1
|
Shehzadi K, Kalsoom I, Yu MJ, Liang JH. Design and in-silico evaluation of PNA-based novel pronucleotide analogues targeting RNA-dependent RNA polymerase to combat COVID-19. J Biomol Struct Dyn 2025:1-23. [PMID: 39937582 DOI: 10.1080/07391102.2024.2335287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 02/13/2025]
Abstract
The emergence of highly contagious SARS-CoV-2 variants emphasizes the need for antiviral drugs that can adapt to evolving viral mutations. Despite widespread vaccination efforts, novel variants and recurrence cases raise concerns about COVID-19. Although repurposed drugs like Remdesivir, a nucleoside inhibitor, offer treatment, there is still a critical need for alternative drugs. Inhibiting viral RdRp function remains a key strategy. Structural analysis highlights the importance of pyrrolo-triazine and pyrimidine scaffolds in nucleoside inhibitors. Our study designed Peptide Nucleic Acid (PNA) antisense pronucleotides by combining these scaffolds using structure-guided drug design. Molecular modeling, including molecular docking, pharmacokinetics, molecular dynamics simulations, and MMPBSA binding energy calculations, predicts that modified PNAs can disrupt ribosome assembly at the RdRp translation start site. The neutral backbone of PNAs may enhance sequence-specific RNA binding. MD simulations revealed that complexes of Remdesivir and L14 remained stable throughout, with the phosphate tail of L14 stabilized by a positive amino acid pocket near the RdRp-RNA entry channel, similar to Remdesivir. Additionally, L14's guanine motif interacted with U20, A19, and U18 on the primer RNA strand. The lead PNA analog (L14) showed superior binding free energy to both RdRp (-47.26 kcal/mol) and RdRp-RNA (-85.66 kcal/mol), outperforming Remdesivir. Key amino acid residues critical for binding affinity were identified, providing valuable insights for drug development. This promising PNA-mimetic compound offers dual-target specificity, presenting a compelling avenue for developing potent anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Iqra Kalsoom
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ming-Jia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
2
|
Alkhamis MA, Hussain A, Al-Therban F. Comparative Evolutionary Epidemiology of SARS-CoV-2 Delta and Omicron Variants in Kuwait. Viruses 2024; 16:1872. [PMID: 39772182 PMCID: PMC11680180 DOI: 10.3390/v16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Continuous surveillance is critical for early intervention against emerging novel SARS-CoV-2 variants. Therefore, we investigated and compared the variant-specific evolutionary epidemiology of all the Delta and Omicron sequences collected between 2021 and 2023 in Kuwait. We used Bayesian phylodynamic models to reconstruct, trace, and compare the two variants' demographics, phylogeographic, and host characteristics in shaping their evolutionary epidemiology. The Omicron had a higher evolutionary rate than the Delta. Both variants underwent periods of sequential growth and decline in their effective population sizes, likely linked to intervention measures and environmental and host characteristics. We found that the Delta strains were frequently introduced into Kuwait from East Asian countries between late 2020 and early 2021, while those of the Omicron strains were most likely from Africa and North America between late 2021 and early 2022. For both variants, our analyses revealed significant transmission routes from patients aged between 20 and 50 years on one side and other age groups, refuting the notion that children are superspreaders for the disease. In contrast, we found that sex has no significant role in the evolutionary history of both variants. We uncovered deeper variant-specific epidemiological insights using phylodynamic models and highlighted the need to integrate such models into current and future genomic surveillance programs.
Collapse
Affiliation(s)
- Moh A. Alkhamis
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Abrar Hussain
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Fayez Al-Therban
- Department of Public Health, Ministry of Health, P.O. Box 24923, Kuwait City 13110, Kuwait;
| |
Collapse
|
3
|
Zhang H, Li B, Sun J, Zou L, Yi L, Lin H, Zhou P, Liang C, Zeng L, Zhuang X, Liu Z, Lu J, He J, Yuan R. Immune evasion after SARS-CoV-2 Omicron BA.5 and XBB.1.9 endemic observed from Guangdong Province, China from 2022 to 2023. Virol J 2024; 21:298. [PMID: 39568037 PMCID: PMC11577657 DOI: 10.1186/s12985-024-02573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND From 2022 to 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by Omicron variants spread rapidly in Guangdong Province, resulting in over 80% of the population being infected. RESULTS To investigate the levels of neutralizing antibodies (NAbs) in individuals following the rapid pandemic and to evaluate the cross-protection against currently circulating variants of SARS-CoV-2 in China, neutralization assay and magnetic particle chemiluminescence method were used to test the 117 serum samples from individuals who had recovered 4 weeks post-infection. The results indicated that the levels of NAbs against prototype and Omicron variants BA.5 were significantly higher than those against Omicron variants BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5, regardless of whether the infection was primary or secondary. CONCLUSIONS The cross-protection provided by NAbs induced by prototype and Omicron BA.5 variants was limited when challenged by BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5 variants. This indicates that we should pay more attention to the risk of multiple infection from any novel Omicron variants that may emerge in the near future.
Collapse
Affiliation(s)
- Huan Zhang
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Baisheng Li
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jiufeng Sun
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Lirong Zou
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Lina Yi
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Huifang Lin
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Pingping Zhou
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Chumin Liang
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Lilian Zeng
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xue Zhuang
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Zhe Liu
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jing Lu
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jianfeng He
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Runyu Yuan
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China.
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
4
|
Paradis NJ, Wu C. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Virus Evol 2024; 10:veae089. [PMID: 39584063 PMCID: PMC11584280 DOI: 10.1093/ve/veae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately identifying mutations under beneficial selection in viral genomes is crucial for understanding their molecular evolution and pathogenicity. Traditional methods like the Ka/Ks test, which assesses non-synonymous (Ka) versus synonymous (Ks) substitution rates, assume that synonymous substitutions at synonymous sites are neutral and thus is equal to the mutation rate (µ). Yet, evidence suggests that synonymous sites in translated regions (TRs) and untranslated regions (UTRs) can be under strong beneficial selection (Ks > µ) and strongly conserved (Ks ≈ 0), leading to false predictions of adaptive mutations from codon-by-codon Ka/Ks analysis. Our previous work used a relative substitution rate test (c/µ, c: substitution rate in UTR/TR, and µ: mutation rate) to identify adaptive mutations in SARS-CoV-2 genome without the neutrality assumption of the synonymous sites. This study refines the c/µ test by optimizing µ value, leading to a smaller set of nucleotide and amino acid sites under beneficial selection in both UTR (11 sites with c/µ > 3) and TR (69 nonsynonymous sites: c/µ > 3 and Ka/Ks > 2.5; 107 synonymous sites: Ks/µ > 3). Encouragingly, the top two mutations in UTR and 70% of the top nonsynonymous mutations in TR had reported or predicted effects in the literature. Molecular modeling of top adaptive mutations for some critical proteins (S, NSP11, and NSP5) was carried out to elucidate the possible molecular mechanism of their adaptivity.
Collapse
Affiliation(s)
- Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
- Department of Biological & Biomedical Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| |
Collapse
|
5
|
Erkihun M, Ayele B, Asmare Z, Endalamaw K. Current Updates on Variants of SARS-CoV- 2: Systematic Review. Health Sci Rep 2024; 7:e70166. [PMID: 39502131 PMCID: PMC11534727 DOI: 10.1002/hsr2.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024] Open
Abstract
Background Coronavirus disease 2019 is caused by the severe acute respiratory syndrome coronavirus 2, which has become a pandemic. Severe acute respiratory syndrome coronavirus 2 is an enveloped, unsegmented, positive-sense, single-stranded RNA virus that belongs to the family Coronaviridae. Aim The objective of this review is to conduct a qualitative analysis of the current updates on epidemiology, evolution, and vaccine variants for SARS-CoV-2. Method The search strategy was done from the database based on the PRISMA criteria for qualitative analysis of this review. Literature on variants of severe acute respiratory syndrome coronavirus 2, published in English in the last 5 years (2019-2023), were included. From 179 a total of 105 articles were reviewed, searched, and retrieved from the electronic databases PubMed. The search was done using keywords like COVID-19, SARS-CoV-2, variants, mutations, and vaccines, and articles were managed using EndNote X8 software. The scope of view for this review was the course of the pandemic by emerging variants and how man is struggling to overcome this sudden pandemic through vaccines. The narrative skeleton was constructed based on the article's scope of view. Result From the parent severe acute respiratory syndrome coronavirus 2, many variants emerged during the course of this pandemic. They are mainly categorized into two variants: variants of interest and variants of concern based on the impact on public health. The World Health Organization leveled five variants: Alpha (strain B.1.1.7), Beta (strain B.1.351), Gamma (strain P.1), Delta (strain B.1.617.2), and Omicron (B.1.1.529). Conclusions It is crucial to stay informed about the latest developments in the understanding of SARS-CoV-2 variants, as new variants can emerge and impact the course of the pandemic. Health authorities and researchers continuously have to monitor and study these variants to assess their characteristics, transmissibility, severity, and the effectiveness of vaccines against them. One has to always refer to the latest information from reputable health journals or organizations for the most up-to-date and accurate details on COVID-19 variants.
Collapse
Affiliation(s)
- Mulat Erkihun
- Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health SciencesDebre Tabor UniversityDebre TaborEthiopia
| | - Bayu Ayele
- Laboratory Service UnitFelege Hiwot Comprehensive Specialized HospitalBahir DarEthiopia
| | - Zelalem Asmare
- Department of Medical Laboratory Sciences, College of Health SciencesWoldia UniversityWoldiaEthiopia
| | - Kirubel Endalamaw
- Department of Diagnostic Laboratory at Shegaw Motta General HospitalMotta TownEthiopia
| |
Collapse
|
6
|
Yang YF, Lin YJ, You SH, Lu TH, Chen CY, Wang WM, Ling MP, Chen SC, Liao CM. A Regional-Scale Assessment-Based SARS-CoV-2 Variants Control Modeling with Implications for Infection Risk Characterization. Infect Drug Resist 2024; 17:4791-4805. [PMID: 39498414 PMCID: PMC11533883 DOI: 10.2147/idr.s480086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024] Open
Abstract
Background The emergence and progression of highly divergent SARS-CoV-2 variants have posed increased risks to global public health, triggering the significant impacts on countermeasures since 2020. However, in addition to vaccination, the effectiveness of non-pharmaceutical interventions, such as social distancing, masking, or hand washing, on different variants of concern (VOC) remains largely unknown. Objective This study provides a mechanistic approach by implementing a control measure model and a risk assessment framework to quantify the impacts of control measure combinations on the transmissions of five VOC (Alpha, Beta, Delta, Gamma, and Omicron), along with a different perspective of risk assessment application. Materials and Methods We applied uncontrollable ratios as an indicator by adopting basic reproduction number (R 0) data collected from a regional-scale survey. A risk assessment strategy was established by constructing VOC-specific dose-response profiles to implicate practical uses in risk characterization when exposure data are available. Results We found that social distancing alone was ineffective without vaccination in almost all countries and VOC when the median R 0 was greater than two. Our results indicated that Omicron could not be contained, even when all control measure combinations were applied, due to its low threshold of infectivity (~3×10-4 plague-forming unit (PFU) mL-1). Conclusion To facilitate better decision-making in future interventions, we provide a comprehensive evaluation of how combined control measures impact on different countries and various VOC. Our findings indicate the potential application of threshold estimates of infectivity in the context of risk communication and policymaking for controlling future emerging SARS-CoV-2 variant infections.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11230, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403514, Taiwan
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32608, USA
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
7
|
Chang TY, Li CJ, Chao TL, Chang SY, Chang SC. Design of the conserved epitope peptide of SARS-CoV-2 spike protein as the broad-spectrum COVID-19 vaccine. Appl Microbiol Biotechnol 2024; 108:486. [PMID: 39412657 PMCID: PMC11485143 DOI: 10.1007/s00253-024-13331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Our previous study has found that monoclonal antibodies targeting a conserved epitope peptide spanning from residues 1144 to 1156 of SARS-CoV-2 spike (S) protein, namely S(1144-1156), can broadly neutralize all of the prevalent SARS-CoV-2 strains, including the wild type, Alpha, Epsilon, Delta, and Gamma variants. In the study, S(1144-1156) was conjugated with bovine serum albumin (BSA) and formulated with Montanide ISA 51 adjuvant for inoculation in BALB/c mice to study its potential as a vaccine candidate. Results showed that the titers of S protein-specific IgGs and the neutralizing antibodies in mouse sera against various SARS-CoV-2 variants, including the Omicron sublineages, were largely induced along with three doses of immunization. The significant release of IFN-γ and IL-2 was also observed by ELISpot assays through stimulating vaccinated mouse splenocytes with the S(1144-1156) peptide. Furthermore, the vaccination of the S(1143-1157)- and S(1142-1158)-EGFP fusion proteins can elicit more SARS-CoV-2 neutralizing antibodies in mouse sera than the S(1144-1156)-EGFP fusion protein. Interestingly, the antisera collected from mice inoculated with the S(1144-1156) peptide vaccine exhibited better efficacy for neutralizing Omicron BA.2.86 and JN.1 subvariants than Omicron BA.1, BA.2, and XBB subvariants. Since the amino acid sequences of the S(1144-1156) are highly conserved among various SARS-CoV-2 variants, the immunogen containing the S(1144-1156) core epitope can be designed as a broadly effective COVID-19 vaccine. KEY POINTS: • Inoculation of mice with the S(1144-1156) peptide vaccine can induce bnAbs against various SARS-CoV-2 variants. • The S(1144-1156) peptide stimulated significant release of IFN-γ and IL-2 in vaccinated mouse splenocytes. • The S(1143-1157) and S(1142-1158) peptide vaccines can elicit more SARS-CoV-2 nAbs in mice.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
8
|
Duarte T, Omage FB, Rieder GS, Rocha JBT, Dalla Corte CL. Investigating SARS-CoV-2 virus-host interactions and mRNA expression: Insights using three models of D. melanogaster. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167324. [PMID: 38925484 DOI: 10.1016/j.bbadis.2024.167324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Responsible for COVID-19, SARS-CoV-2 is a coronavirus in which contagious variants continue to appear. Therefore, some population groups have demonstrated greater susceptibility to contagion and disease progression. For these reasons, several researchers have been studying the SARS-CoV-2/human interactome to understand the pathophysiology of COVID-19 and develop new pharmacological strategies. D. melanogaster is a versatile animal model with approximately 90 % human protein orthology related to SARS-CoV-2/human interactome and is widely used in metabolic studies. In this context, our work assessed the potential interaction between human proteins (ZNF10, NUP88, BCL2L1, UBC9, and RBX1) and their orthologous proteins in D. melanogaster (gl, Nup88, Buffy, ubc9, and Rbx1a) with proteins from SARS-CoV-2 (nsp3, nsp9, E, ORF7a, N, and ORF10) using computational approaches. Our results demonstrated that all the proteins have the potential to interact, and we compared the binding sites between humans and fruit flies. The stability and consistency in the structure of the gl_nsp3 complex, specifically, could be crucial for its specific biological functions. Lastly, to enhance the understanding of the influence of host factors on coronavirus infection, we also analyse the mRNA expression of the five genes (mbo, gl, lwr, Buffy, and Roc1a) responsible for encoding the fruit fly proteins. Briefly, we demonstrated that those genes were differentially regulated according to diets, sex, and age. Two groups showed higher positive gene regulation than others: females in the HSD group and males in the aging group, which could imply a higher virus-host susceptibility. Overall, while preliminary, our work contributes to the understanding of host defense mechanisms and potentially identifies candidate proteins and genes for in vivo viral studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Tâmie Duarte
- Laboratory of Experimental Biochemistry and Toxicology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; Computational Biology Research Group, Embrapa Agricultural Informatics, Campinas, SP, Brazil
| | - Guilherme Schmitt Rieder
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - João B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Laboratory of Experimental Biochemistry and Toxicology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
9
|
Kim HH, Lee HK, Hennighausen L, Furth PA, Sung H, Huh JW. Time-course analysis of antibody and cytokine response after the third SARS-CoV-2 vaccine dose. Vaccine X 2024; 20:100565. [PMID: 39399820 PMCID: PMC11470517 DOI: 10.1016/j.jvacx.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The widespread administration of an additional dose of the SARS-CoV-2 vaccine has been promoted across adult populations, demonstrating a robust immune response against COVID-19. Longitudinal studies provide crucial data on the durability of immune response after the third vaccination. This study aims to explore the antibody response, neutralizing activity, and cytokine response against the SARS-CoV-2 ancestral strain (wild-type) and its variants during the timeline before and after the administration of the third vaccine dose. Anti-spike antibody titers and neutralizing antibodies blocking ACE2 binding to spike antigens were measured in 62 study participants at baseline, and on days 7, 21, and 180 post-vaccination. Cytokine levels were assessed at the same points except for day 180, with an additional measurement on day 3 post-vaccination. The analysis revealed no substantial variation in anti-spike antibody titer against the SARS-CoV-2 ancestral strain between the pre-vaccination phase and three days following the third dose. However, a significant nine-fold increase in these titers was observed by day 7, maintained until day 21. Although a decrease was observed by day 180, all participants still had detectable antibody levels. A similar trend was noted for neutralizing antibodies, with a four-fold rise by day 7 post-vaccination. At day 180, a diminution of neutralizing antibody titers was evident for both wild-type and all variants, including Omicron subvariant. A transient increase in cytokine activity, notably involving components of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway, such as CXCL10 and IL-10, was observed within three days after the third dose. This study underscores a distinct amplification of humoral immune response seven days following the third SARS-CoV-2 vaccine dose and observes a decline in neutralizing antibody titers 180 days following the third dose, thus indicating the temporal humoral effectiveness of booster vaccination. A short-term cytokine surge, notably involving the JAK/STAT pathway, highlights the dynamic immune modulation post-vaccination.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Mîndru DE, Țarcă E, Adumitrăchioaiei H, Anton-Păduraru DT, Ștreangă V, Frăsinariu OE, Sidoreac A, Stoica C, Bernic V, Luca AC. Obesity as a Risk Factor for the Severity of COVID-19 in Pediatric Patients: Possible Mechanisms-A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1203. [PMID: 39457167 PMCID: PMC11506776 DOI: 10.3390/children11101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Obesity, the current pandemic, is associated with alarming rises among children and adolescents, and the forecasts for the near future are worrying. The present paper aims to draw attention to the short-term effects of the excess adipose tissue in the presence of a viral infection, which can be life-threatening for pediatric patients, given that the course of viral infections is often severe, if not critical. The COVID-19 pandemic has been the basis of these statements, which opened the door to the study of the repercussions of obesity in the presence of a viral infection. Since 2003, with the discovery of SARS-CoV-1, interest in the study of coronaviruses has steadily increased, with a peak during the pandemic. Thus, obesity has been identified as an independent risk factor for COVID-19 infection and is correlated with a heightened risk of severe outcomes in pediatric patients. We sought to determine the main mechanisms through which obesity is responsible for the unfavorable evolution in the presence of a viral infection, with emphasis on the disease caused by SARS-CoV-2, in the hope that future studies will further elucidate this aspect, enabling prompt and effective intervention in obese patients with viral infections, whose clinical progression is likely to be favorable.
Collapse
Affiliation(s)
- Dana Elena Mîndru
- Department of Mother and Child Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (D.E.M.); (D.T.A.-P.); (V.Ș.); (O.E.F.); (A.-C.L.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania
| | - Heidrun Adumitrăchioaiei
- Department of Pediatrics, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade”, Târgu Mureș, Str. Gheorghe Marinescu Nr. 38, 540136 Târgu Mureș, Romania;
| | - Dana Teodora Anton-Păduraru
- Department of Mother and Child Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (D.E.M.); (D.T.A.-P.); (V.Ș.); (O.E.F.); (A.-C.L.)
| | - Violeta Ștreangă
- Department of Mother and Child Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (D.E.M.); (D.T.A.-P.); (V.Ș.); (O.E.F.); (A.-C.L.)
| | - Otilia Elena Frăsinariu
- Department of Mother and Child Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (D.E.M.); (D.T.A.-P.); (V.Ș.); (O.E.F.); (A.-C.L.)
| | - Alexandra Sidoreac
- Emergency Clinical Hospital for Children “Sfanta Maria” Iasi, 700309 Iași, Romania; (A.S.); (C.S.)
| | - Cristina Stoica
- Emergency Clinical Hospital for Children “Sfanta Maria” Iasi, 700309 Iași, Romania; (A.S.); (C.S.)
| | - Valentin Bernic
- Department of Surgery II, “Saint Spiridon” Hospital, University Street, No 16, 700115 Iasi, Romania;
| | - Alina-Costina Luca
- Department of Mother and Child Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (D.E.M.); (D.T.A.-P.); (V.Ș.); (O.E.F.); (A.-C.L.)
| |
Collapse
|
11
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
12
|
Nakayama T, Todaka R, Sawada A, Ito T, Fujino M, Haga K, Katayama K. Different immunological responses following immunization with two mRNA vaccines. J Infect Chemother 2024; 30:439-449. [PMID: 38000497 DOI: 10.1016/j.jiac.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Immunological responses were investigated following immunization with two mRNA vaccines: BNT162b2 and mRNA-1273. METHODS Neutralizing antibody (NAb) was assayed before, 2-4 weeks after, and 3 and 6 months after the primary immunization, and the same time-points after booster dose with 6- or 8-months interval. Whole-blood culture was stimulated with spike antigen, and cytokine production was assayed. RESULTS NAb was detected after primary immunization, NAb titers began to decrease three months after primary immunization with BNT162b2, lower than those after mRNA-1273, and elevated after booster immunization. The NAb level was 1/2 lower against δ variant, and 1/16 lower against omicron variant in comparison with that against α variant. Cytokine production following immunization with mRNA-1273 was maintained within three months at higher levels of Th1 (TNF-α), Th2 (IL-4 and IL-5), and inflammatory cytokines (IL-6 and IL-17) than that following immunization with BNT162b2, reflecting prominent levels of NAb following immunization with mRNA-1273. Cytokine production decreased six months after primary immunization in both vaccine recipients and was enhanced following booster doses. During the omicron outbreak, medical staff members in the outpatient office experienced asymptomatic infection, with a greater than 4-fold increase in NAb titers against omicron variant even after booster immunization. Asymptomatic infection enhanced the production of Th2 and inflammatory cytokines. CONCLUSION mRNA-1273 induced stronger NAb responses with wide-range cross-reactive antibodies against δ and omicron variants. mRNA-1273 induced higher levels of Th1, Th2, and inflammatory cytokines than BNT162b2 did, reflecting higher levels of NAb against variant strains.
Collapse
Affiliation(s)
- Tetsuo Nakayama
- Laboratory of Viral Infection, Ömura Satoshi Memorial Institute, Tokyo, 108-8641, Japan.
| | - Reiko Todaka
- Laboratory of Viral Infection, Ömura Satoshi Memorial Institute, Tokyo, 108-8641, Japan.
| | - Akihito Sawada
- Laboratory of Viral Infection, Ömura Satoshi Memorial Institute, Tokyo, 108-8641, Japan.
| | - Takashi Ito
- Laboratory of Viral Infection, Ömura Satoshi Memorial Institute, Tokyo, 108-8641, Japan; Department of Pediatrics, Kitasato University Hospital, Sagamihara, Kanagawa, 252-0329, Japan.
| | - Motoko Fujino
- Department of Pediatrics, Saiseikai Central Hospital Tokyo, Tokyo, 108-0073, Japan.
| | - Kei Haga
- Laboratory of Viral Infection, Ömura Satoshi Memorial Institute, Tokyo, 108-8641, Japan.
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Ömura Satoshi Memorial Institute, Tokyo, 108-8641, Japan.
| |
Collapse
|
13
|
Malo-Castillo J, Jiménez-Álvarez H, Ludeña-Meléndez V, Mayor Castro SS, Rodríguez S, Ishikawa-Arias P, Terrones C, Ledesma Chavarría L, Linares Reyes E, Failoc-Rojas VE. Short-Term Adverse Effects of the Fourth Dose of Vaccination against COVID-19 in Adults over 40 Years of Age. Vaccines (Basel) 2024; 12:400. [PMID: 38675782 PMCID: PMC11055111 DOI: 10.3390/vaccines12040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 04/28/2024] Open
Abstract
Booster vaccines are a strategy to mitigate the conditions in the health, social, and economic fields that the COVID-19 pandemic has brought. A series of adverse effects have been observed since the first vaccination. The present investigation aims to describe the short-term adverse effects of the fourth dose against COVID-19 in adults older than 40 from a region of Peru. The study population was over 40 years of age at the COVID-19 vaccination center in Trujillo, Peru. A 21-day follow-up was conducted from vaccination with the fourth dose, considering sex, age, body mass index, comorbidities, history of COVID-19 infection, vaccination schedule, and simultaneous vaccination against influenza as variables of interest. Multinomial logistic regression with robust variance was used to estimate the risk ratio (RR). In total, 411 people were recruited, and it was found that 86.9% of the participants presented adverse effects after injection with the fourth dose of the vaccine against COVID-19. Pain at the injection site was the most reported symptom after 3 days. Assessment of adverse effects after 3 days found that age ≥ 60 years was associated with a lower likelihood of adverse effects compared to those younger than 60 years (RRc: 0.32; 95% CI: 0.0.18-0.59), males compared to females were associated with a lower likelihood of adverse effects (RRc: 0.54; 95% CI 0.30-0.98), being overweight (RRc: 2.34; 95% CI: 1.12-4.89), and last vaccine with Pfizer-BioN-Tech (RRc: 0.42; 95% CI: 0.18-0.96). Associated adverse effects are mild to moderate. Injection site pain and general malaise are the most frequent adverse effects.
Collapse
Affiliation(s)
- Jussara Malo-Castillo
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Universidad Nacional de Trujillo, Trujilo 13011, Peru; (J.M.-C.); (H.J.-Á.); (V.L.-M.); (S.S.M.C.); (P.I.-A.)
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Harold Jiménez-Álvarez
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Universidad Nacional de Trujillo, Trujilo 13011, Peru; (J.M.-C.); (H.J.-Á.); (V.L.-M.); (S.S.M.C.); (P.I.-A.)
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Victor Ludeña-Meléndez
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Universidad Nacional de Trujillo, Trujilo 13011, Peru; (J.M.-C.); (H.J.-Á.); (V.L.-M.); (S.S.M.C.); (P.I.-A.)
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Solange Sarasvati Mayor Castro
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Universidad Nacional de Trujillo, Trujilo 13011, Peru; (J.M.-C.); (H.J.-Á.); (V.L.-M.); (S.S.M.C.); (P.I.-A.)
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Sheyla Rodríguez
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Paula Ishikawa-Arias
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Universidad Nacional de Trujillo, Trujilo 13011, Peru; (J.M.-C.); (H.J.-Á.); (V.L.-M.); (S.S.M.C.); (P.I.-A.)
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Cristhian Terrones
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Leonardo Ledesma Chavarría
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | - Edgardo Linares Reyes
- Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (S.R.); (C.T.); (L.L.C.); (E.L.R.)
| | | |
Collapse
|
14
|
Kharazmi E, Bayati M, Majidpour Azad Shirazi A. Vaccination and its impact on healthcare utilization in two groups of vaccinated and unvaccinated patients with COVID-19: A cross-sectional study in Iran between 2021 and 2022. Health Sci Rep 2024; 7:e1914. [PMID: 38405172 PMCID: PMC10885182 DOI: 10.1002/hsr2.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Aims One of the main responsibilities of health systems impacted by the global Coronavirus disease 2019 (COVID-19) pandemic, where the first case was discovered in Wuhan, China, in December 2019, is the provision of medical services. The current study looked into the impact of vaccination on the utilization of services provided to COVID-19 patients. Methods This study was conducted in Iran between 2021 and 2022, utilizing a cross-sectional research design. The research team collected data on the utilization of provided services and the number of COVID-19 vaccines administered to 1000 patients in Iran through a random sampling approach. The data were analyzed with statistical methods, including the mean difference test, and multiple linear regression. Results Regression estimates show that after controlling for confounding variables like age, type of admission, and comorbidities, vaccination reduces the utilization of healthcare services in the general majority of services. The study's results reveal a fall in COVID-19 patients' utilization of services, specifically in patients administered two or three doses of the vaccine. However, the reduction is not statistically significant. Regression models are in contrast to univariate analysis findings that vaccination increases the mean utilization of healthcare services for COVID-19 patients in general. Comorbidities are a crucial factor in determining the utilization of diagnostic and treatment services for COVID-19 patients. Conclusion Full COVID-19 vaccination and other implementations, including investing in public health, cooperating globally, and vaccinating high-risk groups for future pandemics, are essential as a critical response to this pandemic as they reduce healthcare service utilization to alleviate the burden on healthcare systems and allocate resources more efficiently.
Collapse
Affiliation(s)
- Erfan Kharazmi
- Health Human Resources Research Center, School of Health Management and Information SciencesShiraz University of Medical SciencesShirazIran
| | - Mohsen Bayati
- Health Human Resources Research Center, School of Health Management and Information SciencesShiraz University of Medical SciencesShirazIran
| | - Ali Majidpour Azad Shirazi
- Health Human Resources Research Center, School of Health Management and Information SciencesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
15
|
Gilliland T, Dunn M, Liu Y, Alcorn MD, Terada Y, Vasilatos S, Lundy J, Li R, Nambulli S, Larson D, Duprex P, Wu H, Luke T, Bausch C, Egland K, Sullivan E, Wang Z, Klimstra WB. Transchromosomic bovine-derived anti-SARS-CoV-2 polyclonal human antibodies protects hACE2 transgenic hamsters against multiple variants. iScience 2023; 26:107764. [PMID: 37736038 PMCID: PMC10509298 DOI: 10.1016/j.isci.2023.107764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.
Collapse
Affiliation(s)
- Theron Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Dunn
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yanan Liu
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Maria D.H. Alcorn
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yutaka Terada
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shauna Vasilatos
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeneveve Lundy
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rong Li
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Sham Nambulli
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Deanna Larson
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Paul Duprex
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hua Wu
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | - Thomas Luke
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | | | - Kristi Egland
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | | | - Zhongde Wang
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - William B. Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Afrin SZ, Sathi FA, Nooruzzaman M, Parvin R. Molecular insights into the SARS-CoV-2 Omicron variant from Bangladesh suggest diverse and continuous evolution. Virology 2023; 587:109882. [PMID: 37757731 DOI: 10.1016/j.virol.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
The study analyzed the molecular dynamics of the circulating SARS-CoV-2 Omicron variant from its identification in November 2021 to January 2023. The SARS-CoV-2 sequences from Bangladesh revealed three distinct waves of the Omicron variant. More than 50 sub-lineages of Omicron variant were introduced into the country, with the majority belonging to the major lineages of BA.1-like (24.91%), BA.2-like (43.35%), BA.5-like (5.76%), XBB (10.47%), and "Others and Unassigned" (18.64%). Furthermore, the relative frequencies over time revealed that Omicron lineages existed for a short period of time before being replaced by other sub-lineages. Many potential mutations were found in the receptor binding domain of the Spike protein including G339D/H, S371 L/F, K417 N, T478K, E484A, Q493R, Q498R, and N501Y. In conclusion, the SARS-CoV-2 Omicron variant from Bangladesh showed diverse genetic features and continuous evolution. Therefore, the choice of vaccine and monitoring of hospitalized patients is important alongside genetic characterization of the circulating SARS-CoV-2.
Collapse
Affiliation(s)
| | - Fardousi Akter Sathi
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
17
|
Kubo T, Kanao E, Ishida K, Minami S, Tanigawa T, Mizuta R, Sasaki Y, Otsuka K, Kobayashi T. Efficient Selective Adsorption of SARS-CoV-2 via the Recognition of Spike Proteins Using an Affinity Spongy Monolith. Anal Chem 2023; 95:13185-13190. [PMID: 37610704 DOI: 10.1021/acs.analchem.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Since the outbreak of COVID-19, SARS-CoV-2, the infection has been spreading to date. The rate of false-negative result on a polymerase chain reaction (PCR) test considered the gold standard is roughly 20%. Therefore, its accuracy poses a question as well as needs improvement in the test. This study reports fabrication of a substrate of an anti-spike protein (AS)-immobilized porous material having selective adsorption toward a spike protein protruding from the surface of SARS-CoV-2. We have employed an organic polymer substrate called spongy monolith (SPM). The SPM has through-pores of about 10 μm and is adequate for flowing liquid containing virus particles. It also involves an epoxy group on the surface, enabling arbitrary proteins such as antibodies to immobilize. When antibodies of the spike protein toward receptor binding domain were immobilized, selective adsorption of the spike protein was observed. At the same time, when mixed analytes of spike proteins, lysozymes and amylases, were flowed into an AS-SPM, selective adsorption toward the spike proteins was observed. Then, SARS-CoV-2 was flowed into the BSA-SPM or AS-SPM, amounts of SARS-CoV-2 adsorption toward the AS-SPM were much larger compared to the ones toward the BSA-SPM. Furthermore, rotavirus was not adsorbed to the AS-SPM at all. These results show that the AS-SPM recognizes selectively the spike proteins of SARS-CoV-2 and may be possible applications for the purification and concentration of SARS-CoV-2.
Collapse
Affiliation(s)
- Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Ibaraki 567-0085, Japan
| | - Koki Ishida
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ko, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ko, Kyoto 615-8510, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Karageorgiou G, Chronopoulou K, Georgalas I, Kandarakis S, Tservakis I, Petrou P. Branch retinal vein occlusion following ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccine. Eur J Ophthalmol 2023; 33:NP121-NP123. [PMID: 36062592 DOI: 10.1177/11206721221124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To present a case of branch retinal vein occlusion (BRVO) following ChAdOx1 nCoV-19 (Oxford-AstraZeneca) Vaccine. METHODS Case report. RESULTS A 60-year old otherwise healthy Caucasian male, presented to the ophthalmology emergency clinic complaining of sudden, painless vision loss in his right eye of 24 h" duration. The patient had received Vaxveria seven days prior. The clinical and fundus examination of the right eye established the diagnosis of BRVO. CONCLUSION The present case descibes the occurrence of BRVO soon after the vaccination with the Oxford-AstraZeneca vaccine. The close temporal relationship between the BRVO incidence and the vaccination is reinforced by the lack of othe subjective cause to justify the episode.
Collapse
Affiliation(s)
- Georgia Karageorgiou
- First Opthhalmology Department, "G.Gennimatas" Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Chronopoulou
- First Opthhalmology Department, "G.Gennimatas" Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Georgalas
- First Opthhalmology Department, "G.Gennimatas" Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Kandarakis
- First Opthhalmology Department, "G.Gennimatas" Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Tservakis
- First Opthhalmology Department, "G.Gennimatas" Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Petrou
- First Opthhalmology Department, "G.Gennimatas" Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Medina J, Rojas-Cessa R, Dong Z, Umpaichitra V. A global blockchain for recording high rates of COVID-19 vaccinations. Comput Biol Med 2023; 163:107074. [PMID: 37311384 PMCID: PMC10228165 DOI: 10.1016/j.compbiomed.2023.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
Blockchain has been recently proposed to securely record vaccinations against COVID-19 and manage their verification. However, existing solutions may not fully meet the requirements of a global vaccination management system. These requirements include the scalability required to support a global vaccination campaign, like one against COVID-19, and the capability to facilitate the interoperation between the independent health administrations of different countries. Moreover, access to global statistics can help to control securing community health and provide continuity of care for individuals during a pandemic. In this paper, we propose GEOS, a blockchain-based vaccination management system designed to address the challenges faced by the global vaccination campaign against COVID-19. GEOS offers interoperability between vaccination information systems at both domestic and international levels, supporting high vaccination rates and extensive coverage for the global population. To provide those features, GEOS uses a two-layer blockchain architecture, a simplified byzantine-tolerant consensus algorithm, and the Boneh-Lynn-Shacham signature scheme. We analyze the scalability of GEOS by examining transaction rate and confirmation times, considering factors such as the number of validators, communication overhead, and block size within the blockchain network. Our findings demonstrate the effectiveness of GEOS in managing COVID-19 vaccination records and statistical data for 236 countries, encompassing crucial information such as daily vaccination rates for highly populous nations and the global vaccination demand, as identified by the World Health Organization.
Collapse
Affiliation(s)
- Jorge Medina
- New Jersey Institute of Technology, Department of Electrical and Computer Engineering, Newark, NJ, 07102, USA.
| | - Roberto Rojas-Cessa
- New Jersey Institute of Technology, Department of Electrical and Computer Engineering, Newark, NJ, 07102, USA.
| | - Ziqian Dong
- New York Institute of Technology, Department of Electrical and Computer Engineering, New York, NY, 10023, USA.
| | | |
Collapse
|
20
|
Nagaraja M, Sireesha K, Srikar A, Sudheer Kumar K, Mohan A, Vengamma B, Tirumala C, Verma A, Kalawat U. Mutation Analysis of SARS-CoV-2 Variants Isolated from Symptomatic Cases from Andhra Pradesh, India. Viruses 2023; 15:1656. [PMID: 37631999 PMCID: PMC10458099 DOI: 10.3390/v15081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
There has been a continuous evolution in the SARS-CoV-2 genome; therefore, it is necessary to monitor the shifts in the SARS-CoV-2 variants. This study aimed to detect various SARS-CoV-2 variants circulating in the state of Andhra Pradesh, India. The study attempted to sequence the complete S-gene of SARS-CoV-2 of 104 clinical samples using Sanger's method to analyze and compare the mutations with the global prevalence. The method standardized in this study was able to amplify the complete length of the S-gene (3822 bp). The resulting nucleotide and amino acid mutations were analyzed and compared with the local and global SARS-CoV-2 databases using Nextclade and GISAID tools. The Delta variant was the most common variant reported in the present study, followed by the Omicron variant. A variant name was not assigned to thirteen samples using the Nextclade tool. There were sixty-nine types of amino acid substitutions reported (excluding private mutations) throughout the spike gene. The T95I mutation was observed predominantly in Delta variants (15/38), followed by Kappa (3/8) and Omicron (1/31). Nearly all Alpha and Omicron lineages had the N501Y substitution; Q493R was observed only in the Omicron lineage; and other mutations (L445, F486, and S494) were not observed in the present study. Most of these mutations found in the Omicron variant are located near the furin cleavage site, which may play a role in the virulence, pathogenicity, and transmission of the virus. Phylogenetic analysis showed that the 104 complete CDS of SARS-CoV-2 belonged to different phylogenetic clades like 20A, 20B, 20I (Alpha), 21A (Delta), 21B (Kappa), 21I (Delta), 21J (Delta), and 21L (Omicron).
Collapse
Affiliation(s)
- Mudhigeti Nagaraja
- State-Level VRDL, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Kodavala Sireesha
- Regional Center for ISCP-NCDC, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Anagoni Srikar
- State-Level VRDL, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Katari Sudheer Kumar
- State-Level VRDL, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Alladi Mohan
- Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Bhuma Vengamma
- Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Chejarla Tirumala
- Department of Tuberculosis and Respiratory Diseases, Sri Balaji Medical College Hospital and Research Institute, Renigunta, Tirupati 517 507, Andhra Pradesh, India
| | - Anju Verma
- Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Usha Kalawat
- Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| |
Collapse
|
21
|
Miteva D, Kitanova M, Batselova H, Lazova S, Chervenkov L, Peshevska-Sekulovska M, Sekulovski M, Gulinac M, Vasilev GV, Tomov L, Velikova T. The End or a New Era of Development of SARS-CoV-2 Virus: Genetic Variants Responsible for Severe COVID-19 and Clinical Efficacy of the Most Commonly Used Vaccines in Clinical Practice. Vaccines (Basel) 2023; 11:1181. [PMID: 37514997 PMCID: PMC10385722 DOI: 10.3390/vaccines11071181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Although the chief of the World Health Organization (WHO) has declared the end of the coronavirus disease 2019 (COVID-19) as a global health emergency, the disease is still a global threat. To be able to manage such pandemics in the future, it is necessary to develop proper strategies and opportunities to protect human life. The data on the SARS-CoV-2 virus must be continuously analyzed, and the possibilities of mutation and the emergence of new, more infectious variants must be anticipated, as well as the options of using different preventive and therapeutic techniques. This is because the fast development of severe acute coronavirus 2 syndrome (SARS-CoV-2) variants of concern have posed a significant problem for COVID-19 pandemic control using the presently available vaccinations. This review summarizes data on the SARS-CoV-2 variants that are responsible for severe COVID-19 and the clinical efficacy of the most commonly used vaccines in clinical practice. The consequences after the disease (long COVID or post-COVID conditions) continue to be the subject of studies and research, and affect social and economic life worldwide.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov str., 1164 Sofia, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov str., 1164 Sofia, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, University Hospital "Saint George", Medical University, 6000 Plovdiv, Bulgaria
| | - Snezhina Lazova
- Pediatric Department, University Hospital "N. I. Pirogov," 21 "General Eduard I. Totleben" Blvd, 1606 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Bialo More 8 str., 1527 Sofia, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, 1407 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak str., 1407 Sofia, Bulgaria
| | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Georgi V Vasilev
- Clinic of Endocrinology and Metabolic Disorders, UMHAT "Sv. Georgi", 4000 Plovdiv, Bulgaria
| | - Luchesar Tomov
- Department of Informatics, New Bulgarian University, Montevideo 21 str., 1618 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| |
Collapse
|
22
|
Hossain MA, Sohel M, Sultana T, Hasan MI, Khan MS, Kibria KMK, Mahmud SMH, Rahman MH. Study of kaempferol in the treatment of COVID-19 combined with Chikungunya co-infection by network pharmacology and molecular docking technology. INFORMATICS IN MEDICINE UNLOCKED 2023; 40:101289. [PMID: 37346467 PMCID: PMC10264333 DOI: 10.1016/j.imu.2023.101289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Chikungunya (CHIK) patients may be vulnerable to coronavirus disease (COVID-19). However, presently there are no anti-COVID-19/CHIK therapeutic alternatives available. The purpose of this research was to determine the pharmacological mechanism through which kaempferol functions in the treatment of COVID-19-associated CHIK co-infection. We have used a series of network pharmacology and computational analysis-based techniques to decipher and define the binding capacity, biological functions, pharmacological targets, and treatment processes in COVID-19-mediated CHIK co-infection. We identified key therapeutic targets for COVID-19/CHIK, including TP53, MAPK1, MAPK3, MAPK8, TNF, IL6 and NFKB1. Gene ontology, molecular and upstream pathway analysis of kaempferol against COVID-19 and CHIK showed that DEGs were confined mainly to the cytokine-mediated signalling pathway, MAP kinase activity, negative regulation of the apoptotic process, lipid and atherosclerosis, TNF signalling pathway, hepatitis B, toll-like receptor signaling, IL-17 and IL-18 signaling pathways. The study of the gene regulatory network revealed several significant TFs including KLF16, GATA2, YY1 and FOXC1 and miRNAs such as let-7b-5p, mir-16-5p, mir-34a-5p, and mir-155-5p that target differential-expressed genes (DEG). According to the molecular coupling results, kaempferol exhibited a high affinity for 5 receptor proteins (TP53, MAPK1, MAPK3, MAPK8, and TNF) compared to control inhibitors. In combination, our results identified significant targets and pharmacological mechanisms of kaempferol in the treatment of COVID-19/CHIK and recommended that core targets be used as potential biomarkers against COVID-19/CHIK viruses. Before conducting clinical studies for the intervention of COVID-19 and CHIK, kaempferol might be evaluated in wet lab tests at the molecular level.
Collapse
Affiliation(s)
- Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Sharif Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - S M Hasan Mahmud
- Department of Computer Science, Faculty of Science and Technology, American International University-Bangladesh, Dhaka, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
23
|
Salah H, Sinan I, Alsamani O, Abdelghani LS, ElLithy MH, Bukamal N, Jawad H, Hussein RRS, Elgendy MO, Rabie ASI, Khalil DM, Said ASA, AlAhmad MM, Khodary A. COVID-19 Booster Doses: A Multi-Center Study Reflecting Healthcare Providers' Perceptions. Vaccines (Basel) 2023; 11:1061. [PMID: 37376450 DOI: 10.3390/vaccines11061061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: During 2019, the COVID-19 pandemic was threatening healthcare services and workers, and acquiring immunity was an option to stop or limit the burden of this pandemic. Herd immunity was a top priority worldwide as the virus was spreading rapidly. It was estimated that 67% of the total global population should be immunized against COVID-19 to achieve herd immunity. The aim of the current study is to investigate different perceptions of healthcare workers in the Kingdom of Bahrain and Egypt using an online survey in an attempt to evaluate their awareness and concerns regarding new variants and booster doses. (2) Methods: This study conducted a survey on healthcare workers in the Kingdom of Bahrain and Egypt about their perception and concerns on the COVID-19 vaccines. (3) Results: The study found that out of 389 healthcare workers 46.1% of the physicians were not willing to take the booster doses (p = 0.004). Physicians also did not support taking the COVID-19 vaccine as an annual vaccine (p = 0.04). Furthermore, to assess the association between the type of vaccine taken with the willingness of taking a booster vaccine, healthcare workers beliefs on vaccine effectiveness (p = 0.001), suspension or contact with patients (p = 0.000), and infection after COVID-19 vaccination (p = 0.016) were significant. (4) Conclusion: Knowledge about vaccine accreditation and regulation should be dispersed more widely to ensure that the population has a positive perception on vaccine safety and effectiveness.
Collapse
Affiliation(s)
- Hager Salah
- Pharmaceutical Services Department, King Hamad University Hospital, Al Sayh 24343, Bahrain
| | - Israa Sinan
- Education and Proficiency Centre, King Hamad University Hospital, Al Sayh 24343, Bahrain
| | - Omar Alsamani
- Pharmaceutical Services Department, King Hamad University Hospital, Al Sayh 24343, Bahrain
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, Manama 32038, Bahrain
| | | | - May Hassan ElLithy
- Pharmaceutical Services Department, King Hamad University Hospital, Al Sayh 24343, Bahrain
| | - Nazar Bukamal
- Cardiothoracic ICU and Anesthesia Department, Mohammed Bin Khalifa Specialist Cardiac Center, Awali 183261, Bahrain
| | - Huda Jawad
- Allied Health Department, College of Health Sciences, University of Bahrain, Manama 32038, Bahrain
| | - Raghda R S Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, 6th October City 12511, Egypt
| | - Marwa O Elgendy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, Beni-Suef University Hospitals, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Al Shaimaa Ibrahim Rabie
- Clinical Pharmacy Department, Faiyum Oncology Center, Fayium 63511, Egypt
- Clinical Nutrition Department, Fayium Health Insurance Authority, Fayium 63511, Egypt
| | - Doaa Mahmoud Khalil
- Public Health and Community Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Amira S A Said
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
- Clinical Pharmacy Department, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Mohammad M AlAhmad
- Clinical Pharmacy Department, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Azza Khodary
- Mental Health Department, Faculty of Education, Helwan University, Helwan 11795, Egypt
| |
Collapse
|
24
|
Anand U, Pal T, Zanoletti A, Sundaramurthy S, Varjani S, Rajapaksha AU, Barceló D, Bontempi E. The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs. ENVIRONMENTAL RESEARCH 2023; 225:115612. [PMID: 36871942 PMCID: PMC9985523 DOI: 10.1016/j.envres.2023.115612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona, 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona, 1826, Barcelona, 08034, Spain
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| |
Collapse
|
25
|
Mahboob T, Ismail AA, Shah MR, Rahmatullah M, Paul AK, Pereira MDL, Wiart C, Wilairatana P, Rajagopal M, Dolma KG, Nissapatorn V. Development of SARS-CoV-2 Vaccine: Challenges and Prospects. Diseases 2023; 11:64. [PMID: 37092446 PMCID: PMC10123684 DOI: 10.3390/diseases11020064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
The WHO declared coronavirus disease 2019 (COVID-19) a pandemic in March 2020, which was caused by novel coronavirus severe acute respiratory coronavirus 2 (SARS-CoV-2). SARS-CoV-2 made its first entry into the world in November 2019, and the first case was detected in Wuhan, China. Mutations in the SARS-CoV-2 genome distressed life in almost every discipline by the extended production of novel viral variants. In this article, authorized SARS-CoV-2 vaccines including mRNA vaccines, DNA vaccines, subunit vaccines, inactivated virus vaccines, viral vector vaccine, live attenuated virus vaccines and mix and match vaccines will be discussed based on their mechanism, administration, storage, stability, safety and efficacy. The information was collected from various journals via electronic searches including PubMed, Science Direct, Google Scholar and the WHO platform. This review article includes a brief summary on the pathophysiology, epidemiology, mutant variants and management strategies related to COVID-19. Due to the continuous production and unsatisfactory understanding of novel variants of SARS-CoV-2, it is important to design an effective vaccine along with long-lasting protection against variant strains by eliminating the gaps through practical and theoretical knowledge. Consequently, it is mandatory to update the literature through previous and ongoing trials of vaccines tested among various ethnicities and age groups to gain a better insight into management strategies and combat complications associated with upcoming novel variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Tooba Mahboob
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1209, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia
| | - Maria de Lourdes Pereira
- CICECO—Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, University Malaysia, Sabah 88400, Malaysia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
26
|
Shi C, Jiao Y, Yang C, Sun Y. The influence of single-point mutation D614G on the binding process between human angiotensin-converting enzyme 2 and the SARS-CoV-2 spike protein-an atomistic simulation study. RSC Adv 2023; 13:9800-9810. [PMID: 36998522 PMCID: PMC10044093 DOI: 10.1039/d3ra00198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
SARS-CoV-2 has continuously evolved as changes in the genetic code occur during replication of the genome, with some of the mutations leading to higher transmission among human beings. The spike aspartic acid-614 to glycine (D614G) substitution in the spike represents a "more transmissible form of SARS-CoV-2" and occurs in all SARS-CoV-2 mutants. However, the underlying mechanism of the D614G substitution in virus infectivity has remained unclear. In this paper, we adopt molecular simulations to study the contact processes of the D614G mutant and wild-type (WT) spikes with hACE2. The interaction areas with hACE2 for the two spikes are completely different by visualizing the whole binding processes. The D614G mutant spike moves towards the hACE2 faster than the WT spike. We have also found that the receptor-binding domain (RBD) and N-terminal domain (NTD) of the D614G mutant extend more outwards than those of the WT spike. By analyzing the distances between the spikes and hACE2, the changes of number of hydrogen bonds and interaction energy, we suggest that the increased infectivity of the D614G mutant is not possibly related to the binding strength, but to the binding velocity and conformational change of the mutant spike. This work reveals the impact of D614G substitution on the infectivity of the SARS-CoV-2, and hopefully could provide a rational explanation of interaction mechanisms for all the SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Chengcheng Shi
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yanqi Jiao
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Chao Yang
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yao Sun
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
27
|
Burkholz S, Rubsamen M, Blankenberg L, Carback RT, Mochly-Rosen D, Harris PE. Analysis of well-annotated next-generation sequencing data reveals increasing cases of SARS-CoV-2 reinfection with Omicron. Commun Biol 2023; 6:288. [PMID: 36934204 PMCID: PMC10024296 DOI: 10.1038/s42003-023-04687-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
SARS-CoV-2 has extensively mutated creating variants of concern (VOC) resulting in global infection surges. The Omicron VOC reinfects individuals exposed to earlier variants of SARS-CoV-2 at a higher frequency than previously seen for non-Omicron VOC. An analysis of the sub-lineages associated with an Omicron primary infection and Omicron reinfection reveals that the incidence of Omicron-Omicron reinfections is occurring over a shorter time interval than seen after a primary infection with a non-Omicron VOC. Our analysis suggests that a single infection from SARS-CoV-2 may not generate the protective immunity required to defend against reinfections from emerging Omicron lineages. This analysis was made possible by Next-generation sequencing (NGS) of a Danish cohort with clinical metadata on both infections occurring in the same individual. We suggest that the continuation of COVID-19 NGS and inclusion of clinical metadata is necessary to ensure effective surveillance of SARS-CoV-2 genomics, assist in treatment and vaccine development, and guide public health recommendations.
Collapse
Affiliation(s)
| | | | | | | | - Daria Mochly-Rosen
- Stanford University School of Medicine, Department of Chemical and Systems Biology, Stanford, CA, USA
| | - Paul E Harris
- Flow Pharma, Inc., Warrensville Heights, OH, USA.
- Columbia University, Department of Medicine, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
28
|
Rozanovic M, Domokos K, Márovics G, Rohonczi M, Csontos C, Bogár L, Rendeki S, Kiss T, Rozanovic MN, Loibl C. Can we predict critical care mortality with non-conventional inflammatory markers in SARS-CoV-2 infected patients? Clin Hemorheol Microcirc 2023:CH231697. [PMID: 36846995 DOI: 10.3233/ch-231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Severe COVID-19 disease is associated with multiple organ involvement,then failure and often fatal outcomes.In addition,inflammatory mechanisms and cytokine storms,documented in many COVID-19 patients,are responsible for the progression of the disease and high mortality rates.Inflammatory parameters,such as procalcitonin(PCT) and C-reactive protein(CRP), are widely used in clinical practice. OBJECTIVE To evaluate the predictive power of non-conventional inflammatory markers regarding mortality risk. METHODS In our prospective study 52 patients were followed for 5 days after admission to an intensive care unit immediately with severe SARS-CoV-2 infection.We compared leukocyte-,platelet antisedimentation rate (LAR, PAR),neutrophil lymphocyte ratio(NLR), CRP, PCT levels. RESULTS In non-surviving(NSU) patients LAR remained largely constant from D1 to D4 with a statistically significant drop(p < 0.05) only seen on D5.The NSU group showed statistically significant(p < 0.05) elevated LAR medians on D4 and D5, compared to the SU group.NLR values were continually higher in the non-survivor group.The difference between the SU and NSU groups were statistically significant on every examined day.PAR, CRP and PCT levels didn't show any significant differences between the SU and NSU groups. CONCLUSIONS In conclusion, this study suggests that LAR and NLR are especially worthy of further investigation as prognostic markers.LAR might be of particular relevance as it is not routinely obtained in current clinical practice.It would seem beneficial to include LAR in data sets to train prognostic artificial intelligence.
Collapse
Affiliation(s)
- Martin Rozanovic
- Department of Anaesthesiology and Intensive Care, University of Pécs, Hungary
| | - Kamilla Domokos
- Department of Anaesthesiology and Intensive Care, University of Pécs, Hungary
| | - Gergő Márovics
- Department of Public Health Medicine, University of Pécs Medical School, Hungary
| | | | - Csaba Csontos
- Department of Anaesthesiology and Intensive Care, University of Pécs, Hungary
| | - Lajos Bogár
- Department of Anaesthesiology and Intensive Care, University of Pécs, Hungary
| | - Szilárd Rendeki
- Department of Anaesthesiology and Intensive Care, University of Pécs, Hungary
| | - Tamás Kiss
- Department of Anaesthesiology and Intensive Care, University of Pécs, Hungary
| | | | - Csaba Loibl
- Department of Anaesthesiology and Intensive Care, University of Pécs, Hungary
| |
Collapse
|
29
|
Kullappan M, Mary U, Ambrose JM, Veeraraghavan VP, Surapaneni KM. Elucidating the role of N440K mutation in SARS-CoV-2 spike - ACE-2 binding affinity and COVID-19 severity by virtual screening, molecular docking and dynamics approach. J Biomol Struct Dyn 2023; 41:912-929. [PMID: 34904526 DOI: 10.1080/07391102.2021.2014973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
COVID-19 has become a public health concern around the world. The frequency of N440K variant was higher during the second wave in South India. The mutation was observed in the Receptor Binding Domain region (RBD) of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spike (S) protein. The binding affinity of SARS-CoV-2-Angiotensin-Converting Enzyme-2 (ACE-2) plays a major role in the transmission and severity of the disease. To understand the binding affinity of the wild and mutant SARS-CoV-2 S with ACE2, molecular modeling studies were carried out. We discovered that the wild SARS-CoV-2 S RBD-ACE-2 complex has a high binding affinity and stability than that of the mutant. The N440K strain escapes from antibody neutralization, which might increase reinfection and decrease vaccine efficiency. To find a potential inhibitor against mutant N440K SARS-CoV-2, a virtual screening process was carried out and found ZINC169293961, ZINC409421825 and ZINC22060839 as the best binding energy compounds. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India
| | - Usha Mary
- Department of Chemistry, Panimalar Engineering College, Varadharajapuram, Poonamallee, Chennai, India
| | - Jenifer M Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India.,Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India.,Department of Molecular Virology, Clinical Skills & Simulation, Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India.,Department of Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India
| |
Collapse
|
30
|
Bhattacharya M, Chatterjee S, Sharma AR, Lee SS, Chakraborty C. Delta variant (B.1.617.2) of SARS-CoV-2: current understanding of infection, transmission, immune escape, and mutational landscape. Folia Microbiol (Praha) 2023; 68:17-28. [PMID: 35962276 PMCID: PMC9374302 DOI: 10.1007/s12223-022-01001-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022]
Abstract
The Delta variant is one of the alarming variants of the SARS-CoV-2 virus that have been immensely detrimental and a significant cause of the prolonged pandemic (B.1.617.2). During the SARS-CoV-2 pandemic from December 2020 to October 2021, the Delta variant showed global dominance, and afterwards, the Omicron variant showed global dominance. Delta shows high infectivity rate which accounted for nearly 70% of the cases after December 2020. This review discusses the additional attributes that make the Delta variant so infectious and transmissible. The study also focuses on the significant mutations, namely the L452R and T478K present on the receptor-binding domain of spike (S)-glycoprotein, which confers specific alterations to the Delta variant. Considerably, we have also highlighted other notable factors such as the immune escape, infectivity and re-infectivity, vaccine escape, Ro number, S-glycoprotein stability, cleavage pattern, and its binding affinity with the host cell receptor protein. We have also emphasized clinical manifestations, symptomatology, morbidity, and mortality for the Delta variant compared with other significant SARS-CoV-2 variants. This review will help the researchers to get an elucidative view of the Delta variant to adopt some practical strategies to minimize the escalating spread of the SARS-CoV-2 Delta variant.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore-756020, Odisha, India
| | - Srijan Chatterjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
31
|
Parthasarathy H, Tandel D, Siddiqui AH, Harshan KH. Metformin suppresses SARS-CoV-2 in cell culture. Virus Res 2023; 323:199010. [PMID: 36417940 PMCID: PMC9676078 DOI: 10.1016/j.virusres.2022.199010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/21/2022]
Abstract
Comorbidities such as diabetes worsen COVID-19 severity and recovery. Metformin, a first-line medication for type 2 diabetes, has antiviral properties and certain studies have also indicated its prognostic potential in COVID-19. Here, we report that metformin significantly inhibits SARS-CoV-2 growth in cell culture models. First, a steady increase in AMPK phosphorylation was detected as infection progressed, suggesting its important role during viral infection. Activation of AMPK in Calu3 and Caco2 cell lines using metformin revealed that metformin suppresses SARS-CoV-2 infectious titers up to 99%, in both naïve as well as infected cells. IC50 values from dose-variation studies in infected cells were found to be 0.4 and 1.43 mM in Calu3 and Caco2 cells, respectively. Role of AMPK in metformin's antiviral suppression was further confirmed using other pharmacological compounds, AICAR and Compound C. Collectively, our study demonstrates that metformin is effective in limiting the replication of SARS-CoV-2 in cell culture and thus possibly could offer double benefits as diabetic COVID-19 patients by lowering both blood glucose levels and viral load.
Collapse
Affiliation(s)
| | - Dixit Tandel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
32
|
Alquraan L, Alzoubi KH, Rababa'h SY. Mutations of SARS-CoV-2 and their impact on disease diagnosis and severity. INFORMATICS IN MEDICINE UNLOCKED 2023; 39:101256. [PMID: 37131549 PMCID: PMC10127666 DOI: 10.1016/j.imu.2023.101256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Numerous variations of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), including D614G, B.1.1.7 (United Kingdom), B.1.1.28 (Brazil P1, P2), CAL.20C (Southern California), B.1.351 (South Africa), B.1.617 (B.1.617.1 Kappa & Delta B.1.617.2) and B.1.1.529, have been reported worldwide. The receptor-binding domain (RBD) of the spike (S) protein is involved in virus-cell binding, where virus-neutralizing antibodies (NAbs) react. Novel variants in the S-protein could maximize viral affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor and increase virus transmission. Molecular detection with false-negative results may refer to mutations in the part of the virus's genome used for virus diagnosis. Furthermore, these changes in S-protein structure alter the neutralizing ability of NAbs, resulting in a reduction in vaccine efficiency. Further information is needed to evaluate how new mutations may affect vaccine efficacy.
Collapse
Affiliation(s)
- Laiali Alquraan
- Department of Biology, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Suzie Y Rababa'h
- Department of Medical Science, Irbid Faculty, Al-Balqa Applied University (BAU), Irbid, Jordan
| |
Collapse
|
33
|
Chrysostomou AC, Vrancken B, Haralambous C, Alexandrou M, Aristokleous A, Christodoulou C, Gregoriou I, Ioannides M, Kalakouta O, Karagiannis C, Koumbaris G, Loizides C, Mendris M, Papastergiou P, Patsalis PC, Pieridou D, Richter J, Schmitt M, Shammas C, Stylianou DC, Themistokleous G, Lemey P, Kostrikis LG. Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus from November 2020 to October 2021: The Passage of Waves of Alpha and Delta Variants of Concern. Viruses 2022; 15:108. [PMID: 36680148 PMCID: PMC9862594 DOI: 10.3390/v15010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 resulted in the coronavirus disease 2019 (COVID-19) pandemic, which has had devastating repercussions for public health. Over the course of this pandemic, the virus has continuously been evolving, resulting in new, more infectious variants that have frequently led to surges of new SARS-CoV-2 infections. In the present study, we performed detailed genetic, phylogenetic, phylodynamic and phylogeographic analyses to examine the SARS-CoV-2 epidemic in Cyprus using 2352 SARS-CoV-2 sequences from infected individuals in Cyprus during November 2020 to October 2021. During this period, a total of 61 different lineages and sublineages were identified, with most falling into three groups: B.1.258 & sublineages, Alpha (B.1.1.7 & Q. sublineages), and Delta (B.1.617.2 & AY. sublineages), each encompassing a set of S gene mutations that primarily confer increased transmissibility as well as immune evasion. Specifically, these lineages were coupled with surges of new infections in Cyprus, resulting in the following: the second wave of SARS-CoV-2 infections in Cyprus, comprising B.1.258 & sublineages, during late autumn 2020/beginning of winter 2021; the third wave, comprising Alpha (B.1.1.7 & Q. sublineages), during spring 2021; and the fourth wave, comprising Delta (B.1.617.2 & AY. sublineages) during summer 2021. Additionally, it was identified that these lineages were primarily imported from and exported to the UK, Greece, and Sweden; many other migration links were also identified, including Switzerland, Denmark, Russia, and Germany. Taken together, the results of this study indicate that the SARS-CoV-2 epidemic in Cyprus was characterized by successive introduction of new lineages from a plethora of countries, resulting in the generation of waves of infection. Overall, this study highlights the importance of investigating the spatiotemporal evolution of the SARS-CoV-2 epidemic in the context of Cyprus, as well as the impact of protective measures placed to mitigate transmission of the virus, providing necessary information to safeguard public health.
Collapse
Affiliation(s)
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Christos Haralambous
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | - Maria Alexandrou
- Microbiology Department, Larnaca General Hospital, Larnaca 6301, Cyprus
| | - Antonia Aristokleous
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Ioanna Gregoriou
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | | | - Olga Kalakouta
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | | | | | | | - Michail Mendris
- Microbiology Department, Limassol General Hospital, Limassol 4131, Cyprus
| | | | - Philippos C. Patsalis
- NIPD Genetics, Nicosia 2409, Cyprus
- Medical School, University of Nicosia, Nicosia 2417, Cyprus
| | - Despo Pieridou
- Microbiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus
| | - Jan Richter
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Markus Schmitt
- Eurofins Genomics Sequencing Europe, 85560 Ebersberg, Germany
| | - Christos Shammas
- S.C.I.N.A Bioanalysis Sciomedical Centre Ltd., Limassol 4040, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
| | | | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Leondios G. Kostrikis
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
- Cyprus Academy of Sciences, Letters, and Arts, 60-68 Phaneromenis Street, Nicosia 1011, Cyprus
| |
Collapse
|
34
|
Karuniawati A, Syam AF, Achmadsyah A, Ibrahim F, Rosa Y, Sudarmono P, Fadilah F, Rasmin M. Case series in Indonesia: B.1.617.2 (delta) variant of SARS-CoV-2 infection after a second dose of vaccine. World J Clin Cases 2022; 10:13216-13226. [PMID: 36683635 PMCID: PMC9851004 DOI: 10.12998/wjcc.v10.i36.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in Maharashtra in late 2020 and has rapidly expanded across India and worldwide. It took only 2 mo for this variant to spread in Indonesia, making the country the new epicenter of the delta variant as of July 2021. Despite efforts made by accelerating massive rollouts of current vaccines to protect against infection, cases of fully-vaccinated people infected with the delta variant have been reported.
AIM To describe the demographic statistics and clinical presentation of the delta variant infection after the second dose of vaccine in Indonesia.
METHODS A retrospective, single-centre case series of the general consecutive population that worked or studied at Faculty of Medicine, Universitas Indonesia with confirmed Delta Variant Infection after a second dose of vaccine from 24 June and 25 June 2021. Cases were collected retrospectively based on a combination of author recall, reverse transcription-polymerase chain reaction (RT-PCR), and whole genome sequencing results from the Clinical Microbiology Laboratory, Faculty of Medicine, Universitas Indonesia.
RESULTS Between 24 June and 25 June 2021, 15 subjects were confirmed with the B.1.617.2 (delta) variant infection after a second dose of the vaccine. Fourteen subjects were vaccinated with CoronaVac (Sinovac) and one subject with ChAdOx1 nCoV-19 (Oxford-AstraZeneca). All of the subjects remained in home isolation, with fever being the most common symptom at the onset of illness (n = 10, 66.67%). The mean duration of symptoms was 7.73 d (± 5.444). The mean time that elapsed from the first positive swab to a negative RT-PCR test for SARS-CoV-2 was 17.93 d (± 6.3464). The median time that elapsed from the second dose of vaccine to the first positive swab was 87 d (interquartile range: 86-128).
CONCLUSION Although this case shows that after two doses of vaccine, subjects are still susceptible to the delta variant infection, currently available vaccines remain the most effective protection. They reduce clinical manifestations of COVID-19, decrease recovery time from the first positive swab to negative swab, and lower the probability of hospitalization and mortality rate compared to unvaccinated individuals.
Collapse
Affiliation(s)
- Anis Karuniawati
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo Jakarta Indonesia, Jakarta 10430, DKI Jaya, Indonesia
| | - Ari F Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo Jakarta Indonesia, Jakarta PUsat 10430, DKI Jaya, Indonesia
| | - Armand Achmadsyah
- Faculty of Medicine, Universits Indonesia, Jakarta Pusat 10430, DKI Jaya, Indonesia
| | - Fera Ibrahim
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo Jakarta Indonesia, Jakarta 10430, DKI Jaya, Indonesia
| | - Yulia Rosa
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo Jakarta Indonesia, Jakarta 10430, DKI Jaya, Indonesia
| | - Pratiwi Sudarmono
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo Jakarta Indonesia, Jakarta 10430, DKI Jaya, Indonesia
| | - Fadilah Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta Indonesia , Faculty of Medicine, Universitas Indonesia, Jakarta 10430, DKI Jaya, Indonesia
| | - Menaldi Rasmin
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia/Persahabatan Hospital, Jakarta Indonesia, Jakarta Pusat 10430, DKI Jaya, Indonesia
| |
Collapse
|
35
|
Sangwan J, Tripathi S, Yadav N, Kumar Y, Sangwan N. Comparative sequence analysis of SARS nCoV and SARS CoV genomes for variation in structural proteins. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9765352 DOI: 10.1007/s43538-022-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-nCoV was identified as corona virus had spread worldwide very quickly and affected more than million people worldwide. To halt this acceleration and for efficient control the knowledge on genomic information is of utmost importance. We attempted to determine the nature of variation i.e., insertion, deletion, substitution, among structural sequences required to code for membrane, spike, nucleocapsid, envelope protein and glycosylation variation between SARS CoV and SARS nCoV spike glycoproteins, respectively. Comparative sequence analysis was performed by using retrieved sequences from the NCBI database. The analyzed sequences revealed, that the sequences coding for envelope protein show minor substituting amino acids. SARS CoV showed 94.74 percent amino acid identities with SARS nCoV amino acid sequences coding for envelope protein. In comparison to SARS nCoV, distinct amino acid residues vary in SARS CoV sequences coding for membrane, nucleocapsid, and spike proteins, respectively. S protein coding sequences of SARS CoV exhibited one deletion, six insertion and six hundred three substitutions in SARS nCoV sequence. Insertion of valine was found in receptor binding domain of SARS nCoV at position 487, and NSPR amino acid residues at position 683–686. Deletions and substitutions were also found in nucleotide sequences of strain B.1.617.2 of SARS nCoV. Additionally, binding interaction pattern of ACE2 receptor protein with original wild-type SARS-CoV-2 strain with the recently evolved Omicron variant was also evaluated. The docking results substantiated that the specific variation in binding residues is likely to impact virulence pattern of both variants.
Collapse
Affiliation(s)
- Jyoti Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | | | - Nisha Yadav
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Yogesh Kumar
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
36
|
Duarte T, Silva MDM, Michelotti P, Barbosa NBDV, Feltes BC, Dorn M, Rocha JBTD, Dalla Corte CL. The Drosophila melanogaster ACE2 ortholog genes are differently expressed in obesity/diabetes and aging models: Implications for COVID-19 pathology. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166551. [PMID: 36116726 PMCID: PMC9474972 DOI: 10.1016/j.bbadis.2022.166551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The Spike glycoprotein of SARS-CoV-2, the virus responsible for coronavirus disease 2019, binds to its ACE2 receptor for internalization in the host cells. Elderly individuals or those with subjacent disorders, such as obesity and diabetes, are more susceptible to COVID-19 severity. Additionally, several SARS-CoV-2 variants appear to enhance the Spike-ACE2 interaction, which increases transmissibility and death. Considering that the fruit fly is a robust animal model in metabolic research and has two ACE2 orthologs, Ance and Acer, in this work, we studied the effects of two hypercaloric diets (HFD and HSD) and aging on ACE2 orthologs mRNA expression levels in Drosophila melanogaster. To complement our work, we analyzed the predicted binding affinity between the Spike protein with Ance and Acer. We show for the first time that Ance and Acer genes are differentially regulated and dependent on diet and age in adult flies. At the molecular level, Ance and Acer proteins exhibit the potential to bind to the Spike protein in different regions, as shown by a molecular docking approach. Acer, in particular, interacts with the Spike protein in the same region as in humans. Overall, we suggest that the D. melanogaster is a promising animal model for translational studies on COVID-19 associated risk factors and ACE2.
Collapse
Affiliation(s)
- Tâmie Duarte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Mônica de Medeiros Silva
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Paula Michelotti
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nilda Berenice de Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Institute of Biosciences, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil
| | - Márcio Dorn
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Center of Biotechnology, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; National Institute of Science and Technology - Forensic Science, 6681 Ipiranga Avenue, Porto Alegre, RS 90619-900, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
37
|
mRNA Vaccines as an Efficient Approach for the Rapid and Robust Induction of Host Immunity Against SARS-CoV-2. SN COMPREHENSIVE CLINICAL MEDICINE 2022; 4:88. [PMID: 35402783 PMCID: PMC8975617 DOI: 10.1007/s42399-022-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Among the currently used COVID-19 vaccines, the mRNA-based vaccines drew the interest of the scientists because of its potent and versatile nature in mitigating the disease efficiently through increased translation as well as the robust modulation of the innate and adaptive immune responses within the host. The naked or lipid encapsulated mRNAs are usually optimized in order to formulate the vaccine. One of the interesting advantage of using mRNA vaccines is that such platform can even be used to mitigate other infectious diseases like influenza, zika, and rabies. However, the leading COVID-19 mRNA vaccines, i.e., mRNA-1273 and BNT162b2, have already been noticed to possess around 95% efficacy in provoking both the humoral and cell mediated immunity against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, causing the ongoing COVID-19 pandemic.
Collapse
|
38
|
Tao Y, Ma M, Hu F, Li M, Geng Y, Wan Y, Mao M, Chen L, Shen Y, Zhu L, Shen H, Chen Y. A longitudinal study of humoral immune responses induced by a 3-dose inactivated COVID-19 vaccine in an observational, prospective cohort. BMC Immunol 2022; 23:57. [PMID: 36384440 PMCID: PMC9666991 DOI: 10.1186/s12865-022-00532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
To determine the dynamic SARS-CoV-2 specific antibody levels induced by 3 doses of an inactivated COVID-19 vaccine, CoronaVac. An observational, prospective cohort study was performed with 93 healthy healthcare workers from a tertiary hospital in Nanjing, China. Serum SARS-CoV-2 specific IgM, IgG, and neutralizing antibodies (NAb) were measured at different time points among participants who received 3 doses of inactivated COVID-19 vaccine.
Results
91.3% (85/93) and 100% (72/72) participants showed positive both for SARS-CoV-2 specific IgG and NAb after 2-dose CoronaVac and after 3-dose CoronaVac, respectively. Anti-SARS-CoV-2 IgG responses reached 91.21 (55.66–152.06) AU/mL, and surrogate NAb was 47.60 (25.96–100.81) IU/mL on day 14 after the second dose. Anti-SARS-CoV-2 IgG responses reached 218.29 (167.53–292.16) AU/mL and surrogate NAb was 445.54 (171.54–810.90) IU/mL on day 14 after the third dose. Additionally, SARS-CoV-2 specific surrogate neutralizing antibody titers were highly correlated with serum neutralization activities against Ancestral, Omicron, and Delta strains. Moreover, significantly higher SARS-CoV-2 IgG responses, but not NAb responses, were found in individuals with breakthrough infection when compared to that of 3-dose CoronaVac recipients.
Conclusions
CoronaVac elicited robust SARS-CoV-2 specific humoral responses. Surrogate NAb assay might substitute for pseudovirus neutralization assay. Monitoring SARS-CoV-2 antibody responses induced by vaccination would provide important guidance for the optimization of COVID-19 vaccines.
Collapse
|
39
|
Zhu J, Li Y, Liang J, Mubareka S, Slutsky AS, Zhang H. The Potential Protective Role of GS-441524, a Metabolite of the Prodrug Remdesivir, in Vaccine Breakthrough SARS-CoV-2 Infections. INTENSIVE CARE RESEARCH 2022; 2:49-60. [PMID: 36407474 PMCID: PMC9645326 DOI: 10.1007/s44231-022-00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Cases of vaccine breakthrough, especially in variants of concern (VOCs) infections, are emerging in coronavirus disease (COVID-19). Due to mutations of structural proteins (SPs) (e.g., Spike proteins), increased transmissibility and risk of escaping from vaccine-induced immunity have been reported amongst the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Remdesivir was the first to be granted emergency use authorization but showed little impact on survival in patients with severe COVID-19. Remdesivir is a prodrug of the nucleoside analogue GS-441524 which is converted into the active nucleotide triphosphate to disrupt viral genome of the conserved non-structural proteins (NSPs) and thus block viral replication. GS-441524 exerts a number of pharmacological advantages over Remdesivir: (1) it needs fewer conversions for bioactivation to nucleotide triphosphate; (2) it requires only nucleoside kinase, while Remdesivir requires several hepato-renal enzymes, for bioactivation; (3) it is a smaller molecule and has a potency for aerosol and oral administration; (4) it is less toxic allowing higher pulmonary concentrations; (5) it is easier to be synthesized. The current article will focus on the discussion of interactions between GS-441524 and NSPs of VOCs to suggest potential application of GS-441524 in breakthrough SARS-CoV-2 infections. Supplementary Information The online version contains supplementary material available at 10.1007/s44231-022-00021-4.
Collapse
Affiliation(s)
- JiaYi Zhu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Yuchong Li
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Medical Microbiology and Infectious Disease, Sunnybrook Health Science Centre, Toronto, ON Canada
| | - Arthur S. Slutsky
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
40
|
Evaluation of STANDARDTM M10 SARS-CoV-2, a Novel Cartridge-Based Real-Time PCR Assay for the Rapid Identification of Severe Acute Respiratory Syndrome Coronavirus 2. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Since the beginning of the pandemic, SARS-CoV-2 has caused problems for all of world’s population, not only in terms of deaths but also in terms of overloading healthcare facilities in all countries. Diagnosis is one of the key aspects of controlling the spread of SARS-CoV-2, and among the current molecular techniques, real-time PCR is considered as the gold standard. The availability of tests that allow for the rapid and accurate identification of SARS-CoV-2 is therefore of considerable importance. Moreover, if these tests allow for even minimal intervention by the operator, any risk of contamination is reduced. In this study, the performances of the new STANDARDTM M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, Korea) rapid molecular test, which incorporates the above-mentioned features, were characterized. The clinical and analytical performances measured by testing different variants circulating in Italy of STANDARDTM M10 SARS-CoV-2 were compared to the test already on the market and recognized as the gold standard: Xpert Xpress SARS-CoV-2 (Cepheid, Sunnyvale, CA, USA). The results obtained between the two tests are largely comparable, suggesting that STANDARDTM M10 SARS-CoV-2 can be used with excellent results in the fight against the global spread of SARS-CoV-2.
Collapse
|
41
|
Siewiński M, Bażanów B, Orzechowska B, Gołąb K, Gburek J, Matkowski A, Rapak A, Janocha A, Krata L, Dobrzyński M, Kilar E. Use of natural cysteine protease inhibitors in limiting SARS-Co-2 fusion into human respiratory cells. Med Hypotheses 2022; 168:110965. [PMID: 36313266 PMCID: PMC9598048 DOI: 10.1016/j.mehy.2022.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Specific antibodies that humans acquire as a result of disease or after vaccination are needed to effectively suppress infection with a specific variant of SARS CoV-2 virus. The S protein of the D614G variant of coronavirus is used as an antigen in known vaccines to date. It is known that COVID-19 disease resulting from infection with this coronavirus can often be very dangerous to the health and lives of patients. In contrast, vaccines produce antibodies against an older version of the protein S-D614G (January 2020) and therefore have difficulty recognizing new variants of the virus. In our project we propose to obtain specific and precise antibodies by means of so-called controlled infection against specific infectious variants of the SARS-CoV-2 virus “here and now”. Currently, several variants of this pathogen have already emerged that threaten the health and lives of patients. We propose to reduce this threat by partially, but not completely, blocking the fusion mechanism of the SARS-CoV-2 virus into human respiratory cells. According to our plan, this can be achieved by inhibiting cathepsin L activity in respiratory cells, after introducing natural and non-toxic cysteine protease inhibitors into this area. We obtain these inhibitors by our own method from natural, “human body friendly” natural resources. We hypothesize that blocking cathepsin L will reduce the number of infecting viruses in cells to such an extent that COVID-19 developing in infected individuals will not threaten their health and life. At the same time, the number of viruses will be sufficient for the body's own immune system to produce precise antibodies against a specific version of this pathogen.
Collapse
Affiliation(s)
- Maciej Siewiński
- Wroclaw Medical University, Wroclaw, Poland; TherapyRaft comp. Wroclaw, Poland
| | - Barbara Bażanów
- Wrocław University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Pathology, C.K.Norwida 31, 50-375 Wrocław, Poland,Corresponding author
| | - Beata Orzechowska
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Krzysztof Gołąb
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Borowska 211A, Wrocław, Poland
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Borowska 211A, Wrocław, Poland
| | - Adam Matkowski
- Wroclaw Medical University, Dept. Pharmaceutical Biology and Biotechnology
| | - Andrzej Rapak
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Anna Janocha
- Wroclaw Medical University, Dept. Physiology, Wrocław, Poland Chałubińskiego 10
| | | | - Maciej Dobrzyński
- Wroclaw Medical University, Dept. of Conservative Dentistry and Pedodontics: Wroclaw, Poland
| | - Ewa Kilar
- Wroclaw Medical University, Dept. of Clinical Pharmacology Wroclaw, Poland
| |
Collapse
|
42
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
43
|
Rabaan AA, Mutair AA, Hajissa K, Alfaraj AH, Al-Jishi JM, Alhajri M, Alwarthan S, Alsuliman SA, Al-Najjar AH, Al Zaydani IA, Al-Absi GH, Alshaikh SA, Alkathlan MS, Almuthree SA, Alawfi A, Alshengeti A, Almubarak FZ, Qashgari MS, Abdalla ANK, Alhumaid S. A Comprehensive Review on the Current Vaccines and Their Efficacies to Combat SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:1655. [PMID: 36298520 PMCID: PMC9611209 DOI: 10.3390/vaccines10101655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Since the first case of Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, SARS-CoV-2 infection has affected many individuals worldwide. Eventually, some highly infectious mutants-caused by frequent genetic recombination-have been reported for SARS-CoV-2 that can potentially escape from the immune responses and induce long-term immunity, linked with a high mortality rate. In addition, several reports stated that vaccines designed for the SARS-CoV-2 wild-type variant have mixed responses against the variants of concern (VOCs) and variants of interest (VOIs) in the human population. These results advocate the designing and development of a panvaccine with the potential to neutralize all the possible emerging variants of SARS-CoV-2. In this context, recent discoveries suggest the design of SARS-CoV-2 panvaccines using nanotechnology, siRNA, antibodies or CRISPR-Cas platforms. Thereof, the present comprehensive review summarizes the current vaccine design approaches against SARS-CoV-2 infection, the role of genetic mutations in the emergence of new viral variants, the efficacy of existing vaccines in limiting the infection of emerging SARS-CoV-2 variants, and efforts or challenges in designing SARS panvaccines.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 635342, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Shahab A. Alsuliman
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 3643, Saudi Arabia
| | - Ibrahim A. Al Zaydani
- Department of Pediatric Infectious Diseases, Abha Maternity and Children Hospital, Abha 62526, Saudi Arabia
| | - Ghadeer Hassan Al-Absi
- Department of Pharmacy Practice, College of Pharmacy, Alfaisal University, Riyadh 325476, Saudi Arabia
| | - Sana A. Alshaikh
- Diagnostic Virology Laboratory, Maternity and Children Hospital, Eastern Health Cluster, Dammam 32253, Saudi Arabia
| | - Mohammed S. Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Fatimah Z. Almubarak
- Department of Family Medicine, Family Medicine Academy, Dammam 36365, Saudi Arabia
| | - Mohammed S. Qashgari
- Communicable Diseases Prevention Department, Saudi Public Health Authority, Riyadh 13354, Saudi Arabia
| | - Areeg N. K. Abdalla
- Department of Intensive Care Unit, Saudi German Hospital, Dammam 32313, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
44
|
Wozney AJ, Smith MA, Abdrabbo M, Birch CM, Cicigoi KA, Dolan CC, Gerzema AEL, Hansen A, Henseler EJ, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, O'Reilly MG, Reynolds JH, Sherman BA, Sillman HW, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Voon A, Wackett MJ, Weiss MM, Hati S, Bhattacharyya S. Evolution of Stronger SARS-CoV-2 Variants as Revealed Through the Lens of Molecular Dynamics Simulations. Protein J 2022; 41:444-456. [PMID: 35913554 PMCID: PMC9340756 DOI: 10.1007/s10930-022-10065-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/03/2022]
Abstract
Using molecular dynamics simulations, the protein-protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein-protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein-protein complexes were studied. The protein-protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design.
Collapse
Affiliation(s)
- Alec J Wozney
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Macey A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Mobeen Abdrabbo
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Cole M Birch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Kelsey A Cicigoi
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Connor C Dolan
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Audrey E L Gerzema
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Abby Hansen
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Ethan J Henseler
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Ben LaBerge
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Caterra M Leavens
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Christine N Le
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Allison C Lindquist
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Rikaela K Ludwig
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Maggie G O'Reilly
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Jacob H Reynolds
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Brandon A Sherman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Hunter W Sillman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Michael A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Marissa J Snortheim
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Levi M Svaren
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Emily C Vanderpas
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Aidan Voon
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Miles J Wackett
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Moriah M Weiss
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA.
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA.
| |
Collapse
|
45
|
Kwan BM, Sobczak C, Beaty L, Wynia MK, DeCamp M, Owen V, Ginde AA. Clinician Perspectives on Monoclonal Antibody Treatment for High-Risk Outpatients with COVID-19: Implications for Implementation and Equitable Access. J Gen Intern Med 2022; 37:3426-3434. [PMID: 35790666 PMCID: PMC9255528 DOI: 10.1007/s11606-022-07702-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is an urgent need to identify and address factors influencing uptake and equitable access to monoclonal antibody (mAb) treatment for high-risk outpatients with COVID-19. OBJECTIVE To assess clinician knowledge, beliefs, and experiences regarding obtaining mAb treatment for eligible patients. DESIGN AND PARTICIPANTS Survey of clinicians (N = 374) practicing in the state of Colorado who care for patients with COVID-19 in primary care, emergency medicine, and other clinical settings. MAIN MEASURE(S) Diffusion of innovation theory concepts including knowledge, perceived strength of evidence, barriers, and experience with, ease of use, preparedness, and feasibility, appropriateness, and acceptability of mAb referral systems and processes. KEY RESULTS Most respondents indicated little to no knowledge about mAb therapies for COVID-19 (67%, 74%, 77%, for bamlanivimab, bamlanivimab+etesivimab, and casirivimab+imdevimab, respectively). About half reported little to no familiarity with eligibility criteria (50.9%) and did not know the strength of evidence (31%, 43%, 52%, for bamlanivimab, bamlanivimab+etesivimab, and casirivimab+imdevimab, respectively). Lack of knowledge or confidence in treatment was a top barrier to mAbs use; other barriers included complicated referral processes, patients not eligible when seen, and out-of-pocket costs concerns. Respondents rated four mAb referral steps as generally acceptable, appropriate, and feasible to complete in their primary outpatient clinical setting. Only 24% indicated their clinical setting was very prepared to facilitate referrals, 40% had ever referred a patient for mAbs, and 43% intended to refer a patient in the next month. CONCLUSIONS Clinician education on strength of evidence and eligibility criteria for mAbs is needed. However, education alone is not sufficient. Given the urgent need to rapidly scale up access to treatment and reduce hospitalizations and death from COVID-19, more efficient, equitable systems and processes for referral and delivery of care, such as those coordinated by health systems, public health departments, or disaster management services, are warranted.
Collapse
Affiliation(s)
- Bethany M Kwan
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
- Colorado Clinical & Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Chelsea Sobczak
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laurel Beaty
- Center for Innovative Design & Analysis, Colorado School of Public Health, Aurora, CO, USA
| | - Matthew K Wynia
- Colorado Clinical & Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Bioethics and Humanities, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew DeCamp
- Colorado Clinical & Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Bioethics and Humanities, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vanessa Owen
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Colorado Clinical & Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
46
|
A Review on Herbal Secondary Metabolites Against COVID-19 Focusing on the Genetic Variants of SARS-CoV-2. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: An outbreak of the new coronavirus disease 2019 (COVID-19) was reported in Wuhan, China, in December 2019, subsequently affecting countries worldwide and causing a pandemic. Although several vaccines, such as mRNA vaccines, inactivated vaccines, and adenovirus vaccines, have been licensed in several countries, the danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants persists. To date, Alpha (B.1.1.7), Beta (B.1.351, B.1.351.2, B.1.351.3), Delta (B.1.617.2, AY.1, AY.2, AY. 3), Gamma (P.1, P.1.1, P.1.2), and Iota (B.1 .526) circulating in the United States, Kappa (B.1.617.1) in India, Lambda (C.37) in Peru and Mu (B.1.621) in Colombia are considered the variants of concern and interest. Evidence Acquisition: Data were collected through the end of August 2021 by searching PubMed, Scopus, and Google Scholar databases. There were findings from in silico, in vitro cell-based, and non-cell-based investigations. Results: The potential and safety profile of herbal medicines need clarification to scientifically support future recommendations regarding the benefits and risks of their use. Conclusions: Current research results on natural products against SARS-CoV-2 and variants are discussed, and their specific molecular targets and possible mechanisms of action are summarized.
Collapse
|
47
|
Abstract
The World Health Organisation has reported that the viral disease known as COVID-19, caused by SARS-CoV-2, is the leading cause of death by a single infectious agent. This narrative review examines certain components of the pandemic: its origins, early clinical data, global and UK-focussed epidemiology, vaccination, variants, and long COVID.
Collapse
Affiliation(s)
- A. D. Blann
- School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, United Kingdom
| | | |
Collapse
|
48
|
Toubasi AA, Al‐Sayegh TN, Obaid YY, Al‐Harasis SM, AlRyalat SAS. Efficacy and safety of COVID-19 vaccines: A network meta-analysis. J Evid Based Med 2022; 15:245-262. [PMID: 36000160 PMCID: PMC9538745 DOI: 10.1111/jebm.12492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Several vaccines showed a good safety profile and significant efficacy against COVID-19. Moreover, in the absence of direct head to head comparison between COVID-19 vaccines, a network meta-analysis that indirectly compares between them is needed. METHODS Databases PubMed, CENTRAL, medRxiv, and clinicaltrials.gov were searched. Studies were included if they were placebo-controlled clinical trials and reported the safety profile and/or effectiveness of COVID-19 vaccines. The quality of the included studies was assessed using the Revised Cochrane risk-of-bias tool for randomized trials and the Revised Cochrane risk-of-bias tool for nonrandomized trials. RESULTS Forty-nine clinical trials that included 421,173 participants and assessed 28 vaccines were included in this network meta-analysis. The network meta-analysis showed that Pfizer is the most effective in preventing COVID-19 infection whereas the Sputnik Vaccine was the most effective in preventing severe COVID-19 infection. In terms of the local and systemic side, the Sinopharm and V-01 vaccines were the safest. CONCLUSION We found that almost all of the vaccines included in this study crossed the threshold of 50% efficacy. However, some of them did not reach the previously mentioned threshold against the B.1.351 variant while the remainder have not yet investigated vaccine efficacy against this variant. Since each vaccine has its own strong and weak points, we strongly advocate continued vaccination efforts in individualized manner that recommend the best vaccine for each group in the community which is abundantly required to save lives and to avert the emergence of future variants.
Collapse
|
49
|
Zhang M, He Y, Jie Z. Delta Variant: Partially Sensitive To Vaccination, but Still Worth Global Attention. J Transl Int Med 2022; 10:227-235. [PMID: 36776232 PMCID: PMC9901554 DOI: 10.2478/jtim-2022-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pandemic coronavirus disease 2019 (COVID-19) has rapidly spread to all countries worldwide. The emergence of its variants has exacerbated this problem. To date, many variants have been identified across the viral genome; the variants of concern are the focus of attention due to their higher transmissibility and resistance to vaccines, especially the delta variant. The delta variant has become the dominant severe acute respiratory syndrome novel coronavirus (SARS-CoV-2) variant worldwide, causing severe panic as it is highly infectious. A better understanding of these variants may help in the development of possible treatments and save more lives. In this study, we summarize the characteristics of the variants of concern. More importantly, we summarize the results of previous studies on the delta variant. The delta variant has a high transmissibility rate and increases the risk of hospitalization and death. However, it is partially sensitive to vaccines. In addition, nonpharmaceutical interventions are valuable during epidemics. These interventions can be used against the delta variant, but managing this variant should still be taken seriously.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai200240, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai200240, China
| |
Collapse
|
50
|
Pidiyar V, Kumraj G, Ahmed K, Ahmed S, Shah S, Majumder P, Verma B, Pathak S, Mukherjee S. COVID-19 management landscape: A need for an affordable platform to manufacture safe and efficacious biotherapeutics and prophylactics for the developing countries. Vaccine 2022; 40:5302-5312. [PMID: 35914959 PMCID: PMC9148927 DOI: 10.1016/j.vaccine.2022.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/19/2022] [Indexed: 12/23/2022]
Abstract
To gain world-wide control over COVID-19 pandemic, it is necessary to have affordable and accessible vaccine and monoclonal antibody technologies across the globe. In comparison to the western countries, Asian and African countries have less percentage of vaccination done which warrants urgent attention. Global manufacturer production capacities, dependency on advanced nations for the supply of vaccines or the raw material, national economy, limited research facilities, and logistics could be the factors. This review article elaborates the existing therapeutic and prophylactic strategies available for COVID-19, currently adopted vaccine and monoclonal antibody platforms for SARS-CoV-2 along with the approaches to bridge the gap prevailing in the challenges faced by low- and middle-income countries. We believe adoption of yeast-derived P. pastoris technology can help in developing safe, proven, easy to scale-up, and affordable recombinant vaccine or monoclonal antibodies against SARS-CoV-2. This platform has the advantage of not requiring a dedicated or specialized facility making it an affordable option using existing manufacturing facilities, without significant additional capital investments. Besides, the technology platform of multiantigen vaccine approach and monoclonal antibody cocktail will serve as effective weapons to combat the threat posed by the SARS-CoV-2 variants. Successful development of vaccines and monoclonal antibodies using such a technology will lead to self-sufficiency of these nations in terms of availability of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Vyankatesh Pidiyar
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Ganesh Kumraj
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Kafil Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Syed Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India.
| | - Sanket Shah
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Piyali Majumder
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Bhawna Verma
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sarang Pathak
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sushmita Mukherjee
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| |
Collapse
|