1
|
Ghosal S, Pradhan R, Singh S, Velayudhan A, Kerketta S, Parai D, Choudhary HR, Pattnaik M, Bhattacharya D, Pati S. One health intervention for the control and elimination of scrub typhus, anthrax, and brucellosis in Southeast Asia: a systematic review. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 30:100503. [PMID: 39507524 PMCID: PMC11539339 DOI: 10.1016/j.lansea.2024.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
The "One Health" (OH) approach, introduced in 2004, integrates human, animal, and environmental health to address emerging and re-emerging diseases. This study evaluates OH strategies used by southeast Asian countries for brucellosis, anthrax, and scrub typhus. We systematically searched Medline, EMBASE, ProQuest, and EBSCO-CINHL up to May 11, 2023, screened 711 articles, and included ten studies (five on brucellosis, four on anthrax, and two on scrub typhus). Key strategies identified included intersectoral collaboration, vaccination initiatives, and comprehensive surveillance systems for both humans and animals. Additional efforts were noted in improving health infrastructure and implementing preventive measures. The review underscores that although some progress has been made, a more integrated OH approach is crucial for effective prevention and management of zoonotic diseases in southeast Asia, highlighting the need for enhanced collaboration and coordinated efforts across sectors.
Collapse
Affiliation(s)
- Shishirendu Ghosal
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Rachita Pradhan
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sneha Singh
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | | | - Sushmita Kerketta
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Debaprasad Parai
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Hari Ram Choudhary
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Matrujyoti Pattnaik
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Debdutta Bhattacharya
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
- Faculty of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), India
| | - Sanghamitra Pati
- Dept. of Microbiology and One Health, ICMR-Regional Medical Research Centre, Bhubaneswar, India
- Faculty of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), India
| |
Collapse
|
2
|
Javed N, López-Denman AJ, Paradkar PN, Bhatti A. FlightTrackAI: a robust convolutional neural network-based tool for tracking the flight behaviour of Aedes aegypti mosquitoes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240923. [PMID: 39359469 PMCID: PMC11444788 DOI: 10.1098/rsos.240923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024]
Abstract
Monitoring the flight behaviour of mosquitoes is crucial for assessing their fitness levels and understanding their potential role in disease transmission. Existing methods for tracking mosquito flight behaviour are challenging to implement in laboratory environments, and they also struggle with identity tracking, particularly during occlusions. Here, we introduce FlightTrackAI, a robust convolutional neural network (CNN)-based tool for automatic mosquito flight tracking. FlightTrackAI employs CNN, a multi-object tracking algorithm, and interpolation to track flight behaviour. It automatically processes each video in the input folder without supervision and generates tracked videos with mosquito positions across the frames and trajectory graphs before and after interpolation. FlightTrackAI does not require a sophisticated setup to capture videos; it can perform excellently with videos recorded using standard laboratory cages. FlightTrackAI also offers filtering capabilities to eliminate short-lived objects such as reflections. Validation of FlightTrackAI demonstrated its excellent performance with an average accuracy of 99.9%. The percentage of correctly assigned identities after occlusions exceeded 91%. The data produced by FlightTrackAI can facilitate analysis of various flight-related behaviours, including flight distance and volume coverage during flights. This advancement can help to enhance our understanding of mosquito ecology and behaviour, thereby informing targeted strategies for vector control.
Collapse
Affiliation(s)
- Nouman Javed
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria3216, Australia
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria3220, Australia
| | - Adam J. López-Denman
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria3220, Australia
| | - Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria3220, Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria3216, Australia
| |
Collapse
|
3
|
Levesque ZA, Walsh MG, Webb CE, Zadoks RN, Brookes VJ. A scoping review of evidence of naturally occurring Japanese encephalitis infection in vertebrate animals other than humans, ardeid birds and pigs. PLoS Negl Trop Dis 2024; 18:e0012510. [PMID: 39365832 PMCID: PMC11482687 DOI: 10.1371/journal.pntd.0012510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/16/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
Japanese encephalitis virus (JEV) is the leading cause of human encephalitis in Asia. JEV is a vector-borne disease, mainly transmitted by Culex mosquitoes, with Ardeidae birds as maintenance hosts and pigs as amplifying hosts. Other vertebrate animal hosts have been suggested to play a role in the epidemiology of JEV. This scoping review followed PRISMA guidelines to identify species in which evidence of naturally occurring JEV infection was detected in vertebrates other than ardeid birds, pigs and people. Following systematic searches, 4372 records were screened, and data were extracted from 62 eligible studies. Direct evidence (virus, viral antigen or viral RNA) of JEV infection was identified in a variety of mammals and birds (not always identified to the species level), including bats, passerine birds (family Turdidae), livestock (cattle [Bos taurus] and a goat [Capra hircus]), carnivores (two meerkats [Suricata suricatta]), and one horse (Equus caballus). Bat families included Pteropodidae, Vespertilionidae, Rhinolophidae, Miniopteridae, Hipposideridae. Indirect evidence (antibodies) was identified in several mammalian and avian orders, as well as reported in two reptile species. However, a major limitation of the evidence of JEV infection identified in this review was diagnostic test accuracy, particularly for serological testing. Studies generally did not report diagnostic sensitivity or specificity which is critical given the potential for cross-reactivity in orthoflavivirus detection. We hypothesise that bats and passerine birds could play an underappreciated role in JEV epidemiology; however, development of diagnostic tests to differentiate JEV from other orthoflaviviruses will be essential for effective surveillance in these, as well as the companion and livestock species that could be used to evaluate JEV control measures in currently endemic regions.
Collapse
Affiliation(s)
- Zoë A. Levesque
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael G. Walsh
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- One Health Centre, The Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- The Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Cameron E. Webb
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Victoria J. Brookes
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Watkins JM, Burke JM. RNase L-induced bodies sequester subgenomic flavivirus RNAs to promote viral RNA decay. Cell Rep 2024; 43:114694. [PMID: 39196777 DOI: 10.1016/j.celrep.2024.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
Subgenomic flavivirus RNAs (sfRNAs) are structured RNAs encoded by flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze sfRNA production and localization using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) throughout West Nile virus, Zika virus, or dengue virus serotype 2 infection. We observe that sfRNAs are generated during the RNA replication phase of viral infection in the cytosol and accumulate in processing bodies (P-bodies), which contain RNA decay machinery such as XRN1 and Dcp1b. However, upon activation of the host antiviral endoribonuclease, ribonuclease L (RNase L), sfRNAs re-localize to ribonucleoprotein complexes known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a functional role for RLBs in enhancing the cell-mediated decay of viral RNA by sequestering functional viral RNA decay products.
Collapse
Affiliation(s)
- J Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - James M Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| |
Collapse
|
5
|
Naveca FG, Almeida TAPD, Souza V, Nascimento V, Silva D, Nascimento F, Mejía M, Oliveira YSD, Rocha L, Xavier N, Lopes J, Maito R, Meneses C, Amorim T, Fé L, Camelo FS, Silva SCDA, Melo AXD, Fernandes LG, Oliveira MAAD, Arcanjo AR, Araújo G, André Júnior W, Carvalho RLCD, Rodrigues R, Albuquerque S, Mattos C, Silva C, Linhares A, Rodrigues T, Mariscal F, Morais MA, Presibella MM, Marques NFQ, Paiva A, Ribeiro K, Vieira D, Queiroz JADS, Passos-Silva AM, Abdalla L, Santos JH, Figueiredo RMPD, Cruz ACR, Casseb LN, Chiang JO, Frutuoso LV, Rossi A, Freitas L, Campos TDL, Wallau GL, Moreira E, Lins Neto RD, Alexander LW, Sun Y, Filippis AMBD, Gräf T, Arantes I, Bento AI, Delatorre E, Bello G. Human outbreaks of a novel reassortant Oropouche virus in the Brazilian Amazon region. Nat Med 2024:10.1038/s41591-024-03300-3. [PMID: 39293488 DOI: 10.1038/s41591-024-03300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The Brazilian western Amazon is experiencing its largest laboratory-confirmed Oropouche virus (OROV) outbreak, with more than 6,300 reported cases between 2022 and 2024. In this study, we sequenced and analyzed 382 OROV genomes from human samples collected in Amazonas, Acre, Rondônia and Roraima states, between August 2022 and February 2024, to uncover the origin and genetic evolution of OROV in the current outbreak. Genomic analyses revealed that the upsurge of OROV cases in the Brazilian Amazon coincides with spread of a novel reassortant lineage containing the M segment of viruses detected in the eastern Amazon region (2009-2018) and the L and S segments of viruses detected in Peru, Colombia and Ecuador (2008-2021). The novel reassortant likely emerged in the Amazonas state between 2010 and 2014 and spread through long-range dispersion events during the second half of the 2010s. Phylodynamics reconstructions showed that the current OROV spread was driven mainly by short-range (< 2 km) movements consistent with the flight range of vectors. Nevertheless, a substantial proportion (22%) of long-range (>10 km) OROV migrations were also detected, consistent with viral dispersion by humans. Our data provide a view of the unprecedented spread and evolution of OROV in the Brazilian western Amazon region.
Collapse
Affiliation(s)
- Felipe Gomes Naveca
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil.
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Tatiana Amaral Pires de Almeida
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, FCecon, Manaus, Brazil
| | - Victor Souza
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Valdinete Nascimento
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Dejanane Silva
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Fernanda Nascimento
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Matilde Mejía
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Yasmin Silva de Oliveira
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Luisa Rocha
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Natana Xavier
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Janis Lopes
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Rodrigo Maito
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Cátia Meneses
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Tatyana Amorim
- Fundação de Vigilância em Saúde - Dra. Rosemary Costa Pinto, Manaus, Brazil
| | - Luciana Fé
- Fundação de Vigilância em Saúde - Dra. Rosemary Costa Pinto, Manaus, Brazil
| | | | | | | | | | | | - Ana Ruth Arcanjo
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Brazil
| | - Guilherme Araújo
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Brazil
| | | | | | - Rosiane Rodrigues
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | | | - Cristiane Mattos
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Ciciléia Silva
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Aline Linhares
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Taynã Rodrigues
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Francy Mariscal
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Márcia Andréa Morais
- Núcleo de Doenças de Transmissão Vetorial, Secretaria Estadual de Saúde do Acre, Rio Branco, Brazil
| | | | | | - Anne Paiva
- Coordenação Geral de Laboratórios de Saúde Pública - CGLAB, Ministério da Saúde, Brasília, Brazil
| | - Karina Ribeiro
- Coordenação Geral de Laboratórios de Saúde Pública - CGLAB, Ministério da Saúde, Brasília, Brazil
| | - Deusilene Vieira
- Laboratório de Virologia Molecular, Fiocruz Rondônia, Porto Velho, Brazil
| | | | | | | | | | | | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Livia Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Livia Vinhal Frutuoso
- Coordenação-Geral de Vigilância de Arboviroses - CGARB, Departamento de Doenças Transmissíveis, Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | - Agata Rossi
- Laboratório de Genômica e Ecologia Viral, Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Lucas Freitas
- GISAID Global Data Science Initiative, Munich, Germany
| | | | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães, Fiocruz, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | | | | | - Laura W Alexander
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yining Sun
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | - Ighor Arantes
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana I Bento
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edson Delatorre
- Laboratório de Genômica e Ecologia Viral, Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Williamson ED, Kilgore PB, Hendrix EK, Neil BH, Sha J, Chopra AK. Progress on the research and development of plague vaccines with a call to action. NPJ Vaccines 2024; 9:162. [PMID: 39242587 PMCID: PMC11379892 DOI: 10.1038/s41541-024-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
There is a compelling demand for approved plague vaccines due to the endemicity of Yersinia pestis and its potential for pandemic spread. Whilst substantial progress has been made, we recommend that the global funding and health security systems should work urgently to translate some of the efficacious vaccines reviewed herein to expedite clinical development and to prevent future disastrous plague outbreaks, particularly caused by antimicrobial resistant Y. pestis strains.Content includes material subject to Crown Copyright © 2024.This is an open access article under the Open Government License ( http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ ).
Collapse
Affiliation(s)
- E Diane Williamson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - Paul B Kilgore
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Emily K Hendrix
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Blake H Neil
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, TX, 77555, USA.
- Galveston National Laboratory, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
7
|
Pohl E, Lee SR. Local and Global Public Health and Emissions from Concentrated Animal Feeding Operations in the USA: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:916. [PMID: 39063493 PMCID: PMC11276819 DOI: 10.3390/ijerph21070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Up to 1.6 million tons of waste is produced annually by each of more than 21,000 concentrated animal feeding operations (CAFOs) located in the United States (USA). These operations give rise to externalities, including adverse local and global health impacts from CAFO waste emissions, which can potentially outweigh their economic viability. However, a shortage of evidence synthesis research exclusively on the impacts of USA-based CAFO waste emissions may hinder effective policy development. This scoping review (ScR) study, adhering to the guidelines from the Joanna Briggs Institute, conducted a search in databases including Scopus, Web of Science, PubMed, and Embase in May 2020, resulting in ten publications that met the inclusion criteria. The results suggest possible exposure of CAFO workers to multidrug-resistant Staphylococcus aureus (MDRSA), campylobacteriosis, and cryptosporidiosis. Communities near CAFOs experienced higher rates of adverse health impacts compared to those in non-CAFO areas, with patterns suggesting that proximity may correlate with increased odds of detrimental health effects. Implicit global health threats include methicillin-resistant Staphylococcus aureus (MRSA), MDRSA, campylobacteriosis, tuberculosis, and cryptosporidiosis. These studies provide foundational insights into CAFO proximity, density patterns, and adverse public health effects, indicating a need for evidence-informed environmental health policies to minimize local and global risks.
Collapse
Affiliation(s)
- Elise Pohl
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sang-Ryong Lee
- Aero-Soil Laboratory, Department of Biological and Environmental Science, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
8
|
Taheri S, Ruiz-López MJ, Magallanes S, Figuerola J. Input precision, output excellence: the importance of data quality control and method selection in disease risk mapping. THE LANCET REGIONAL HEALTH. EUROPE 2024; 42:100944. [PMID: 38831798 PMCID: PMC11144752 DOI: 10.1016/j.lanepe.2024.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Affiliation(s)
- Shirin Taheri
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
| | - María José Ruiz-López
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
9
|
Bartlow AW, Middlebrook EA, Dichosa AEK, Kayiwa J, Nassuna CA, Kiggundu G, Fair JM. Ongoing Cooperative Engagement Facilitates Agile Pandemic and Outbreak Response: Lessons Learned Through Cooperative Engagement Between Uganda and the United States. Health Secur 2024; 22:223-234. [PMID: 38407830 DOI: 10.1089/hs.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Pathogens threaten human lives and disrupt economies around the world. This has been clearly illustrated by the current COVID-19 pandemic and outbreaks in livestock and food crops. To manage pathogen emergence and spread, cooperative engagement programs develop and strengthen biosafety, biosecurity, and biosurveillance capabilities among local researchers to detect pathogens. In this case study, we describe the efforts of a collaboration between the Los Alamos National Laboratory and the Uganda Virus Research Institute, the primary viral diagnostic laboratory in Uganda, to implement and ensure the sustainability of sequencing for biosurveillance. We describe the process of establishing this capability along with the lessons learned from both sides of the partnership to inform future cooperative engagement efforts in low- and middle-income countries. We found that by strengthening sequencing capabilities at the Uganda Virus Research Institute before the COVID-19 pandemic, the institute was able to successfully sequence SARS-CoV-2 samples and provide data to the scientific community. We highlight the need to strengthen and sustain capabilities through in-country training, collaborative research projects, and trust.
Collapse
Affiliation(s)
- Andrew W Bartlow
- Andrew W. Bartlow, PhD, is Scientists, Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM
| | - Earl A Middlebrook
- Earl A. Middlebrook, PhD, is Scientists, Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM
| | - Armand E K Dichosa
- Armand E. K. Dichosa, PhD, is Scientists, Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM
| | - John Kayiwa
- John Kayiwa, PhD, is a Senior Laboratory Manager, Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Charity A Nassuna
- Charity A. Nassuna is Laboratory Technologists, Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Gladys Kiggundu
- Gladys Kiggundu is Laboratory Technologists, Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jeanne M Fair
- Jeanne M. Fair, PhD, is Scientists, Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM
| |
Collapse
|
10
|
Leal Filho W, Dinis MAP, Lange Salvia A, Sierra J, Vasconcelos H, Henderson-Wilson C, Diatta S, Kumar TVL, Meirelles MG, Carvalho F. Assessing climate change and health provisions among staff in higher education institutions: A preliminary investigation. PLoS One 2024; 19:e0304019. [PMID: 38771748 PMCID: PMC11108151 DOI: 10.1371/journal.pone.0304019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Climate change can have direct and indirect effects on human health. Direct effects can include an increase in extreme weather events, such as heatwaves and floods, as well as an increase in the spread of vector-borne and infectious diseases, which may lead to a set of health problems and diseases. Indirect effects can include changes in air quality, water availability, and food production and distribution. These changes can lead to an increase in respiratory problems, malnutrition, and increased food insecurity. There is a perceived need to investigate the extent to which Higher Education Institutions (HEIs) are engaged in efforts to foster a greater understanding of the connections between climate change and health. In this context, this preliminary investigation offers an overview of the relationships between climate change and health. By means of a survey among teaching staff and researchers at HEIs from 42 countries across all continents working on the connection between climate change and health. The study has investigated the extent to which current provisions for education and training on the connection between climate change and health are being considered and how current needs in terms of policy development, research, and training are being met. A series of case studies illustrate how universities worldwide are actively developing strategies and implementing measures to address climate change and health. The study concludes by providing specific recommendations aimed at facilitating the handling of issues related to climate change and health in a higher education context.
Collapse
Affiliation(s)
- Walter Leal Filho
- European School of Sustainability Science and Research (ESSSR), Hamburg University of Applied Sciences, Research and Transfer Centre “Sustainable Development and Climate Change Management”, Interdisciplinary Expert Centre for Climate Change and Health (IECCCH), Hamburg, Germany
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Maria Alzira Pimenta Dinis
- Fernando Pessoa Research, Innovation and Development Institute (FP-I3ID), University Fernando Pessoa (UFP), Porto, Portugal
- Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
| | - Amanda Lange Salvia
- European School of Sustainability Science and Research (ESSSR), Hamburg University of Applied Sciences, Hamburg, Germany
| | - Javier Sierra
- Department of Applied Economics, Faculty of Law, Paseo Tomas y Valiente, Research Center on Global Governance, Educational Research Institute, University of Salamanca, Salamanca, Spain
- European School of Sustainability Science and Research; Hamburg University of Applied Sciences, Hamburg, Germany
| | - Helena Vasconcelos
- Faculty of Sciences and Technology, University of the Azores, Ponta Delgada, Azores, Portugal
- OKEANOS—R&D Centre, University of the Azores, Horta, Portugal
| | - Claire Henderson-Wilson
- Health Nature Sustainability Research Group, School of Health and Social Development, Deakin University, Geelong, Australia
| | - Samo Diatta
- Laboratoire d’Océanographie des Sciences de l’Environnement et du Climat, Departement de Physique, Université Assane Seck de Ziguinchor, Ziguinchor, Senegal
| | - T. V. Lakshmi Kumar
- Centre for Atmospheric Sciences and Climate Studies, SRM Institute of Science and Technology, Chennai, India
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Maria Gabriela Meirelles
- Faculty of Science and Technology (FCT), University of the Azores, Ponta Delgada, Azores, Portugal
- Center IɛD Okeanos, University of the Azores, Horta, Azores, Portugal
| | - Fernanda Carvalho
- Portuguese Institute for Sea and Atmosphere, Afonso Chaves Observatory, Ponta Delgada, São Miguel, Azores, Portugal
| |
Collapse
|
11
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
12
|
Morris R, Wang S. Building a pathway to One Health surveillance and response in Asian countries. SCIENCE IN ONE HEALTH 2024; 3:100067. [PMID: 39077383 PMCID: PMC11262298 DOI: 10.1016/j.soh.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 07/31/2024]
Abstract
To detect and respond to emerging diseases more effectively, an integrated surveillance strategy needs to be applied to both human and animal health. Current programs in Asian countries operate separately for the two sectors and are principally concerned with detection of events that represent a short-term disease threat. It is not realistic to either invest only in efforts to detect emerging diseases, or to rely solely on event-based surveillance. A comprehensive strategy is needed, concurrently investigating and managing endemic zoonoses, studying evolving diseases which change their character and importance due to influences such as demographic and climatic change, and enhancing understanding of factors which are likely to influence the emergence of new pathogens. This requires utilisation of additional investigation tools that have become available in recent years but are not yet being used to full effect. As yet there is no fully formed blueprint that can be applied in Asian countries. Hence a three-step pathway is proposed to move towards the goal of comprehensive One Health disease surveillance and response.
Collapse
Affiliation(s)
- Roger Morris
- Massey University EpiCentre and EpiSoft International Ltd, 76/100 Titoki Street, Masterton 5810, New Zealand
| | - Shiyong Wang
- Health, Nutrition and Population, World Bank Group, Washington, DC, USA
| |
Collapse
|
13
|
Watkins JM, Burke JM. RNase L-induced bodies sequester subgenomic flavivirus RNAs and re-establish host RNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586660. [PMID: 38585896 PMCID: PMC10996650 DOI: 10.1101/2024.03.25.586660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Subgenomic flavivirus RNAs (sfRNAs) are structured RNA elements encoded in the 3'-UTR of flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze the production of sfRNAs using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) and super-resolution microscopy during West Nile virus, Zika virus, or Dengue virus serotype 2 infection. We show that sfRNAs are initially localized diffusely in the cytosol or in processing bodies (P-bodies). However, upon activation of the host antiviral endoribonuclease, Ribonuclease L (RNase L), nearly all sfRNAs re-localize to antiviral biological condensates known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a role of RLBs in promoting viral RNA decay, demonstrating the complex host-pathogen interactions at the level of RNA decay and biological condensation.
Collapse
Affiliation(s)
- J. Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
| |
Collapse
|
14
|
Zhang L, Guo W, Lv C. Modern technologies and solutions to enhance surveillance and response systems for emerging zoonotic diseases. SCIENCE IN ONE HEALTH 2023; 3:100061. [PMID: 39077381 PMCID: PMC11262286 DOI: 10.1016/j.soh.2023.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/29/2023] [Indexed: 07/31/2024]
Abstract
Background Zoonotic diseases originating in animals pose a significant threat to global public health. Recent outbreaks, such as coronavirus disease 2019 (COVID-19), have caused widespread illness, death, and socioeconomic disruptions worldwide. To cope with these diseases effectively, it is crucial to strengthen surveillance capabilities and establish rapid response systems. Aim The aim of this review to examine the modern technologies and solutions that have the potential to enhance zoonotic disease surveillance and outbreak responses and provide valuable insights into how cutting-edge innovations could be leveraged to prevent, detect, and control emerging zoonotic disease outbreaks. Herein, we discuss advanced tools including big data analytics, artificial intelligence, the Internet of Things, geographic information systems, remote sensing, molecular diagnostics, point-of-care testing, telemedicine, digital contact tracing, and early warning systems. Results These technologies enable real-time monitoring, the prediction of outbreak risks, early anomaly detection, rapid diagnosis, and targeted interventions during outbreaks. When integrated through collaborative partnerships, these strategies can significantly improve the speed and effectiveness of zoonotic disease control. However, several challenges persist, particularly in resource-limited settings, such as infrastructure limitations, costs, data integration and training requirements, and ethical implementation. Conclusion With strategic planning and coordinated efforts, modern technologies and solutions offer immense potential to bolster surveillance and outbreak responses, and serve as a critical resource against emerging zoonotic disease threats worldwide.
Collapse
Affiliation(s)
- Li Zhang
- Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Guo
- Huazhong Agricultural University, Wuhan 430070, China
| | - Chenrui Lv
- Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
16
|
Maia LJ, de Oliveira CH, Silva AB, Souza PAA, Müller NFD, Cardoso JDC, Ribeiro BM, de Abreu FVS, Campos FS. Arbovirus surveillance in mosquitoes: Historical methods, emerging technologies, and challenges ahead. Exp Biol Med (Maywood) 2023; 248:2072-2082. [PMID: 38183286 PMCID: PMC10800135 DOI: 10.1177/15353702231209415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
Arboviruses cause millions of infections each year; however, only limited options are available for treatment and pharmacological prevention. Mosquitoes are among the most important vectors for the transmission of several pathogens to humans. Despite advances, the sampling, viral detection, and control methods for these insects remain ineffective. Challenges arise with the increase in mosquito populations due to climate change, insecticide resistance, and human interference affecting natural habitats, which contribute to the increasing difficulty in controlling the spread of arboviruses. Therefore, prioritizing arbovirus surveillance is essential for effective epidemic preparedness. In this review, we offer a concise historical account of the discovery and monitoring of arboviruses in mosquitoes, from mosquito capture to viral detection. We then analyzed the advantages and limitations of these traditional methods. Furthermore, we investigated the potential of emerging technologies to address these limitations, including the implementation of next-generation sequencing, paper-based devices, spectroscopic detectors, and synthetic biosensors. We also provide perspectives on recurring issues and areas of interest such as insect-specific viruses.
Collapse
Affiliation(s)
- Luis Janssen Maia
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Arthur Batista Silva
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
| | - Pedro Augusto Almeida Souza
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Nicolas Felipe Drumm Müller
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Jader da Cruz Cardoso
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria Estadual de Saúde do Rio Grande do Sul, Porto Alegre 90610-000, Brasil
| | - Bergmann Morais Ribeiro
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | | | - Fabrício Souza Campos
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| |
Collapse
|
17
|
El-Demerdash AS, Mowafy RE, Fahmy HA, Matter AA, Samir M. Pathognomonic features of Pasteurella multocida isolates among various avian species in Sharkia Governorate, Egypt. World J Microbiol Biotechnol 2023; 39:335. [PMID: 37807011 PMCID: PMC10560635 DOI: 10.1007/s11274-023-03774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
The present study aimed to isolate Pasteurella multocida (P. multocida) from pulmonary cases in several avian species and then investigate the histopathological features, antimicrobial resistance determinants, virulence characteristics, and risk factors analysis of the isolates in each species in correlation with epidemiological mapping of pasteurellosis in Sharkia Governorate, Egypt. The obtained data revealed a total occurrence of 9.4% (30/317) of P. multocida among the examined birds (chickens, ducks, quails, and turkeys). The incidence rate was influenced by avian species, climate, breed, age, clinical signs, and sample type. Antimicrobial susceptibility testing revealed that all isolates were sensitive to florfenicol and enrofloxacin, while 86.6 and 73.3% of the isolates displayed resistance to amoxicillin-clavulanic acid and erythromycin, respectively. All of the P. multocida isolates showed a multiple-drug resistant pattern with an average index of 0.43. Molecular characterization revealed that the oma87, sodA, and ptfA virulence genes were detected in the all examined P. multocida isolates. The ermX (erythromycin), blaROB-1 (β-lactam), and mcr-1(colistin) resistance genes were present in 60, 46.6, and 40% of the isolates, respectively. Ducks and quails were the most virulent and harbored species of antimicrobial-resistant genes. These results were in parallel with postmortem and histopathological examinations which detected more severe interstitial pneumonia lesions in the trachea and lung, congestion, and cellular infiltration especially in ducks. Epidemiological mapping revealed that the Fakous district was the most susceptible to pasteurellosis infection. Thus, farmers are recommended to monitor their flocks for signs of respiratory disease, seek veterinary care promptly if any birds are sick, and avoid the random usage of antibiotics. In conclusion, this study presents a comprehensive picture of the risk factors in correlation to the pathognomonic characteristics of P. multocida infection in poultry sectors to help in developing more effective strategies for prevention and control.
Collapse
Affiliation(s)
- Azza S El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig, 44516, Egypt.
| | - Rehab E Mowafy
- Department of Pathology, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig, 44516, Egypt
| | - Hanan A Fahmy
- Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Dokki, Giza, 12618, Egypt
| | - Ahmed A Matter
- Agricultural Research Centre, Animal Health Research Institute, Reference Laboratory for Veterinary Quality Control On Poultry Production, Gamasa, 12618, Egypt
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig, 44511, Egypt
| |
Collapse
|
18
|
Ghil M. Climate, zoonosis, and interdisciplinarity. Proc Natl Acad Sci U S A 2023; 120:e2311575120. [PMID: 37703298 PMCID: PMC10523487 DOI: 10.1073/pnas.2311575120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Affiliation(s)
- Michael Ghil
- Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and Institut Pierre-Simon Laplace), École Normale Supérieure and PSL University, 75231Paris Cedex 05, France
- Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles, Los Angeles, CA90095-1567
- Departments of Mathematics and of Finance, Imperial College London, LondonSW7 2BX, United Kingdom
| |
Collapse
|
19
|
Rakotoarinia MR, Seidou O, Lapen DR, Leighton PA, Ogden NH, Ludwig A. Future land-use change predictions using Dyna-Clue to support mosquito-borne disease risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:815. [PMID: 37286856 PMCID: PMC10246872 DOI: 10.1007/s10661-023-11394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Mosquitoes are known vectors for viral diseases in Canada, and their distribution is driven by climate and land use. Despite that, future land-use changes have not yet been used as a driver in mosquito distribution models in North America. In this paper, we developed land-use change projections designed to address mosquito-borne disease (MBD) prediction in a 38 761 km2 area of Eastern Ontario. The landscape in the study area is marked by urbanization and intensive agriculture and hosts a diverse mosquito community. The Dyna-CLUE model was used to project land-use for three time horizons (2030, 2050, and 2070) based on historical trends (from 2014 to 2020) for water, forest, agriculture, and urban land uses. Five scenarios were generated to reflect urbanization, agricultural expansion, and natural areas. An ensemble of thirty simulations per scenario was run to account for land-use conversion uncertainty. The simulation closest to the average map generated was selected to represent the scenario. A concordance matrix generated using map pair analysis showed a good agreement between the simulated 2020 maps and 2020 observed map. By 2050, the most significant changes are predicted to occur mainly in the southeastern region's rural and forested areas. By 2070, high deforestation is expected in the central west. These results will be integrated into risk models predicting mosquito distribution to study the possibility of humans' increased exposure risk to MBDs.
Collapse
Affiliation(s)
- Miarisoa Rindra Rakotoarinia
- Département de Pathologie Et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Ousmane Seidou
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Patrick A Leighton
- Département de Pathologie Et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Nicholas H Ogden
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3190 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Antoinette Ludwig
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3190 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| |
Collapse
|
20
|
de Araujo-Oliveira A, Alencar J, de Almeida Marques W, Teixeira Serdeiro M, Dos Santos Mallet JR. Monthly abundance and diversity of mosquitoes (Diptera: Culicidae) in an Atlantic Forest area of Rio de Janeiro, Brazil. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:443-452. [PMID: 36896663 DOI: 10.1093/jme/tjad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 05/13/2023]
Abstract
Several mosquito species in the Atlantic Forest are yellow fever vectors; therefore, this biome can represent a potential risk to the human population. Studies on mosquitoes from predominantly sylvatic areas produce valuable data for understanding the emergence of new epidemics. In addition, they can elucidate environmental components favoring or hindering biodiversity and species distribution. Our study aimed to evaluate the monthly distribution, composition, diversity, and influence of seasonal periods (dry and rainy) on the mosquito fauna. We used CDC light traps at different levels in a forest area bordering a Conservation Unit of Nova Iguaçu in the state of Rio de Janeiro, Brazil. Specimens were collected from August 2018 to July 2019 by installing traps in sampling sites under different vegetation covers. We detected some species of epidemiological importance in terms of arbovirus transmission. A total of 4,048 specimens representing 20 different species were collected. Among them, Aedes (Stg.) albopictus Skuse, 1894 showed recurrent association with the closest level to human residences and Haemagogus (Con.) leucocelaenus Dyar and Shannon, 1924 with the most distant levels. Since these mosquitoes are possible vectors of yellow fever, monitoring the area is extremely important. Under the studied conditions, the mosquito populations were directly influenced by dry and rainy periods, posing a risk to the nearby resident population.
Collapse
Affiliation(s)
- Alexandre de Araujo-Oliveira
- Laboratório Interdisciplinar em Vigilância Entomológica em Diptera e Hemiptera, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil, 4365 - Manguinhos. CEP: 21040-900, Rio de Janeiro, Brasil
- Programa de Pós-graduação em Medicina Tropical, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil, 4365 - Manguinhos. CEP: 21040-900, Rio de Janeiro, Brasil
| | - Jerônimo Alencar
- Laboratório de Diptera, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil, 4365 - Manguinhos. CEP: 21040-900, Rio de Janeiro, Brasil
| | - William de Almeida Marques
- Laboratório de Biologia de Insetos e Parasitos, Instituto de Biofísica Médica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373 CCS: Bloco G1-19, Cidade Universitária, CEP: 21941-902, Rio de Janeiro, Brasil
| | - Michele Teixeira Serdeiro
- Laboratório de Diptera, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil, 4365 - Manguinhos. CEP: 21040-900, Rio de Janeiro, Brasil
| | - Jacenir Reis Dos Santos Mallet
- Laboratório Interdisciplinar em Vigilância Entomológica em Diptera e Hemiptera, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil, 4365 - Manguinhos. CEP: 21040-900, Rio de Janeiro, Brasil
- Universidade Iguaçu (UNIG), Avenida Abílio Augusto Távora, 2134 - Luz, CEP: 26260-045, Nova Iguaçu, Rio de Janeiro, Brasil
| |
Collapse
|
21
|
Zang C, Wang X, Cheng P, Liu L, Guo X, Wang H, Lou Z, Lei J, Wang W, Wang Y, Gong M, Liu H. Evaluation of the evolutionary genetics and population structure of Culex pipiens pallens in Shandong province, China based on knockdown resistance (kdr) mutations and the mtDNA-COI gene. BMC Genomics 2023; 24:145. [PMID: 36964519 PMCID: PMC10039558 DOI: 10.1186/s12864-023-09243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide application were largely applied to control the mosquito-mediated spread of these diseases, contributing to increasing rates of resistance in the mosquito population. The voltage-gated sodium channel (Vgsc) gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). While these kdr mutations are known to be critical to pyrethroid resistance, their evolutionary origins remain poorly understood. Clarifying the origins of these mutations is potential to guide further vector control and disease prevention efforts. Accordingly, the present study was designed to study the evolutionary genetics of kdr mutations and their association with the population structure of Cx. p. pallens in Shandong province, China. METHODS Adult Culex females were collected from Shandong province and subjected to morphological identification under a dissection microscope. Genomic DNA were extracted from the collected mosquitoes, the Vgsc gene were amplified via PCR and sequenced to assess kdr allele frequencies, intron polymorphisms, and kdr codon evolution. In addition, population genetic diversity and related population characteristics were assessed by amplifying and sequencing the mitochondrial cytochrome C oxidase I (COI) gene. RESULTS Totally, 263 Cx. p. pallens specimens were used for DNA barcoding and sequencing analyses to assess kdr allele frequencies in nine Culex populations. The kdr codon L1014 in the Vgsc gene identified two non-synonymous mutations (L1014F and L1014S) in the analyzed population. These mutations were present in the eastern hilly area and west plain region of Shandong Province. However, only L1014F mutation was detected in the southern mountainous area and Dongying city of Shandong Province, where the mutation frequency was low. Compared to other cities, population in Qingdao revealed significant genetic differentiation. Spatial kdr mutation patterns are likely attributable to some combination of prolonged insecticide-mediated selection coupled with the genetic isolation of these mosquito populations. CONCLUSIONS These data suggest that multiple kdr alleles associated with insecticide resistance are present within the Cx. p. pallens populations of Shandong Province, China. The geographical distributions of kdr mutations in this province are likely that the result of prolonged and extensive insecticide application in agricultural contexts together with frequent mosquito population migrations. In contrast, the low-frequency kdr mutation detected in central Shandong Province populations may originate from the limited selection pressure in this area and the relative genetic isolation. Overall, the study compares the genetic patterns revealed by a functional gene with a neutral marker and demonstrates the combined impact of demographic and selection factors on population structure.
Collapse
Affiliation(s)
- Chuanhui Zang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Peng Cheng
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Lijuan Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xiuxia Guo
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Haifang Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Ziwei Lou
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Jingjing Lei
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Wenqian Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Yiting Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Maoqing Gong
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| | - Hongmei Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Johnson E, Campos-Cerqueira M, Jumail A, Yusni ASA, Salgado-Lynn M, Fornace K. Applications and advances in acoustic monitoring for infectious disease epidemiology. Trends Parasitol 2023; 39:386-399. [PMID: 36842917 DOI: 10.1016/j.pt.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/28/2023]
Abstract
Emerging infectious diseases continue to pose a significant burden on global public health, and there is a critical need to better understand transmission dynamics arising at the interface of human activity and wildlife habitats. Passive acoustic monitoring (PAM), more typically applied to questions of biodiversity and conservation, provides an opportunity to collect and analyse audio data in relative real time and at low cost. Acoustic methods are increasingly accessible, with the expansion of cloud-based computing, low-cost hardware, and machine learning approaches. Paired with purposeful experimental design, acoustic data can complement existing surveillance methods and provide a novel toolkit to investigate the key biological parameters and ecological interactions that underpin infectious disease epidemiology.
Collapse
Affiliation(s)
- Emilia Johnson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | - Amaziasizamoria Jumail
- Danau Girang Field Centre c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah, Malaysia; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Ashraft Syazwan Ahmady Yusni
- Danau Girang Field Centre c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah, Malaysia; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Milena Salgado-Lynn
- Danau Girang Field Centre c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah, Malaysia; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; Wildlife Health, Genetic and Forensic Laboratory, c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah
| | - Kimberly Fornace
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK; Centre for Climate Change and Planetary Health and Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; National University Health System, Singapore 117549, Singapore
| |
Collapse
|
23
|
Yeh KB, Parekh FK, Mombo I, Leimer J, Hewson R, Olinger G, Fair JM, Sun Y, Hay J. Climate change and infectious disease: A prologue on multidisciplinary cooperation and predictive analytics. Front Public Health 2023; 11:1018293. [PMID: 36741948 PMCID: PMC9895942 DOI: 10.3389/fpubh.2023.1018293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative "all call," we can enhance our ability to engage and resolve current and emerging problems.
Collapse
Affiliation(s)
| | | | - Illich Mombo
- CIRMF, Franceville, Gabon, Central African Republic
| | | | - Roger Hewson
- UK Health Security Agency, Salisbury, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Jeanne M. Fair
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Yijun Sun
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States
| | - John Hay
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States
| |
Collapse
|
24
|
Ngare IO, Gikonyo SW, Gathuku GN, Ogutu EA. Review: Climate change resilience disconnect in rural communities in coastal Kenya. A rhetoric communication discord proliferated by COVID-19 pandemic. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.943181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The world has been hit by consequential pandemics in the past two millennia. The COVID-19 pandemic has taken center stage, paralyzing vulnerable communities in the global south impacted by unprecedented climate vagaries. The focus of this study is COVID-19 and climate resilience communication rhetoric. In this context, we embed this study in response to the resilience of rural livelihoods to the COVID-19 crisis and climate resilience education communication rhetoric. We posit our review based on the following questions: Has COVID-19 worsened the climate resilience pathway for rural communities in coastal Kenya? Is the COVID-19 pandemic a proxy for climate resilience in rural livelihoods? How does COVID-19 communication rhetoric undermine climate resilience for vulnerable coastal communities in Kenya? Through a resilient theoretical paradigm, we enclose our view based on the existing literature along with climate resilience and COVID-19 proliferation. In light of the current state of COVID-19, the focus has shifted to the pandemic that will cover climate resilience. From the review, climate resilience pathway has been impacted by corona virus with noted funding response variations, in addition, even with the corona virus pandemic, climate resilience communication should be on-going rather than sporadic. Increasing the discursive process about climate change challenges is critical among Kenyan coastal communities. We recommend inclusion of climate resilience communication in existing policy frameworks as a salient solution to notable information discourse bottlenecks.
Collapse
|
25
|
de Mello CF, Figueiró R, Roque RA, Maia DA, da Costa Ferreira V, Guimarães AÉ, Alencar J. Spatial distribution and interactions between mosquitoes (Diptera: Culicidae) and climatic factors in the Amazon, with emphasis on the tribe Mansoniini. Sci Rep 2022; 12:16214. [PMID: 36171406 PMCID: PMC9519922 DOI: 10.1038/s41598-022-20637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
This work aimed to evaluate the spatial distribution of mosquitoes in different seasonal periods and the interaction between climatic factors and the abundance of mosquitoes, especially those belonging to the tribe Mansoniini in the area surrounding the Amazon hydroelectric production region (Jirau-HP) of Rondônia state, Brazil. Mosquito specimens were collected in May, July, October, and December 2018, and April, July, September, and November 2019, over periods of three alternating days during the hours of 6:00 p.m. to 8:00 p.m. Mosquito sampling was performed using automatic CDC and Shannon light traps. Canonical correspondence analysis (CCA), combined with Monte Carlo permutations, was used to evaluate the correlation between climatic variables and species distribution. In addition, non-metric multidimensional scaling (NMDS) was used to verify the similarity among the sampled communities from the different collections. After analyzing the total mosquito fauna at all sampling points, 46,564 specimens were identified, with Mansonia dyari showing the highest relative abundance in 2018 (35.9%). In contrast, Mansonia titillans had the highest relative abundance in 2019 (25.34%), followed by Mansonia iguassuensis (24.26%). The CCA showed that maximum temperature significantly influenced the distribution of mosquito populations in the study area (p = 0.0406). The NMDS showed that sampling carried out in the rainy and dry seasons formed two distinct groups. There was a significant correlation between species richness and cumulative precipitation 15 days before the sampling period (R2 = 58.39%; p = 0.0272). Thus, both temperature and precipitation affected mosquito population dynamics. The effect of rainfall on mosquito communities may be due to variations in habitat availability for immature forms.
Collapse
Affiliation(s)
- Cecilia Ferreira de Mello
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.,Programa de Pós-Graduação em Biologia Animal, UFRRJ, Rd BR 465, Km 7, Seropédica, RJ, CEP 23897-000, Brazil
| | - Ronaldo Figueiró
- Departamento de Biologia, Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro, Avenida Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP 23070-200, Brazil
| | - Rosemary Aparecida Roque
- Instituto Nacional de Pesquisas da Amazônia, INPA, Avenida André Araújo, n. 2936, Petrópolis, Manaus, Amazonas, CEP 69067-375, Brazil
| | - Daniele Aguiar Maia
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Vânia da Costa Ferreira
- Energia Sustentável do Brasil, ESBR, Rodovia BR- 364, KM 824 S/N, Distrito de Jaci Paraná, Porto Velho, Rondônia, 76840-000, Brazil
| | - Anthony Érico Guimarães
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Jeronimo Alencar
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| |
Collapse
|
26
|
Jecker NS, Atuire CA, Kenworthy N. Realizing Ubuntu in Global Health: An African Approach to Global Health Justice. Public Health Ethics 2022. [PMCID: PMC9494480 DOI: 10.1093/phe/phac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has highlighted the question, ‘What do we owe each other as members of a global community during a global health crisis?’ In tandem, it has raised underlying concerns about how we should prepare for the next infectious disease outbreak and what we owe to people in other countries during normal times. While the prevailing bioethics literature addresses these questions drawing on values and concepts prominent in the global north, this paper articulates responses prominent in sub-Saharan Africa. The paper first introduces a figurative ‘global health village’ to orient readers to African traditional thought. Next, it considers ethical requirements for governing a global health village, drawing on the ethic of ubuntu to formulate African renderings of solidarity, relational justice and sufficiency. The final section of the paper uses these values to critique current approaches, including COVAX, the vaccines pillar of the Access to COVID-19 Tools (ACT) accelerator, and a proposed international Pandemic Treaty. It proposes a path forward that better realizes ubuntu in global health.
Collapse
Affiliation(s)
- Nancy S Jecker
- Department of Bioethics and Humanities, University of Washington, School of Medicine , 1959 NE Pacific Street, Seattle, WA 98195-7120 , USA
- Department of Philosophy, University of Johannesburg , Auckland Park, Gauteng , South Africa
| | - Caesar A Atuire
- Nuffield Department of Medicine, University of Oxford , Oxford , UK
- Department of Philosophy and Classics, University of Ghana, Legon , Accra , Ghana
| | - Nora Kenworthy
- Nora Kenworthy University of Washington, School of Nursing and Health Studies , Bothell, WA , USA
| |
Collapse
|
27
|
Granroth‐Wilding HMV, Candolin U. No strong associations between temperature and the host-parasite interaction in wild stickleback. JOURNAL OF FISH BIOLOGY 2022; 101:453-463. [PMID: 35598110 PMCID: PMC9545309 DOI: 10.1111/jfb.15107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
As climate change progresses, thermal stress is expected to alter the way that host organisms respond to infections by pathogens and parasites, with consequences for the fitness and therefore population processes of both host and parasite. The authors used a correlational natural experiment to examine how temperature differences shape the impact of the cestode parasite Schistocephalus solidus on its host, the three-spined stickleback (Gasterosteus aculeatus). Previous laboratory work has found that high temperatures benefit S. solidus while being detrimental to the stickleback. The present study sought to emulate this design in the wild, repeatedly sampling naturally infected and uninfected fish at matched warmer and cooler locations in the Baltic Sea. In this wild study, the authors found little evidence that temperature was associated with the host-parasite interaction. Although infection reduced host condition and reproductive status overall, these effects did not vary with temperature. Host fitness indicators correlated to some extent with temperature, with cooler capture sites associated with larger size but warmer sites with improved reproductive potential. Parasite fitness (prevalence or size) was not correlated with temperature at the capture site. These mismatches between laboratory and field outcomes illustrate how findings from well-controlled laboratory experiments may not fully reflect processes in more variable natural settings. Nonetheless, the findings of this study indicate that temperature can influence host fitness regardless of infection, with potential consequences for both host demography and parasite transmission dynamics in this complex system.
Collapse
Affiliation(s)
- Hanna M. V. Granroth‐Wilding
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
28
|
Sotcheff SL, Chen JYC, Elrod N, Cao J, Jaworski E, Kuyumcu-Martinez MN, Shi PY, Routh AL. Zika Virus Infection Alters Gene Expression and Poly-Adenylation Patterns in Placental Cells. Pathogens 2022; 11:pathogens11080936. [PMID: 36015056 PMCID: PMC9414685 DOI: 10.3390/pathogens11080936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Flaviviruses are small RNA viruses that are mainly transmitted via arthropod vectors and are found in tropic and sub-tropical regions. Most infections are asymptomatic (90-95%), but symptoms can be as severe as hemorrhagic fever and encephalitis. One recently emerged flavivirus is Zika virus (ZIKV), which was originally isolated from rhesus monkeys in Uganda roughly 70 years ago but has recently spread east, reaching S. America in 2015-2016. This outbreak was associated with the development of Guillain-Barré syndrome in adults and microcephaly in infants born to expectant mothers infected early in pregnancy. ZIKV must traverse the placenta to impact the development of the fetus, but the mechanisms responsible are unknown. While flaviviruses are known to disrupt splicing patterns in host cells, little is known about how flaviviruses such as ZIKV impact the alternative polyadenylation (APA) of host transcripts. This is important as APA is well-established as a mechanism in the regulation of mRNA metabolism and translation. Thus, we sought to characterize transcriptomic changes including APA in human placental (JEG3) cells in response to ZIKV infection using Poly(A)-ClickSeq (PAC-Seq). We used our differential Poly(A)-cluster (DPAC) analysis pipeline to characterize changes in differential gene expression, alternative poly-adenylation (APA) and the use of alternative terminal exons. We identified 98 upregulated genes and 28 downregulated genes. Pathway enrichment analysis indicated that many RNA processing and immune pathways were upregulated in ZIKV-infected JEG3 cells. We also updated DPAC to provide additional metrics of APA including the percentage-distal usage index (PDUI), which revealed that APA was extensive and the 3' UTRs of 229 genes were lengthened while 269 were shortened. We further found that there were 214 upregulated and 59 downregulated poly(A)-clusters (PACs). We extracted the nucleotide sequences surrounding these PACs and found that the canonical signals for poly-adenylation (binding site for poly-A binding protein (PABP) upstream and a GU-rich region down-stream of the PAC) were only enriched in the downregulated PACs. These results indicate that ZIKV infection makes JEG3 cells more permissive to non-canonical poly-adenylation signals.
Collapse
Affiliation(s)
- Stephanea L. Sotcheff
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John Yun-Chung Chen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nathan Elrod
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Cao
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Elizabeth Jaworski
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mugé N. Kuyumcu-Martinez
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew L. Routh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence:
| |
Collapse
|
29
|
Louadj L, Pagani A, Benghouzi P, Sabbah M, Griffete N. How Molecularly Imprinted Polymers can be Used for Diagnostic and Treatment of Tropical Diseases? CHEMISTRY AFRICA 2022. [PMCID: PMC9273706 DOI: 10.1007/s42250-022-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) have been widely used in nanomedicine in the last few years. However, their use for diagnostic and treatment of tropical diseases is limited. Through this review, we aim to illustrate how MIPs were used to detect tropical disease and we show that they are not exploited enough in treatment. We finally show how MIPs could be used in the future in the treatment of tropical disease.
Collapse
|
30
|
Kuitunen I, Renko M. Changes in the Epidemiology of Zoonotic Infections in Children: A Nationwide Register Study in Finland. Pediatr Infect Dis J 2022; 41:e113-e119. [PMID: 34966137 PMCID: PMC8920006 DOI: 10.1097/inf.0000000000003440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Zoonotic infections are difficult to recognize in children. The age distributions and seasonal occurrences of these infections vary substantially, even among those transmitted by the same vectors, and their epidemiology may change over time. The aim was to report the incidences and trends of Borrelia burgdorferi, Puumala virus, Francisella tularensis and tick-borne encephalitis (TBE) virus infections in the pediatric population (age 0-19) of Finland. METHODS A nationwide survey based on the National Infectious Disease Register was conducted from 1996 to 2019 and all laboratory-confirmed cases were included. Age-stratified incidences per 100,000 person-years were calculated. RESULTS Cumulative incidences were B. burgdorferi 11.2, TBE 0.4, Puumala virus 6.4 and F. tularensis 2.5 per 100,000 person-years. An increasing trend in the incidences of B. burgdorferi and TBE was observed. Borrelia expanded geographically northward and inland. Tularemia follows a 2-4-year epidemic cycle and rates are similar across age groups. Puumala incidences are highest in the older children. DISCUSSION Borrelia infections increased most rapidly in children 5-9 years of age and overall expanded geographically in Finland. Tularemia epidemic cycles were shorter than those previously reported. These results will help clinicians to identify these infections in different geographic areas and age groups in Finland.
Collapse
Affiliation(s)
- Ilari Kuitunen
- From the Institute of Clinical Medicine, Department of Pediatrics, University of Eastern Finland, Kuopio
- Department of Pediatrics, Mikkeli Central Hospital, Mikkeli
| | - Marjo Renko
- From the Institute of Clinical Medicine, Department of Pediatrics, University of Eastern Finland, Kuopio
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
Usman M, Husnain M, Akhtar MW, Ali Y, Riaz A, Riaz A. From the COVID-19 pandemic to corrupt practices: a tale of two evils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30297-30310. [PMID: 35000178 PMCID: PMC8742567 DOI: 10.1007/s11356-022-18536-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/03/2022] [Indexed: 06/07/2023]
Abstract
Emergencies and corruption go hand in hand in times of crisis. We are currently living in a pandemic phase, and corruption is even more damaging during these times of crisis that the world is experiencing with COVID-19. Vaccination is the only survival option that we have. The development of a nation will soon be measured by the criteria of who owns more vaccines. This study has four objectives. The first is to explore the most recent relevant literature. Moreover, we also investigate the unique trilogy of corruption, the environment, and the COVID-19 pandemic. The second is to identify adequate channels for distributing the COVID-19 vaccines. The vaccines should be dispersed based on the categories of age, gender, ethnicity, profession, and health conditions. Third, we explored the factors that are causing corruption in the distribution of the COVID-19 vaccines. Our findings show that unequal distribution, theft and black markets, weaponization of vaccines, logistical challenges, and substandard and falsified vaccines are the factors that potentially lead to corruption. The fourth objective is to investigate solutions for mitigating corruption. We revealed that blockchain, awareness, well-planned distribution channels, and prioritization of vulnerable groups are the steps that could effectively reduce corruption.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Economics and Business Administration, Division of Management and Administrative Sciences, University of Education Lahore, Lahore, Pakistan
| | - Mudassir Husnain
- Department of Economics and Business Administration, Division of Management and Administrative Sciences, University of Education Lahore, Lahore, Pakistan
| | | | - Yameen Ali
- Department of Economics and Business Administration, Division of Management and Administrative Sciences, University of Education Lahore, Lahore, Pakistan
| | - Areej Riaz
- Department of Economics and Business Administration, Division of Management and Administrative Sciences, University of Education Lahore, Lahore, Pakistan
| | - Aimon Riaz
- Department of Economics and Business Administration, Division of Management and Administrative Sciences, University of Education Lahore, Lahore, Pakistan
| |
Collapse
|
32
|
Twyman-Ghoshal A, Patten E, Ciaramella E. Exploring Media Representations of the Nexus Between Climate Change and Crime in the United States. CRITICAL CRIMINOLOGY 2022; 30:799-820. [PMID: 35381997 PMCID: PMC8970414 DOI: 10.1007/s10612-022-09608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Information on the criminal causes and effects of the climate crisis has the potential to shape public understanding of the problem, influence behavior(s), and prompt policy decisions. This article examines the mediated representation of climate change and crime in the United States to understand whether and how these issues are being portrayed. Using a content analysis of top online media stories in 2018, we found that there is a paucity of coverage on the nexus of climate change and crime. The few stories that did discuss the subject were often oversimplified and showed a lack of critical and informative coverage of the subject. Media coverage of climate change and crime needs more attention. This means that social scientists should dedicate more time to this research and to creating awareness around the climate change-social harm nexus. It also requires that social scientists are actively included in the discussions of the social effects of climate change.
Collapse
Affiliation(s)
- Anamika Twyman-Ghoshal
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall Room, QW110, Swindon Road, Cheltenham, GL50 4AZ UK
| | - Emma Patten
- Martin Institute for Law and Society, Stonehill College, 320 Washington St, Easton, MA 02357 USA
| | - Elena Ciaramella
- Law School, Suffolk University, 120 Tremont Street, Boston, MA 02108 USA
| |
Collapse
|
33
|
Rakotoarinia MR, Blanchet FG, Gravel D, Lapen DR, Leighton PA, Ogden NH, Ludwig A. Effects of land use and weather on the presence and abundance of mosquito-borne disease vectors in a urban and agricultural landscape in Eastern Ontario, Canada. PLoS One 2022; 17:e0262376. [PMID: 35271575 PMCID: PMC8912203 DOI: 10.1371/journal.pone.0262376] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Weather and land use can significantly impact mosquito abundance and presence, and by consequence, mosquito-borne disease (MBD) dynamics. Knowledge of vector ecology and mosquito species response to these drivers will help us better predict risk from MBD. In this study, we evaluated and compared the independent and combined effects of weather and land use on mosquito species occurrence and abundance in Eastern Ontario, Canada. Data on occurrence and abundance (245,591 individuals) of 30 mosquito species were obtained from mosquito capture at 85 field sites in 2017 and 2018. Environmental variables were extracted from weather and land use datasets in a 1-km buffer around trapping sites. The relative importance of weather and land use on mosquito abundance (for common species) or occurrence (for all species) was evaluated using multivariate hierarchical statistical models. Models incorporating both weather and land use performed better than models that include weather only for approximately half of species (59% for occurrence model and 50% for abundance model). Mosquito occurrence was mainly associated with temperature whereas abundance was associated with precipitation and temperature combined. Land use was more often associated with abundance than occurrence. For most species, occurrence and abundance were positively associated with forest cover but for some there was a negative association. Occurrence and abundance of some species (47% for occurrence model and 88% for abundance model) were positively associated with wetlands, but negatively associated with urban (Culiseta melanura and Anopheles walkeri) and agriculture (An. quadrimaculatus, Cs. minnesotae and An. walkeri) environments. This study provides predictive relationships between weather, land use and mosquito occurrence and abundance for a wide range of species including those that are currently uncommon, yet known as arboviruses vectors. Elucidation of these relationships has the potential to contribute to better prediction of MBD risk, and thus more efficiently targeted prevention and control measures.
Collapse
Affiliation(s)
- Miarisoa Rindra Rakotoarinia
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - F. Guillaume Blanchet
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada
- Département de Mathématique, Université de Sherbrooke, Sherbrooke, Canada
- Département des Sciences de la Santé Communautaire, Université de Sherbrooke, Sherbrooke, Canada
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada
| | - David R. Lapen
- Eastern Cereal and Oilseed Research Center, Agriculture and Agrifood Canada, Ottawa, Canada
| | - Patrick A. Leighton
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Nicholas H. Ogden
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, Canada
| | - Antoinette Ludwig
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, Canada
| |
Collapse
|
34
|
Kiran D, Sander WE, Duncan C. Empowering Veterinarians to Be Planetary Health Stewards Through Policy and Practice. Front Vet Sci 2022; 9:775411. [PMID: 35310413 PMCID: PMC8928474 DOI: 10.3389/fvets.2022.775411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Veterinarians are established public health professionals, committing to promote public health when they take their veterinary oath. The issue of climate change and its impact on planetary health is vital to public health, and therefore, it is critical that climate change is regarded as within the veterinary scope of practice. However, climate change is a multi-faceted issue which requires interdisciplinary collaboration and integrated stakeholder involvement in order to establish effective solutions and impactful policies. As a result, in this perspective, we discuss how policy is critical to support veterinarians in the climate change space and argue that more explicit support is needed for veterinarians to take an active role in climate change adaption, resilience, and mitigation. We address the discrepancies between the human health and veterinary professions with respect to providing policy support and capacity for practitioners to be stewards to promote planetary health and shed light on the lack of veterinary capacity in this area. We stress that veterinary professional societies are well equipped to bolster their policies, expand education for veterinary professionals and students in policy and advocacy, and establish calls to action to address climate change and planetary health issues. Ultimately, as public health professionals, veterinarians are uniquely poised to be contributors to climate change solutions and they should be actively involved in policy decision-making and empowered to take active roles in interdisciplinary conversations surrounding this important issue.
Collapse
Affiliation(s)
- Dilara Kiran
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - William E. Sander
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Colleen Duncan
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Colleen Duncan
| |
Collapse
|
35
|
Friedman SR, Jordan AE, Perlman DC, Nikolopoulos GK, Mateu-Gelabert P. Emerging Zoonotic Infections, Social Processes and Their Measurement and Enhanced Surveillance to Improve Zoonotic Epidemic Responses: A "Big Events" Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020995. [PMID: 35055817 PMCID: PMC8776232 DOI: 10.3390/ijerph19020995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Zoonotic epidemics and pandemics have become frequent. From HIV/AIDS through COVID-19, they demonstrate that pandemics are social processes as well as health occurrences. The roots of these pandemics lie in changes in the socioeconomic interface between humanity and non-human host species that facilitate interspecies transmission. The degree to which zoonoses spread has been increased by the greater speed and extent of modern transportation and trade. Pre-existing sociopolitical and economic structures and conflicts in societies also affect pathogen propagation. As an epidemic develops, it can itself become a social and political factor, and change and interact with pre-existing sociobehavioral norms and institutional structures. This paper uses a "Big Events" approach to frame these processes. Based on this framework, we discuss how social readiness surveys implemented both before and during an outbreak might help public health predict how overall systems might react to an epidemic and/or to disease control measures, and thus might inform interventions to mitigate potential adverse outcomes or possibly preventing outbreaks from developing into epidemics. We conclude by considering what "pathways measures", in addition to those we and others have already developed, might usefully be developed and validated to assist outbreak and epidemic disease responses.
Collapse
Affiliation(s)
- Samuel R. Friedman
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- Center for Drug Use and HIV/HCV Research, New York, NY 10003, USA; (A.E.J.); (D.C.P.); (P.M.-G.)
- Correspondence:
| | - Ashly E. Jordan
- Center for Drug Use and HIV/HCV Research, New York, NY 10003, USA; (A.E.J.); (D.C.P.); (P.M.-G.)
| | - David C. Perlman
- Center for Drug Use and HIV/HCV Research, New York, NY 10003, USA; (A.E.J.); (D.C.P.); (P.M.-G.)
- Department of Infectious Diseases, Icahn School of Medicine, Mount Sinai Beth Israel, New York, NY 10003, USA
| | | | - Pedro Mateu-Gelabert
- Center for Drug Use and HIV/HCV Research, New York, NY 10003, USA; (A.E.J.); (D.C.P.); (P.M.-G.)
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY 10027, USA
| |
Collapse
|
36
|
Climate Change and Zoonoses: A Review of Concepts, Definitions, and Bibliometrics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020893. [PMID: 35055715 PMCID: PMC8776135 DOI: 10.3390/ijerph19020893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Climate change can have a complex impact that also influences human and animal health. For example, climate change alters the conditions for pathogens and vectors of zoonotic diseases. Signs of this are the increasing spread of the West Nile and Usutu viruses and the establishment of new vector species, such as specific mosquito and tick species, in Europe and other parts of the world. With these changes come new challenges for maintaining human and animal health. This paper reports on an analysis of the literature focused on a bibliometric analysis of the Scopus database and VOSviewer software for creating visualization maps which identifies the zoonotic health risks for humans and animals caused by climate change. The sources retained for the analysis totaled 428 and different thresholds (N) were established for each item varying from N 5 to 10. The main findings are as follows: First, published documents increased in 2009–2015 peaking in 2020. Second, the primary sources have changed since 2018, partly attributable to the increase in human health concerns due to human-to-human transmission. Third, the USA, the UK, Canada, Australia, Italy, and Germany perform most zoonosis research. For instance, sixty documents and only 17 countries analyzed for co-authorship analysis met the threshold led by the USA; the top four author keywords were “climate change”, “zoonosis”, “epidemiology”, and “one health;” the USA, the UK, Germany, and Spain led the link strength (inter-collaboration); the author keywords showed that 37 out of the 1023 keywords met the threshold, and the authors’ keyword’s largest node of the bibliometric map contains the following: infectious diseases, emerging diseases, disease ecology, one health, surveillance, transmission, and wildlife. Finally, zoonotic diseases, which were documented in the literature in the past, have evolved, especially during the years 2010–2015, as evidenced by the sharp augmentation of publications addressing ad-hoc events and peaking in 2020 with the COVID-19 outbreak.
Collapse
|
37
|
Jacob Machado D, White RA, Kofsky J, Janies DA. Fundamentals of genomic epidemiology, lessons learned from the coronavirus disease 2019 (COVID-19) pandemic, and new directions. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2021; 1:e60. [PMID: 36168505 PMCID: PMC9495640 DOI: 10.1017/ash.2021.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 04/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic was one of the significant causes of death worldwide in 2020. The disease is caused by severe acute coronavirus syndrome (SARS) coronavirus 2 (SARS-CoV-2), an RNA virus of the subfamily Orthocoronavirinae related to 2 other clinically relevant coronaviruses, SARS-CoV and MERS-CoV. Like other coronaviruses and several other viruses, SARS-CoV-2 originated in bats. However, unlike other coronaviruses, SARS-CoV-2 resulted in a devastating pandemic. The SARS-CoV-2 pandemic rages on due to viral evolution that leads to more transmissible and immune evasive variants. Technology such as genomic sequencing has driven the shift from syndromic to molecular epidemiology and promises better understanding of variants. The COVID-19 pandemic has exposed critical impediments that must be addressed to develop the science of pandemics. Much of the progress is being applied in the developed world. However, barriers to the use of molecular epidemiology in low- and middle-income countries (LMICs) remain, including lack of logistics for equipment and reagents and lack of training in analysis. We review the molecular epidemiology literature to understand its origins from the SARS epidemic (2002-2003) through influenza events and the current COVID-19 pandemic. We advocate for improved genomic surveillance of SARS-CoV and understanding the pathogen diversity in potential zoonotic hosts. This work will require training in phylogenetic and high-performance computing to improve analyses of the origin and spread of pathogens. The overarching goals are to understand and abate zoonosis risk through interdisciplinary collaboration and lowering logistical barriers.
Collapse
Affiliation(s)
- Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Richard Allen White
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
- University of North Carolina at Charlotte, North Carolina Research Campus (NCRC), Kannapolis, North Carolina
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Daniel A. Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| |
Collapse
|
38
|
Lawler OK, Allan HL, Baxter PWJ, Castagnino R, Tor MC, Dann LE, Hungerford J, Karmacharya D, Lloyd TJ, López-Jara MJ, Massie GN, Novera J, Rogers AM, Kark S. The COVID-19 pandemic is intricately linked to biodiversity loss and ecosystem health. Lancet Planet Health 2021; 5:e840-e850. [PMID: 34774124 PMCID: PMC8580505 DOI: 10.1016/s2542-5196(21)00258-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 05/21/2023]
Abstract
The ongoing COVID-19 pandemic, caused by zoonotic SARS-CoV-2, has important links to biodiversity loss and ecosystem health. These links range from anthropogenic activities driving zoonotic disease emergence and extend to the pandemic affecting biodiversity conservation, environmental policy, ecosystem services, and multiple conservation facets. Crucially, such effects can exacerbate the initial drivers, resulting in feedback loops that are likely to promote future zoonotic disease outbreaks. We explore these feedback loops and relationships, highlighting known and potential zoonotic disease emergence drivers (eg, land-use change, intensive livestock production, wildlife trade, and climate change), and discuss direct and indirect effects of the ongoing pandemic on biodiversity loss and ecosystem health. We stress that responses to COVID-19 must include actions aimed at safeguarding biodiversity and ecosystems, in order to avoid future emergence of zoonoses and prevent their wide-ranging effects on human health, economies, and society. Such responses would benefit from adopting a One Health approach, enhancing cross-sector, transboundary communication, as well as from collaboration among multiple actors, promoting planetary and human health.
Collapse
Affiliation(s)
- Odette K Lawler
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Hannah L Allan
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Peter W J Baxter
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Romi Castagnino
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Marina Corella Tor
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Leah E Dann
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Hungerford
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Dibesh Karmacharya
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia; Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| | - Thomas J Lloyd
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia; School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - María José López-Jara
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia; School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Gloeta N Massie
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Junior Novera
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew M Rogers
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Salit Kark
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
39
|
Gorris ME, Bartlow AW, Temple SD, Romero-Alvarez D, Shutt DP, Fair JM, Kaufeld KA, Del Valle SY, Manore CA. Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasit Vectors 2021; 14:547. [PMID: 34688314 PMCID: PMC8542338 DOI: 10.1186/s13071-021-05051-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Estimates of the geographical distribution of Culex mosquitoes in the Americas have been limited to state and provincial levels in the United States and Canada and based on data from the 1980s. Since these estimates were made, there have been many more documented observations of mosquitoes and new methods have been developed for species distribution modeling. Moreover, mosquito distributions are affected by environmental conditions, which have changed since the 1980s. This calls for updated estimates of these distributions to understand the risk of emerging and re-emerging mosquito-borne diseases. METHODS We used contemporary mosquito data, environmental drivers, and a machine learning ecological niche model to create updated estimates of the geographical range of seven predominant Culex species across North America and South America: Culex erraticus, Culex nigripalpus, Culex pipiens, Culex quinquefasciatus, Culex restuans, Culex salinarius, and Culex tarsalis. RESULTS We found that Culex mosquito species differ in their geographical range. Each Culex species is sensitive to both natural and human-influenced environmental factors, especially climate and land cover type. Some prefer urban environments instead of rural ones, and some are limited to tropical or humid areas. Many are found throughout the Central Plains of the USA. CONCLUSIONS Our updated contemporary Culex distribution maps may be used to assess mosquito-borne disease risk. It is critical to understand the current geographical distributions of these important disease vectors and the key environmental predictors structuring their distributions not only to assess current risk, but also to understand how they will respond to climate change. Since the environmental predictors structuring the geographical distribution of mosquito species varied, we hypothesize that each species may have a different response to climate change.
Collapse
Affiliation(s)
- Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Andrew W. Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Seth D. Temple
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
- Department of Statistics, University of Washington, Seattle, WA USA
| | - Daniel Romero-Alvarez
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS USA
- OneHealth Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
| | - Deborah P. Shutt
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Jeanne M. Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Sara Y. Del Valle
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Carrie A. Manore
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| |
Collapse
|
40
|
New records of California serogroup viruses in Aedes mosquitoes and first detection in simulioidae flies from Northern Canada and Alaska. Polar Biol 2021. [DOI: 10.1007/s00300-021-02921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Molecular Phenomic Approaches to Deconvolving the Systemic Effects of SARS-CoV-2 Infection and Post-acute COVID-19 Syndrome. PHENOMICS 2021; 1:143-150. [PMID: 35233558 PMCID: PMC8295979 DOI: 10.1007/s43657-021-00020-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022]
Abstract
SARS COV-2 infection causes acute and frequently severe respiratory disease with associated multi-organ damage and systemic disturbances in many biochemical pathways. Metabolic phenotyping provides deep insights into the complex immunopathological problems that drive the resulting COVID-19 disease and is also a source of novel metrics for assessing patient recovery. A multiplatform metabolic phenotyping approach to studying the pathology and systemic metabolic sequelae of COVID-19 is considered here, together with a framework for assessing post-acute COVID-19 Syndrome (PACS) that is a major long-term health consequence for many patients. The sudden emergence of the disease presents a biological discovery challenge as we try to understand the pathological mechanisms of the disease and develop effective mitigation strategies. This requires technologies to measure objectively the extent and sub-phenotypes of the disease at the molecular level. Spectroscopic methods can reveal metabolic sub-phenotypes and new biomarkers that can be monitored during the acute disease phase and beyond. This approach is scalable and translatable to other pathologies and provides as an exemplar strategy for the investigation of other emergent zoonotic diseases with complex immunological drivers, multi-system involvements and diverse persistent symptoms.
Collapse
|
42
|
Ratnadass A, Deguine JP. Crop protection practices and viral zoonotic risks within a One Health framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145172. [PMID: 33610983 DOI: 10.1016/j.scitotenv.2021.145172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Recent viral zoonotic epidemics have been attributed partially to the negative impact of human activities on ecosystem biodiversity. Agricultural activities, particularly conventional crop protection (CP) practices, are a major threat to global biodiversity, ecosystem health and human health. Here we review interactions between CP practices and viral zoonoses (VZs), the first time this has been done. It should be noted that a) VZs stand at the interface between human, animal and ecosystem health; b) some VZs involve arthropod vectors that are affected by CP practices; and c) some crop pests, or their natural enemies are vertebrate reservoirs/carriers of certain VZs, and their contact with humans or domestic animals is affected by CP practices. Our review encompasses examples highlighting interactions between VZs and CP practices, both efficiency improvement-based (i.e. conventional with agrochemical insecticides and rodenticides), substitution-based (i.e. mainly with physical/mechanical or biopesticidal pest control), and redesign-based (i.e. mainly with conservation biological pest control, including some forms of crop-livestock integration). These CP practices mainly target arthropod and vertebrate pests. They also target, to a lesser extent, weeds and plant pathogens. Conventional and some physical/mechanical control methods and some forms of biopesticidal and crop-livestock integration practices were found to have mixed outcomes in terms of VZ risk management. Conversely, practices based on biological control by habitat conservation of arthropod or vertebrate natural enemies, falling within the Agroecological Crop Protection (ACP) framework, result in VZ prevention at various scales (local to global, and short-term to long-term). ACP addresses major global challenges including climate resilience, biodiversity conservation and animal welfare, and helps integrate plant health within the extended "One Health" concept.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR HortSys, F-97455 Saint-Pierre, Réunion, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | | |
Collapse
|
43
|
Application of multiple omics and network projection analyses to drug repositioning for pathogenic mosquito-borne viruses. Sci Rep 2021; 11:10136. [PMID: 33980888 PMCID: PMC8115341 DOI: 10.1038/s41598-021-89171-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pathogenic mosquito-borne viruses are a serious public health issue in tropical and subtropical regions and are increasingly becoming a problem in other climate zones. Drug repositioning is a rapid, pharmaco-economic approach that can be used to identify compounds that target these neglected tropical diseases. We have applied a computational drug repositioning method to five mosquito-borne viral infections: dengue virus (DENV), zika virus (ZIKV), West Nile virus (WNV), Japanese encephalitis virus (JEV) and Chikungunya virus (CHIV). We identified signature molecules and pathways for each virus infection based on omics analyses, and determined 77 drug candidates and 146 proteins for those diseases by using a filtering method. Based on the omics analyses, we analyzed the relationship among drugs, target proteins and the five viruses by projecting the signature molecules onto a human protein-protein interaction network. We have classified the drug candidates according to the degree of target proteins in the protein-protein interaction network for the five infectious diseases.
Collapse
|
44
|
Bennett KL, McMillan WO, Loaiza JR. The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes. Evol Appl 2021; 14:1301-1313. [PMID: 34025769 PMCID: PMC8127705 DOI: 10.1111/eva.13199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Local adaptation is important when predicting arthropod-borne disease risk because of its impacts on vector population fitness and persistence. However, the extent that vector populations are adapted to the environment generally remains unknown. Despite low population structure and high gene flow in Aedes aegypti mosquitoes across Panama, excepting the province of Bocas del Toro, we identified 128 candidate SNPs, clustered within 17 genes, which show a strong genomic signal of local environmental adaptation. This putatively adaptive variation occurred across fine geographical scales with the composition and frequency of candidate adaptive loci differing between populations in wet tropical environments along the Caribbean coast and dry tropical conditions typical of the Pacific coast. Temperature and vegetation were important predictors of adaptive genomic variation in Ae. aegypti with several potential areas of local adaptation identified. Our study lays the foundations of future work to understand whether environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and whether this could either aid or hinder efforts of population control.
Collapse
Affiliation(s)
- Kelly L. Bennett
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
| | - W. Owen McMillan
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
| | - Jose R. Loaiza
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
- Instituto de Investigaciones Científicas y Servicios de Alta TecnologíaPanamáRepublic of Panama
- Programa Centroamericano de Maestría en EntomologíaUniversidad de PanamáPanamáRepublic of Panama
| |
Collapse
|
45
|
Kaczmarek A, Wrońska AK, Boguś MI, Kazek M, Gliniewicz A, Mikulak E, Matławska M. The type of blood used to feed Aedes aegypti females affects their cuticular and internal free fatty acid (FFA) profiles. PLoS One 2021; 16:e0251100. [PMID: 33930098 PMCID: PMC8087090 DOI: 10.1371/journal.pone.0251100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti, the primary vector of various arthropod-borne viral (arboviral) diseases such as dengue and Zika, is a popular laboratory model in vector biology. However, its maintenance in laboratory conditions is difficult, mostly because the females require blood meals to complete oogenesis, which is often provided as sheep blood. The outermost layer of the mosquito cuticle is consists of lipids which protects against numerous entomopathogens, prevents desiccation and plays an essential role in signalling processes. The aim of this work was to determine how the replacement of human blood with sheep blood affects the cuticular and internal FFA profiles of mosquitoes reared in laboratory culture. The individual FFAs present in cuticular and internal extracts from mosquito were identified and quantified by GC-MS method. The normality of their distribution was checked using the Kolmogorov-Smirnov test and the Student's t-test was used to compare them. GC-MS analysis revealed similar numbers of internal and cuticular FFAs in the female mosquitoes fed sheep blood by membrane (MFSB) and naturally fed human blood (NFHB), however MFSB group demonstrated 3.1 times greater FFA concentrations in the cuticular fraction and 1.4 times the internal fraction than the NFHB group. In the MFSB group, FFA concentration was 1.6 times higher in the cuticular than the internal fraction, while for NFHB, FFA concentration was 1.3 times lower in the cuticular than the internal fraction. The concentration of C18:3 acid was 223 times higher in the internal fraction than the cuticle in the MHSB group but was absent in the NFHB group. MFSB mosquito demonstrate different FFA profiles to wild mosquitoes, which might influence their fertility and the results of vital processes studied under laboratory conditions. The membrane method of feeding mosquitoes is popular, but our research indicates significant differences in the FFA profiles of MFSB and NFHB. Such changes in FFA profile might influence female fertility, as well as other vital processes studied in laboratory conditions, such as the response to pesticides. Our work indicates that sheep blood has potential shortcomings as a substitute feed for human blood, as its use in laboratory studies may yield different results to those demonstrated by free-living mosquitoes.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | | | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Mikulak
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Marta Matławska
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
46
|
|
47
|
Yeh KB, Parekh FK, Borgert B, Olinger GG, Fair JM. Global health security threats and related risks in Latin America. GLOBAL SECURITY: HEALTH, SCIENCE AND POLICY 2021. [DOI: 10.1080/23779497.2021.1917304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Kenneth B. Yeh
- Life Sciences Division, MRIGlobal, Gaithersburg, MD, USA
| | | | - Brooke Borgert
- University of Florida, Department of Biology and Emerging Pathogens Institute, Gainesville, FL, USA
| | | | - Jeanne M. Fair
- Los Alamos National Laboratory, Biosecurity and Public Health, Los Alamos, NM, USA
| |
Collapse
|
48
|
Bartlow AW, Machalaba C, Karesh WB, Fair JM. Biodiversity and Global Health: Intersection of Health, Security, and the Environment. Health Secur 2021; 19:214-222. [PMID: 33733864 DOI: 10.1089/hs.2020.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Andrew W Bartlow
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| | - Catherine Machalaba
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| | - William B Karesh
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| | - Jeanne M Fair
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| |
Collapse
|
49
|
Ong OTW, Skinner EB, Johnson BJ, Old JM. Mosquito-Borne Viruses and Non-Human Vertebrates in Australia: A Review. Viruses 2021; 13:265. [PMID: 33572234 PMCID: PMC7915788 DOI: 10.3390/v13020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023] Open
Abstract
Mosquito-borne viruses are well recognized as a global public health burden amongst humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus. In this review, we synthesize the current state of mosquito-borne viruses impacting non-human vertebrates in Australia, including diseases that could be introduced due to local mosquito distribution. Given the unique island biogeography of Australia and the endemism of vertebrate species (including macropods and monotremes), Australia is highly susceptible to foreign mosquito species becoming established, and mosquito-borne viruses becoming endemic alongside novel reservoirs. For each virus, we summarize the known geographic distribution, mosquito vectors, vertebrate hosts, clinical signs and treatments, and highlight the importance of including non-human vertebrates in the assessment of future disease outbreaks. The mosquito-borne viruses discussed can impact wildlife, livestock, and companion animals, causing significant changes to Australian ecology and economy. The complex nature of mosquito-borne disease, and challenges in assessing the impacts to non-human vertebrate species, makes this an important topic to periodically review.
Collapse
Affiliation(s)
- Oselyne T. W. Ong
- Children’s Medical Research Institute, Westmead, NSW 2145, Australia;
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Eloise B. Skinner
- Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia;
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - Brian J. Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Julie M. Old
- School of Science, Western Sydney University, Hawkesbury, Locked bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
50
|
Barouki R, Kogevinas M, Audouze K, Belesova K, Bergman A, Birnbaum L, Boekhold S, Denys S, Desseille C, Drakvik E, Frumkin H, Garric J, Destoumieux-Garzon D, Haines A, Huss A, Jensen G, Karakitsios S, Klanova J, Koskela IM, Laden F, Marano F, Franziska Matthies-Wiesler E, Morris G, Nowacki J, Paloniemi R, Pearce N, Peters A, Rekola A, Sarigiannis D, Šebková K, Slama R, Staatsen B, Tonne C, Vermeulen R, Vineis P. The COVID-19 pandemic and global environmental change: Emerging research needs. ENVIRONMENT INTERNATIONAL 2021; 146:106272. [PMID: 33238229 PMCID: PMC7674147 DOI: 10.1016/j.envint.2020.106272] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 05/18/2023]
Abstract
The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a long-lasting impact on the environmental health field and will open new research perspectives and policy needs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Julia Nowacki
- WHO European Centre for Environment and Health, Germany
| | | | - Neil Pearce
- CNRS, Université de Montpellier, IFREMER, UPVD, France
| | | | | | | | | | - Remy Slama
- INSERM, CNRS, Université de Grenoble-Alpes, IAB, France
| | | | | | | | | |
Collapse
|