1
|
Zhang C, Wang Y, Peng J, Wen X, Zhang Y, Li K, Du H, Hu X. Decoding trends in mRNA vaccine research: A comprehensive bibliometric study. Hum Vaccin Immunother 2024; 20:2355037. [PMID: 38813652 PMCID: PMC11141478 DOI: 10.1080/21645515.2024.2355037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND In recent years, infectious diseases like COVID-19 have had profound global socio-economic impacts. mRNA vaccines have gained prominence due to their rapid development, industrial adaptability, simplicity, and responsiveness to new variants. Notably, the 2023 Nobel Prize in Physiology or Medicine recognized significant contributions to mRNA vaccine research. METHODS Our study employed a comprehensive bibliometric analysis using the Web of Science Core Collection (WoSCC) database, encompassing 5,512 papers on mRNA vaccines from 2003 to 2023. We generated cooperation maps, co-citation analyses, and keyword clustering to evaluate the field's developmental history and achievements. RESULTS The analysis yielded knowledge maps highlighting countries/institutions, influential authors, frequently published and highly cited journals, and seminal references. Ongoing research hotspots encompass immune responses, stability enhancement, applications in cancer prevention and treatment, and combating infectious diseases using mRNA technology. CONCLUSIONS mRNA vaccines represent a transformative development in infectious disease prevention. This study provides insights into the field's growth and identifies key research priorities, facilitating advancements in vaccine technology and addressing future challenges.
Collapse
Affiliation(s)
- Chaobin Zhang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhang Wang
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Jianding Peng
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Xiaotian Wen
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Youwen Zhang
- School of Law, City University of Hongkong, Hong Kong, China
| | - Kejun Li
- Department of Library, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Hanjian Du
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Sibomana O, Hakayuwa CM, Munyantore J. Marburg Virus Reaches Rwanda: How Close Are We to a Vaccine Solution? Int J Infect Dis 2024:107371. [PMID: 39709116 DOI: 10.1016/j.ijid.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
Marburg virus disease (MVD) is a highly virulent and often fatal disease caused by the Marburg virus, a member of the Filoviridae family, closely related to the Ebola virus. Historically, outbreaks have been sporadic but lethal across various African countries, with high case fatality rates (CFRs). In 2023, significant outbreaks occurred in Tanzania and Equatorial Guinea, with CFRs of 62.5% and 75%, respectively. In 2024, Rwanda faced its first outbreak, starting on September 27, 2024. By November 8, 2024, Rwanda had conducted 7,408 tests, confirming 66 cases, 15 of which were fatal, and 51 recoveries. Although no approved vaccine currently exists for MVD, global health authorities are prioritizing the development of effective vaccines. Drawing on insights from the rapid COVID-19 vaccine development, several promising candidates are under exploration, with the cAd3-MARV showing notable potential. This paper examines the current MVD outbreak in Rwanda and the progress toward developing a long-term vaccine solution.
Collapse
Affiliation(s)
- Olivier Sibomana
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | | | - Jildas Munyantore
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| |
Collapse
|
3
|
Okuyama R. Developer and Partnership Differences in COVID-19 and Other Infections: Insights from DNA Vaccines. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2024; 12:317-325. [PMID: 39588277 PMCID: PMC11587068 DOI: 10.3390/jmahp12040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Historically, vaccine development has been heavily supported by government and public institutions. On the other hand, private biopharmaceutical companies have played a significant role in the development of innovative new therapies using novel pharmaceutical technologies. COVID-19 vaccines using new vaccine technologies, such as mRNA and adenoviral vectors, were rapidly developed by emerging biopharmaceutical companies in collaboration with large corporations and public organizations. This underscores the crucial role of emerging biopharma and public-private partnerships in advancing new vaccine technologies. While these innovations have been suggested as models for future vaccines, their applicability to other infectious diseases requires careful assessment. This study investigated the characteristics of the developers and partnerships in the development of DNA vaccines as a next-generation vaccine platform. The analysis revealed that while emerging biopharmaceutical companies and private-private and private-public partnerships were crucial during the COVID-19 pandemic, public organizations and public-public collaborations primarily led to the clinical development of vaccines for other diseases. Strategies for vaccine development using new vaccine technologies should be tailored to the specific characteristics of each disease.
Collapse
Affiliation(s)
- Ryo Okuyama
- College of International Management, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan;
| |
Collapse
|
4
|
Rahman M. Editorial: design considerations for future personalized vaccination approaches. Nanomedicine (Lond) 2024:1-6. [PMID: 39552583 DOI: 10.1080/17435889.2024.2419816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Affiliation(s)
- Mahbuba Rahman
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Zou M, Lei C, Huang D, Liu L, Han Y. Application of plant-derived products as adjuvants for immune activation and vaccine development. Vaccine 2024; 42:126115. [PMID: 38987109 DOI: 10.1016/j.vaccine.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.
Collapse
Affiliation(s)
- Manshu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Chang Lei
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Dan Huang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Lan Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Hunan Province, Changsha 410007, China.
| |
Collapse
|
6
|
Muthukutty P, MacDonald J, Yoo SY. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines (Basel) 2024; 12:1220. [PMID: 39591123 PMCID: PMC11598775 DOI: 10.3390/vaccines12111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging viral diseases, including seasonal illnesses and pandemics, pose significant global public health risks. Respiratory viruses, particularly coronaviruses and influenza viruses, are associated with high morbidity and mortality, imposing substantial socioeconomic burdens. This review focuses on the current landscape of respiratory viruses, particularly influenza and SARS-CoV-2, and their antiviral treatments. It also discusses the potential for pandemics and the development of new antiviral vaccines and therapies, drawing lessons from past outbreaks to inform future strategies for managing viral threats.
Collapse
Affiliation(s)
| | | | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea; (P.M.); (J.M.)
| |
Collapse
|
7
|
Sembada AA, Theda Y, Faizal A. Duckweeds as edible vaccines in the animal farming industry. 3 Biotech 2024; 14:222. [PMID: 39247453 PMCID: PMC11379843 DOI: 10.1007/s13205-024-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Animal diseases are among the most debilitating issues in the animal farming industry, resulting in decreased productivity and product quality worldwide. An emerging alternative to conventional injectable vaccines is edible vaccines, which promise increased delivery efficiency while maintaining vaccine effectiveness. One of the most promising platforms for edible vaccines is duckweeds, due to their high growth rate, ease of transformation, and excellent nutritional content. This review explores the potential, feasibility, and advantages of using duckweeds as platforms for edible vaccines. Duckweeds have proven to be superb feed sources, as evidenced by numerous improvements in both quantity (e.g., weight gain) and quality (e.g., yolk pigmentation). In terms of heterologous protein production, duckweeds, being plants, are capable of expressing proteins with complex structures and post-translational modifications. Research efforts have focused on the development of duckweed-based edible vaccines, including those against avian influenza, tuberculosis, Newcastle disease, and mastitis, among others. As with any emerging technology, the development of duckweeds as a platform for edible vaccines is still in its early stages compared to well-established injectable vaccines. It is evident that more proof-of-concept studies are required to bring edible vaccines closer to the current standards of conventional vaccines. Specifically, the duckweed expression system needs further development in areas such as yield and growth rate, especially when compared to bacterial and mammalian expression systems. Continued efforts in this field could lead to breakthroughs that significantly improve the resilience of the animal farming industry against disease threats.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Research Center for New and Renewable Energy, Bandung Institute of Technology, Bandung, 40132 Indonesia
- Forestry Technology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| | - Yohanes Theda
- Department of Biochemical Engineering, University College London, London, WC1E 6BT UK
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| |
Collapse
|
8
|
Kajal, Pandey A, Mishra S. From ancient remedies to modern miracles: tracing the evolution of vaccines and their impact on public health. 3 Biotech 2024; 14:242. [PMID: 39319014 PMCID: PMC11417089 DOI: 10.1007/s13205-024-04075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
This review traces the development of vaccines from ancient times to the present, highlighting major milestones and challenges. It covers the significant impact of vaccines on public health, including the eradication of diseases such as smallpox and the reduction of others such as polio, measles, and influenza. The review provides an in-depth look at the COVID-19 vaccines, which were developed at unprecedented speeds due to the urgent global need. The study emphasizes the ongoing potential of vaccine development to address future global health challenges, demonstrating the critical role vaccines play in disease prevention and public health. Moreover, it discusses the evolution of vaccine technology, from live-attenuated and inactivated vaccines to modern recombinant and mRNA vaccines, showcasing the advancements that have enabled rapid responses to emerging infectious diseases. The review underscores the importance of continued investment in research and development, global collaboration, and the adoption of new technologies to enhance vaccine efficacy and coverage. By exploring historical and contemporary examples, the article illustrates how vaccines have transformed medical practice and public health outcomes, providing valuable insights into future directions for vaccine innovation and deployment.
Collapse
Affiliation(s)
- Kajal
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
| | - Achyut Pandey
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
| | - Shruti Mishra
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Luo X, Liang R, Liang L, Tang A, Hou S, Ding J, Li Z, Tang X. Advancements, challenges, and future perspectives in developing feline herpesvirus 1 as a vaccine vector. Front Immunol 2024; 15:1445387. [PMID: 39328406 PMCID: PMC11424437 DOI: 10.3389/fimmu.2024.1445387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
As the most prevalent companion animal, cats are threatened by numerous infectious diseases and carry zoonotic pathogens such as Toxoplasma gondii and Bartonella henselae, which are the primary causes of human toxoplasmosis and cat-scratch disease. Vaccines play a crucial role in preventing and controlling the spread of diseases in both humans and animals. Currently, there are only three core vaccines available to prevent feline panleukopenia, feline herpesvirus, and feline calicivirus infections, with few vaccines available for other significant feline infectious and zoonotic diseases. Feline herpesvirus, a major component of the core vaccine, offers several advantages and a stable genetic manipulation platform, making it an ideal model for vaccine vector development to prevent and control feline infectious diseases. This paper reviews the technologies involved in the research and development of the feline herpesvirus vaccine vector, including homologous recombination, CRISPR/Cas9, and bacterial artificial chromosomes. It also examines the design and effectiveness of expressing antigens of other pathogens using the feline herpesvirus as a vaccine vector. Additionally, the paper analyzes existing technical bottlenecks and challenges, providing an outlook on its application prospects. The aim of this review is to provide a scientific basis for the research and development of feline herpesvirus as a vaccine vector and to offer new ideas for the prevention and control of significant feline infectious and zoonotic diseases.
Collapse
Affiliation(s)
- Xinru Luo
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aoxing Tang
- Shanghai Veterinary Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohua Hou
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zibin Li
- College of Life and Health, Dalian University, Dalian, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Sauvat L, Verhoeven PO, Gagnaire J, Berthelot P, Paul S, Botelho-Nevers E, Gagneux-Brunon A. Vaccines and monoclonal antibodies to prevent healthcare-associated bacterial infections. Clin Microbiol Rev 2024; 37:e0016022. [PMID: 39120140 PMCID: PMC11391692 DOI: 10.1128/cmr.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
SUMMARYHealthcare-associated infections (HAIs) represent a burden for public health with a high prevalence and high death rates associated with them. Pathogens with a high potential for antimicrobial resistance, such as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and Clostridioides difficile, are responsible for most HAIs. Despite the implementation of infection prevention and control intervention, globally, HAIs prevalence is stable and they are mainly due to endogenous pathogens. It is undeniable that complementary to infection prevention and control measures, prophylactic approaches by active or passive immunization are needed. Specific groups at-risk (elderly people, chronic condition as immunocompromised) and also healthcare workers are key targets. Medical procedures and specific interventions are known to be at risk of HAIs, in addition to hospital environmental exposure. Vaccines or monoclonal antibodies can be seen as attractive preventive approaches for HAIs. In this review, we present an overview of the vaccines and monoclonal antibodies in clinical development for prevention of the major bacterial HAIs pathogens. Based on the current state of knowledge, we look at the challenges and future perspectives to improve prevention by these means.
Collapse
Affiliation(s)
- Léo Sauvat
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O Verhoeven
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Julie Gagnaire
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Amandine Gagneux-Brunon
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
11
|
Rosso A, Flacco ME, Cioni G, Tiseo M, Imperiali G, Bianconi A, Fiore M, Calò GL, Orazi V, Troia A, Manzoli L. Immunogenicity and Safety of Chikungunya Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2024; 12:969. [PMID: 39340001 PMCID: PMC11436237 DOI: 10.3390/vaccines12090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Several vaccines against chikungunya fever have been developed and tested, and one has been recently licensed. We performed a meta-analysis to estimate the immunogenicity and safety of all chikungunya vaccines that have been progressed to clinical trial evaluation (VLA1553; mRNA-1388/VAL-181388; PXVX0317/VRC-CHKVLP059-00-VP; ChAdOx1 Chik; MV-CHIK). We included trials retrieved from MedLine, Scopus, and ClinicalTrials.gov. The outcomes were the rates of seroconversion/seroresponse and serious adverse events (SAEs) after the primary immunization course. We retrieved a total of 14 datasets, including >4000 participants. All candidate chikungunya vaccines were able to elicit an immunogenic response in ≥96% of vaccinated subjects, regardless of the vaccination schedule and platform used, and the seroconversion/seroresponse rates remained high 6 to 12 months after vaccination for most vaccines. Four of the five candidate vaccines showed a good overall safety profile (no data were available for ChAdOx1 Chik), with no significant increase in the risk of SAEs among the vaccinated, and a low absolute risk of product-related SAEs. Overall, the present findings support the potential use of the candidate vaccines for the prevention of chikungunya and the current indication for use in adult travelers to endemic regions of the licensed VLA 1553 vaccine. In order to extend chikungunya vaccination to a wider audience, further studies are needed on individuals from endemic countries and frail populations.
Collapse
Affiliation(s)
- Annalisa Rosso
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Maria Elena Flacco
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Giovanni Cioni
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Marco Tiseo
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Gianmarco Imperiali
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Alessandro Bianconi
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Matteo Fiore
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Giovanna Letizia Calò
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Vittorio Orazi
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Anastasia Troia
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Lamberto Manzoli
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| |
Collapse
|
12
|
Rajanala K, Upadhyay AK. Vaccines for Respiratory Viruses-COVID and Beyond. Vaccines (Basel) 2024; 12:936. [PMID: 39204059 PMCID: PMC11360283 DOI: 10.3390/vaccines12080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 (coronavirus disease 2019) pandemic had an extensive impact on global morbidity and mortality. Several other common respiratory viruses, such as the influenza virus and respiratory syncytial virus (RSV), are endemic or epidemic agents causing acute respiratory infections that are easily transmissible and pose a significant threat to communities due to efficient person-to-person transmission. These viruses can undergo antigenic variation through genetic mutations, resulting in the emergence of novel strains or variants, thereby diminishing the effectiveness of current vaccines, and necessitating ongoing monitoring and adjustment of vaccine antigens. As the virus-specific immunity is maintained only for several weeks or months after the infection, there is an emergent need to develop effective and durable vaccines. Additionally, specific populations, such as elderly or immunocompromised individuals, may exhibit reduced immune responses to respiratory viruses, posing significant challenges to develop vaccines that elicit durable and potent immunity. We present a comprehensive review of the molecular mechanisms underlying the pathogenesis and virulence of common respiratory viruses, such as RSV, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss several vaccine approaches that are under development. A thorough understanding of the current strategies and the challenges encountered during the vaccine development process can lead to the advancement of effective next-generation vaccines.
Collapse
|
13
|
Abukhalil AD, Abushehadeh RR, Shatat SS, Al-Shami N, Naseef HA, Ladadweh H, Madia R. COVID-19 Vaccines Breakthrough Infections and Adverse Effects Reported by the Birzeit University Community in Palestine. Int J Gen Med 2024; 17:3349-3360. [PMID: 39100722 PMCID: PMC11297544 DOI: 10.2147/ijgm.s466838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
Background Coronavirus disease (COVID-19) vaccines play an essential role in boosting immunity, preventing severe diseases, and alleviating the Covid-19 health crisis. Objective This study aimed to explore the type and severity of short-term adverse reactions associated with BNT162 (Pfizer-BioNTech), mRNA 1273 (Moderna), and viral vector vaccines and to compare the incidence of post-vaccination Covid-19 infection among the Birzeit University community in Palestine. Methods This questionnaire-based retrospective cross-sectional study was conducted among individuals who were vaccinated with at least one dose of any COVID-19 vaccine offered in Palestine during the COVID-19 pandemic. The study included participants aged 18 years and older who were vaccinated with Pfizer, Moderna, Sputnik Light, or Sputnik v. Results A total of 558 participants who were administered COVID-19 vaccine were included in the study. Sputnik (239), Pfizer vaccine recipients (236), and Moderna vaccine recipients (83). Of the viral vector vaccine recipients, 57 (23.8%) had a post-vaccination infection, compared to 30 (12.7%) for Pfizer and seven (8.4%) for Moderna. Furthermore, the reported adverse effects in the viral victor group were higher than those in the Moderna and Pfizer groups (71.7, 66.3, and 61.9%, respectively). Chills, headache, fatigue, abdominal pain, and joint pain were significantly higher in the Viral Vector vaccine group than the Moderna and Pfizer vaccine. Vomiting, tiredness, and fatigue were significantly less likely to be complained of by Pfizer vaccine recipients compared to Moderna and Viral Vector vaccine recipients (p < 0.05). Conclusions Breakthrough infections were associated with both viral vectors and mRNA; however, the mRNA vaccine had less reported post-vaccine infection. Furthermore, the Pfizer/BioNTech COVID-19 vaccine group reported fewer commonly reported side effects (fever, chills, headache, fatigue, muscle pain, joint pain, nausea, and dizziness), followed by the Moderna and viral vector vaccines. Females and underweight participants experienced more adverse effects with both vaccines, and fewer common side effects were reported by all participants.
Collapse
Affiliation(s)
- Abdallah Damin Abukhalil
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Raya Riyad Abushehadeh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Sireen Sultan Shatat
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Ni’meh Al-Shami
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Hosniyeh Ladadweh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Raed Madia
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| |
Collapse
|
14
|
Barbosa ADO, Gava D, Tochetto C, Ribeiro LC, Bastos APA, Morés MAZ, Schaefer R, de Lima M. Immunogenicity of an Inactivated Senecavirus A Vaccine with a Contemporary Brazilian Strain in Mice. Vaccines (Basel) 2024; 12:845. [PMID: 39203971 PMCID: PMC11358955 DOI: 10.3390/vaccines12080845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Senecavirus A (SVA) is a picornavirus that is endemic in swine, causing a vesicular disease clinically indistinguishable from other vesicular diseases, like foot-and-mouth disease. The widespread viral circulation, constant evolution, and economic losses caused to the swine industry emphasize the need for measures to control the agent. In this study, we evaluated the immunogenicity of a whole-virus-inactivated vaccine using a representative contemporary Brazilian SVA strain in Balb/ByJ mice. The animals were vaccinated with two doses by an intramuscular route. The humoral response induced by the vaccination was evaluated by an in-house ELISA assay for IgG detection. The cellular response was assessed by flow cytometry after in vitro SVA stimulation in splenocyte cultures from vaccinated and non-vaccinated groups. Protection against SVA was assessed in the experimental groups following an oral challenge with the homologous virus. The vaccination induced high levels of IgG antibodies and the proliferation of CD45R/B220+sIgM+, CD3e+CD69+, and CD3e+CD4+CD44+CD62L- cells. These results indicate the immunogenicity and safety of the vaccine formulation in a murine model and the induction of humoral and cellular response against SVA.
Collapse
Affiliation(s)
- Amanda de Oliveira Barbosa
- Laboratório de Virologia e Imunologia, Universidade Federal de Pelotas, Capão do Leão 96160-000, RS, Brazil; (A.d.O.B.); (L.C.R.)
| | - Danielle Gava
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Caroline Tochetto
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Leonardo Clasen Ribeiro
- Laboratório de Virologia e Imunologia, Universidade Federal de Pelotas, Capão do Leão 96160-000, RS, Brazil; (A.d.O.B.); (L.C.R.)
| | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Marcos Antônio Zanella Morés
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Marcelo de Lima
- Laboratório de Virologia e Imunologia, Universidade Federal de Pelotas, Capão do Leão 96160-000, RS, Brazil; (A.d.O.B.); (L.C.R.)
| |
Collapse
|
15
|
Davis SK, Jia F, Wright QG, Islam MT, Bean A, Layton D, Williams DT, Lynch SE. Defining correlates of protection for mammalian livestock vaccines against high-priority viral diseases. Front Immunol 2024; 15:1397780. [PMID: 39100679 PMCID: PMC11294087 DOI: 10.3389/fimmu.2024.1397780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
Collapse
Affiliation(s)
- Samantha K. Davis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Skerritt JH, Tucek-Szabo C, Sutton B, Nolan T. The Platform Technology Approach to mRNA Product Development and Regulation. Vaccines (Basel) 2024; 12:528. [PMID: 38793779 PMCID: PMC11126020 DOI: 10.3390/vaccines12050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
mRNA-lipid nanoparticle (LNP) medicinal products can be considered a platform technology because the development process is similar for different diseases and conditions, with similar noncoding mRNA sequences and lipid nanoparticles and essentially unchanged manufacturing and analytical methods often utilised for different products. It is critical not to lose the momentum built using the platform approach during the development, regulatory approval and rollout of vaccines for SARS-CoV-2 and its variants. This review proposes a set of modifications to existing regulatory requirements for mRNA products, based on a platform perspective for quality, manufacturing, preclinical, and clinical data. For the first time, we address development and potential regulatory requirements when the mRNA sequences and LNP composition vary in different products as well. In addition, we propose considerations for self-amplifying mRNA, individualised oncology mRNA products, and mRNA therapeutics. Providing a predictable development pathway for academic and commercial groups so that they can know in detail what product characterisation and data are required to develop a dossier for regulatory submission has many potential benefits. These include: reduced development and regulatory costs; faster consumer/patient access and more agile development of products in the face of pandemics; and for rare diseases where alternatives may not exist or to increase survival and the quality of life in cancer patients. Therefore, achieving consensus around platform approaches is both urgent and important. This approach with mRNA can be a template for similar platform frameworks for other therapeutics and vaccines to enable more efficient development and regulatory review.
Collapse
Affiliation(s)
- John H. Skerritt
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - Brett Sutton
- CSIRO Health and Biosecurity, Research Way, Clayton, VIC 3168, Australia;
| | - Terry Nolan
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
- Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| |
Collapse
|
17
|
Zhao Z, Bashiri S, Ziora ZM, Toth I, Skwarczynski M. COVID-19 Variants and Vaccine Development. Viruses 2024; 16:757. [PMID: 38793638 PMCID: PMC11125726 DOI: 10.3390/v16050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs have been approved to treat SARS-CoV-2 infection, treatment efficacy remains limited. Therefore, preventive vaccination has been implemented on a global scale and represents the primary approach to combat the COVID-19 pandemic. Approved vaccines vary in composition, although vaccine design has been based on either the key viral structural (spike) protein or viral components carrying this protein. Therefore, mutations of the virus, particularly mutations in the S protein, severely compromise the effectiveness of current vaccines and the ability to control COVID-19 infection. This review begins by describing the SARS-CoV-2 viral composition, the mechanism of infection, the role of angiotensin-converting enzyme 2, the host defence responses against infection and the most common vaccine designs. Next, this review summarizes the common mutations of SARS-CoV-2 and how these mutations change viral properties, confer immune escape and influence vaccine efficacy. Finally, this review discusses global strategies that have been employed to mitigate the decreases in vaccine efficacy encountered against new variants.
Collapse
Affiliation(s)
- Ziyao Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| |
Collapse
|
18
|
Hakimian M, Doosti A, Sharifzadeh A. A novel chimeric vaccine containing multiple epitopes for simulating robust immune activation against Klebsiella pneumoniae. BMC Immunol 2024; 25:27. [PMID: 38706005 PMCID: PMC11070107 DOI: 10.1186/s12865-024-00617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.
Collapse
Affiliation(s)
- Morteza Hakimian
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Ali Sharifzadeh
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Microbiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
19
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
20
|
Rizarullah, Aditama R, Giri-Rachman EA, Hertadi R. Designing a Novel Multiepitope Vaccine from the Human Papilloma Virus E1 and E2 Proteins for Indonesia with Immunoinformatics and Molecular Dynamics Approaches. ACS OMEGA 2024; 9:16547-16562. [PMID: 38617694 PMCID: PMC11007845 DOI: 10.1021/acsomega.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
One of the deadliest malignant cancer in women globally is cervical cancer. Specifically, cervical cancer is the second most common type of cancer in Indonesia. The main infectious agent of cervical cancer is the human papilloma virus (HPV). Although licensed prophylactic vaccines are available, cervical cancer cases are on the rise. Therapy using multiepitope-based vaccines is a very promising therapy for cervical cancer. This study aimed to develop a multiepitope vaccine based on the E1 and E2 proteins of HPV 16, 18, 45, and 52 using in silico. In this study, we develop a novel multiepitope vaccine candidate using an immunoinformatic approach. We predicted the epitopes of the cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) and evaluated their immunogenic properties. Population coverage analysis of qualified epitopes was conducted to determine the successful use of the vaccine worldwide. The epitopes were constructed into a multiepitope vaccine by using AAY linkers between the CTL epitopes and GPGPG linkers between the HTL epitopes. The tertiary structure of the multiepitope vaccine was modeled with AlphaFold and was evaluated by Prosa-web. The results of vaccine construction were analyzed for B-cell epitope prediction, molecular docking with Toll like receptor-4 (TLR4), and molecular dynamics simulation. The results of epitope prediction obtained 4 CTL epitopes and 7 HTL epitopes that are eligible for construction of multiepitope vaccines. Prediction of the physicochemical properties of multiepitope vaccines obtained good results for recombinant protein production. The interaction showed that the interaction of the multiepitope vaccine-TLR4 complex is stable based on the binding free energy value -106.5 kcal/mol. The results of the immune response simulation show that multiepitope vaccine candidates could activate the adaptive and humoral immune systems and generate long-term B-cell memory. According to these results, the development of a multiepitope vaccine with a reverse vaccinology approach is a breakthrough to develop potential cervical cancer therapeutic vaccines.
Collapse
Affiliation(s)
- Rizarullah
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
- Department
of Biochemistry, Faculty of Medicine, Abulyatama
University, Jl. Blangbintang Lama, Aceh Besar 23372, Indonesia
| | - Reza Aditama
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Ernawati Arifin Giri-Rachman
- Genetics
and Molecular Biotechnology Research Division, School of Life Sciences
and Technology, Bandung Institute of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Rukman Hertadi
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
21
|
Campos GRF, Almeida NBF, Filgueiras PS, Corsini CA, Gomes SVC, de Miranda DAP, de Assis JV, Silva TBDS, Alves PA, Fernandes GDR, de Oliveira JG, Rahal P, Grenfell RFQ, Nogueira ML. Second booster dose improves antibody neutralization against BA.1, BA.5 and BQ.1.1 in individuals previously immunized with CoronaVac plus BNT162B2 booster protocol. Front Cell Infect Microbiol 2024; 14:1371695. [PMID: 38638823 PMCID: PMC11024236 DOI: 10.3389/fcimb.2024.1371695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction SARS-CoV-2 vaccines production and distribution enabled the return to normalcy worldwide, but it was not fast enough to avoid the emergence of variants capable of evading immune response induced by prior infections and vaccination. This study evaluated, against Omicron sublineages BA.1, BA.5 and BQ.1.1, the antibody response of a cohort vaccinated with a two doses CoronaVac protocol and followed by two heterologous booster doses. Methods To assess vaccination effectiveness, serum samples were collected from 160 individuals, in 3 different time points (9, 12 and 18 months after CoronaVac protocol). For each time point, individuals were divided into 3 subgroups, based on the number of additional doses received (No booster, 1 booster and 2 boosters), and a viral microneutralization assay was performed to evaluate neutralization titers and seroconvertion rate. Results The findings presented here show that, despite the first booster, at 9m time point, improved neutralization level against omicron ancestor BA.1 (133.1 to 663.3), this trend was significantly lower for BQ.1.1 and BA.5 (132.4 to 199.1, 63.2 to 100.2, respectively). However, at 18m time point, the administration of a second booster dose considerably improved the antibody neutralization, and this was observed not only against BA.1 (2361.5), but also against subvariants BQ.1.1 (726.1) and BA.5 (659.1). Additionally, our data showed that, after first booster, seroconvertion rate for BA.5 decayed over time (93.3% at 12m to 68.4% at 18m), but after the second booster, seroconvertion was completely recovered (95% at 18m). Discussion Our study reinforces the concerns about immunity evasion of the SARS-CoV-2 omicron subvariants, where BA.5 and BQ.1.1 were less neutralized by vaccine induced antibodies than BA.1. On the other hand, the administration of a second booster significantly enhanced antibody neutralization capacity against these subvariants. It is likely that, as new SARS-CoV-2 subvariants continue to emerge, additional immunizations will be needed over time.
Collapse
Affiliation(s)
- Guilherme R. F. Campos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | | | - Priscilla Soares Filgueiras
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Camila Amormino Corsini
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Sarah Vieira Contin Gomes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Daniel Alvim Pena de Miranda
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Thaís Bárbara de Souza Silva
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Gabriel da Rocha Fernandes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | | | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - Rafaella Fortini Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
- Hospital de Base, São José do Rio Preto, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
22
|
Ndaki P, Kinyonga M, Mwita S. Knowledge, Attitude, and Practice Towards Child Immunisation Among Mothers Attending Magu District Hospital, Mwanza. East Afr Health Res J 2024; 8:80-85. [PMID: 39234351 PMCID: PMC11371006 DOI: 10.24248/eahrj.v8i1.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/14/2024] [Indexed: 09/06/2024] Open
Abstract
Background Vaccines are administered to help the body develop immunity against a disease. A mother's understanding of the importance, safety, and benefits of vaccines can positively influence her decision to adhere to the recommended immunisation schedule. This study aimed to assess the knowledge, attitudes, and practices of mothers attending Magu District Hospital in Mwanza, Tanzania, towards child immunisation. Methods A cross-sectional study was conducted among 216 mothers between April and May 2021. A convenient sampling technique was used to recruit mothers who consented to participate in this study. An interviewer-administered semi-structured questionnaire was used. The coded data were analysed using STATA Version 15. Results About a quarter (27.3%) of respondents had good knowledge, while 64.8% showed positive attitudes towards child vaccination. Vaccine-preventable diseases that were commonly known by study participants were measles (90.7%) and poliomyelitis (81.9%). The majority of mothers (84.3%) would recommend others to vaccinate their children. About half of the children (50.9%) were fully immunized, while over a quarter (26.4%) of their children experienced side effects. Conclusion The knowledge of mothers about vaccination was found to be inadequate, while the majority showed positive attitudes towards child immunisation. Only half of their children were fully immunized. The practice and knowledge of mothers on child immunisation should be enhanced by health education, awareness campaigns, and health promotion interventions.
Collapse
Affiliation(s)
- Pendo Ndaki
- Department of Biostatistics, Epidemiology and Behavioral Sciences, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Madeline Kinyonga
- Department of Pharmaceutics and Pharmacy Practice, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Stanley Mwita
- Department of Pharmaceutics and Pharmacy Practice, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
23
|
Azhar S, Rashid L, Islam T, Akhtar S, Hopkins KL, Sommers T, Ikram A, Anwer N, Maqbool NA, Khan Z, Ahmed N, Akhtar H. Knowledge, attitudes, and practices of vaccinators about expanded programs on immunization: a cross-sectional study. Front Public Health 2024; 12:1366378. [PMID: 38510352 PMCID: PMC10953913 DOI: 10.3389/fpubh.2024.1366378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction The periodic evaluation of knowledge, attitudes, and practices (KAP) of healthcare workers, including vaccinators, concerning expanded programs on immunization (EPI) is very crucial for a better healthcare system. This study was carried out to assess the KAP of vaccinators about the EPI, including cold storage of vaccines and their practices related to vaccine cold chain management. Method A cross-sectional study was conducted from January 2022 to June 2022 among registered vaccinators in the twin cities (Islamabad and Rawalpindi) of Pakistan. A structured self-administered questionnaire (English and Urdu) was developed as per the Pakistan national EPI policy and strategic guidelines 2022 and World Health Organization (WHO) guidelines, as well as from earlier studies (Cronbach's alpha value of 0.734). The final questionnaire consisted of closed-ended questions in four sections, including sociodemographic information, knowledge (with dichotomous variables of yes/no), attitudes (with a 5-point Likert scale ranging from strongly agree to strongly disagree), and handling of vaccines and cold chain management. Completed questionnaires were entered into Microsoft Excel and then imported into SPSS version 25 for statistical analysis. Results A total of 186 vaccinators completely filled out their questionnaires, with a 97.9% response rate. More than half of the participants (57.5%) had no training related to EPI. Most of the respondents had a moderate to poor level of knowledge regarding EPI. The overall attitude was positive, and 57% of the participants strongly agreed that the national immunization programs can significantly contribute to the decrease in morbidity and mortality rates among children. In the current study, participants showed good practices toward EPI, vaccine storage, and cold chain management. The majority (93.5%) of the participants checked the expiry of vaccines at regular intervals to maintain the first expiry first out (FEFO) in their healthcare setting. Discussion In conclusion, most of the vaccinators had moderate to poor knowledge, a positive attitude, and good practices toward EPI, vaccine cold storage, and cold chain management. Lack of training among vaccinators on EPI was also observed. These findings have suggested that continuous training, education, and regular supervision of vaccinators in EPI are important for maximum immunization effectiveness and coverage.
Collapse
Affiliation(s)
- Sunia Azhar
- Yusra Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Laiba Rashid
- Yusra Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Taskeen Islam
- Communication and Media Studies, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Samar Akhtar
- Yusra Institute of Pharmaceutical Sciences, Yusra Medical and Dental College, Zaraj Housing Society, Islamabad, Pakistan
| | | | | | - Aamer Ikram
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Naveed Anwer
- Department of Pharmacy, Quaid.i.Azam University, Islamabad, Pakistan
| | - Nabeel Ahmed Maqbool
- Vaccines Preventable Infectious Diseases, Chemonics International Global Health Supply Chain – Procurement and Supply, Management (GHSC-PSM) Project, Islamabad, Pakistan
| | - Zakir Khan
- Department of Pharmacy Practice, Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Gulberg Green Campus, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid.i.Azam University, Islamabad, Pakistan
| | - Hashaam Akhtar
- Yusra Institute of Pharmaceutical Sciences, Islamabad, Pakistan
- Department of Global Health, Health Services Academy, Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
24
|
Oyeyemi OT, Ogundahunsi O, Schunk M, Fatem RG, Shollenberger LM. Neglected tropical disease (NTD) diagnostics: current development and operations to advance control. Pathog Glob Health 2024; 118:1-24. [PMID: 37872790 PMCID: PMC10769148 DOI: 10.1080/20477724.2023.2272095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Neglected tropical diseases (NTDs) have become important public health threats that require multi-faceted control interventions. As late treatment and management of NTDs contribute significantly to the associated burdens, early diagnosis becomes an important component for surveillance and planning effective interventions. This review identifies common NTDs and highlights the progress in the development of diagnostics for these NTDs. Leveraging existing technologies to improve NTD diagnosis and improving current operational approaches for deployment of developed diagnostics are crucial to achieving the 2030 NTD elimination target. Point-of-care NTD (POC-NTD) diagnostic tools are recommended preferred diagnostic options in resource-constrained areas for mapping risk zones and monitoring treatment efficacy. However, few are currently available commercially. Technical training of remote health care workers on the use of POC-NTD diagnostics, and training of health workers on the psychosocial consequences of these diagnostics are critical in harnessing POC-NTD diagnostic potential. While the COVID-19 pandemic has challenged the possibility of achieving NTD elimination in 2030 due to the disruption of healthcare services and dwindling financial support for NTDs, the possible contribution of NTDs in exacerbating COVID-19 pandemic should motivate NTD health system strengthening.
Collapse
Affiliation(s)
- Oyetunde T. Oyeyemi
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
- Department of Biological Sciences, Old Dominion University, Virginia, USA
| | - Olumide Ogundahunsi
- The Central Office for Research and Development (CORD), University of Medical Sciences, Ondo, Nigeria
| | - Mirjam Schunk
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU) institution, Munich, Germany
| | - Ramzy G. Fatem
- Schistosome Biological Supply Center, Theodor Bilharz Research Institute, Giza, Egypt
| | | |
Collapse
|
25
|
Chavda VP, Ghali ENHK, Balar PC, Chauhan SC, Tiwari N, Shukla S, Athalye M, Patravale V, Apostolopoulos V, Yallapu MM. Protein subunit vaccines: Promising frontiers against COVID-19. J Control Release 2024; 366:761-782. [PMID: 38219913 DOI: 10.1016/j.jconrel.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The emergence of COVID-19 has posed an unprecedented global health crisis, challenging the healthcare systems worldwide. Amidst the rapid development of several vaccine formulations, protein subunit vaccines have emerged as a promising approach. This article provides an in-depth evaluation of the role of protein subunit vaccines in the management of COVID-19. Leveraging viral protein fragments, particularly the spike protein from SARS-CoV-2, these vaccines elicit a targeted immune response without the risk of inducing disease. Notably, the robust safety profile of protein subunit vaccines makes them a compelling candidate in the management of COVID-19. Various innovative approaches, including reverse vaccinology, virus like particles, and recombinant modifications are incorporated to develop protein subunit vaccines. In addition, the utilization of advanced manufacturing techniques facilitates large-scale production, ensuring widespread distribution. Despite these advancements, challenges persist, such as the requirement for cold-chain storage and the necessity for booster doses. This article evaluates the formulation and applications of protein subunit vaccines, providing a comprehensive overview of their clinical development and approvals in the context of COVID-19. By addressing the current status and challenges, this review aims to contribute to the ongoing discourse on optimizing protein subunit vaccines for effective pandemic control.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mansi Athalye
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
26
|
Petro-Turnquist E, Corder Kampfe B, Gadeken A, Pekarek MJ, Weaver EA. Multivalent Epigraph Hemagglutinin Vaccine Protects against Influenza B Virus in Mice. Pathogens 2024; 13:97. [PMID: 38392835 PMCID: PMC10892733 DOI: 10.3390/pathogens13020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza B virus is a respiratory pathogen that contributes to seasonal epidemics, accounts for approximately 25% of global influenza infections, and can induce severe disease in young children. While vaccination is the most commonly used method of preventing influenza infections, current vaccines only induce strain-specific responses and have suboptimal efficacy when mismatched from circulating strains. Further, two influenza B virus lineages have been described, B/Yamagata-like and B/Victoria-like, and the limited cross-reactivity between the two lineages provides an additional barrier in developing a universal influenza B virus vaccine. Here, we report a novel multivalent vaccine using computationally designed Epigraph hemagglutinin proteins targeting both the B/Yamagata-like and B/Victoria-like lineages. When compared to the quadrivalent commercial vaccine, the Epigraph vaccine demonstrated increased breadth of neutralizing antibody and T cell responses. After lethal heterologous influenza B virus challenge, mice immunized with the Epigraph vaccine were completely protected against both weight loss and mortality. The superior cross-reactive immunity conferred by the Epigraph vaccine immunogens supports their continued investigation as a universal influenza B virus vaccine.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Brigette Corder Kampfe
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Science Department, North Arkansas College, Harrison, AR 72601, USA
| | - Amber Gadeken
- College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Matthew J. Pekarek
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
27
|
Paulsen GC, Frenck R, Tomashek KM, Alarcon RM, Hensel E, Lowe A, Brocato RL, Kwilas SA, Josleyn MD, Hooper JW. Safety and Immunogenicity of an Andes Virus DNA Vaccine by Needle-Free Injection: A Randomized, Controlled Phase 1 Study. J Infect Dis 2024; 229:30-38. [PMID: 37380156 PMCID: PMC10786244 DOI: 10.1093/infdis/jiad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Andes virus (ANDV), a rodent-borne hantavirus, causes hantavirus pulmonary syndrome (HPS). The safety and immunogenicity of a novel ANDV DNA vaccine was evaluated. METHODS Phase 1, double-blind, dose-escalation trial randomly assigned 48 healthy adults to placebo or ANDV DNA vaccine delivered via needle-free jet injection. Cohorts 1 and 2 received 2 mg of DNA or placebo in a 3-dose (days 1, 29, 169) or 4-dose (days 1, 29, 57, 169) schedule, respectively. Cohorts 3 and 4 received 4 mg of DNA or placebo in the 3-dose and 4-dose schedule, respectively. Subjects were monitored for safety and neutralizing antibodies by pseudovirion neutralization assay (PsVNA50) and plaque reduction neutralization test (PRNT50). RESULTS While 98% and 65% of subjects had at least 1 local or systemic solicited adverse event (AE), respectively, most AEs were mild or moderate; no related serious AEs were detected. Cohorts 2, 3, and 4 had higher seroconversion rates than cohort 1 and seropositivity of at least 80% by day 197, sustained through day 337. PsVNA50 geometric mean titers were highest for cohort 4 on and after day 197. CONCLUSIONS This first-in-human candidate HPS vaccine trial demonstrated that an ANDV DNA vaccine was safe and induced a robust, durable immune response. Clinical Trials Registration. NCT03682107.
Collapse
Affiliation(s)
- Grant C Paulsen
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert Frenck
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kay M Tomashek
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rodolfo M Alarcon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Steve A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Matthew D Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| |
Collapse
|
28
|
Rios LE, Lokugamage N, Choudhuri S, Chowdhury IH, Garg NJ. Subunit nanovaccine elicited T cell functional activation controls Trypanosoma cruzi mediated maternal and placental tissue damage and improves pregnancy outcomes in mice. NPJ Vaccines 2023; 8:188. [PMID: 38104118 PMCID: PMC10725459 DOI: 10.1038/s41541-023-00782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
This study investigated a candidate vaccine effect against maternal Trypanosoma cruzi (Tc) infection and improved pregnancy outcomes. For this, TcG2 and TcG4 were cloned in a nanoplasmid optimized for delivery, antigen expression, and regulatory compliance (nano2/4 vaccine). Female C57BL/6 mice were immunized with nano2/4, infected (Tc SylvioX10), and mated 7-days post-infection to enable fetal development during the maternal acute parasitemia phase. Females were euthanized at E12-E17 (gestation) days. Splenic and placental T-cell responses were monitored by flow cytometry. Maternal and placental/fetal tissues were examined for parasites by qPCR and inflammatory infiltrate by histology. Controls included age/immunization-matched non-pregnant females. Nano2/4 exhibited no toxicity and elicited protective IgG2a/IgG1 response in mice. Nano2/4 signaled a splenic expansion of functionally active CD4+ effector/effector memory (Tem) and central memory (Tcm) cells in pregnant mice. Upon challenge infection, nano2/4 increased the splenic CD4+ and CD8+T cells in all mice and increased the proliferation of CD4+Tem, CD4+Tcm, and CD8+Tcm subsets producing IFNγ and cytolytic molecules (PRF1, GZB) in pregnant mice. A balanced serum cytokines/chemokines response and placental immune characteristics indicated that pregnancy prevented the overwhelming damaging immune response in mice. Importantly, pregnancy itself resulted in a significant reduction of parasites in maternal and fetal tissues. Nano2/4 was effective in arresting the Tc-induced tissue inflammatory infiltrate, necrosis, and fibrosis in maternal and placental tissues and improving maternal fertility, placental efficiency, and fetal survival. In conclusion, we show that maternal nano2/4 vaccination is beneficial in controlling the adverse effects of Tc infection on maternal health, fetal survival, and pregnancy outcomes.
Collapse
Affiliation(s)
- Lizette Elaine Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, UTMB, Galveston, TX, USA
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Institute for Human Infections and Immunity (IHII), UTMB, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences (SIVS), UTMB, Galveston, TX, USA.
| |
Collapse
|
29
|
Phoka T, Thanuthanakhun N, Visitchanakun P, Dueanphen N, Wanichwecharungruang N, Leelahavanichkul A, Palaga T, Ruxrungtham K, Wanichwecharungruang S. Detachable-dissolvable-microneedle as a potent subunit vaccine delivery device that requires no cold-chain. Vaccine X 2023; 15:100398. [PMID: 37920235 PMCID: PMC10618702 DOI: 10.1016/j.jvacx.2023.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Although vaccine administration by microneedles has been demonstrated, delivery reliability issues have prevented their implementation. Through an ex vivo porcine skin experiment, we show visual evidence indicating that detachable dissolvable microneedles (DDMN) can deposit cargo into the dermis with insignificant loss of cargo to the stratum corneum. Using ovalbumin (OVA), a model antigen vaccine, as a cargo, the ex vivo experiments yielded a delivery efficiency of 86.08 ± 4.16 %. At room temperature, OVA could be stabilized for up to 35 days in DDMN made from hyaluronic acid and trehalose. The DDMN matrix could improve the denaturation temperature of the OVA from around 70-120 °C to over 150 °C, as demonstrated by differential scanning calorimetric analysis. In vivo delivery of OVA antigen into the mice's skin via DDMN elicited 10 times higher specific antibody responses compared to conventional intramuscular injection. We envision DDMN as an effective, precise dosing, intradermal vaccine delivery system that may require no cold-chain, offers a dose-sparing effect, and can be administered easily.
Collapse
Affiliation(s)
- Theerapat Phoka
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Thailand
| | - Narintorn Dueanphen
- The Petrochemistry and Polymer Science Program, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Thailand
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University Bangkok, Thailand
| | - Kiat Ruxrungtham
- Chula Vaccine Research Center (ChulaVRC) and School of Global Health, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supason Wanichwecharungruang
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
30
|
Ndwandwe D, Ndlovu M, Mayeye A, Luphondo N, Muvhulawa N, Ntamo Y, Dludla PV, Wiysonge CS. Trends in Vaccine Completeness in Children Aged 0-23 Months in Cape Town, South Africa. Vaccines (Basel) 2023; 11:1782. [PMID: 38140186 PMCID: PMC10747087 DOI: 10.3390/vaccines11121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND We have previously determined that the occurrence of missed vaccination opportunities in children in Cape Town, South Africa, is shaped by both individual and contextual factors. These factors present valuable openings for enhancing quality and implementing broader strategies to enhance the delivery of routine Immunisation services. METHODS Here, we are further reporting regional-level data on the coverage and factors influencing vaccination completion within a similar study population, based on extensive data analysis from the 2016 South African Demographic and Health Survey. RESULTS AND DISCUSSION The study reveals commendable vaccination coverage for most vaccines within recommended schedules, with high rates of initial vaccinations at birth and during the primary vaccination schedule. However, there are notable areas for improvement, particularly in ensuring complete coverage for the second measles vaccine and the 18-month vaccine. Socio-demographic factors also play a role, with maternal education and caregiver awareness campaigns showing the potential to positively influence vaccination completeness. This study emphasises the importance of timely vaccinations during the early months of life and underscores the need for interventions to maintain coverage as children age. Specific sub-districts, such as Tygerberg, may require targeted efforts to enhance vaccination completeness. Additionally, assessing caregiver knowledge about child vaccination is deemed vital, as it can impact vaccination decisions and adherence. CONCLUSIONS The findings provide valuable insights for public health interventions in Cape Town, aimed at reducing the burden of vaccine-preventable diseases and ensuring the health of the region's youngest population.
Collapse
Affiliation(s)
- Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.N.); (A.M.); (N.L.); (N.M.); (Y.N.); (P.V.D.)
| | - Musawenkosi Ndlovu
- Cochrane South Africa, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.N.); (A.M.); (N.L.); (N.M.); (Y.N.); (P.V.D.)
| | - Asanda Mayeye
- Cochrane South Africa, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.N.); (A.M.); (N.L.); (N.M.); (Y.N.); (P.V.D.)
| | - Nomahlubi Luphondo
- Cochrane South Africa, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.N.); (A.M.); (N.L.); (N.M.); (Y.N.); (P.V.D.)
| | - Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.N.); (A.M.); (N.L.); (N.M.); (Y.N.); (P.V.D.)
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Yonela Ntamo
- Cochrane South Africa, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.N.); (A.M.); (N.L.); (N.M.); (Y.N.); (P.V.D.)
| | - Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.N.); (A.M.); (N.L.); (N.M.); (Y.N.); (P.V.D.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni 3886, South Africa
| | - Charles S. Wiysonge
- Vaccine Preventable Diseases Programme, Universal Health Coverage/Communicable and Non-Communicable Diseases Cluster, World Health Organization Regional Office for Africa, Brazzaville P.O. Box 06, Congo;
| |
Collapse
|
31
|
Okuyama R. mRNA and Adenoviral Vector Vaccine Platforms Utilized in COVID-19 Vaccines: Technologies, Ecosystem, and Future Directions. Vaccines (Basel) 2023; 11:1737. [PMID: 38140142 PMCID: PMC10748114 DOI: 10.3390/vaccines11121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
New technological platforms, such as mRNA and adenoviral vector vaccines, have been utilized to develop coronavirus disease 2019 (COVID-19) vaccines. These new modalities enable rapid and flexible vaccine design and cost-effective and swift manufacturing, effectively combating pandemics caused by mutating viruses. Innovation ecosystems, including universities, startups, investors, and governments are crucial for developing these cutting-edge technologies. This review summarizes the research and development trajectory of these vaccine technologies, their investments, and the support surrounding them, in addition to the technological details of each technology. In addition, this study examines the importance of an innovation ecosystem in developing novel technologies, comparing it with the case of Japan, which has lagged behind in COVID-19 vaccine development. It also explores the direction of vaccine development in the post-COVID-19 era.
Collapse
Affiliation(s)
- Ryo Okuyama
- College of International Management, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan
| |
Collapse
|
32
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
33
|
Topalidou X, Kalergis AM, Papazisis G. Respiratory Syncytial Virus Vaccines: A Review of the Candidates and the Approved Vaccines. Pathogens 2023; 12:1259. [PMID: 37887775 PMCID: PMC10609699 DOI: 10.3390/pathogens12101259] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Respiratory syncytial virus (RSV) is responsible for a significant proportion of global morbidity and mortality affecting young children and older adults. In the aftermath of formalin-inactivated RSV vaccine development, the effort to develop an immunizing agent was carefully guided by epidemiologic and pathophysiological evidence of the virus, including various vaccine technologies. The pipeline of RSV vaccine development includes messenger ribonucleic acid (mRNA), live-attenuated (LAV), subunit, and recombinant vector-based vaccine candidates targeting different virus proteins. The availability of vaccine candidates of various technologies enables adjustment to the individualized needs of each vulnerable age group. Arexvy® (GSK), followed by Abrysvo® (Pfizer), is the first vaccine available for market use as an immunizing agent to prevent lower respiratory tract disease in older adults. Abrysvo is additionally indicated for the passive immunization of infants by maternal administration during pregnancy. This review presents the RSV vaccine pipeline, analyzing the results of clinical trials. The key features of each vaccine technology are also mentioned. Currently, 24 vaccines are in the clinical stage of development, including the 2 licensed vaccines. Research in the field of RSV vaccination, including the pharmacovigilance methods of already approved vaccines, promotes the achievement of successful prevention.
Collapse
Affiliation(s)
- Xanthippi Topalidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Clinical Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
34
|
Hartmeier PR, Kosanovich JL, Velankar KY, Ostrowski SM, Busch EE, Lipp MA, Empey KM, Meng WS. Modeling the kinetics of lymph node retention and exposure of a cargo protein delivered by biotin-functionalized nanoparticles. Acta Biomater 2023; 170:453-463. [PMID: 37652212 PMCID: PMC10592217 DOI: 10.1016/j.actbio.2023.08.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Generation of protective immunity through vaccination arises from the adaptive immune response developed primarily in the lymph nodes drained from the immunization site. Relative to the intramuscular route, subcutaneous administration allows for direct and rapid access to the lymphatics, but accumulation of soluble protein antigens within the lymph nodes is limited. Subunit vaccines also require immune stimulating adjuvants which may not accumulate in the same lymph nodes simultaneously with antigen. Herein we report the use of biotinylated poly (lactic-co-glycolic acid) nanoparticles (bNPs) to enhance delivery of a model protein antigen to the lymphatics. bNPs provide dual functionality as adjuvant and vehicle to localize antigens with stimulated immune cells in the same draining lymph node. Using streptavidin as a model antigen, which can be loaded directly onto the bNP surface, we evaluated the kinetics of lymph node occupancy and adaptive immune responses in wildtype C57BL/6 mice. Antigen exposure in vivo was significantly improved through surface loading onto bNPs, and we developed a working kinetic model to account for the retention of both particles and antigen in draining lymph nodes. We observed enhanced T cell responses and antigen-specific B cell response in vivo when antigen was delivered on the particle surface. This work highlights the advantage of combining intrinsic adjuvant and antigen loading in a single entity, and the utility of kinetic modeling in the understanding of particle-based vaccines. STATEMENT OF SIGNIFICANCE: Development of safe and effective subunit vaccines depends on effective formulations that render optimized exposure and colocalization of antigens and adjuvants. In this work, we utilize a nanoparticle system which features self-adjuvanting properties and allows for surface loading of recombinant protein antigens. Using in vivo imaging, we demonstrated prolonged co-localization of the antigen and adjuvant particles in draining lymph nodes and provided evidence of B cell activation for up to 21 days following subcutaneous injection. A pharmacokinetic model was developed as a step towards bridging the translational gap between particulate-based vaccines and observed outcomes. The results have implications for the rational design of particle-based vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA; Department of Immunology, School of Medicine, University of Pittsburgh, PA 15219, USA.
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
35
|
He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Recent Advances of Emerging Spleen-Targeting Nanovaccines for Immunotherapy. Adv Healthc Mater 2023; 12:e2300351. [PMID: 37289567 DOI: 10.1002/adhm.202300351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Vaccines provide a powerful tool to modulate the immune system for human disease prevention and treatment. Classical vaccines mainly initiate immune responses in the lymph nodes (LNs) after subcutaneous injection. However, some vaccines suffer from inefficient delivery of antigens to LNs, undesired inflammation, and slow immune induction when encountering the rapid proliferation of tumors. Alternatively, the spleen, as the largest secondary lymphoid organ with a high density of antigen-presenting cells (APCs) and lymphocytes, acts as an emerging target organ for vaccinations in the body. Upon intravenous administration, the rationally designed spleen-targeting nanovaccines can be internalized by the APCs in the spleen to induce selective antigen presentation to T and B cells in their specific sub-regions, thereby rapidly boosting durable cellular and humoral immunity. Herein, the recent advances of spleen-targeting nanovaccines for immunotherapy based on the anatomical architectures and functional zones of the spleen, as well as their limitations and perspectives for clinical applications are systematically summarized. The aim is to emphasize the design of innovative nanovaccines for enhanced immunotherapy of intractable diseases in the future.
Collapse
Affiliation(s)
- Xuanyi He
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Wang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqing Tang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Seok Theng Chiang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianzhen Han
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Chen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxi Qian
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoshuai Shen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Rongxiu Li
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangzhao Ai
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
36
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
37
|
Hashemi P, Mahmoodi S, Ghasemian A. An updated review on oral protein-based antigen vaccines efficiency and delivery approaches: a special attention to infectious diseases. Arch Microbiol 2023; 205:289. [PMID: 37468763 DOI: 10.1007/s00203-023-03629-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Various infectious agents affect human health via the oral entrance. The majority of pathogens lack approved vaccines. Oral vaccination is a convenient, safe and cost-effective approach with the potential of provoking mucosal and systemic immunity and maintaining individual satisfaction. However, vaccines should overcome the intricate environment of the gastrointestinal tract (GIT). Oral protein-based antigen vaccines (OPAVs) are easier to administer than injectable vaccines and do not require trained healthcare professionals. Additionally, the risk of needle-related injuries, pain, and discomfort is eliminated. However, OPAVs stability at environmental and GIT conditions should be considered to enhance their stability and facilitate their transport and storage. These vaccines elicit the local immunity, protecting GIT, genital tract and respiratory epithelial surfaces, where numerous pathogens penetrate the body. OPAVs can also be manipulated (such as using specific incorporated ligand and receptors) to elicit targeted immune response. However, low bioavailability of OPAVs necessitates development of proper protein carriers and formulations to enhance their stability and efficacy. There are several strategies to improve their efficacy or protective effects, such as incorporation of adjuvants, enzyme inhibitors, mucoadhesive or penetrating devices and permeation enhancers. Hence, efficient delivery of OPAVs into GIT require proper delivery systems mainly including smart target systems, probiotics, muco-adhesive carriers, lipid- and plant-based delivery systems and nano- and microparticles.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
38
|
Lozano D, Larraga V, Vallet-Regí M, Manzano M. An Overview of the Use of Nanoparticles in Vaccine Development. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1828. [PMID: 37368258 DOI: 10.3390/nano13121828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Vaccines represent one of the most significant advancements in public health since they prevented morbidity and mortality in millions of people every year. Conventionally, vaccine technology focused on either live attenuated or inactivated vaccines. However, the application of nanotechnology to vaccine development revolutionized the field. Nanoparticles emerged in both academia and the pharmaceutical industry as promising vectors to develop future vaccines. Regardless of the striking development of nanoparticles vaccines research and the variety of conceptually and structurally different formulations proposed, only a few of them advanced to clinical investigation and usage in the clinic so far. This review covered some of the most important developments of nanotechnology applied to vaccine technologies in the last few years, focusing on the successful race for the preparation of lipid nanoparticles employed in the successful anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Vicente Larraga
- Laboratorio de Parasitología Molecular, Unidad de Desarrollo de Fármacos Biológicos, Inmunológicos y Químicos para la Salud Global (BICS), Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIBMS-CSIC), 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
39
|
Lopes JVA, Campos ALSD, Moraes RRD, Alves LC. Clinical trials of COVID-19 vaccine development: a global overview. CAD SAUDE PUBLICA 2023; 39:e00165522. [PMID: 37222342 PMCID: PMC10549980 DOI: 10.1590/0102-311xen165522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 05/25/2023] Open
Abstract
This study aims to report analyses regarding the global distribution of institutions involved in clinical trials of COVID-19 vaccines throughout February 2022. We retrieved global data from the World Health Organization report on vaccine development. These data allowed us to identify project institutions and plot their geographic coordinates. We produced a georeferenced map using an R programming environment and, based on the geographical location of vaccine developers, we analyzed the subcontinental distribution of clinical trials and the nature of the vaccines. Regionally, South-Southeast Asian countries carried out more clinical trials than any other region, proportionally, although this happened solely for mature technologies. Few trials were under implementation in Latin America and Africa. Our findings confirm previous studies on the regional concentration in the development of technology. However, our contribution lies in showing these phenomena for COVID-19 vaccines in specific subcontinents and technologies, at a country level. Our data underscores which subcontinents perform very few clinical trials for COVID-19 and seem to be ill-prepared for future disease outbreaks, and if these become epidemics or even pandemics and require domestic vaccine development or production. We also consider the case of Brazil, which did not finish the complete cycle of COVID-19 vaccine development in the indicated period; but, with favorable policies, it has potential to engage further in COVID-19 vaccine technology.
Collapse
Affiliation(s)
| | | | | | - Luciana Correia Alves
- Instituto de Filosofia e Ciências Humanas, Universidade Estadual de Campinas, Campinas, Brasil
| |
Collapse
|
40
|
Wang W, Li J, Habib MR. Editorial: Innovative tools to support the elimination of neglected tropical diseases (NTDs). Front Microbiol 2023; 14:1208113. [PMID: 37234548 PMCID: PMC10208428 DOI: 10.3389/fmicb.2023.1208113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Wei Wang
- National Health Commission Key Laboratory of Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory of Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mohamed R. Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
41
|
De Vito A, Colpani A, Trunfio M, Fiore V, Moi G, Fois M, Leoni N, Ruiu S, Babudieri S, Calcagno A, Madeddu G. Living with HIV and Getting Vaccinated: A Narrative Review. Vaccines (Basel) 2023; 11:vaccines11050896. [PMID: 37243000 DOI: 10.3390/vaccines11050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
After 40 years of its appearance, human immunodeficiency virus (HIV) infection remains a leading public health challenge worldwide. Since the introduction of antiretroviral treatment (ART), HIV infection has become a chronic condition, and people living with HIV could have life expectancies close to those of the general population. People with HIV often have an increased risk of infection or experience more severe morbidity following exposure to vaccine-preventable diseases. Nowadays, several vaccines are available against bacteria and viruses. However, national and international vaccination guidelines for people with HIV are heterogeneous, and not every vaccine is included. For these reasons, we aimed to perform a narrative review about the vaccinations available for adults living with HIV, reporting the most updated studies performed for each vaccine among this population. We performed a comprehensive literature search through electronic databases (Pubmed-MEDLINE and Embase) and search engines (Google Scholar). We included English peer-reviewed publications (articles and reviews) on HIV and vaccination. Despite widespread use and guideline recommendations, few vaccine trials have been conducted in people with HIV. In addition, not all vaccines are recommended for people with HIV, especially for those with low CD4 cells count. Clinicians should carefully collect the history of vaccinations and patients' acceptance and preferences and regularly check the presence of antibodies for vaccine-preventable pathogens.
Collapse
Affiliation(s)
- Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Torino, Italy
| | - Vito Fiore
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Giulia Moi
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Marco Fois
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Nicola Leoni
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Stefano Ruiu
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Sergio Babudieri
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Torino, Italy
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
42
|
Tarim EA, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar MS, Ozcivici E, Oksel Karakus C, Tekin HC. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomed Microdevices 2023; 25:10. [PMID: 36913137 PMCID: PMC10009869 DOI: 10.1007/s10544-023-00649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.
Collapse
Affiliation(s)
- E Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Muge Anil Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Ilayda Ozkan
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Seren Kecili
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - M Semih Baslar
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | | | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey.
- METU MEMS Center, Ankara, Turkey.
| |
Collapse
|
43
|
B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines (Basel) 2023; 11:vaccines11020446. [PMID: 36851323 PMCID: PMC9966924 DOI: 10.3390/vaccines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
Collapse
|
44
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
45
|
Krechetov SP, Vtorushina VV, Inviyaeva EV, Gorodnova EA, Kolesnik SV, Kudlay DA, Borovikov PI, Krechetova LV, Dolgushina NV, Sukhikh GT. T-Cell Immunity in COVID-19-Recovered Individuals and Individuals Vaccinated with the Combined Vector Vaccine Gam-COVID-Vac. Int J Mol Sci 2023; 24:ijms24031930. [PMID: 36768254 PMCID: PMC9916700 DOI: 10.3390/ijms24031930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic has required extensive research on the new coronavirus SARS-CoV-2 and the creation of new highly effective vaccines. The presence of T-cells in the body that respond to virus antigens suggests adequate antiviral immunity. We investigated T-cell immunity in individuals who recovered from mild and moderate COVID-19 and in individuals vaccinated with the Gam-COVID-Vac combined vector vaccine. The ELISPOT method was used to determine the number of T-cells responding with IFN-γ synthesis to stimulation by peptides containing epitopes of the S-protein or N-, M-, ORF3, and ORF7 proteins, using peripheral blood mononuclear cells (PBMCs). At the same time, the multiplex method was used to determine the accumulation of IFN-γ and other cytokines in the culture medium. According to the data obtained, the proportion of positive conclusions about the T-cell immune response to SARS-CoV-2 antigens in control, recovered, and vaccinated individuals was 12%, 70%, and 52%, respectively. At the same time, more than half of the vaccinated individuals with a T-cell response were sensitized to the antigens of N-, M-, ORF3, and ORF7 proteins not produced by Gam-COVID-Vac, indicating a high likelihood of asymptomatic SARS-CoV-2 infection. Increased IFN-γ release by single sensitized T-cells in response to specific stimulation in recovered and vaccinated individuals did not result in the accumulation of this and other cytokines in the culture medium. These findings suggest a balance between cytokine production and utilization by immunocompetent cells as a prerequisite for providing a controlled cytokine signal and avoiding a "cytokine storm".
Collapse
Affiliation(s)
- Sergey Petrovich Krechetov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Valentina Valentinovna Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Evgenia Vladimirovna Inviyaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Elena Aleksandrovna Gorodnova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-(916)564-77-69
| | - Svetlana Vladimirovna Kolesnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Dmitry Anatolievich Kudlay
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel Igorevich Borovikov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Liubov Valentinovna Krechetova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Nataliya Vitalievna Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gennady Tikhonovich Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
46
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
47
|
Brunetti JE, Kitsera M, Muñoz-Fontela C, Rodríguez E. Use of Hu-PBL Mice to Study Pathogenesis of Human-Restricted Viruses. Viruses 2023; 15:228. [PMID: 36680271 PMCID: PMC9866769 DOI: 10.3390/v15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Different humanized mouse models have been developed to study human diseases such as autoimmune illnesses, cancer and viral infections. These models are based on the use of immunodeficient mouse strains that are transplanted with human tissues or human immune cells. Among the latter, mice transplanted with hematopoietic stem cells have been widely used to study human infectious diseases. However, mouse models built upon the transplantation of donor-specific mature immune cells are still under development, especially in the field of viral infections. These models can retain the unique immune memory of the donor, making them suitable for the study of correlates of protection upon natural infection or vaccination. Here, we will review some of these models and how they have been applied to virology research. Moreover, the future applications and the potential of these models to design therapies against human viral infections are discussed.
Collapse
Affiliation(s)
| | - Maksym Kitsera
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| | - Estefanía Rodríguez
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| |
Collapse
|
48
|
Matarazzo L, Bettencourt PJG. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Front Immunol 2023; 14:1172691. [PMID: 37168860 PMCID: PMC10166207 DOI: 10.3389/fimmu.2023.1172691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The success of the first licensed mRNA-based vaccines against COVID-19 has created a widespread interest on mRNA technology for vaccinology. As expected, the number of mRNA vaccines in preclinical and clinical development increased exponentially since 2020, including numerous improvements in mRNA formulation design, delivery methods and manufacturing processes. However, the technology faces challenges such as the cost of raw materials, the lack of standardization, and delivery optimization. MRNA technology may provide a solution to some of the emerging infectious diseases as well as the deadliest hard-to-treat infectious diseases malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), for which an effective vaccine, easily deployable to endemic areas is urgently needed. In this review, we discuss the functional structure, design, manufacturing processes and delivery methods of mRNA vaccines. We provide an up-to-date overview of the preclinical and clinical development of mRNA vaccines against infectious diseases, and discuss the immunogenicity, efficacy and correlates of protection of mRNA vaccines, with particular focus on research and development of mRNA vaccines against malaria, tuberculosis and HIV.
Collapse
Affiliation(s)
- Laura Matarazzo
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Paulo J. G. Bettencourt
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
- *Correspondence: Paulo J. G. Bettencourt,
| |
Collapse
|
49
|
An Immunological Review of SARS-CoV-2 Infection and Vaccine Serology: Innate and Adaptive Responses to mRNA, Adenovirus, Inactivated and Protein Subunit Vaccines. Vaccines (Basel) 2022; 11:vaccines11010051. [PMID: 36679897 PMCID: PMC9865970 DOI: 10.3390/vaccines11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which is defined by its positive-sense single-stranded RNA (ssRNA) structure. It is in the order Nidovirales, suborder Coronaviridae, genus Betacoronavirus, and sub-genus Sarbecovirus (lineage B), together with two bat-derived strains with a 96% genomic homology with other bat coronaviruses (BatCoVand RaTG13). Thus far, two Alphacoronavirus strains, HCoV-229E and HCoV-NL63, along with five Betacoronaviruses, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2, have been recognized as human coronaviruses (HCoVs). SARS-CoV-2 has resulted in more than six million deaths worldwide since late 2019. The appearance of this novel virus is defined by its high and variable transmission rate (RT) and coexisting asymptomatic and symptomatic propagation within and across animal populations, which has a longer-lasting impact. Most current therapeutic methods aim to reduce the severity of COVID-19 hospitalization and virus symptoms, preventing the infection from progressing from acute to chronic in vulnerable populations. Now, pharmacological interventions including vaccines and others exist, with research ongoing. The only ethical approach to developing herd immunity is to develop and provide vaccines and therapeutics that can potentially improve on the innate and adaptive system responses at the same time. Therefore, several vaccines have been developed to provide acquired immunity to SARS-CoV-2 induced COVID-19-disease. The initial evaluations of the COVID-19 vaccines began in around 2020, followed by clinical trials carried out during the pandemic with ongoing population adverse effect monitoring by respective regulatory agencies. Therefore, durability and immunity provided by current vaccines requires further characterization with more extensive available data, as is presented in this paper. When utilized globally, these vaccines may create an unidentified pattern of antibody responses or memory B and T cell responses that need to be further researched, some of which can now be compared within laboratory and population studies here. Several COVID-19 vaccine immunogens have been presented in clinical trials to assess their safety and efficacy, inducing cellular antibody production through cellular B and T cell interactions that protect against infection. This response is defined by virus-specific antibodies (anti-N or anti-S antibodies), with B and T cell characterization undergoing extensive research. In this article, we review four types of contemporary COVID-19 vaccines, comparing their antibody profiles and cellular aspects involved in coronavirus immunology across several population studies.
Collapse
|
50
|
Current progress in the development of prophylactic and therapeutic vaccines. SCIENCE CHINA. LIFE SCIENCES 2022; 66:679-710. [PMID: 36469218 PMCID: PMC9734355 DOI: 10.1007/s11427-022-2230-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.
Collapse
|