1
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
2
|
Rajendran R, Krishnan R, Oh MJ. Viral reprogramming by nervous necrosis virus alters key metabolites and its pathways in sevenband grouper (Hyporthodus septemfasciatus) gills. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109900. [PMID: 39265962 DOI: 10.1016/j.fsi.2024.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Nervous necrosis virus (NNV) which mainly infects sevenband grouper (Hyporthodus Septemfasciatus) is considered a potential threat to the grouper aquaculture industry. The gills being one of the portal of entry and an active site of replication of fish viruses emphasises its role as a key region to study the metabolomic changes caused by viral reprograming and hijacking of metabolic pathways associated with immunity of the host. In the present study, liquid chromatography mass spectrometry (LC-MS) was used to detect changes of endogenous compounds of the grouper after NNV infection. A total of 75 metabolites of ten different pathways were identified. The metabolites were mainly associated with fatty acids, lipids, amino acids and nucleotides. The virus reprogramming lead to the downregulation of majority of the metabolites in their pathways. Arachidonic acid (AA), tryptophan, kynurenine and methandriol were selected as representative metabolites and challenge studies with NNV confirmed the fact that, metabolites controlled the replication of virus in a dose dependent manner. Immune gene expression studies also confirmed the effect of metabolites by upregulated expression of interleukins, cytokines and TLRs which are part of cellular immune response. This study shows the viral reprogramming of NNV in grouper gill cells resulting in alterations in basic metabolic pathways associated with normal functioning of the organism.
Collapse
Affiliation(s)
- Rahul Rajendran
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 50626, Republic of Korea
| | - Rahul Krishnan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kerala, 682506, India
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 50626, Republic of Korea.
| |
Collapse
|
3
|
Pérez SE, Gooz M, Maldonado EN. Mitochondrial Dysfunction and Metabolic Disturbances Induced by Viral Infections. Cells 2024; 13:1789. [PMID: 39513896 PMCID: PMC11545457 DOI: 10.3390/cells13211789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Viruses are intracellular parasites that utilize organelles, signaling pathways, and the bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production, metabolism, and synthesis of macromolecules. Mitochondria also contribute to the antiviral innate immune response. Here, we describe the different mechanisms involved in virus-mitochondria interactions. We analyze the effects of viral infections on the metabolism of glucose in the Warburg phenotype, glutamine, and fatty acids. We also describe how viruses directly regulate mitochondrial function through modulation of the activity of the electron transport chain, the generation of reactive oxygen species, the balance between fission and fusion, and the regulation of voltage-dependent anion channels. In addition, we discuss the evasion strategies used to avoid mitochondrial-associated mechanisms that inhibit viral replication. Overall, this review aims to provide a comprehensive view of how viruses modulate mitochondrial function to maintain their replicative capabilities.
Collapse
Affiliation(s)
- Sandra E. Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil CC7000, Buenos Aires, Argentina;
| | - Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Wang Q, Zhang Q, Shi X, Yang N, Zhang Y, Li S, Zhao Y, Zhang S, Xu X. ACADM inhibits AMPK activation to modulate PEDV-induced lipophagy and β-oxidation for impairing viral replication. J Biol Chem 2024; 300:107549. [PMID: 39002673 PMCID: PMC11342783 DOI: 10.1016/j.jbc.2024.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry analysis. The interaction between ACADM and NSP4 was subsequently corroborated through coimmunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid β-oxidation affected PEDV replication for the first time, inhibition of fatty acid β-oxidation reduced PEDV replication. ACADM decreased PEDV-induced β-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid levels and subsequent β-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shifan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yina Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Hafner A, Meurs N, Garner A, Azar E, Kannan A, Passalacqua KD, Nagrath D, Wobus CE. Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication. PLoS Pathog 2024; 20:e1011909. [PMID: 38976719 PMCID: PMC11257395 DOI: 10.1371/journal.ppat.1011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for successful propagation. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, MNV-1, CR3, and CR6. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the viral lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified NS1/2 as the first viral molecule for RNA viruses that regulates glutaminolysis either directly or indirectly. This increases our fundamental understanding of virus-induced metabolic alterations and may lead to improvements in the cultivation of human NoVs.
Collapse
Affiliation(s)
- Adam Hafner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ari Garner
- Department of Microbiology, Immunology, and Inflammation, University of Illinois, Chicago, Illinois, United States of America
| | - Elaine Azar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aditya Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karla D. Passalacqua
- Graduate Medical Education, Henry Ford Health, Detroit, Michigan, United States of America
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Zhang Y, Zhu Y, Jiang G, Chen K, Zhang G, Chen K, Ye T, Zhou Y, Li G. ROS Induced by Aphrocallistes vastus Lectin Enhance Oncolytic Vaccinia Virus Replication and Induce Apoptosis in Hepatocellular Carcinoma Cells. Mar Drugs 2024; 22:307. [PMID: 39057416 PMCID: PMC11278381 DOI: 10.3390/md22070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy is expected to provide a new treatment strategy for cancer. Aphrocallistes vastus lectin (AVL) is a Ca2+-dependent lectin receptor containing the conserved domain of C-type lectin and the hydrophobic N-terminal region, which can bind to the bird's nest glycoprotein and D-galactose. Our previous studies suggested that the oncolytic vaccinia virus (oncoVV) armed with the AVL gene exerted remarkable replication and antitumor effects in vitro and in vivo. In this study, we found that oncoVV-AVL may reprogram the metabolism of hepatocellular carcinoma cells to promote ROS, and elevated ROS subsequently promoted viral replication and induced apoptosis. This study will provide a new theoretical basis for the application of oncoVV-AVL in liver cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Li XQ, Cai MP, Wang MY, Shi BW, Yang GY, Wang J, Chu BB, Ming SL. Pseudorabies virus manipulates mitochondrial tryptophanyl-tRNA synthetase 2 for viral replication. Virol Sin 2024; 39:403-413. [PMID: 38636706 PMCID: PMC11279775 DOI: 10.1016/j.virs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.
Collapse
Affiliation(s)
- Xiu-Qing Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng-Pan Cai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming-Yang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo-Wen Shi
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Longhu Advanced Immunization Laboratory, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Rochowski MT, Jayathilake K, Balcerak JM, Tamil Selvan M, Gunasekara S, Rudd J, Miller C, Lacombe VA. Alterations of whole body glucose metabolism in a feline SARS-CoV-2 infection model. Am J Physiol Regul Integr Comp Physiol 2024; 326:R499-R506. [PMID: 38574344 PMCID: PMC11381005 DOI: 10.1152/ajpregu.00228.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/06/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been especially devastating to patients with comorbidities, including metabolic and cardiovascular diseases. Elevated blood glucose during SARS-CoV-2 infection increased mortality of patients with COVID-19, although the mechanisms are not well understood. It has been previously demonstrated that glucose transport and utilization is a crucial pathway for other highly infectious RNA viruses. Thus, we hypothesized that SARS-CoV-2 infection could lead to alterations in cellular and whole body glucose metabolism. Specific pathogen-free domestic cats were intratracheally inoculated with USA-WA1/2020 (wild-type) SARS-CoV-2 or vehicle-inoculated, then euthanized at 4- and 8-days postinoculation (dpi). Blood glucose and cortisol concentrations were elevated at 4 and 8 dpi. Blood ketones, insulin, and angiotensin II concentrations remained unchanged throughout the experimental timeline. SARS-CoV-2 RNA was detected in the lung and heart, without changes in angiotensin-converting enzyme 2 (ACE2) RNA expression. In the lung, SARS-CoV-2 infection increased glucose transporter 1 (GLUT1) protein levels at 4 and 8 dpi, whereas GLUT4 level was only upregulated at 8 dpi. In the heart, GLUT-1 and -4 protein levels remained unchanged. Furthermore, GLUT1 level was upregulated in the skeletal muscle at 8 dpi, and AMPK was activated in the hearts of infected cats. SARS-CoV-2 infection increased blood glucose concentration and pulmonary GLUT protein levels. These findings suggest that SARS-CoV-2 infection induces metabolic reprogramming primarily in the lung to support viral replication. Furthermore, this translational feline model mimicked human COVID-19 and could be used to explore novel therapeutic targets to treat metabolic disease during SARS-CoV-2 infection.NEW & NOTEWORTHY Our study on a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, mirroring human COVID-19, revealed alterations in whole body and cellular glucose metabolism. Infected cats developed mild hyperglycemia, increased protein levels of glucose transporters in the lung, and AMPK activation in the heart. These findings suggest that SARS-CoV-2 infection induces metabolic reprogramming in the cardiorespiratory system to support viral replication. Understanding these mechanisms could lead to novel antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Matthew T Rochowski
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
- Harold Hamm Diabetes Center, Oklahoma City, Oklahoma, United States
| | - Kaushalya Jayathilake
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
| | - John-Michael Balcerak
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Miruthula Tamil Selvan
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Sachithra Gunasekara
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Jennifer Rudd
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Craig Miller
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Véronique A Lacombe
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States
- Harold Hamm Diabetes Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
9
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Moshawih S, Jarrar Q, Bahrin AA, Lim AF, Ming L, Goh HP. Evaluating NSAIDs in SARS-CoV-2: Immunomodulatory mechanisms and future therapeutic strategies. Heliyon 2024; 10:e25734. [PMID: 38356603 PMCID: PMC10864964 DOI: 10.1016/j.heliyon.2024.e25734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely recognized for their analgesic and anti-inflammatory properties. Amidst the SARS-CoV-2 pandemic, the role of NSAIDs in modulating viral and bacterial infections has become a critical area of research, sparking debates and necessitating a thorough review. This review examines the multifaceted interactions between NSAIDs, immune responses, and infections. Focusing on the immunomodulatory mechanisms of NSAIDs in SARS-CoV-2 and their implications for other viral and bacterial infections, we aim to provide clarity and direction for future therapeutic strategies. NSAIDs demonstrate a dual role in infectious diseases. They reduce inflammation by decreasing neutrophil recruitment and cytokine release, yet potentially compromise antiviral defense mechanisms. They also modulate cytokine storms in SARS-CoV-2 and exhibit the potential to enhance anti-tumor immunity by inhibiting tumor-induced COX-2/PGE2 signaling. Specific NSAIDs have shown efficacy in inhibiting viral replication. The review highlights NSAIDs' synergy with other medications, like COX inhibitors and immunotherapy agents, in augmenting therapeutic effects. Notably, the World Health Organization's analysis found no substantial link between NSAIDs and the worsening of viral respiratory infections. The findings underscore NSAIDs' complex role in infection management. Understanding these interactions is crucial for optimizing therapeutic approaches in current and future pandemics. However, their dual nature warrants cautious application, particularly in vulnerable populations. NSAIDs present a paradoxical impact on immune responses in viral and bacterial infections. While offering potential benefits, their usage in infectious diseases, especially SARS-CoV-2, demands a nuanced understanding to balance therapeutic advantages against possible adverse effects.
Collapse
Affiliation(s)
- Said Moshawih
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Abdul Alim Bahrin
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Ai Fern Lim
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Long Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
11
|
Bappy SS, Haque Asim MM, Ahasan MM, Ahsan A, Sultana S, Khanam R, Shibly AZ, Kabir Y. Virus-induced host cell metabolic alteration. Rev Med Virol 2024; 34:e2505. [PMID: 38282396 DOI: 10.1002/rmv.2505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Viruses change the host cell metabolism to produce infectious particles and create optimal conditions for replication and reproduction. Numerous host cell pathways have been modified to ensure available biomolecules and sufficient energy. Metabolomics studies conducted over the past decade have revealed that eukaryotic viruses alter the metabolism of their host cells on a large scale. Modifying pathways like glycolysis, fatty acid synthesis and glutaminolysis could provide potential energy for virus multiplication. Thus, almost every virus has a unique metabolic signature and a different relationship between the viral life cycle and the individual metabolic processes. There are enormous research in virus induced metabolic reprogramming of host cells that is being conducted through numerous approaches using different vaccine candidates and antiviral drug substances. This review provides an overview of viral interference to different metabolic pathways and improved monitoring in this area will open up new ways for more effective antiviral therapies and combating virus induced oncogenesis.
Collapse
Affiliation(s)
| | | | | | - Asif Ahsan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sorna Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Roksana Khanam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
12
|
Hafner A, Meurs N, Garner A, Azar E, Passalacqua KD, Nagrath D, Wobus CE. Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572316. [PMID: 38187600 PMCID: PMC10769279 DOI: 10.1101/2023.12.19.572316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for replication. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, the acute MNV-1 strain and the persistent CR3 and CR6 strains. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the MNV lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the MNV non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified the first viral regulator of glutaminolysis for RNA viruses, which increases our fundamental understanding of virus-induced metabolic alterations.
Collapse
Affiliation(s)
- Adam Hafner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ari Garner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elaine Azar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
El Safadi D, Paulo-Ramos A, Hoareau M, Roche M, Krejbich-Trotot P, Viranaicken W, Lebeau G. The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses 2023; 15:2399. [PMID: 38140640 PMCID: PMC10748259 DOI: 10.3390/v15122399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.
Collapse
Affiliation(s)
- Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Mathilde Hoareau
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| |
Collapse
|
14
|
Alvarez-García L, Sánchez-García FJ, Vázquez-Pichardo M, Moreno-Altamirano MM. Chikungunya Virus, Metabolism, and Circadian Rhythmicity Interplay in Phagocytic Cells. Metabolites 2023; 13:1143. [PMID: 37999239 PMCID: PMC10672914 DOI: 10.3390/metabo13111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to humans by mosquitoes of the genus Aedes, causing the chikungunya fever disease, associated with inflammation and severe articular incapacitating pain. There has been a worldwide reemergence of chikungunya and the number of cases increased to 271,006 in 2022 in the Americas alone. The replication of CHIKV takes place in several cell types, including phagocytic cells. Monocytes and macrophages are susceptible to infection by CHIKV; at the same time, they provide protection as components of the innate immune system. However, in host-pathogen interactions, CHIKV might have the ability to alter the function of immune cells, partly by rewiring the tricarboxylic acid cycle. Some viral evasion mechanisms depend on the metabolic reprogramming of immune cells, and the cell metabolism is intertwined with circadian rhythmicity; thus, a circadian immunovirometabolism axis may influence viral pathogenicity. Therefore, analyzing the interplay between viral infection, circadian rhythmicity, and cellular metabolic reprogramming in human macrophages could shed some light on the new field of immunovirometabolism and eventually contribute to the development of novel drugs and therapeutic approaches based on circadian rhythmicity and metabolic reprogramming.
Collapse
Affiliation(s)
- Linamary Alvarez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - Mauricio Vázquez-Pichardo
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
- Laboratorio de Arbovirus, Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Col. Lomas de Plateros, Mexico City 01480, Mexico
| | - M. Maximina Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| |
Collapse
|
15
|
Lamichhane PP, Samir P. Cellular Stress: Modulator of Regulated Cell Death. BIOLOGY 2023; 12:1172. [PMID: 37759572 PMCID: PMC10525759 DOI: 10.3390/biology12091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Cellular stress response activates a complex program of an adaptive response called integrated stress response (ISR) that can allow a cell to survive in the presence of stressors. ISR reprograms gene expression to increase the transcription and translation of stress response genes while repressing the translation of most proteins to reduce the metabolic burden. In some cases, ISR activation can lead to the assembly of a cytoplasmic membraneless compartment called stress granules (SGs). ISR and SGs can inhibit apoptosis, pyroptosis, and necroptosis, suggesting that they guard against uncontrolled regulated cell death (RCD) to promote organismal homeostasis. However, ISR and SGs also allow cancer cells to survive in stressful environments, including hypoxia and during chemotherapy. Therefore, there is a great need to understand the molecular mechanism of the crosstalk between ISR and RCD. This is an active area of research and is expected to be relevant to a range of human diseases. In this review, we provided an overview of the interplay between different cellular stress responses and RCD pathways and their modulation in health and disease.
Collapse
Affiliation(s)
| | - Parimal Samir
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
16
|
Dharaskar SP, Paithankar K, Amere Subbarao S. Analysis and functional relevance of the chaperone TRAP-1 interactome in the metabolic regulation and mitochondrial integrity of cancer cells. Sci Rep 2023; 13:7584. [PMID: 37165028 PMCID: PMC10172325 DOI: 10.1038/s41598-023-34728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/06/2023] [Indexed: 05/12/2023] Open
Abstract
The 90 kDa heat shock protein, Hsp90, functions as a cancer chaperone contributing to tumor proliferation. We have encountered the mitochondrial homolog of Hsp90, the TRAP-1, regulating mitochondrial dynamics, metabolism, and tumor metastasis. Although Hsp90 is associated with a broad network of proteins regulating various cellular processes, TRAP-1-mediated cellular networks are unclear. Therefore, using TRAP-1 knockdown (KD) and overexpression (OE) systems, we compared their quantitative transcriptome (RNA Sequencing) and proteomic (LC-MS/MS) patterns to obtain molecular signatures that are altered in response to TRAP-1 KD or OE. We report TRAP-1 modulating vital metabolic pathways such as the tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain, glycolysis, and gluconeogenesis. In addition, TRAP-1 facilitated the pentose phosphate pathway to shunt carbons back to glycolysis or gluconeogenesis, a much-solicited tumor response. Subsequently, we examined the TRAP-1 interactome using the tandem affinity purification system and identified 255 unique proteins. These diverse proteins appear to regulate several cellular processes, including energy metabolism, suggesting that TRAP-1, in addition to metabolic rewiring, maintains mitochondrial integrity. Our study exposes the unknown functions of TRAP-1 in cancer cells. Systematic evaluation of TRAP-1 interactors may uncover novel regulatory mechanisms in disease aggression. Since metabolic inhibitors are emerging as potential anticancer agents, our study gains importance.
Collapse
Affiliation(s)
- Shrikant Purushottam Dharaskar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
17
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
18
|
Lu Y, Xu S, Sun H, Shan J, Shen C, Ji J, Lin L, Xu J, Peng L, Dai C, Xie T. Analysis of temporal metabolic rewiring for human respiratory syncytial virus infection by integrating metabolomics and proteomics. Metabolomics 2023; 19:30. [PMID: 36991292 PMCID: PMC10057675 DOI: 10.1007/s11306-023-01991-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (HRSV) infection causes significant morbidity, and no effective treatments are currently available. Viral infections induce substantial metabolic changes in the infected cells to optimize viral production. Metabolites that reflect the interactions between host cells and viruses provided an opportunity to identify the pathways underlying severe infections. OBJECTIVE To better understand the metabolic changes caused by HRSV infection, we analyzed temporal metabolic profiling to provide novel targets for therapeutic strategies for inhaled HRSV infection. METHODS The epithelial cells and BALB/c mice were infected with HRSV. Protein and mRNA levels of inflammation factors were measured by using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Untargeted metabolomics, lipidomics and proteomics were performed using liquid chromatography coupled with mass spectrometry to profile the metabolic phenotypic alterations in HRSV infection. RESULTS In this study, we evaluated the inflammatory responses in vivo and in vitro and investigated the temporal metabolic rewiring of HRSV infection in epithelial cells. We combined metabolomics and proteomic analyses to demonstrate that the redox imbalance was further provoked by increasing glycolysis and anaplerotic reactions. These responses created an oxidant-rich microenvironment that elevated reactive oxygen species levels and exacerbated glutathione consumption. CONCLUSION These observations indicate that adjusting for metabolic events during a viral infection could represent a valuable approach for reshaping the outcome of infections.
Collapse
Affiliation(s)
- Yao Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huan Sun
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linxiu Peng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Hagedorn E, Bunnell D, Henschel B, Smith DL, Dickinson S, Brown AW, De Luca M, Turner AN, Chtarbanova S. RNA virus-mediated changes in organismal oxygen consumption rate in young and old Drosophila melanogaster males. Aging (Albany NY) 2023; 15:1748-1767. [PMID: 36947702 PMCID: PMC10085608 DOI: 10.18632/aging.204593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
Aging is accompanied by increased susceptibility to infections including with viral pathogens resulting in higher morbidity and mortality among the elderly. Significant changes in host metabolism can take place following virus infection. Efficient immune responses are energetically costly, and viruses divert host molecular resources to promote their own replication. Virus-induced metabolic reprogramming could impact infection outcomes, however, how this is affected by aging and impacts organismal survival remains poorly understood. RNA virus infection of Drosophila melanogaster with Flock House virus (FHV) is an effective model to study antiviral responses with age, where older flies die faster than younger flies due to impaired disease tolerance. Using this aged host-virus model, we conducted longitudinal, single-fly respirometry studies to determine if metabolism impacts infection outcomes. Analysis using linear mixed models on Oxygen Consumption Rate (OCR) following the first 72-hours post-infection showed that FHV modulates respiration, but age has no significant effect on OCR. However, the longitudinal assessment revealed that OCR in young flies progressively and significantly decreases, while OCR in aged flies remains constant throughout the three days of the experiment. Furthermore, we found that the OCR signature at 24-hours varied in response to both experimental treatment and survival status. FHV-injected flies that died prior to 48- or 72-hours measurements had a lower OCR compared to survivors at 48-hours. Our findings suggest the host's metabolic profile could influence the outcome of viral infections.
Collapse
Affiliation(s)
- Eli Hagedorn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401, USA
- Present Address: Indiana University School of Medicine-Indianapolis, Medical Scientist Training Program, Indianapolis, IN 46202, USA
| | - Dean Bunnell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Beate Henschel
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Biostatistics Consulting Center, Bloomington, IN 47405, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie Dickinson
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Biostatistics Consulting Center, Bloomington, IN 47405, USA
| | - Andrew W. Brown
- Department of Applied Health Sciences, Indiana University, School of Public Health-Bloomington, Bloomington, IN 47405, USA
- Present Address: University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ashley N. Turner
- Department of Biology, Jacksonville State University, Jacksonville, AL 36265, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL 35401, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
20
|
Suri GS, Kaur G, Carbone GM, Shinde D. Metabolomics in oncology. Cancer Rep (Hoboken) 2023; 6:e1795. [PMID: 36811317 PMCID: PMC10026298 DOI: 10.1002/cnr2.1795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Oncogenic transformation alters intracellular metabolism and contributes to the growth of malignant cells. Metabolomics, or the study of small molecules, can reveal insight about cancer progression that other biomarker studies cannot. Number of metabolites involved in this process have been in spotlight for cancer detection, monitoring, and therapy. RECENT FINDINGS In this review, the "Metabolomics" is defined in terms of current technology having both clinical and translational applications. Researchers have shown metabolomics can be used to discern metabolic indicators non-invasively using different analytical methods like positron emission tomography, magnetic resonance spectroscopic imaging etc. Metabolomic profiling is a powerful and technically feasible way to track changes in tumor metabolism and gauge treatment response across time. Recent studies have shown metabolomics can also predict individual metabolic changes in response to cancer treatment, measure medication efficacy, and monitor drug resistance. Its significance in cancer development and treatment is summarized in this review. CONCLUSION Although in infancy, metabolomics can be used to identify treatment options and/or predict responsiveness to cancer treatments. Technical challenges like database management, cost and methodical knowhow still persist. Overcoming these challenges in near further can help in designing new treatment régimes with increased sensitivity and specificity.
Collapse
Affiliation(s)
- Gurparsad Singh Suri
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Gurleen Kaur
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
21
|
Tian Z, Zhu L, Michaud JP, Zha M, Cheng J, Shen Z, Liu X, Liu X. Metabolic reprogramming of Helicoverpa armigera larvae by HearNPV facilitates viral replication and host immune suppression. Mol Ecol 2023; 32:1169-1182. [PMID: 36479957 DOI: 10.1111/mec.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Baculoviruses are highly evolved parasites that genetically reprogram the developing phenotype of their host insect to produce a vessel for virus replication and dispersal. Here we show that larvae of Helicoverpa armigera infected with HearNPV accumulate glucose in the midgut, which reduces food consumption and alters the dynamics of pathways governing metabolism and immunity. We used transcriptomics to demonstrate the role of the insulin signalling pathway in regulating the HearNPV infection process. Dietary restriction decreased mortality of infected larvae and reduced viral replication prior to death, whereas dietary supplementation with glucose produced the opposite effects. The expression of most tricarboxylic acid cycle (TCA) and energy metabolism-related genes was reduced in infected larvae, whereas the expression of immunity-, glycolysis- and insulin-related genes was enhanced. Treatment of infected larvae with insulin increased their survival, reduced viral replication and inhibited climbing behaviour compared to a control treatment with DMSO, whereas RNAi suppression of the insulin receptor gene produced the opposite effects. Inhibition of glycolysis with dichloroacetate (DCA) promoted viral replication and accelerated larval death, but inhibition of the TCA cycle with 2-deoxyglucose (2-DG) did not, although both diminished climbing behaviour. This work demonstrates that successful baculovirus infections hinge on metabolic reprogramming of the host and concurrent suppression of immune responses in the larval midgut, with the insulin signalling pathway mediating a trade-off between glucose metabolism and virus resistance.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, Kansas, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Abstract
Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
|
23
|
Mitochondria Dysfunction at the Heart of Viral Myocarditis: Mechanistic Insights and Therapeutic Implications. Viruses 2023; 15:v15020351. [PMID: 36851568 PMCID: PMC9963085 DOI: 10.3390/v15020351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The myocardium/heart is the most mitochondria-rich tissue in the human body with mitochondria comprising approximately 30% of total cardiomyocyte volume. As the resident "powerhouse" of cells, mitochondria help to fuel the high energy demands of a continuously beating myocardium. It is no surprise that mitochondrial dysfunction underscores the pathogenesis of many cardiovascular ailments, including those of viral origin such as virus-induced myocarditis. Enteroviruses have been especially linked to injuries of the myocardium and its sequelae dilated cardiomyopathy for which no effective therapies currently exist. Intriguingly, recent mechanistic insights have demonstrated viral infections to directly damage mitochondria, impair the mitochondrial quality control processes of the cell, such as disrupting mitochondrial antiviral innate immune signaling, and promoting mitochondrial-dependent pathological inflammation of the infected myocardium. In this review, we briefly highlight recent insights on the virus-mitochondria crosstalk and discuss the therapeutic implications of targeting mitochondria to preserve heart function and ultimately combat viral myocarditis.
Collapse
|
24
|
Sun W. Insulin may promote SARS-CoV-2 cell entry and replication in diabetes patients. Med Hypotheses 2023; 170:110997. [PMID: 36540082 PMCID: PMC9756566 DOI: 10.1016/j.mehy.2022.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Patients with diabetes often have severe hyperglycemia triggered by novel coronavirus disease 2019 (COVID-19). Insulin treatment should be the main approach to the control of acute hyperglycemia in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, clinical investigation found that insulin treatment is associated with a significant increase in mortality risk in patients with diabetes and SARS-CoV-2 infection. The reason for this high mortality rate remains obscure. Previous studies have demonstrated that insulin is an activator of Na+/H+ exchanger (NHE) which could decrease extracellular pH and increase intracellular pH and glycolysis. Here, the author emphasizes insulin may contribute to SARS-CoV-2 cell entry and multiplication in host cells through activation of Na+/H+ exchange. Additionally, the inhibition of Na+ /H+ exchange activity or glycolytic flux can result in reduced mortality in patients with COVID-19 and diabetes mellitus during insulin treatment.
Collapse
Affiliation(s)
- Wenwu Sun
- Department of Respiratory Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Rd, Shenhe District, Shenyang 110016, China
| |
Collapse
|
25
|
Zakirova NF, Kondrashova AS, Golikov MV, Ivanova ON, Ivanov AV, Isaguliants MG, Bayurova EO. Expression of HIV-1 Reverse Transcriptase in Murine Cancer Cells Increases Mitochondrial Respiration. Mol Biol 2022. [DOI: 10.1134/s0026893322050168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Viral Encoded miRNAs in Tumorigenesis: Theranostic Opportunities in Precision Oncology. Microorganisms 2022; 10:microorganisms10071448. [PMID: 35889167 PMCID: PMC9321719 DOI: 10.3390/microorganisms10071448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
About 15% of all human cancers have a viral etiology. Although progress has been made, understanding the viral oncogenesis and associated molecular mechanisms remain complex. The discovery of cellular miRNAs has led to major breakthroughs. Interestingly, viruses have also been discovered to encode their own miRNAs. These viral, small, non-coding miRNAs are also known as viral-miRNAs (v-miRNAs). Although the function of v-miRNAs largely remains to be elucidated, their role in tumorigenesis cannot be ignored. V-miRNAs have also been shown to exploit the cellular machinery to benefit viral replication and survival. Although the discovery of Hepatitis C virus (HCV), and its viral miRNAs, is a work in progress, the existence of HPV-, EBV-, HBV-, MCPyV- and KSHV-encoded miRNA has been documented. V-miRNAs have been shown to target host factors to advance tumorigenesis, evade and suppress the immune system, and deregulate both the cell cycle and the apoptotic machinery. Although the exact mechanisms of v-miRNAs-induced tumorigenesis are still unclear, v-miRNAs are active role-players in tumorigenesis, viral latency and cell transformation. Furthermore, v-miRNAs can function as posttranscriptional gene regulators of both viral and host genes. Thus, it has been proposed that v-miRNAs may serve as diagnostic biomarkers and therapeutic targets for cancers with a viral etiology. Although significant challenges exist in their clinical application, emerging reports demonstrate their potent role in precision medicine. This review will focus on the roles of HPV-, HCV-, EBV-, HBV-, MCPyV-, and KSHV-produced v-miRNAs in tumorigenesis, as effectors in immune evasion, as diagnostic biomarkers and as novel anti-cancer therapeutic targets. Finally, it will discuss the challenges and opportunities associated with v-miRNAs theranostics in precision oncology.
Collapse
|
27
|
Allen CNS, Santerre M, Arjona SP, Ghaleb LJ, Herzi M, Llewellyn MD, Shcherbik N, Sawaya BE. SARS-CoV-2 Causes Lung Inflammation through Metabolic Reprogramming and RAGE. Viruses 2022; 14:983. [PMID: 35632725 PMCID: PMC9143006 DOI: 10.3390/v14050983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/26/2022] Open
Abstract
Clinical studies indicate that patients infected with SARS-CoV-2 develop hyperinflammation, which correlates with increased mortality. The SARS-CoV-2/COVID-19-dependent inflammation is thought to occur via increased cytokine production and hyperactivity of RAGE in several cell types, a phenomenon observed for other disorders and diseases. Metabolic reprogramming has been shown to contribute to inflammation and is considered a hallmark of cancer, neurodegenerative diseases, and viral infections. Malfunctioning glycolysis, which normally aims to convert glucose into pyruvate, leads to the accumulation of advanced glycation end products (AGEs). Being aberrantly generated, AGEs then bind to their receptor, RAGE, and activate several pro-inflammatory genes, such as IL-1b and IL-6, thus, increasing hypoxia and inducing senescence. Using the lung epithelial cell (BEAS-2B) line, we demonstrated that SARS-CoV-2 proteins reprogram the cellular metabolism and increase pyruvate kinase muscle isoform 2 (PKM2). This deregulation promotes the accumulation of AGEs and senescence induction. We showed the ability of the PKM2 stabilizer, Tepp-46, to reverse the observed glycolysis changes/alterations and restore this essential metabolic process.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Lea J. Ghaleb
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Muna Herzi
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Megan D. Llewellyn
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA;
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|