CIC-1406, INSERM-UGA-CHUGA, France.
| |
Collapse
|
5
|
He Y, Pan Z, Liu Y, Jiang L, Peng H, Zhao P, Qi Z, Liu Y, Tang H. Identification of tyrphostin AG879 and A9 inhibiting replication of chikungunya virus by screening of a kinase inhibitor library. Virology 2023; 588:109900. [PMID: 37832343 DOI: 10.1016/j.virol.2023.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Chikungunya virus (CHIKV) is a globally public health threat. There are currently no medications available to treat CHIKV infection. High-throughput screening of 419 kinase inhibitors was performed based on the cytopathic effect method, and six kinase inhibitors with reduced cytopathic effects, including tyrphostin AG879 (AG879), tyrphostin 9 (A9), sorafenib, sorafenib tosylate, regorafenib, and TAK-632, were identified. The anti-CHIKV activities of two receptor tyrosine kinase inhibitors, AG879 and A9, that have not been previously reported, were selected for further evaluation. The results indicated that 50% cytotoxic concentration (CC50) of AG879 and A9 in Vero cells were greater than 30 μM and 6.50 μM, respectively and 50% effective concentration (EC50) were 0.84 μM and 0.36 μM, respectively. The time-of-addition and time-of-removal assays illustrated that both AG879 and A9 function in the middle stage of CHIKV life cycle. Further, AG879 and A9 do not affect viral attachment; however, they inhibit viral RNA replication, and exhibit antiviral activity against CHIKV Eastern/Central/South African and Asian strains, Ross River virus and Sindbis virus in vitro.
Collapse
Affiliation(s)
- Yanhua He
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Yan Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Liangliang Jiang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Yangang Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China.
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
6
|
Nguyen TV, Ngwe Tun MM, Cao MT, Dao HM, Luong CQ, Huynh TKL, Nguyen TTT, Hoang TND, Morita K, Le TQM, Pham QD, Takamatsu Y, Hasebe F. Serological and Molecular Epidemiology of Chikungunya Virus Infection in Vietnam, 2017-2019. Viruses 2023; 15:2065. [PMID: 37896842 PMCID: PMC10611313 DOI: 10.3390/v15102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), which is transmitted by Aedes mosquitoes. Since 1965, only a few studies with limited scope have been conducted on CHIKV in Vietnam. Thus, this study aimed to determine the seroprevalence and molecular epidemiology of CHIKV infection among febrile patients in Vietnam from 2017 to 2019. A total of 1063 serum samples from 31 provinces were collected and tested for anti-CHIKV IgM and IgG ELISA. The 50% focus reduction neutralization test (FRNT50) was used to confirm CHIKV-neutralizing antibodies. Quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the presence of the CHIKV genome. The results showed that 15.9% (169/1063) of the patients had anti-CHIKV IgM antibodies, 20.1% (214/1063) had anti-CHIKV IgG antibodies, 10.4% (111/1063) had CHIKV-neutralizing antibodies, and 27.7% (130/469) of the samples were positive in RT-qPCR analysis. The E1 CHIKV genome sequences were detected among the positive RT-qPCR samples. Our identified sequences belonged to the East/Central/South/African (ECSA) genotype, which has been prevalent in Vietnam previously, suggesting CHIKV has been maintained and is endemic in Vietnam. This study demonstrates a high prevalence of CHIKV infection in Vietnam and calls for an annual surveillance program to understand its impact.
Collapse
Affiliation(s)
- Thanh Vu Nguyen
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Minh Thang Cao
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Huy Manh Dao
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Chan Quang Luong
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Thi Kim Loan Huynh
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Thi Thanh Thuong Nguyen
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Thi Nhu Dao Hoang
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Thi Quynh Mai Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam;
| | - Quang Duy Pham
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (M.T.C.); (H.M.D.); (C.Q.L.); (T.K.L.H.); (T.T.T.N.); (T.N.D.H.); (Q.D.P.)
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (T.V.N.); (K.M.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
7
|
Rabelo VWH, da Silva VD, Sanchez Nuñez ML, dos Santos Corrêa Amorim L, Buarque CD, Kuhn RJ, Abreu PA, Nunes de Palmer Paixão IC. Antiviral evaluation of 1,4-disubstituted-1,2,3-triazole derivatives against Chikungunya virus. Future Virol 2023; 18:865-880. [PMID: 37974899 PMCID: PMC10636642 DOI: 10.2217/fvl-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Aim This work aimed to investigate the antiviral activity of two 1,4-disubstituted-1,2,3-triazole derivatives (1 and 2) against Chikungunya virus (CHIKV) replication. Materials & methods Cytotoxicity was analyzed using colorimetric assays and the antiviral potential was evaluated using plaque assays and computational tools. Results Compound 2 showed antiviral activity against CHIKV 181-25 in BHK-21 and Vero cells. Also, this compound presented a higher activity against CHIKV BRA/RJ/18 in Vero cells, like compound 1. Compound 2 exhibited virucidal activity and inhibited virus entry while compound 1 inhibited virus release. Molecular docking suggested that these derivatives inhibit nsP1 protein while compound 1 may also target capsid protein. Conclusion Both compounds exhibit promising antiviral activity against CHIKV by blocking different steps of virus replication.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
| | - Verônica Diniz da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, CEP, 22451-900, Brazil
| | - Maria Leonisa Sanchez Nuñez
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
| | - Leonardo dos Santos Corrêa Amorim
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - Camilla Djenne Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, CEP, 22451-900, Brazil
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, CEP, 27965-045, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Programas de Pós-graduação em Biotecnologia Marinha e de Neurologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
8
|
Li X, Guan Z, Liu Q, Yang W, Huang J, Yuan M, Yu J. Treatment of condylomata acuminata caused by low-risk human papillomavirus with chloroquine phosphate gel. Front Med (Lausanne) 2023; 10:1171550. [PMID: 37188086 PMCID: PMC10175579 DOI: 10.3389/fmed.2023.1171550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To observe the stability and therapeutic effect of chloroquine phosphate gel on human condylomata acuminata (CA) caused by low-risk human papillomavirus (HPV). Methods The appearance, viscosity, pH, chloroquine concentration, deethylchloroquine concentration and content uniformity of chloroquine phosphate gel were examined for 24 months, the gel met the quality standards throughout the 24-month observation. A nude mouse model harboring CA xenografts was used to observe the therapeutic effect of this gel on CA in vivo. Results After 14 days of gel administration, compared with the control group, the treatment group had significantly smaller warts and significantly reduced DNA copy numbers of HPV6 and HPV11 in the wart tissues. Immunohistochemistry analysis of p53 protein expression in the wart tissues of the treatment group was significantly increased. Conclusion Chloroquine phosphate gel was stable and effective against CA, possibly through the promotion of p53 protein expression to induce apoptosis, leading to the involution of warts.
Collapse
Affiliation(s)
- Xiangling Li
- Key Laboratory of Basic Research of Traditional Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Zhisheng Guan
- Guangzhou Hybribio Biotechnology Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Qi Liu
- Guangzhou Hybribio Biotechnology Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Wei Yang
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Jie Huang
- Department of Dermatology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Manli Yuan
- Guangzhou Hybribio Biotechnology Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Junlong Yu
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
9
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
10
|
Sofyantoro F, Frediansyah A, Priyono DS, Putri WA, Septriani NI, Wijayanti N, Ramadaningrum WA, Turkistani SA, Garout M, Aljeldah M, Al Shammari BR, Alwashmi ASS, Alfaraj AH, Alawfi A, Alshengeti A, Aljohani MH, Aldossary S, Rabaan AA. Growth in chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022 following disease emergence: a bibliometric and graphical analysis. Global Health 2023; 19:9. [PMID: 36747262 PMCID: PMC9901127 DOI: 10.1186/s12992-023-00906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND ASEAN (Association of Southeast Asian Nations) is composed of ten Southeast Asian countries bound by socio-cultural ties that promote regional peace and stability. South Asia, located in the southern subregion of Asia, includes nine countries sharing similarities in geographical and ethno-cultural factors. Chikungunya is one of the most significant problems in Southeast and South Asian countries. Much of the current chikungunya epidemic in Southeast Asia is caused by the emergence of a virus strain that originated in Africa and spread to Southeast Asia. Meanwhile, in South Asia, three confirmed lineages are in circulation. Given the positive correlation between research activity and the improvement of the clinical framework of biomedical research, this article aimed to examine the growth of chikungunya virus-related research in ASEAN and South Asian countries. METHODS The Scopus database was used for this bibliometric analysis. The retrieved publications were subjected to a number of analyses, including those for the most prolific countries, journals, authors, institutions, and articles. Co-occurrence mapping of terms and keywords was used to determine the current state, emerging topics, and future prospects of chikungunya virus-related research. Bibliometrix and VOSviewer were used to analyze the data and visualize the collaboration network mapping. RESULTS The Scopus search engine identified 1280 chikungunya-related documents published by ASEAN and South Asian countries between 1967 and 2022. According to our findings, India was the most productive country in South Asia, and Thailand was the most productive country in Southeast Asia. In the early stages of the study, researchers investigated the vectors and outbreaks of the chikungunya virus. In recent years, the development of antivirus agents has emerged as a prominent topic. CONCLUSIONS Our study is the first to present the growth of chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022. In this study, the evaluation of the comprehensive profile of research on chikungunya can serve as a guide for future studies. In addition, a bibliometric analysis may serve as a resource for healthcare policymakers.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Center for Tropical Biodiversity, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Andri Frediansyah
- PRTPP, National Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia.
| | - Dwi Sendi Priyono
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Center for Tropical Biodiversity, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Nastiti Wijayanti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | | | | | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 39831, Saudi Arabia
| | - Basim R Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 39831, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, 33261, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, 41491, Saudi Arabia
| | - Maha H Aljohani
- Department of infectious diseases, King Fahad Hospital, Madinah, 42351, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children's Health Institute, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| |
Collapse
|
11
|
Millsapps EM, Underwood EC, Barr KL. Development and Application of Treatment for Chikungunya Fever. Res Rep Trop Med 2022; 13:55-66. [PMID: 36561535 PMCID: PMC9767026 DOI: 10.2147/rrtm.s370046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development and application of treatment for Chikungunya fever (CHIKF) remains complicated as there is no current standard treatment and many barriers to research exist. Chikungunya virus (CHIKV) causes serious global health implications due to its socioeconomic impact and high morbidity rates. In research, treatment through natural and pharmaceutical techniques is being evaluated for their efficacy and effectiveness. Natural treatment options, such as homeopathy and physiotherapy, give patients a variety of options for how to best manage acute and chronic symptoms. Some of the most used pharmaceutical therapies for CHIKV include non-steroidal anti-inflammatory drugs (NSAIDS), methotrexate (MTX), chloroquine, and ribavirin. Currently, there is no commercially available vaccine for chikungunya, but vaccine development is crucial for this virus. Potential treatments need further research until they can become a standard part of treatment. The barriers to research for this complicated virus create challenges in the efficacy and equitability of its research. The rising need for increased research to fully understand chikungunya in order to develop more effective treatment options is vital in protecting endemic populations globally.
Collapse
Affiliation(s)
- Erin M Millsapps
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Emma C Underwood
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Kelli L Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA,Correspondence: Kelli L Barr, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd. Suite 304, Tampa, FL, 33612, USA, Tel +1 813 974 4480, Fax +1 813 974 4962, Email
| |
Collapse
|
12
|
Bishop CR, Caten FT, Nakaya HI, Suhrbier A. Chikungunya patient transcriptional signatures faithfully recapitulated in a C57BL/6J mouse model. Front Immunol 2022; 13:1092370. [PMID: 36578476 PMCID: PMC9791225 DOI: 10.3389/fimmu.2022.1092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction An adult wild-type C57BL/6J mouse model of chikungunya virus (CHIKV) infection and disease has been extensively used to study the alphaviral arthritic immunopathology and to evaluate new interventions. How well mouse models recapitulate the gene expression profiles seen in humans remains controversial. Methods Herein we perform a comparative transcriptomics analysis using RNA-Seq datasets from the C57BL/6J CHIKV mouse model with datasets obtained from adults and children acutely infected with CHIKV. Results Despite sampling quite different tissues, peripheral blood from humans and feet from mice, gene expression profiles were quite similar, with an overlap of up to ≈50% for up-regulated single copy orthologue differentially expressed genes. Furthermore, high levels of significant concordance between mouse and human were seen for immune pathways and signatures, which were dominated by interferons, T cells and monocyte/macrophages. Importantly, predicted responses to a series of anti-inflammatory drug and biologic treatments also showed cogent similarities between species. Discussion Comparative transcriptomics and subsequent pathway analysis provides a detailed picture of how a given model recapitulates human gene expression. Using this method, we show that the C57BL/6J CHIKV mouse model provides a reliable and representative system in which to study CHIKV immunopathology and evaluate new treatments.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| | - Andreas Suhrbier
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia,Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| |
Collapse
|
13
|
Sahin G, Akbal-Dagistan O, Culha M, Erturk A, Basarir NS, Sancar S, Yildiz-Pekoz A. Antivirals and the Potential Benefits of Orally Inhaled Drug Administration in COVID-19 Treatment. J Pharm Sci 2022; 111:2652-2661. [PMID: 35691607 PMCID: PMC9181835 DOI: 10.1016/j.xphs.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 12/25/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) pandemic has been on the agenda of humanity for more than 2 years. In the meantime, the pandemic has caused economic shutdowns, halt of daily lives and global mobility, overcrowding of the healthcare systems, panic, and worse, more than 6 million deaths. Today, there is still no specific therapy for COVID-19. Research focuses on repurposing of antiviral drugs that are licensed or currently in the research phase, with a known systemic safety profile. However, local safety profile should also be evaluated depending on the new indication, administration route and dosage form. Additionally, various vaccines have been developed. But the causative virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has undergone multiple variations, too. The premise that vaccines may suffice to eradicate new and all variants is unreliable, as they are based on earlier versions of the virus. Therefore, a specific medication therapy for COVID-19 is crucial and needed in order to prevent severe complications of the disease. Even though there is no specific drug that inhibits the replication of the disease-causing virus, among the current treatment options, systemic antivirals are the most medically appropriate. As SARS-CoV-2 directly targets the lungs and initiates lung damage, treating COVID-19 with inhalants can offer many advantages over the enteral/parenteral administration. Inhaled drug delivery provides higher drug concentration, specifically in the pulmonary system. This enables the reduction of systemic side effects and produces a rapid clinical response. In this article, the most frequently (systemically) used antiviral compounds are reviewed including Remdesivir, Favipiravir, Molnupiravir, Lopinavir-Ritonavir, Umifenovir, Chloroquine, Hydroxychloroquine and Heparin. A comprehensive literature search was conducted to provide insight into the potential inhaled use of these antiviral drugs and the current studies on inhalation therapy for COVID-19 was presented. A brief evaluation was also made on the use of inhaler devices in the treatment of COVID-19. Inhaled antivirals paired with suitable inhaler devices should be considered for COVID-19 treatment options.
Collapse
Affiliation(s)
- Gokben Sahin
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey; Trakya University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Ozlem Akbal-Dagistan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Meltem Culha
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Aybige Erturk
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey; Istinye University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Nur Sena Basarir
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Serap Sancar
- Istanbul University, Faculty of Science, Department of Molecular Biology, Turkey
| | - Ayca Yildiz-Pekoz
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey.
| |
Collapse
|
14
|
Freitas TR, Novais RM, Santos IA, Martins DOS, Danuello A, da Silva Bolzani V, Jardim ACG, Pivatto M. In vitro antiviral activity of piperidine alkaloids from Senna spectabilis flowers on Chikungunya virus infection. Pharmacol Rep 2022; 74:752-758. [PMID: 35882766 DOI: 10.1007/s43440-022-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chikungunya fever is an endemic disease caused by the Chikungunya virus (CHIKV). To date there is no antiviral treatment against this infection or licensed vaccine to prevent it. Our study aims to evaluate whether (-)-cassine (1) and (-)-spectaline (2), the main alkaloids of Senna spectabilis, display anti-CHIKV activity. Both compounds have been described to be biologically active against neglected tropical diseases, including malaria, leishmaniasis, and schistosomiasis, which emphasizes that these molecules could be repurposed for chikungunya fever treatment. METHODS The structures of the isolated compounds 1 and 2 were identified by NMR and HRESIMS analyses, and their antiviral activity against CHIKV was assessed by a dose-response assay employing BHK-21 cells and CHIKV-nanoluc, a recombinant virus carrying the nanoluciferase gene reporter. RESULTS Compound 1 presented CC50 of 126.5 µM and EC50 of 14.9 µM, while compound 2 presented CC50 of 91.9 µM and EC50 of 8.3 µM. The calculated selectivity index (SI) was 8.5 for 1 and 11.3 for 2. CONCLUSION The data presented herein show that compounds 1 and 2 have potential for being repurposed as anti-CHIKV drug. Our promising in vitro results encourage further in vitro and in vivo assays. This is the first description of the antiviral activity of compounds 1 and 2 against CHIKV infection, which can impact the development of antiviral drug candidates against chikungunya fever, which sometimes can be debilitating.
Collapse
Affiliation(s)
- Thamires Rodrigues Freitas
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Raul Marques Novais
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Igor Andrade Santos
- Laboratório de Pesquisa em Antivirais, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia, MG, 38405-317, Uberlândia, Brazil
| | - Daniel Oliveira Silva Martins
- Laboratório de Pesquisa em Antivirais, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia, MG, 38405-317, Uberlândia, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho", São José Do Rio Preto, SP, 15054-000, Brazil
| | - Amanda Danuello
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Vanderlan da Silva Bolzani
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, Araraquara, SP, 14801-970, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratório de Pesquisa em Antivirais, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia, MG, 38405-317, Uberlândia, Brazil. .,Universidade Estadual Paulista "Júlio de Mesquita Filho", São José Do Rio Preto, SP, 15054-000, Brazil.
| | - Marcos Pivatto
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
15
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
16
|
Roques P, Fritzer A, Dereuddre-Bosquet N, Wressnigg N, Hochreiter R, Bossevot L, Pascal Q, Guehenneux F, Bitzer A, Corbic Ramljak I, Le Grand R, Lundberg U, Meinke A. Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera. JCI Insight 2022; 7:160173. [PMID: 35700051 PMCID: PMC9431671 DOI: 10.1172/jci.insight.160173] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority. This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to nonhuman primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV-associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro–plaque reduction neutralization test titer of ≥ 150 was determined as a surrogate of protection, which was supported by analysis of samples from a seroepidemiological study. In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step toward vaccine licensure to reduce the medical burden caused by chikungunya.
Collapse
Affiliation(s)
- Pierre Roques
- Unité de Virologie, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | | - Nina Wressnigg
- Clinical Strategy, Valneva Austria GmbH, Vienna, Austria
| | | | - Laetitia Bossevot
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | - Quentin Pascal
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | | | | - Roger Le Grand
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
17
|
Hucke FIL, Bestehorn-Willmann M, Bassetto M, Brancale A, Zanetta P, Bugert JJ. CHIKV strains Brazil (wt) and Ross (lab-adapted) differ with regard to cell host range and antiviral sensitivity and show CPE in human glioblastoma cell lines U138 and U251. Virus Genes 2022; 58:188-202. [PMID: 35347588 PMCID: PMC8960095 DOI: 10.1007/s11262-022-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
Chikungunya virus (CHIKV), a (re)emerging arbovirus, is the causative agent of chikungunya fever. To date, no approved vaccine or specific antiviral therapy are available. CHIKV has repeatedly been responsible for serious economic and public health impacts in countries where CHIKV epidemics occurred. Antiviral tests in vitro are generally performed in Vero-B4 cells, a well characterised cell line derived from the kidney of an African green monkey. In this work we characterised a CHIKV patient isolate from Brazil (CHIKVBrazil) with regard to cell affinity, infectivity, propagation and cell damage and compared it with a high-passage lab strain (CHIKVRoss). Infecting various cell lines (Vero-B4, A549, Huh-7, DBTRG, U251, and U138) with both virus strains, we found distinct differences between the two viruses. CHIKVBrazil does not cause cytopathic effects (CPE) in the human hepatocarcinoma cell line Huh-7. Neither CHIKVBrazil nor CHIKVRoss caused CPE on A549 human lung epithelial cells. The human astrocyte derived glioblastoma cell lines U138 and U251 were found to be effective models for lytic infection with both virus strains and we discuss their predictive potential for neurogenic CHIKV disease. We also detected significant differences in antiviral efficacies regarding the two CHIKV strains. Generally, the antivirals ribavirin, hydroxychloroquine (HCQ) and T-1105 seem to work better against CHIKVBrazil in glioblastoma cells than in Vero-B4. Finally, full genome analyses of the CHIKV isolates were done in order to determine their lineage and possibly explain differences in tissue range and antiviral compound efficacies.
Collapse
Affiliation(s)
- Friederike I L Hucke
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany.
| | | | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Paola Zanetta
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DISS), School of Medicine, Università del Piemonte Orientale (UPO), 28100, Novara, Italy
| | - Joachim J Bugert
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| |
Collapse
|
18
|
Abdulaziz L, Elhadi E, Abdallah EA, Alnoor FA, Yousef BA. Antiviral Activity of Approved Antibacterial, Antifungal, Antiprotozoal and Anthelmintic Drugs: Chances for Drug Repurposing for Antiviral Drug Discovery. J Exp Pharmacol 2022; 14:97-115. [PMID: 35299994 PMCID: PMC8922315 DOI: 10.2147/jep.s346006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing process aims to identify new uses for the existing drugs to overcome traditional de novo drug discovery and development challenges. At the same time, as viral infections became a serious threat to humans and the viral organism itself has a high ability to mutate genetically, and due to serious adverse effects that result from antiviral drugs, there are crucial needs for the discovery of new antiviral drugs, and to identify new antiviral effects for the exciting approved drugs towards different types of viral infections depending on the observed antiviral activity in preclinical studies or clinical findings is one of the approaches to counter the viral infections problems. This narrative review article summarized mainly the published preclinical studies that evaluated the antiviral activity of drugs that are approved and used mainly as antibacterial, antifungal, antiprotozoal, and anthelmintic drugs, and the preclinical studies included the in silico, in vitro, and in vivo findings, additionally some clinical observations were also included while trying to relate them to the preclinical findings. Finally, the structure used for writing about the antiviral activity of the drugs was according to the families of the viruses used in the studies to form a better image for the target of antiviral activity of different drugs in the different kinds of viruses and to relate between the antiviral activity of the drugs against different strains of viruses within the same viral family.
Collapse
Affiliation(s)
- Leena Abdulaziz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
| | - Esraa Elhadi
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Ejlal A Abdallah
- Department of Pharmacology and Pharmacy Practice, Faculty of Pharmacy, Sudan University of Science and Technology, Khartoum, 11111, Sudan
| | - Fadlalbaseer A Alnoor
- Department of Pharmacology, Faculty of Pharmacy, National University, Khartoum, 11111, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
- Correspondence: Bashir A Yousef, Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum, 11111, Sudan, Tel +249 912932418, Fax +249 183780696, Email
| |
Collapse
|
19
|
Bosquet A, Affo C, Plaisance L, Poenou G, Mortier E, Mahé I. Outside any therapeutic trial prescription of hydroxychloroquine for hospitalized patients with covid-19 during the first wave of the pandemic: A national inquiry of prescription patterns among French hospitalists. PLoS One 2022; 17:e0261843. [PMID: 35061735 PMCID: PMC8782345 DOI: 10.1371/journal.pone.0261843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION During the first wave of the coronavirus-disease 2019 (covid-19) pandemic in early 2020, hydroxychloroquine (HCQ) was widely prescribed in light of in vitro activity against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Our objective was to evaluate in early 2020 the rate of French hospitalists declaring having prescribed HCQ to treat covid-19 patients outside any therapeutic trial, compare the reasons and the determinants for having prescribed HCQ or not. MATERIAL AND METHODS A national inquiry submitted by email from May 7 to 25, 2020, to a sample of French hospitalists: doctors managing patients hospitalized for covid-19 in a French department of internal medicine or infectious diseases and identified in the directories of French hospitals or as a member of the French Infectious Diseases Society (SPILF). Primary outcome was the percentage of hospitalists declaring having prescribed HCQ to covid-19 patients. Secondary outcomes were reasons and determinants of HCQ prescription. RESULTS Among 400 (22.8%) responding hospitalists, 45.3% (95% CI, 40.4 to 50.1%) declared having prescribed HCQ to covid-19 patients. Two main profiles were discerned: HCQ prescribers who did not raise its efficacy as a motive, and non-prescribers who based their decision on evidence-based medicine. Multivariate analysis retained the following prescription determinants (adjusted odds ratio; 95% confidence interval): a departmental procedure for HCQ prescription (8.25; 4.79 to 14.20), having prescribed other treatments outside a therapeutic trial (3.21; 1.81 to 5.71), prior HCQ prescription (2.75; 1.5 to 5.03) and HCQ prescribed within the framework of a therapeutic trial (0.56; 0.33 to 0.95). CONCLUSION Almost half of the hospitalists prescribed HCQ. The physician's personality (questioning or not evidence-based-medicine principles in the context of the pandemic) and departmental therapeutic procedures were the main factors influencing HCQ prescription. Establishment of "therapeutic" procedures represents a potential means to improve the quality of therapeutic decision-making during a pandemic.
Collapse
Affiliation(s)
- Antoine Bosquet
- Assistance-Publique–Hôpitaux de Paris (AP-HP), DMU ESPRIT, Service de Médecine Interne, Hôpital Louis-Mourier, Université de Paris, Colombes, France
| | - Comlan Affo
- Assistance-Publique–Hôpitaux de Paris (AP-HP), DMU ESPRIT, Service de Médecine Interne, Hôpital Louis-Mourier, Université de Paris, Colombes, France
| | - Ludovic Plaisance
- Université de Paris, Assistance-Publique–Hôpitaux de Paris (AP-HP), DMU ESPRIT, Service de Médecine Interne, Hôpital Louis-Mourier, Colombes, France
| | - Géraldine Poenou
- Université de Paris, Assistance-Publique–Hôpitaux de Paris (AP-HP), DMU ESPRIT, Service de Médecine Interne, Hôpital Louis-Mourier, Colombes, France
| | - Emmanuel Mortier
- Assistance-Publique–Hôpitaux de Paris (AP-HP), DMU ESPRIT, Policlinique, Hôpital Louis-Mourier, Colombes, France
| | - Isabelle Mahé
- Université de Paris, Assistance-Publique–Hôpitaux de Paris (AP-HP), DMU ESPRIT, Service de Médecine Interne, Hôpital Louis-Mourier, Colombes, France
- Inserm UMR_S1140, Innovative Therapies in Haemostasis Paris, Paris, France
| |
Collapse
|
20
|
Middha SK, David A, Haldar S, Boro H, Panda P, Bajare N, Milesh L, Devaraj V, Usha T. Databases, DrugBank, and virtual screening platforms for therapeutic development. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300480 DOI: 10.1016/b978-0-323-91172-6.00021-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The upsurge of the severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has turned into a global health disaster. Many remodeled medications were suggested for treatment in the early stages of this pandemic, but these dosages afterward came across with distinct offshoots. Thus, these consequences compelled the scientists to develop new drugs using various antiviral, antiinflammatory, antibacterial, and phytochemical compounds. A handful of drugs have been scrutinized in silico, in vitro, plus through human trials such as anti-SARS-CoV-2 agents and made available as various databases by various scientific communities. The SARS-CoV-2 pandemic databases are designed to allay difficulties associated with this scenario. Some of the popular databases are GESS (global evaluation of SARS-CoV-2/HCoV-19 sequences) which gives a thorough study of data based on tenfold of thousands of complete coverage and quality of SARS-CoV-2 genomes, CORona Drug InTERactions (CORDITE) database for SARS-CoV-2 which profoundly combines the understanding of potential drugs and make it available for scientists and medicos. SARSCOVIDB set one’s sights to merge all differential gene expression data, at mRNA and protein levels, helping to accelerate analysis and research on the molecular impact of covid-19. This chapter aims to provide a piece of complete information about the SARS-CoV-2 virus databases, potentially available drugs, and virtual screening methods. And also provides a different webserver to reach out for information related to the COVID-19 pandemic and its future.
Collapse
|
21
|
Agrawal M, Saraf S, Saraf S, Murty US, Kurundkar SB, Roy D, Joshi P, Sable D, Choudhary YK, Kesharwani P, Alexander A. In-line treatments and clinical initiatives to fight against COVID-19 outbreak. Respir Med 2022; 191:106192. [PMID: 33199136 PMCID: PMC7567661 DOI: 10.1016/j.rmed.2020.106192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
In December 2019, when the whole world is waiting for Christmas and New Year, the physicians of Wuhan, China, are astounded by clusters of patients suffering from pneumonia from unknown causes. The pathogen isolated from the respiratory epithelium of the patients is similar to previously known coronaviruses with some distinct features. The disease was initially called nCoV-2019 or SARS-nCoV-2 and later termed as COVID-19 by WHO. The infection is rapidly propagating from the day of emergence, spread throughout the globe and now became a pandemic which challenged the competencies of developed nations in terms of health care management. As per WHO report, 216 countries are affected with SARS-CoV-19 by August 5, 2020 with 18, 142, 718 confirmed cases and 691,013 deaths reports. Such huge mortality and morbidity rates are truly threatening and calls for some aggressive and effective measures to slow down the disease transmission. The scientists are constantly engaged in finding a potential solution to diagnose and treat the pandemic. Various FDA approved drugs with the previous history of antiviral potency are repurposed for COVID-19 treatment. Different drugs and vaccines are under clinical trials and some rapid and effective diagnostic tools are also under development. In this review, we have highlighted the current epidemiology through infographics, disease transmission and progression, clinical features and diagnosis and possible therapeutic approaches for COVID-19. The article mainly focused on the development and possible application of various FDA approved drugs, including chloroquine, remdesivir, favipiravir, nefamostate mesylate, penciclovir, nitazoxanide, ribavirin etc., vaccines under development and various registered clinical trials exploring different therapeutic measures for the treatment of COVID-19. This information will definitely help the researchers to understand the in-line scientific progress by various clinical agencies and regulatory bodies against COVID-19.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India
| | - Sucheta Banerjee Kurundkar
- Clinical Development Services Agency (An Extramural Unit of Translational Health Science & Technology Institute, Dept of Biotechnology, Ministry of Science & Technology, Govt. of India) NCR Biotech Science Cluster, 3rd Milestone, Gurgaon- Faridabad Expressway, Faridabad, 121001, India
| | - Debjani Roy
- Clinical Development Services Agency (An Extramural Unit of Translational Health Science & Technology Institute, Dept of Biotechnology, Ministry of Science & Technology, Govt. of India) NCR Biotech Science Cluster, 3rd Milestone, Gurgaon- Faridabad Expressway, Faridabad, 121001, India
| | - Pankaj Joshi
- Kulkarni EndoSurgery Institute and Reconstructive Urology Centre, Paud Raod, Pune, 411038, India; Department of Urology, Deenanath Mangeshkar Hospital and Research Center, Erendawane, Pune, 411004, India
| | - Dhananjay Sable
- Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, New Delhi, 110001, India
| | - Yogendra Kumar Choudhary
- Etica Clinpharm Pvt Ltd, CCRP-317, Ambuja City Centre, Vidhan Sabha Road, Mowa, Raipur, Chhattisgarh, 492001, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India.
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India.
| |
Collapse
|
22
|
OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:889-899. [DOI: 10.1093/trstmh/trac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
|
23
|
Issam N, Lazhari T, Tayeb B, Dafne S, Zihad B, Tarek M, Abdelkrim T. Mécanismes possiblement impliqués dans les effets antiviraux de la chloroquine et de l’hydroxychloroquine – Quelle réalité pour le traitement de la COVID-19 ? TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [PMCID: PMC8275489 DOI: 10.1016/j.toxac.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Muyldermans A, Maes P, Wawina-Bokalanga T, Anthierens T, Goldberg O, Bartiaux M, Soetens O, Wybo I, Van den Wijngaert S, Piérard D. Symptomatic severe acute respiratory syndrome coronavirus 2 reinfection in a lupus patient treated with hydroxychloroquine: a case report. J Med Case Rep 2021; 15:572. [PMID: 34836543 PMCID: PMC8620303 DOI: 10.1186/s13256-021-03159-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hydroxychloroquine and chloroquine have been used for hospitalized coronavirus disease 2019 patients because of their antiviral and anti-inflammatory function. However, little research has been published on the impact of the immunomodulatory effect of (hydroxy)chloroquine on humoral immunity. Case presentation We report a case of symptomatic severe acute respiratory syndrome coronavirus 2 reinfection, diagnosed 141 days after the first episode, in a 56-year-old man of Black African origin treated with hydroxychloroquine for lupus erythematosus. No anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies could be detected 127 days after the initial episode of coronavirus disease 2019. Conclusions The treatment with hydroxychloroquine probably explains the decreased immune response with negative serology and subsequent reinfection in our patient. As humoral immunity is crucial to fight a severe acute respiratory syndrome coronavirus 2 infection, the use of (hydroxy)chloroquine is likely to have a detrimental effect on the spread of the virus. This case emphasizes that more needs to be learned about the role of antibodies in protecting against severe acute respiratory syndrome coronavirus 2 (re)infection and the role of (hydroxy)chloroquine on humoral immunity.
Collapse
Affiliation(s)
- Astrid Muyldermans
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Tony Wawina-Bokalanga
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Tine Anthierens
- Department of Emergency Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Olivier Goldberg
- Department of Emergency Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Magali Bartiaux
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre (CHUSP), Brussels, Belgium
| | - Oriane Soetens
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Sigi Van den Wijngaert
- Department of Microbiology, Laboratoire Hospitalier Universitaire Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| |
Collapse
|
25
|
Bengue M, Pintong AR, Liegeois F, Nougairède A, Hamel R, Pompon J, de Lamballerie X, Roques P, Choumet V, Missé D. Favipiravir Inhibits Mayaro Virus Infection in Mice. Viruses 2021; 13:v13112213. [PMID: 34835018 PMCID: PMC8622800 DOI: 10.3390/v13112213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Mayaro virus (MAYV) is an emergent alphavirus that causes MAYV fever. It is often associated with debilitating symptoms, particularly arthralgia and myalgia. MAYV infection is becoming a considerable health issue that, unfortunately, lacks a specific antiviral treatment. Favipiravir, a broad-spectrum antiviral drug, has recently been shown to exert anti-MAYV activity in vitro. In the present study, the potential of Favipiravir to inhibit MAYV replication in an in vivo model was evaluated. Immunocompetent mice were orally administrated 300 mg/kg/dose of Favipiravir at pre-, concurrent-, or post-MAYV infection. The results showed a significant reduction in infectious viral particles and viral RNA transcripts in the tissues and blood of the pre- and concurrently treated infected mice. A significant reduction in the presence of both viral RNA transcript and infectious viral particles in the tissue and blood of pre- and concurrently treated infected mice was observed. By contrast, Favipiravir treatment post-MAYV infection did not result in a reduction in viral replication. Interestingly, Favipiravir strongly decreased the blood levels of the liver disease markers aspartate- and alanine aminotransferase in the pre- and concurrently treated MAYV-infected mice. Taken together, these results suggest that Favipiravir is a potent antiviral drug when administered in a timely manner.
Collapse
Affiliation(s)
- Michèle Bengue
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (M.B.); (A.-r.P.); (F.L.); (R.H.); (J.P.)
| | - Ai-rada Pintong
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (M.B.); (A.-r.P.); (F.L.); (R.H.); (J.P.)
| | - Florian Liegeois
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (M.B.); (A.-r.P.); (F.L.); (R.H.); (J.P.)
| | - Antoine Nougairède
- Unité des Virus Emergents (UVE), Institut de Recherche pour le Développement 190, IHU Méditerranée Infection, Institut National de la Santé et de la Recherche Médicale 1207, Aix Marseille Université, 13005 Marseille, France; (A.N.); (X.d.L.)
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (M.B.); (A.-r.P.); (F.L.); (R.H.); (J.P.)
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (M.B.); (A.-r.P.); (F.L.); (R.H.); (J.P.)
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE), Institut de Recherche pour le Développement 190, IHU Méditerranée Infection, Institut National de la Santé et de la Recherche Médicale 1207, Aix Marseille Université, 13005 Marseille, France; (A.N.); (X.d.L.)
| | - Pierre Roques
- Unité de Virologie, Institut Pasteur de Guinée, Conakry BP4416, Guinea;
- Immunologie des Maladies Virales Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT): Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale U1184, Université Paris Saclay, 92265 Paris, France
| | - Valérie Choumet
- Unité Environnement et Risques Infectieux Groupe Arbovirus, Institut Pasteur, Université de Paris, 75724 Paris, France
- Correspondence: (V.C.); (D.M.)
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (M.B.); (A.-r.P.); (F.L.); (R.H.); (J.P.)
- Correspondence: (V.C.); (D.M.)
| |
Collapse
|
26
|
Guo Z, Zhang Z, Prajapati M, Li Y. Lymphopenia Caused by Virus Infections and the Mechanisms Beyond. Viruses 2021; 13:v13091876. [PMID: 34578457 PMCID: PMC8473169 DOI: 10.3390/v13091876] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections can give rise to a systemic decrease in the total number of lymphocytes in the blood, referred to as lymphopenia. Lymphopenia may affect the host adaptive immune responses and impact the clinical course of acute viral infections. Detailed knowledge on how viruses induce lymphopenia would provide valuable information into the pathogenesis of viral infections and potential therapeutic targeting. In this review, the current progress of viruses-induced lymphopenia is summarized and the potential mechanisms and factors involved are discussed.
Collapse
Affiliation(s)
- Zijing Guo
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China;
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
| | - Meera Prajapati
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
- National Animal Health Research Centre, Nepal Agricultural Research Council, Lalitpur 44700, Nepal
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
- Correspondence: ; Tel.: +28-85528276
| |
Collapse
|
27
|
Askarian F, Firoozi Z, Ebadollahi-Natanzi A, Bahrami S, Rahimi HR. A review on the pharmacokinetic properties and toxicity considerations for chloroquine and hydroxychloroquine to potentially treat coronavirus patients. Toxicol Res 2021; 38:137-148. [PMID: 34306523 PMCID: PMC8286988 DOI: 10.1007/s43188-021-00101-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus, caused a novel emerged coronavirus disease, is growing rapidly worldwide. Few studies have evaluated the efficacy and safety of Chloroquine (CQ), an old antimalarial drug, and Hydroxychloroquine (HCQ) in the treatment of COVID-19 infection. HCQ is derived from CQ by adding a hydroxyl group into it and is a less toxic derivative of CQ for the treatment of COVID-19 infection because it is more soluble. This article summarizes pharmacokinetic properties and toxicity considerations for CQ and HCQ, drug interactions, and their potential efficacy against COVID-19. The authors also look at the biochemistry changes and clinical uses of CQ and HCQ, and supportive treatments following toxicity occurs. It was believed that CQ and HCQ may provide few benefits to COVID-19 patients. A number of factors should be considered to keep the drug safe, such as dose, in vivo animal toxicological findings, and gathering of metabolites in plasma and/or tissues. The main conclusion of this review is that CQ and HCQ with considered to their ADMET properties has major shortcomings and fully irresponsible.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Firoozi
- Department of Medical Genetics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Ebadollahi-Natanzi
- Medicinal Plants Department, Imam Khomeini Higher Education Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Solmaz Bahrami
- Department of Institutional Research, Westcliff University, Irvine, CA 92614 USA
| | - Hamid-Reza Rahimi
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
28
|
Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses 2021; 13:1307. [PMID: 34372513 PMCID: PMC8310245 DOI: 10.3390/v13071307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vaccines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treatment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promising viral and host targets.
Collapse
Affiliation(s)
| | | | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, A-1090 Vienna, Austria; (V.B.); (E.U.)
| |
Collapse
|
29
|
Grygiel-Górniak B. Antimalarial drugs-are they beneficial in rheumatic and viral diseases?-considerations in COVID-19 pandemic. Clin Rheumatol 2021; 41:1-18. [PMID: 34218393 PMCID: PMC8254634 DOI: 10.1007/s10067-021-05805-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023]
Abstract
The majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
30
|
Massanella M, Martin-Urda A, Mateu L, Marín T, Aldas I, Riveira-Muñoz E, Kipelainen A, Jiménez-Moyano E, Rodriguez de la Concepción ML, Avila-Nieto C, Trinité B, Pradenas E, Rodon J, Marfil S, Parera M, Carrillo J, Blanco J, Prado JG, Ballana E, Vergara-Alert J, Segalés J, Noguera-Julian M, Masabeu À, Clotet B, Toda MDLR, Paredes R. Critical Presentation of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection: A Case Report. Open Forum Infect Dis 2021; 8:ofab329. [PMID: 34337095 PMCID: PMC8320276 DOI: 10.1093/ofid/ofab329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfections have been reported; however, most cases are milder than the primary infection. We report the first case of a life-threatening critical presentation of a SARS-CoV-2 reinfection. METHODS A 62-year-old man from Palamós (Spain) suffered a first mild coronavirus disease 2019 (COVID-19) episode in March 2020, confirmed by 2 independent SARS-CoV-2 nasopharyngeal polymerase chain reaction (PCR) assays and a normal radiograph. He recovered completely and tested negative on 2 consecutive PCRs. In August 2020, the patient developed a second SARS-CoV-2 infection with life-threatening bilateral pneumonia and Acute respiratory distress syndrome criteria, requiring COVID-19-specific treatment (remdesivir + dexamethasone) plus high-flow oxygen therapy. Nasopharyngeal swabs from the second episode were obtained for virus quantification by real-time PCR, for virus outgrowth and sequencing. In addition, plasma and peripheral blood mononuclear cells during the hospitalization period were used to determine SARS-CoV-2-specific humoral and T-cell responses. RESULTS Genomic analysis of SARS-CoV-2 showed that the virus had probably originated shortly before symptom onset. When the reinfection occurred, the subject showed a weak immune response, with marginal humoral and specific T-cell responses against SARS-CoV-2. All antibody isotypes tested as well as SARS-CoV-2 neutralizing antibodies increased sharply after day 8 postsymptoms. A slight increase of T-cell responses was observed at day 19 after symptom onset. CONCLUSIONS The reinfection was firmly documented and occurred in the absence of robust preexisting humoral and cellular immunity. SARS-CoV-2 immunity in some subjects is unprotective and/or short-lived; therefore, SARS-CoV-2 vaccine schedules inducing long-term immunity will be required to bring the pandemic under control.
Collapse
Affiliation(s)
- Marta Massanella
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Anabel Martin-Urda
- Internal Medicine Department, Hospital de Palamós, Palamós, Catalonia, Spain
| | - Lourdes Mateu
- Infectious Diseases Department, Hospital Germans Trias i Pujol, Catalonia, Spain
- Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Toni Marín
- Pneumology Department, Hospital Germans Trias i Pujol, Catalonia, Spain
| | - Irene Aldas
- Pneumology Department, Hospital Germans Trias i Pujol, Catalonia, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Athina Kipelainen
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Esther Jiménez-Moyano
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | | | - Carlos Avila-Nieto
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Benjamin Trinité
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Edwards Pradenas
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Jordi Rodon
- Institute of Agrifood Research and Technology Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Silvia Marfil
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Mariona Parera
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Jorge Carrillo
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
- Universitat de Vic Central de Catalunya, Vic, Catalonia, Spain
| | - Julia G Prado
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Ester Ballana
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
| | - Júlia Vergara-Alert
- Institute of Agrifood Research and Technology Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Institute of Agrifood Research and Technology Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Marc Noguera-Julian
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
- Universitat de Vic Central de Catalunya, Vic, Catalonia, Spain
| | - Àngels Masabeu
- Internal Medicine Department, Hospital de Palamós, Palamós, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
- Infectious Diseases Department, Hospital Germans Trias i Pujol, Catalonia, Spain
- Universitat de Vic Central de Catalunya, Vic, Catalonia, Spain
| | | | - Roger Paredes
- IrsiCaixa-AIDS Research Institute and Germans Trias i Pujol Health Research Institute, Badalona, Catalonia, Spain
- Infectious Diseases Department, Hospital Germans Trias i Pujol, Catalonia, Spain
- Universitat de Vic Central de Catalunya, Vic, Catalonia, Spain
| |
Collapse
|
31
|
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|
32
|
Old drugs for a new indication: a review of chloroquine and analogue in COVID-19 treatment. Porto Biomed J 2021; 6:e132. [PMID: 34136717 PMCID: PMC8202634 DOI: 10.1097/j.pbj.0000000000000132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
As an innovative therapeutic strategy, drug repurposing affords old, approved, and already established drugs a chance at new indications. In the wake of the COVID-19 pandemic and the accompanied urgency for a lasting treatment, drug repurposing has come in handy to stem the debilitating effects of the disease. Among other therapeutic options currently in clinical trials, chloroquine (CQ) and the hydroxylated analogue, hydroxychloroquine (HCQ) have been frontline therapeutic options in most formal and informal clinical settings with varying degrees of efficacy against this life-threatening disease. Their status in randomized clinical trials is related to the biochemical and pharmacological profiles as validated by in vitro, in vivo and case studies. With the aim to bear a balance for their use in the long run, this review not only synopsizes findings from recent studies on the degrees of efficacy and roles of CQ/HCQ as potential anti-COVID-19 agents but also highlights our perspectives for their consideration in rational drug repositioning and use.
Collapse
|
33
|
Yan K, Rawle DJ, Le TT, Suhrbier A. Simple rapid in vitro screening method for SARS-CoV-2 anti-virals that identifies potential cytomorbidity-associated false positives. Virol J 2021; 18:123. [PMID: 34107996 PMCID: PMC8188739 DOI: 10.1186/s12985-021-01587-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background The international SARS-CoV-2 pandemic has resulted in an urgent need to identify new anti-viral drugs for treatment of COVID-19. The initial step to identifying potential candidates usually involves in vitro screening that includes standard cytotoxicity controls. Under-appreciated is that viable, but stressed or otherwise compromised cells, can also have a reduced capacity to replicate virus. A refinement proposed herein for in vitro drug screening thus includes a simple growth assay to identify drug concentrations that cause cellular stress or “cytomorbidity”, as distinct from cytotoxicity or loss of viability. Methods A simple rapid bioassay is presented for antiviral drug screening using Vero E6 cells and inhibition of SARS-CoV-2 induced cytopathic effects (CPE) measured using crystal violet staining. We use high cell density for cytotoxicity assays, and low cell density for cytomorbidity assays. Results The assay clearly illustrated the anti-viral activity of remdesivir, a drug known to inhibit SARS-CoV-2 replication. In contrast, nitazoxanide, oleuropein, cyclosporine A and ribavirin all showed no ability to inhibit SARS-CoV-2 CPE. Hydroxychloroquine, cyclohexamide, didemnin B, γ-mangostin and linoleic acid were all able to inhibit viral CPE at concentrations that did not induce cytotoxicity. However, these drugs inhibited CPE at concentrations that induced cytomorbidity, indicating non-specific anti-viral activity. Conclusions We describe the methodology for a simple in vitro drug screening assay that identifies potential anti-viral drugs via their ability to inhibit SARS-CoV-2-induced CPE. The additional growth assay illustrated how several drugs display anti-viral activity at concentrations that induce cytomorbidity. For instance, hydroxychloroquine showed anti-viral activity at concentrations that slow cell growth, arguing that its purported in vitro anti-viral activity arises from non-specific impairment of cellular activities. The cytomorbidity assay can therefore rapidly exclude potential false positives. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01587-z.
Collapse
Affiliation(s)
- Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD, 4029 and 4072, Australia.
| |
Collapse
|
34
|
Ronsisvalle S, Panarello F, Di Mauro R, Bernardini R, Volti GL, Cantarella G. Anti-malarial Drugs are Not Created Equal for SARS-CoV-2 Treatment: A Computational Analysis Evidence. Curr Pharm Des 2021; 27:1323-1329. [PMID: 33302855 DOI: 10.2174/1381612826666201210092736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The evolution of the pandemic has burdened the national healthcare systems worldwide and at present, there is no preferred antiviral treatment for COVID-19. Recently, the SARS-Cov-2 protease structure was released that may be exploited in in-silico studies in order to conduct molecular docking analysis. METHODS In particular, we compared the binding of twoantimalarial drugs, already in use, (i.e. chloroquine and hydroxychloroquine), which showed some potential clinical effects on COVID-19 patients, using ritonavir, lopinavir and darunavir as positive control tree antiviral recognized compounds. RESULTS Our results showed that hydroxychloroquine but not chloroquine exhibited a significant binding activity to the main protease similar to that possessed by protease inhibitors tested for other viral infections. CONCLUSION Our data suggest that hydroxychloroquine may exert additional direct antiviral activity compared to chloroquine. In the absence of clinical studies comparing the efficacy of these two compounds, hydroxychloroquine may offer additional effects and may be considered as the first choice.
Collapse
Affiliation(s)
- Simone Ronsisvalle
- Department of Drug Sciences, University of Catania, Viale Andrea Doria, 6 95125 Catania, Italy
| | - Federica Panarello
- Department of Drug Sciences, University of Catania, Viale Andrea Doria, 6 95125 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95131 Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95131 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95131 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95131 Catania, Italy
| |
Collapse
|
35
|
Manivannan E, Karthikeyan C, Moorthy NSHN, Chaturvedi SC. The Rise and Fall of Chloroquine/Hydroxychloroquine as Compassionate Therapy of COVID-19. Front Pharmacol 2021; 12:584940. [PMID: 34025393 PMCID: PMC8134745 DOI: 10.3389/fphar.2021.584940] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
The emergence and rapid spread of novel coronavirus disease (COVID-19) has posed a serious challenge to global public health in 2020. The speed of this viral spread together with the high mortality rate has caused an unprecedented public health crisis. With no antivirals or vaccines available for the treatment of COVID-19, the medical community is presently exploring repositioning of clinically approved drugs for COVID-19. Chloroquine (CQ) and hydroxychloroquine (HCQ) have emerged as potential candidates for repositioning as anti-COVID-19 therapeutics and have received FDA authorization for compassionate use in COVID-19 patients. On March 28, 2020, the U.S. Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for HCQ in the treatment of COVID-19. However, it was later revoked by the FDA on June 15, 2020, after analyzing the emerging scientific data from ongoing clinical trials. Similarly, the World Health Organization (WHO) also conducted a Solidarity trial of chloroquine, hydroxychloroquine, remdesivir, lopinavir, and ritonavir. However, on May 23, 2020, the executive body of the "Solidarity trial" decided to put a temporary hold on the HCQ trial. On June 17, 2020, the WHO abruptly stopped the Solidarity trial of HCQ. The current review strives to examine the basis of compassionate use of CQ and HCQ for the treatment of COVID-19 in terms of literature evidence, establishing the antiviral efficacy of these drugs against corona and related viruses. Furthermore, the review presents a critical analysis of the clinical trial findings and also provides an insight into the dynamically changing decision on the authorization and withdrawal of HCQ as anti-COVID-19 therapy by the U.S. FDA and the WHO. Ultimately, our study necessitates an evidenced-based treatment protocol to confront the ongoing COVID-19 pandemic and not the mere observational study that mislead the public healthcare system, which paralyzes the entire world.
Collapse
|
36
|
Suchowiecki K, Reid SP, Simon GL, Firestein GS, Chang A. Persistent Joint Pain Following Arthropod Virus Infections. Curr Rheumatol Rep 2021; 23:26. [PMID: 33847834 PMCID: PMC8042844 DOI: 10.1007/s11926-021-00987-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Persistent joint pain is a common manifestation of arthropod-borne viral infections and can cause long-term disability. We review the epidemiology, pathophysiology, diagnosis, and management of arthritogenic alphavirus infection. RECENT FINDINGS The global re-emergence of alphaviral outbreaks has led to an increase in virus-induced arthralgia and arthritis. Alphaviruses, including Chikungunya, O'nyong'nyong, Sindbis, Barmah Forest, Ross River, and Mayaro viruses, are associated with acute and/or chronic rheumatic symptoms. Identification of Mxra8 as a viral entry receptor in the alphaviral replication pathway creates opportunities for treatment and prevention. Recent evidence suggesting virus does not persist in synovial fluid during chronic chikungunya infection indicates that immunomodulators may be given safely. The etiology of persistent joint pain after alphavirus infection is still poorly understood. New diagnostic tools along and evidence-based treatment could significantly improve morbidity and long-term disability.
Collapse
Affiliation(s)
- Karol Suchowiecki
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - St. Patrick Reid
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Gary L. Simon
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - Gary S. Firestein
- UC San Diego Health Sciences, 9500 Gilman Drive #0602, La Jolla, CA 92093 USA
| | - Aileen Chang
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| |
Collapse
|
37
|
Chen Y, Li MX, Lu GD, Shen HM, Zhou J. Hydroxychloroquine/Chloroquine as Therapeutics for COVID-19: Truth under the Mystery. Int J Biol Sci 2021; 17:1538-1546. [PMID: 33907517 PMCID: PMC8071775 DOI: 10.7150/ijbs.59547] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The outbreak of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved into a global pandemic. One major challenge in the battle against this deadly disease is to find effective therapy. Due to the availability and proven clinical record of hydroxychloroquine (HCQ) and chloroquine (CQ) in various human diseases, there have been enormous efforts in repurposing these two drugs as therapeutics for COVID-19. To date, substantial amount of work at cellular, animal models and clinical trials have been performed to verify their therapeutic potential against COVID-19. However, neither lab-based studies nor clinical trials have provided consistent and convincing evidence to support the therapeutic value of HCQ/CQ in the treatment of COVID-19. In this mini review we provide a systematic summary on this important topic and aim to reveal some truth covered by the mystery regarding the therapeutic value of HCQ/CQ in COVID-19.
Collapse
Affiliation(s)
- Yao Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China, 530021
| | - Mei-Xiu Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China, 530021
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China, 530021
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China, 530021.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Yang HC, Ma TH, Tjong WY, Stern A, Chiu DTY. G6PD deficiency, redox homeostasis, and viral infections: implications for SARS-CoV-2 (COVID-19). Free Radic Res 2021; 55:364-374. [PMID: 33401987 PMCID: PMC7799378 DOI: 10.1080/10715762.2020.1866757] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic has so far affected more than 45 million people and has caused over 1 million deaths worldwide. Infection with SARS-CoV-2, the pathogenic agent, which is associated with an imbalanced redox status, causes hyperinflammation and a cytokine storm, leading to cell death. Glucose-6-phosphate dehydrogenase (G6PD) deficient individuals may experience a hemolytic crisis after being exposed to oxidants or infection. Individuals with G6PD deficiency are more susceptible to coronavirus infection than individuals with normally functioning G6PD. An altered immune response to viral infections is found in individuals with G6PD deficiency. Evidence indicates that G6PD deficiency is a predisposing factor of COVID-19.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Tian-Hsiang Ma
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Wen-Ye Tjong
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Daniel Tsun-Yee Chiu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
39
|
Brazão SC, Autran LJ, Lopes RDO, Scaramello CBV, Brito FCFD, Motta NAV. Effects of Chloroquine and Hydroxychloroquine on the Cardiovascular System - Limitations for Use in the Treatment of COVID-19. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
40
|
Pereira AKDS, Santos IA, da Silva WW, Nogueira FAR, Bergamini FRG, Jardim ACG, Corbi PP. Memantine hydrochloride: a drug to be repurposed against Chikungunya virus? Pharmacol Rep 2021; 73:954-961. [PMID: 33523405 PMCID: PMC7848042 DOI: 10.1007/s43440-021-00216-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chikungunya fever is an endemic disease caused by the Chikungunya virus (CHIKV) to which there is no vaccine or effective antiviral drug treatment so far. Our study aimed to evaluate the potential anti-CHIKV activity of memantine hydrochloride (mtnH), a drug from the class of the aminoadamantanes approved for the treatment of Alzheimer´s disease, as a possible drug to be repurposed to the treatment of Chikungunya fever. METHODS MtnH antiviral activity against CHIKV was determined by infecting BHK-21 cells with CHIKV-nanoluc, a virus carrying the marker nanoluciferase reporter, in the presence or absence of mtnH at concentrations ranging from 500 to 1.45 µM. The effective concentration of 50% inhibition (EC50) was calculated. Cell viability assay (determination of CC50) was also performed employing BHK-21 cells. Mutagenic assays were performed by the Salmonella Typhimurium/microsome assay (Ames test). RESULTS MtnH presented a CC50 of 248.4 ± 31.9 µM and an EC50 of 32.4 ± 4 µM against CHIKV in vitro. The calculated selectivity index (SI) was 7.67. MtnH did not induce genetic mutation in Salmonella strains with or without an external metabolizing system. CONCLUSION With the data herein presented, it is possible to hypothesize mtnH as a viable candidate to be repurposed as an anti-CHIKV drug. Clinical assays are, therefore, encouraged due to the promising in vitro results. The drug memantine hydrochloride is herein personified with a doubt: as a prior regulated drug against Alzheimer, could it follow the path against Chikungunya virus too?
Collapse
Affiliation(s)
| | - Igor A Santos
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, 38405-302, Brazil
| | - Washington W da Silva
- Department of Biological and Health Sciences, University of Araraquara-UNIARA, Araraquara, SP, Brazil
| | - Flávia A Resende Nogueira
- Department of Biological and Health Sciences, University of Araraquara-UNIARA, Araraquara, SP, Brazil
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 34000-902, Brazil.
| | - Ana Carolina G Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, 38405-302, Brazil.
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-871, Brazil.
| |
Collapse
|
41
|
Gasmi A, Peana M, Noor S, Lysiuk R, Menzel A, Gasmi Benahmed A, Bjørklund G. Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story. Appl Microbiol Biotechnol 2021; 105:1333-1343. [PMID: 33515285 PMCID: PMC7847229 DOI: 10.1007/s00253-021-11094-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Abstract The anti-malarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have been suggested as promising agents against the new coronavirus SARS-CoV-2 that induces COVID-19 and as a possible therapy for shortening the duration of the viral disease. The antiviral effects of CQ and HCQ have been demonstrated in vitro due to their ability to block viruses like coronavirus SARS in cell culture. CQ and HCQ have been proposed to reduce immune reactions to infectious agents, inhibit pneumonia exacerbation, and improve lung imaging investigations. CQ analogs have also revealed the anti-inflammatory and immunomodulatory effects in treating viral infections and related ailments. There was, moreover, convincing evidence from early trials in China about the efficacy of CQ and HCQ in the anti-COVID-19 procedure. Since then, research and studies have been massive to ascertain these drugs’ efficacy and safety in treating the viral disease. In the present review, we construct a synopsis of the main properties and current data concerning the metabolism of CQ/HCQ, which were the basis of assessing their potential therapeutic roles against the new coronavirus infection. The effective role of QC and HCQ in the prophylaxis and therapy of COVID-19 infection is discussed in light of the latest international medical-scientific research results. Key points • Data concerning metabolism and properties of CQ/HCQ are discussed. • The efficacy of CQ/HCQ against COVID-19 has been the subject of contradictory results. • CQ/HCQ has little or no effect in reducing mortality in SARS-CoV-2-affected patients.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
42
|
Chen J, Liu D, Yin L, Zhang L, Lu H. Can we use hydroxychloroquine to treat COVID-19 now? Int J Antimicrob Agents 2021; 57:106173. [PMID: 33408016 PMCID: PMC7834540 DOI: 10.1016/j.ijantimicag.2020.106173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Shanghai, 201508, China
| | - Danping Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Shanghai, 201508, China
| | - Lin Yin
- Clinical Research Center for New Drugs, Shanghai Public Health Clinical Center, Shanghai, 201508, China
| | - Lijun Zhang
- Clinical Research Center for New Drugs, Shanghai Public Health Clinical Center, Shanghai, 201508, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Shanghai, 201508, China.
| |
Collapse
|
43
|
Kashour Z, Riaz M, Garbati MA, AlDosary O, Tlayjeh H, Gerberi D, Murad MH, Sohail MR, Kashour T, Tleyjeh IM. Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: a systematic review and meta-analysis. J Antimicrob Chemother 2021; 76:30-42. [PMID: 33031488 PMCID: PMC7665543 DOI: 10.1093/jac/dkaa403] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Clinical studies of chloroquine (CQ) and hydroxychloroquine (HCQ) in COVID-19 disease reported conflicting results. We sought to systematically evaluate the effect of CQ and HCQ with or without azithromycin on outcomes of COVID-19 patients. METHODS We searched multiple databases, preprints and grey literature up to 17 July 2020. We pooled only adjusted-effect estimates of mortality using a random-effect model. We summarized the effect of CQ or HCQ on viral clearance, ICU admission/mechanical ventilation and hospitalization. RESULTS Seven randomized clinical trials (RCTs) and 14 cohort studies were included (20 979 patients). Thirteen studies (1 RCT and 12 cohort studies) with 15 938 hospitalized patients examined the effect of HCQ on short-term mortality. The pooled adjusted OR was 1.05 (95% CI 0.96-1.15, I2 = 0%). Six cohort studies examined the effect of the HCQ+azithromycin combination with a pooled adjusted OR of 1.32 (95% CI 1.00-1.75, I2 = 68.1%). Two cohort studies and four RCTs found no effect of HCQ on viral clearance. One small RCT demonstrated improved viral clearance with CQ and HCQ. Three cohort studies found that HCQ had no significant effect on mechanical ventilation/ICU admission. Two RCTs found no effect for HCQ on hospitalization risk in outpatients with COVID-19. CONCLUSIONS Moderate certainty evidence suggests that HCQ, with or without azithromycin, lacks efficacy in reducing short-term mortality in patients hospitalized with COVID-19 or risk of hospitalization in outpatients with COVID-19.
Collapse
Affiliation(s)
- Zakariya Kashour
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Muhammad Riaz
- Department of Statistics, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Musa A Garbati
- Infectious Diseases Unit, Department of Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Oweida AlDosary
- Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Haytham Tlayjeh
- Department of Intensive Care, King Abdulaziz Medical City, King Saud bin Abdulaziz for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Dana Gerberi
- Mayo Clinic Libraries, Mayo Clinic, Rochester, MN, USA
| | - M Hassan Murad
- Division of Health Care Policy & Research, Department of Health Sciences Research, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Division of Preventive, Occupational and Aerospace Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - M Rizwan Sohail
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tarek Kashour
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Imad M Tleyjeh
- Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Division of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Hussain I, Hussain A, Alajmi MF, Rehman MT, Amir S. Impact of repurposed drugs on the symptomatic COVID-19 patients. J Infect Public Health 2021; 14:24-38. [PMID: 33341481 PMCID: PMC7720699 DOI: 10.1016/j.jiph.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus capable of causing coronavirus disease 2019 (COVID-19), was declared as a global public health emergency on January 30, 2020, by the World Health Organization. In this devastating situation, precautionary measures, early diagnosis, and repurposed drugs appear to be timely and decisive factors by which to handle this problem until the discovery of an effective, dedicated vaccine or medicine is made. Currently, some researchers and clinicians have claimed evidence exists in favor of the use of some antimalarial drugs (chloroquine, hydroxychloroquine) antiviral drugs (remdesivir, favipiravir, lopinavir, ritonavir, umifenovir) vitamins, traditional Chinese medicines, and herbal medicines against SARS-CoV-2 infection. Based on the available literature, this review article sought to highlight the current understanding of the origin, transmission, diagnosis, precautionary measures, infection and drug action mechanisms, therapeutic role, and toxicities of targeted drugs for the prevention and cure of COVID-19. This review may be useful for developing further strategies as a blueprint and understanding the mentioned drugs' mechanisms to elucidate the possible target of action by which to successfully freeze the replication of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Jubail, 31961, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Samira Amir
- Department of Chemistry, College of Science and General Studies, Alfaisal University, PO Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
45
|
Chiotos K, Hayes M, Kimberlin DW, Jones SB, James SH, Pinninti SG, Yarbrough A, Abzug MJ, MacBrayne CE, Soma VL, Dulek DE, Vora SB, Waghmare A, Wolf J, Olivero R, Grapentine S, Wattier RL, Bio L, Cross SJ, Dillman NO, Downes KJ, Timberlake K, Young J, Orscheln RC, Tamma PD, Schwenk HT, Zachariah P, Aldrich M, Goldman DL, Groves HE, Lamb GS, Tribble AC, Hersh AL, Thorell EA, Denison MR, Ratner AJ, Newland JG, Nakamura MM. Multicenter Initial Guidance on Use of Antivirals for Children With Coronavirus Disease 2019/Severe Acute Respiratory Syndrome Coronavirus 2. J Pediatric Infect Dis Soc 2020; 9:701-715. [PMID: 32318706 PMCID: PMC7188128 DOI: 10.1093/jpids/piaa045] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although coronavirus disease 2019 (COVID-19) is mild in nearly all children, a small proportion of pediatric patients develop severe or critical illness. Guidance is therefore needed regarding use of agents with potential activity against severe acute respiratory syndrome coronavirus 2 in pediatrics. METHODS A panel of pediatric infectious diseases physicians and pharmacists from 18 geographically diverse North American institutions was convened. Through a series of teleconferences and web-based surveys, a set of guidance statements was developed and refined based on review of best available evidence and expert opinion. RESULTS Given the typically mild course of pediatric COVID-19, supportive care alone is suggested for the overwhelming majority of cases. The panel suggests a decision-making framework for antiviral therapy that weighs risks and benefits based on disease severity as indicated by respiratory support needs, with consideration on a case-by-case basis of potential pediatric risk factors for disease progression. If an antiviral is used, the panel suggests remdesivir as the preferred agent. Hydroxychloroquine could be considered for patients who are not candidates for remdesivir or when remdesivir is not available. Antivirals should preferably be used as part of a clinical trial if available. CONCLUSIONS Antiviral therapy for COVID-19 is not necessary for the great majority of pediatric patients. For those rare cases of severe or critical disease, this guidance offers an approach for decision-making regarding antivirals, informed by available data. As evidence continues to evolve rapidly, the need for updates to the guidance is anticipated.
Collapse
Affiliation(s)
- Kathleen Chiotos
- Department of Anesthesia and Critical Care Medicine, Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, United States
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, United States
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, United States
| | - Molly Hayes
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, United States
| | - David W Kimberlin
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, United States
| | - Sarah B Jones
- Department of Pharmacy, Boston Children’s Hospital, Boston, United States
- Antimicrobial Stewardship Program, Boston Children’s Hospital, Boston, United States
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, United States
| | - Swetha G Pinninti
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, United States
| | - April Yarbrough
- Department of Pharmacy, Children’s of Alabama, Birmingham, United States
| | - Mark J Abzug
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, United States
| | | | - Vijaya L Soma
- Department of Pediatrics, Division of Infectious Diseases, New York University Grossman School of Medicine and Hassenfeld Children’s Hospital, New York, United States
| | - Daniel E Dulek
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University and Monroe Carell Jr. Children’s Hospital, Nashville, United States
| | - Surabhi B Vora
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Washington, Seattle Children’s Hospital, Seattle, United States
| | - Alpana Waghmare
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Washington, Seattle Children’s Hospital, Seattle, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, United States
| | - Rosemary Olivero
- Department of Pediatrics and Human Development, Section of Infectious Diseases, Helen DeVos Children's Hospital of Spectrum Health, Michigan State College of Human Medicine, Grand Rapids, United States
| | - Steven Grapentine
- Department of Pharmacy, UCSF Benioff Children’s Hospital, San Francisco, United States
| | - Rachel L Wattier
- Department of Pediatrics, Division of Infectious Diseases and Global Health, University of California, San Francisco, San Francisco, United States
| | - Laura Bio
- Department of Pharmacy, Lucile Packard Children’s Hospital Stanford, Stanford, United States
| | - Shane J Cross
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, United States
| | - Nicholas O Dillman
- Department of Pharmacy, CS Mott Children’s Hospital, Ann Arbor, United States
| | - Kevin J Downes
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, United States
| | | | - Jennifer Young
- Department of Pharmacy, St. Louis Children’s Hospital, St. Louis, United States
| | - Rachel C Orscheln
- Department of Pediatrics, Division of Infectious Diseases, Washington University and St. Louis Children’s Hospital, St. Louis, United States
| | - Pranita D Tamma
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hayden T Schwenk
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine and Lucile Packard Children’s Hospital Stanford, Stanford, United States
| | - Philip Zachariah
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, United States
| | - Margaret Aldrich
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital at Montefiore, New York, United States
| | - David L Goldman
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital at Montefiore, New York, United States
| | - Helen E Groves
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, Toronto, Canada
| | - Gabriella S Lamb
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital, Boston, United States
| | - Alison C Tribble
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan and CS Mott Children’s Hospital, Ann Arbor, United States
| | - Adam L Hersh
- Department of Pediatrics, Division of Infectious Diseases, University of Utah and Primary Children’s Hospital, Salt Lake City, United States
| | - Emily A Thorell
- Department of Pediatrics, Division of Infectious Diseases, University of Utah and Primary Children’s Hospital, Salt Lake City, United States
| | - Mark R Denison
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University and Monroe Carell Jr. Children’s Hospital, Nashville, United States
| | - Adam J Ratner
- Department of Pediatrics, Division of Infectious Diseases, New York University Grossman School of Medicine and Hassenfeld Children’s Hospital, New York, United States
- Department of Microbiology, New York University Grossman School of Medicine, New York, United States
| | - Jason G Newland
- Department of Pediatrics, Division of Infectious Diseases, Washington University and St. Louis Children’s Hospital, St. Louis, United States
| | - Mari M Nakamura
- Antimicrobial Stewardship Program, Boston Children’s Hospital, Boston, United States
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital, Boston, United States
| |
Collapse
|
46
|
Chloroquine and Sulfadoxine Derivatives Inhibit ZIKV Replication in Cervical Cells. Viruses 2020; 13:v13010036. [PMID: 33383619 PMCID: PMC7823661 DOI: 10.3390/v13010036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Despite the severe morbidity caused by Zika fever, its specific treatment is still a challenge for public health. Several research groups have investigated the drug repurposing of chloroquine. However, the highly toxic side effect induced by chloroquine paves the way for the improvement of this drug for use in Zika fever clinics. Our aim is to evaluate the anti-Zika virus (ZIKV) effect of hybrid compounds derived from chloroquine and sulfadoxine antimalarial drugs. The antiviral activity of hybrid compounds (C-Sd1 to C-Sd7) was assessed in an in-vitro model of human cervical and Vero cell lines infected with a Brazilian (BR) ZIKV strain. First, we evaluated the cytotoxic effect on cultures treated with up to 200 µM of C-Sds and observed CC50 values that ranged from 112.0 ± 1.8 to >200 µM in cervical cells and 43.2 ± 0.4 to 143.0 ± 1.3 µM in Vero cells. Then, the cultures were ZIKV-infected and treated with up to 25 µM of C-Sds for 48 h. The treatment of cervical cells with C-Sds at 12 µM induced a reduction of 79.8% ± 4.2% to 90.7% ± 1.5% of ZIKV-envelope glycoprotein expression in infected cells as compared to 36.8% ± 2.9% of infection in vehicle control. The viral load was also investigated and revealed a reduction of 2- to 3-logs of ZIKV genome copies/mL in culture supernatants compared to 6.7 ± 0.7 × 108 copies/mL in vehicle control. The dose-response curve by plaque-forming reduction (PFR) in cervical cells revealed a potent dose-dependent activity of C-Sds in inhibiting ZIKV replication, with PFR above 50% and 90% at 6 and 12 µM, respectively, while 25 µM inhibited 100% of viral progeny. The treatment of Vero cells at 12 µM led to 100% PFR, confirming the C-Sds activity in another cell type. Regarding effective concentration in cervical cells, the EC50 values ranged from 3.2 ± 0.1 to 5.0 ± 0.2 µM, and the EC90 values ranged from 7.2 ± 0.1 to 11.6 ± 0.1 µM, with selectivity index above 40 for most C-Sds, showing a good therapeutic window. Here, our aim is to investigate the anti-ZIKV activity of new hybrid compounds that show highly potent efficacy as inhibitors of ZIKV in-vitro infection. However, further studies will be needed to investigate whether these new chemical structures can lead to the improvement of chloroquine antiviral activity.
Collapse
|
47
|
Mallat J, Hamed F, Balkis M, Mohamed MA, Mooty M, Malik A, Nusair A, Bonilla MF. Hydroxychloroquine is associated with slower viral clearance in clinical COVID-19 patients with mild to moderate disease. Medicine (Baltimore) 2020; 99:e23720. [PMID: 33350752 PMCID: PMC7769326 DOI: 10.1097/md.0000000000023720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT There are conflicting data regarding the use of hydroxychloroquine (HCQ) in COVID-19 hospitalized patients. The objective of this study was to assess the efficacy of HCQ in increasing SARS-CoV-2 viral clearance.Hospitalized adult patients with confirmed SARS-CoV-2 infection were retrospectively included in the study. The primary outcome was the time from a confirmed positive nasopharyngeal swab to turn negative. A negative nasopharyngeal swab conversion was defined as a confirmed SARS-CoV-2 case followed by 2 negative results using RT-PCR assay with samples obtained 24 hours apart. Multiple linear regression analysis was used to adjust for potential confounders.Thirty-four confirmed COVID-19 patients completed the study. Nineteen (55.9%) patients presented with symptoms, and 14 (41.2%) had pneumonia. Only 21 (61.8%) patients received HCQ. The time to SARS-CoV-2 negativity nasopharyngeal test was significantly longer in patients who received HCQ than those who did not receive HCQ [17 (13-21) vs 10 (4-13) days, P = .023]. HCQ was independently associated with time to negativity test after adjustment for potential confounders (symptoms, comorbidities, antiviral drugs, pneumonia, or oxygen therapy) in multivariable Cox proportional hazards regression analysis (hazard ratio = 0.33, 95% confidence interval: 0.13-0.9, P = .024). On day 14, 47.8% (14/23) patients tested negative in the HCQ group compared with 90.9% (10/11) patients who did not receive HCQ (P = .016).HCQ was associated with a slower viral clearance in COVID-19 patients with mild to moderate disease. Data from ongoing randomized clinical trials with HCQ should provide a definitive answer regarding the efficacy and safety of this treatment.
Collapse
Affiliation(s)
- Jihad Mallat
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
- Normandy University, UNICAEN, ED 497, Caen, France
| | - Fadi Hamed
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | | | - Mohamed A. Mohamed
- Hospital Medicine, Medical Subspecialties Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | | | | | | | | |
Collapse
|
48
|
Hucke FIL, Bugert JJ. Current and Promising Antivirals Against Chikungunya Virus. Front Public Health 2020; 8:618624. [PMID: 33384981 PMCID: PMC7769948 DOI: 10.3389/fpubh.2020.618624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.
Collapse
|
49
|
Wang Y, Zhong W, Salam A, Tarning J, Zhan Q, Huang JA, Weng H, Bai C, Ren Y, Yamada K, Wang D, Guo Q, Fang Q, Tsutomu S, Zou X, Li H, Gillesen A, Castle L, Chen C, Li H, Zhen J, Lu B, Duan J, Guo L, Jiang J, Cao R, Fan G, Li J, Hayden FG, Wang C, Horby P, Cao B. Phase 2a, open-label, dose-escalating, multi-center pharmacokinetic study of favipiravir (T-705) in combination with oseltamivir in patients with severe influenza. EBioMedicine 2020; 62:103125. [PMID: 33232871 PMCID: PMC7689521 DOI: 10.1016/j.ebiom.2020.103125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The pharmacokinetics and appropriate dose regimens of favipiravir are unknown in hospitalized influenza patients; such data are also needed to determine dosage selection for favipiravir trials in COVID-19. METHODS In this dose-escalating study, favipiravir pharmacokinetics and tolerability were assessed in critically ill influenza patients. Participants received one of two dosing regimens; Japan licensed dose (1600 mg BID on day 1 and 600 mg BID on the following days) and the higher dose (1800 mg/800 mg BID) trialed in uncomplicated influenza. The primary pharmacokinetic endpoint was the proportion of patients with a minimum observed plasma trough concentration (Ctrough) ≥20 mg/L at all measured time points after the second dose. RESULTS Sixteen patients were enrolled into the low dose group and 19 patients into the high dose group of the study. Favipiravir Ctrough decreased significantly over time in both groups (p <0.01). Relative to day 2 (48 hrs), concentrations were 91.7% and 90.3% lower in the 1600/600 mg group and 79.3% and 89.5% lower in the 1800/800 mg group at day 7 and 10, respectively. In contrast, oseltamivir concentrations did not change significantly over time. A 2-compartment disposition model with first-order absorption and elimination described the observed favipiravir concentration-time data well. Modeling demonstrated that less than 50% of patients achieved Ctrough ≥20 mg/L for >80% of the duration of treatment of the two dose regimens evaluated (18.8% and 42.1% of patients for low and high dose regimen, respectively). Increasing the favipravir dosage predicted a higher proportion of patients reaching this threshold of 20 mg/L, suggesting that dosing regimens of ≥3600/2600 mg might be required for adequate concentrations. The two dosing regimens were well-tolerated in critical ill patients with influenza. CONCLUSION The two dosing regimens proposed for uncomplicated influenza did not achieve our pre-defined treatment threshold.
Collapse
Affiliation(s)
- Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Wu Zhong
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Alex Salam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, First Affliated Hospital of Soochow University, Jiangsu Province, China
| | - Heng Weng
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Province, China
| | - Changqing Bai
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yanhong Ren
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Koichi Yamada
- Department of Research Laboratory, Toyama Chemical Co., Ltd., Tokyo, Japan
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Qiang Guo
- Department of Respiratory, Emergency and Critical Care Medicine, First Affliated Hospital of Soochow University, Jiangsu Province, China
| | - Qiongqiong Fang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Sakurai Tsutomu
- Department of Research Laboratory, Toyama Chemical Co., Ltd., Tokyo, Japan
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Haibo Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Annelies Gillesen
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Lyndsey Castle
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Cheng Chen
- Department of Pulmonary and Critical Care Medicine, First Affliated Hospital of Soochow University, Jiangsu Province, China
| | - Hongyan Li
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Province, China
| | - Jing Zhen
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Jun Duan
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Liping Guo
- Nosocomial Infection Control Office, China-Japan Friendship Hospital, Beijing, China
| | | | - Ruiyuan Cao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guohui Fan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Jintong Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Frederick G Hayden
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Peter Horby
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Lei ZN, Wu ZX, Dong S, Yang DH, Zhang L, Ke Z, Zou C, Chen ZS. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther 2020; 216:107672. [PMID: 32910933 PMCID: PMC7476892 DOI: 10.1016/j.pharmthera.2020.107672] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been commonly used for the treatment and prevention of malaria, and the treatment of autoimmune diseases for several decades. As their new mechanisms of actions are identified in recent years, CQ and HCQ have wider therapeutic applications, one of which is to treat viral infectious diseases. Since the pandemic of the coronavirus disease 2019 (COVID-19), CQ and HCQ have been subjected to a number of in vitro and in vivo tests, and their therapeutic prospects for COVID-19 have been proposed. In this article, the applications and mechanisms of action of CQ and HCQ in their conventional fields of anti-malaria and anti-rheumatism, as well as their repurposing prospects in anti-virus are reviewed. The current trials and future potential of CQ and HCQ in combating COVID-19 are discussed.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shaowei Dong
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Chang Zou
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|