1
|
Saarinen M, Pellinen T, Kostensalo J, Nousiainen J, Joensuu K, Itkonen ST, Pajari AM. Dietary climate impact correlates ambiguously with health biomarkers- a randomised controlled trial in healthy Finnish adults. Eur J Nutr 2025; 64:95. [PMID: 39964546 DOI: 10.1007/s00394-025-03609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/02/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE A transition to more plant-rich diets is an effective way to reduce the climate impact of a diet. Using a whole-diet approach, we studied how partial replacement of animal-sourced with plant-sourced proteins affected the dietary climate impact while simultaneously considering diet-related health biomarkers. METHODS In a 12-week randomised controlled trial, 107 women and 29 men were assigned into three diet groups (ANIMAL, 50/50, PLANT) with animal-to-plant-protein ratios of 70/30, 50/50, and 30/70, respectively. Life-cycle-assessment-based coefficients for foods were used to assess the climate impact of the diet groups, based on four-day food records. Correlations between climate impact and biomarkers were assessed. RESULTS The climate impact (CO2 eq.) for PLANT was 3.32 kg per day, 3.05 kg per 2,000 kcal, and 0.04 kg per gram of protein, for 50/50 4.34, 4.20, and 0.05 kg, and for ANIMAL 4.93, 4.94, and 0.06 kg, respectively (p < 0.05 for all except ANIMAL vs. 50/50 /g protein and /2,000 kcal). Climate impact correlated weakly positively with colorectal cancer risk markers and a positive status of bone turnover, but not with cardiometabolic risk markers. Animal-based iron intake and climate impact (per 2,000 kcal) had a strong positive correlation 0.70 C.I. [0.60, 0.77], while saturated fat (0.29 [0.13, 0.44]) and calcium (0.37, [0.22, 0.51]) intake had a weak positive correlation, and fibre intake (- 0.37, [- 0.51, - 0.21]) a weak negative correlation with climate impact. CONCLUSION Replacing animal-sourced proteins with plant-sourced proteins reduced the climate impact of the diet. The relationship between climate impact and biomarkers was more ambiguous indicated by both beneficial and harmful indicators within lower climate impacts. CLINICAL TRIAL REGISTRY NCT03206827; registration date: 2017-06-30.
Collapse
Affiliation(s)
- Merja Saarinen
- Natural Resources Institute Finland (Luke), Tietotie 4, Jokioinen, FI-31600, Finland.
| | - Tiina Pellinen
- Department of Food and Nutrition, P.O. Box 66, University of Helsinki, FI-00014, Finland
| | - Joel Kostensalo
- Natural Resources Institute Finland (Luke), Yliopistokatu 6B, Joensuu, FI-80100, Finland
| | - Jouni Nousiainen
- Natural Resources Institute Finland (Luke), Tietotie 4, Jokioinen, FI-31600, Finland
| | - Katri Joensuu
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, FI FI-00790, Finland
| | - Suvi T Itkonen
- Department of Food and Nutrition, P.O. Box 66, University of Helsinki, FI-00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, P.O. Box 66, University of Helsinki, FI-00014, Finland
| |
Collapse
|
2
|
Wali JA, Ni D, Raubenheimer D, Simpson SJ. Macronutrient interactions and models of obesity: Insights from nutritional geometry. Bioessays 2025; 47:e2400071. [PMID: 39506509 DOI: 10.1002/bies.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
The global obesity epidemic results from a complex interplay of genetic and environmental factors, with diet being a prominent modifiable element driving weight gain and adiposity. Although excess intake of energetic macronutrients is implicated in causing obesity, ongoing debate centers on whether sugar or fat or both are driving the rising obesity rates. This has led to competing models of obesity such as the "Carbohydrate Insulin Model", the "Energy Balance Model", and the "Fructose Survival Hypothesis". Conflicting evidence from studies designed to focus on individual energetic macronutrients or energy rather than macronutrient mixtures underlies this disagreement. Recent research in humans and animals employing the nutritional geometry framework (NGF) emphasizes the importance of considering interactions among dietary components. Protein interacts with carbohydrates, fats, and dietary energy density to influence both calorie intake ("protein leverage") and, directly and indirectly, metabolic physiology and adiposity. Consideration of these interactions can help to reconcile different models of obesity, and potentially cast new light on obesity interventions.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Pecoraro L, Zuccato A, Vitella R, Pietrobelli A, Piacentini G, Brugnara M. Pediatric Nephrolithiasis: A Changing Landscape Through Time and Space. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1993. [PMID: 39768873 PMCID: PMC11728360 DOI: 10.3390/medicina60121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Pediatric nephrolithiasis is an ancient and complex disorder that has seen a significant rise in recent decades and the underlying causes contributing to stone formation in children may also be shifting. Historically, kidney stones have been linked to factors such as metabolic disorders, congenital abnormalities, and family history. However, the recent increase in incidence appears to be associated with new risk factors, including changes in lifestyle and diet, the growing prevalence of obesity, metabolic syndrome, diabetes, and even climate change. Given this evolving landscape, performing a comprehensive metabolic evaluation during the diagnostic process is essential. A complete metabolic evaluation should thus be performed during the diagnostic assessment to identify any modifiable risk factors predisposing to stone recurrence and reduce the need for surgical management, extrarenal comorbidity, and the increased burden of care.
Collapse
Affiliation(s)
| | - Arianna Zuccato
- Pediatric Unit, Department of Surgical Sciences, Destiny, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Rebecca Vitella
- Pediatric Unit, Department of Surgical Sciences, Destiny, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | | | | | | |
Collapse
|
4
|
Kühn T, Kalotai N, Amini AM, Haardt J, Lehmann A, Schmidt A, Buyken AE, Egert S, Ellinger S, Kroke A, Lorkowski S, Louis S, Schulze MB, Schwingshackl L, Siener R, Stangl GI, Watzl B, Zittermann A, Nimptsch K. Protein intake and cancer: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Eur J Nutr 2024; 63:1471-1486. [PMID: 38643440 PMCID: PMC11329548 DOI: 10.1007/s00394-024-03380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE It has been proposed that a higher habitual protein intake may increase cancer risk, possibly via upregulated insulin-like growth factor signalling. Since a systematic evaluation of human studies on protein intake and cancer risk based on a standardised assessment of systematic reviews (SRs) is lacking, we carried out an umbrella review of SRs on protein intake in relation to risks of different types of cancer. METHODS Following a pre-specified protocol (PROSPERO: CRD42018082395), we retrieved SRs on protein intake and cancer risk published before January 22th 2024, and assessed the methodological quality and outcome-specific certainty of the evidence using a modified version of AMSTAR 2 and NutriGrade, respectively. The overall certainty of evidence was rated according to predefined criteria. RESULTS Ten SRs were identified, of which eight included meta-analyses. Higher total protein intake was not associated with risks of breast, prostate, colorectal, ovarian, or pancreatic cancer incidence. The methodological quality of the included SRs ranged from critically low (kidney cancer), low (pancreatic, ovarian and prostate cancer) and moderate (breast and prostate cancer) to high (colorectal cancer). The outcome-specific certainty of the evidence underlying the reported findings on protein intake and cancer risk ranged from very low (pancreatic, ovarian and prostate cancer) to low (colorectal, ovarian, prostate, and breast cancer). Animal and plant protein intakes were not associated with cancer risks either at a low (breast and prostate cancer) or very low (pancreatic and prostate cancer) outcome-specific certainty of the evidence. Overall, the evidence for the lack of an association between protein intake and (i) colorectal cancer risk and (ii) breast cancer risk was rated as possible. By contrast, the evidence underlying the other reported results was rated as insufficient. CONCLUSION The present findings suggest that higher total protein intake may not be associated with the risk of colorectal and breast cancer, while conclusions on protein intake in relation to risks of other types of cancer are restricted due to insufficient evidence.
Collapse
Affiliation(s)
- Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany.
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
- Center for Public Health, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
5
|
Lin Z, Sun L. Research advances in the therapy of metabolic syndrome. Front Pharmacol 2024; 15:1364881. [PMID: 39139641 PMCID: PMC11319131 DOI: 10.3389/fphar.2024.1364881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Metabolic syndrome refers to the pathological state of metabolic disorder of protein, fat, carbohydrate, and other substances in the human body. It is a syndrome composed of a group of complex metabolic disorders, whose pathogenesis includes multiple genetic and acquired entities falling under the category of insulin resistance and chronic low-grade inflammationand. It is a risk factor for increased prevalence and mortality from diabetes and cardiovascular disease. Cardiovascular diseases are the predominant cause of morbidity and mortality globally, thus it is imperative to investigate the impact of metabolic syndrome on alleviating this substantial disease burden. Despite the increasing number of scientists dedicating themselves to researching metabolic syndrome in recent decades, numerous aspects of this condition remain incompletely understood, leaving many questions unanswered. In this review, we present an epidemiological analysis of MetS, explore both traditional and novel pathogenesis, examine the pathophysiological repercussions of metabolic syndrome, summarize research advances, and elucidate the mechanisms underlying corresponding treatment approaches.
Collapse
Affiliation(s)
- Zitian Lin
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Boeing H, Amini AM, Haardt J, Schmidt A, Bischoff-Ferrari HA, Buyken AE, Egert S, Ellinger S, Kroke A, Lorkowski S, Louis S, Nimptsch K, Schulze MB, Schutkowski A, Schwingshackl L, Siener R, Zittermann A, Watzl B, Stangl GI. Dietary protein and blood pressure: an umbrella review of systematic reviews and evaluation of the evidence. Eur J Nutr 2024; 63:1041-1058. [PMID: 38376519 PMCID: PMC11139777 DOI: 10.1007/s00394-024-03336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION This umbrella review aimed to investigate the evidence of an effect of dietary intake of total protein, animal and plant protein on blood pressure (BP), and hypertension (PROSPERO: CRD42018082395). METHODS PubMed, Embase and Cochrane Database were systematically searched for systematic reviews (SRs) of prospective studies with or without meta-analysis published between 05/2007 and 10/2022. The methodological quality and outcome-specific certainty of evidence were assessed by the AMSTAR 2 and NutriGrade tools, followed by an assessment of the overall certainty of evidence. SRs investigating specific protein sources are described in this review, but not included in the assessment of the overall certainty of evidence. RESULTS Sixteen SRs were considered eligible for the umbrella review. Ten of the SRs investigated total protein intake, six animal protein, six plant protein and four animal vs. plant protein. The majority of the SRs reported no associations or effects of total, animal and plant protein on BP (all "possible" evidence), whereby the uncertainty regarding the effects on BP was particularly high for plant protein. Two SRs addressing milk-derived protein showed a reduction in BP; in contrast, SRs investigating soy protein found no effect on BP. The outcome-specific certainty of evidence of the SRs was mostly rated as low. DISCUSSION/CONCLUSION This umbrella review showed uncertainties whether there are any effects on BP from the intake of total protein, or animal or plant proteins, specifically. Based on data from two SRs with milk protein, it cannot be excluded that certain types of protein could favourably influence BP.
Collapse
Affiliation(s)
- Heiner Boeing
- Department of Epidemiology (closed), German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anna M Amini
- German Nutrition Society, Godesberger Allee 136, 53175, Bonn, Germany.
| | - Julia Haardt
- German Nutrition Society, Godesberger Allee 136, 53175, Bonn, Germany
| | - Annemarie Schmidt
- German Nutrition Society, Godesberger Allee 136, 53175, Bonn, Germany
| | - Heike A Bischoff-Ferrari
- Department of Aging Medicine and Aging Research, University Hospital Zurich, University of Zurich, and City Hospital Zurich, Zurich, Switzerland
| | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Science, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Alexandra Schutkowski
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Krok-Schoen JL, Chaplow ZL, Chase C, Spees C, Rosko A, Naughton MJ, Smith J, Soufi S, Beck M, Focht BC. E-PROOF: E-intervention for protein intake and resistance training to optimize function: A study protocol. PLoS One 2024; 19:e0302727. [PMID: 38718069 PMCID: PMC11078354 DOI: 10.1371/journal.pone.0302727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Accounting for more than 60% of cancer survivors, older (≥65 years) cancer survivors have a 2- to 5-fold risk of physical function impairment, compared to cancer-free peers. One strategy to improve physical function is dietary and resistance training interventions, which improve muscle strength and mass by stimulating muscle protein synthesis. The E-PROOF (E-intervention for Protein Intake and Resistance Training to Optimize Function) study will examine the feasibility, acceptability, and preliminary efficacy of a 12-week randomized controlled trial of an online, tailored nutritional and resistance training education and counseling intervention to improve physical function and associated health outcomes (muscle strength, health-related quality of life (HRQoL), self-efficacy, and weight management). METHODS In this study, 70 older cancer survivors will be randomized to one of two groups: experimental (receiving remote behavioral counseling and evidence-based education and resources), and control (general survivorship education). We will examine the intervention effects on physical function, muscle strength, HRQoL, self-efficacy, weight, and waist circumference during a 12-week period between the experimental and control groups. Three months following the end of the intervention, we will conduct a follow-up assessment to measure physical function, muscle strength, and HRQoL. SIGNIFICANCE AND IMPACT This study is the first synchronous, online protein-focused diet and resistance training intervention among older cancer survivors. This novel study advances science by promoting independent health behaviors among older cancer survivors to improve health outcomes, and provide foundational knowledge to further address this growing problem on a wider scale through online platforms.
Collapse
Affiliation(s)
- Jessica L. Krok-Schoen
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Zachary L. Chaplow
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States of America
| | - Cara Chase
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Colleen Spees
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ashley Rosko
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Michelle J. Naughton
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Jade Smith
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Sam Soufi
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States of America
| | - Mike Beck
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States of America
| | - Brian C. Focht
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
8
|
Ellinger S, Amini AM, Haardt J, Lehmann A, Schmidt A, Bischoff-Ferrari HA, Buyken AE, Kroke A, Kühn T, Louis S, Lorkowski S, Nimptsch K, Schulze MB, Schwingshackl L, Siener R, Stangl GI, Volkert D, Zittermann A, Watzl B, Egert S. Protein intake and body weight, fat mass and waist circumference: an umbrella review of systematic reviews for the evidence-based guideline on protein intake of the German Nutrition Society. Eur J Nutr 2024; 63:3-32. [PMID: 37794213 PMCID: PMC10799103 DOI: 10.1007/s00394-023-03220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE This umbrella review aimed to assess whether dietary protein intake with regard to quantitative (higher vs. lower dietary protein intake) and qualitative considerations (total, plant-based or animal-based protein intake) affects body weight (BW), fat mass (FM) and waist circumference (WC). METHODS A systematic literature search was conducted in PubMed, Embase and Cochrane Database of Systematic Reviews for systematic reviews (SRs) with and without meta-analyses of prospective studies published between 04 October 2007 and 04 January 2022. Methodological quality and outcome-specific certainty of evidence of the retrieved SRs were assessed by using AMSTAR 2 and NutriGrade, respectively, in order to rate the overall certainty of evidence using predefined criteria. RESULTS Thirty-three SRs were included in this umbrella review; 29 were based on randomised controlled trials, a few included cohort studies. In studies without energy restriction, a high-protein diet did not modulate BW, FM and WC in adults in general (all "possible" evidence); for older adults, overall certainty of evidence was "insufficient" for all parameters. Under hypoenergetic diets, a high-protein diet mostly decreased BW and FM, but evidence was "insufficient" due to low methodological quality. Evidence regarding an influence of the protein type on BW, FM and WC was "insufficient". CONCLUSION "Possible" evidence exists that the amount of protein does not affect BW, FM and WC in adults under isoenergetic conditions. Its impact on the reduction in BW and FM under hypoenergetic conditions remains unclear; evidence for an influence of protein type on BW, FM and WC is "insufficient".
Collapse
Affiliation(s)
- Sabine Ellinger
- Institute of Nutritional and Food Science, Human Nutrition, University of Bonn, Meckenheimer Allee 166a, 53115, Bonn, Germany.
| | | | | | | | | | - Heike A Bischoff-Ferrari
- Department of Aging Medicine and Aging Research, University Hospital and University of Zurich, Zurich, Switzerland
- City Hospital Zurich, Zurich, Switzerland
| | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg, Germany
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Helmholtz Association, Berlin, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Schulze MB, Haardt J, Amini AM, Kalotai N, Lehmann A, Schmidt A, Buyken AE, Egert S, Ellinger S, Kroke A, Kühn T, Louis S, Nimptsch K, Schwingshackl L, Siener R, Zittermann A, Watzl B, Lorkowski S. Protein intake and type 2 diabetes mellitus: an umbrella review of systematic reviews for the evidence-based guideline for protein intake of the German Nutrition Society. Eur J Nutr 2024; 63:33-50. [PMID: 37718370 PMCID: PMC10799123 DOI: 10.1007/s00394-023-03234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Protein-rich foods show heterogeneous associations with the risk of type 2 diabetes (T2D) and it remains unclear whether habitual protein intake is related to T2D risk. We carried out an umbrella review of systematic reviews (SR) of randomised trials and/or cohort studies on protein intake in relation to risks of T2D. METHODS Following a pre-specified protocol (PROSPERO: CRD42018082395), we retrieved SRs on protein intake and T2D risk published between July 1st 2009 and May 22nd 2022, and assessed the methodological quality and outcome-specific certainty of the evidence using a modified version of AMSTAR 2 and NutriGrade, respectively. The overall certainty of evidence was rated according to predefined criteria. RESULTS Eight SRs were identified of which six contained meta-analyses. The majority of SRs on total protein intake had moderate or high methodological quality and moderate outcome-specific certainty of evidence according to NutriGrade, however, the latter was low for the majority of SRs on animal and plant protein. Six of the eight SRs reported risk increases with both total and animal protein. According to one SR, total protein intake in studies was ~ 21 energy percentage (%E) in the highest intake category and 15%E in the lowest intake category. Relative Risks comparing high versus low intake in most recent SRs ranged from 1.09 (two SRs, 95% CIs 1.02-1.15 and 1.06-1.13) to 1.11 (1.05-1.16) for total protein (between 8 and 12 cohort studies included) and from 1.13 (1.08-1.19) to 1.19 (two SRs, 1.11-1.28 and 1.11-1.28) (8-9 cohort studies) for animal protein. However, SRs on RCTs examining major glycaemic traits (HbA1c, fasting glucose, fasting insulin) do not support a clear biological link with T2D risk. For plant protein, some recent SRs pointed towards risk decreases and non-linear associations, however, the majority did not support an association with T2D risk. CONCLUSION Higher total protein intake was possibly associated with higher T2D risk, while there is insufficient evidence for a risk increase with higher intakes of animal protein and a risk decrease with plant protein intake. Given that most SRs on plant protein did not indicate an association, there is possibly a lack of an effect.
Collapse
Affiliation(s)
- Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.
| | | | | | | | | | | | - Anette E Buyken
- Institute of Nutrition, Consumption and Health; Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Department of Nutrition and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg, Germany
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
10
|
Geirsdóttir ÓG, Pajari AM. Protein - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10261. [PMID: 38187790 PMCID: PMC10770649 DOI: 10.29219/fnr.v67.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/16/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proteins are needed for providing essential amino acids, nitrogen, and fuel for the body's needs in all age groups. Proteins are especially required during active growth in pregnancy, lactation, childhood, and tissue growth in general. An adequate protein intake is needed in old adults to avoid premature muscle loss. According to the current dietary surveys, protein intake in the Nordic and Baltic countries varies from 15 to 19% of the total energy intake in adults. Comprehensive data regarding children and older adults are lacking. No good measure for protein status exists, and the estimation of physiological requirements is based on N-balance studies having some weaknesses. Protein quality is assessed by considering the protein digestibility of individual indispensable amino acids and their utilization (bioavailability), which is affected by food antinutrients and processing. The evidence regarding the association of protein intake per se with health outcomes is limited or suggestive. It is difficult to separate from the effect of other nutrients or ingredients in protein-rich foods. Proteins are widespread in foods, deriving from both animal and plant sources. Animal-sourced protein production puts more strain on the environment than plant-sourced proteins and contributes significantly to greenhouse gas emissions, thereby enhancing climate change. In Nordic and Baltic countries, consumption of animal-sourced proteins is relatively high. A shift toward more plant-based protein diets would be advisable for promoting a healthy and sustainable diet.
Collapse
Affiliation(s)
- Ólöf Guðný Geirsdóttir
- Faculty of Food Science and Nutrition, School of Health Science, University of Iceland, Reykjavik, Iceland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Kurata H, Meguro S, Abe Y, Sasaki T, Asakura K, Arai Y, Itoh H. Dietary protein intake and all-cause mortality: results from The Kawasaki Aging and Wellbeing Project. BMC Geriatr 2023; 23:479. [PMID: 37558986 PMCID: PMC10413626 DOI: 10.1186/s12877-023-04173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Increased protein intake has been recommended to prevent sarcopenia/frailty, reports on the quantity and quality of protein intake needed and the associated prognosis, particularly in the aging population of Asia, are limited. In this study, we aimed to investigate the relationship between protein intake and mortality in Japanese individuals, aged 85 years and older. METHODS The data were obtained from The Kawasaki Aging and Wellbeing Project, which is a prospective cohort study of older adults aged between 85 and 89 years with no physical disability at baseline. Of the 1,026 adults in the cohort, 833 were included in the analysis, after excluding those who had not completed a brief, self-administered diet history questionnaire or those who scored less than 24 on the Mini-Mental State Examination. The participants were grouped into quartiles based on protein intake: Q1 (protein < 14.7, %Energy), Q2 (14.7 ≤ protein < 16.7, %Energy), Q3 (16.7 ≤ protein < 19.1, %Energy), and Q4 (≥ 19.1, %Energy). Multivariate Cox proportional hazards models were utilized to evaluate the association between protein intake and all-cause mortality. Kaplan-Meier survival curves were employed to investigate the relationship between protein intake and all-cause mortality. RESULTS The mean protein intake of our study population was 17.0% of total energy. Animal protein intake, particularly fish intake, increased significantly along with total protein intake. The study had an average observation period of 1,218 days and recorded 89 deaths. After adjusting for age, sex, skeletal muscle mass index, cardiovascular disease, cancer, education, and serum albumin levels, a lower risk of all-cause mortality was observed in the highest protein intake (Q4) group than in the lowest protein intake (Q1) group (hazard ratio: 0.44, 95% confidence interval: 0.22-0.90, p-value: 0.020). CONCLUSION Protein intake is associated with a reduced risk of all-cause mortality in older adults (aged ≥ 85 years) who engage in independent activities of daily living. This association may impact all-cause mortality independent of muscle mass.
Collapse
Affiliation(s)
- Hideaki Kurata
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Shu Meguro
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Yukiko Abe
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku- ku, Tokyo, 160-0016, Japan
| | - Takashi Sasaki
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku- ku, Tokyo, 160-0016, Japan
| | - Keiko Asakura
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Ohta-ku, Tokyo, 143-8540, Japan
| | - Yasumichi Arai
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku- ku, Tokyo, 160-0016, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| |
Collapse
|
12
|
Remer T, Kalotai N, Amini AM, Lehmann A, Schmidt A, Bischoff-Ferrari HA, Egert S, Ellinger S, Kroke A, Kühn T, Lorkowski S, Nimptsch K, Schwingshackl L, Zittermann A, Watzl B, Siener R. Protein intake and risk of urolithiasis and kidney diseases: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Eur J Nutr 2023; 62:1957-1975. [PMID: 37133532 PMCID: PMC10349749 DOI: 10.1007/s00394-023-03143-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Changes in dietary protein intake metabolically affect kidney functions. However, knowledge on potential adverse consequences of long-term higher protein intake (HPI) for kidney health is lacking. To summarise and evaluate the available evidence for a relation between HPI and kidney diseases, an umbrella review of systematic reviews (SR) was conducted. METHODS PubMed, Embase and Cochrane Database of SRs published until 12/2022 were searched for the respective SRs with and without meta-analyses (MA) of randomised controlled trials or cohort studies. For assessments of methodological quality and of outcome-specific certainty of evidence, a modified version of AMSTAR 2 and the NutriGrade scoring tool were used, respectively. The overall certainty of evidence was assessed according to predefined criteria. RESULTS Six SRs with MA and three SRs without MA on various kidney-related outcomes were identified. Outcomes were chronic kidney disease, kidney stones and kidney function-related parameters: albuminuria, glomerular filtration rate, serum urea, urinary pH and urinary calcium excretion. Overall certainty of evidence was graded as 'possible' for stone risk not to be associated with HPI and albuminuria not to be elevated through HPI (above recommendations (> 0.8 g/kg body weight/day)) and graded as 'probable' or 'possible' for most other kidney function-related parameters to be physiologically increased with HPI. CONCLUSION Changes of the assessed outcomes may have reflected mostly physiological (regulatory), but not pathometabolic responses to higher protein loads. For none of the outcomes, evidence was found that HPI does specifically trigger kidney stones or diseases. However, for potential recommendations long-term data, also over decades, are required.
Collapse
Affiliation(s)
- Thomas Remer
- DONALD Study Center Dortmund, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Heinstück 11, 44225, Dortmund, Germany.
| | | | | | | | | | - Heike A Bischoff-Ferrari
- Department of Aging Medicine and Aging Research, University Hospital Zurich, University of Zurich, and City Hospital Zurich, Zurich, Switzerland
| | - Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Department of Nutrition and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg, Germany
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller, University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular, Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Lukas Schwingshackl
- Faculty of Medicine, Institute for Evidence in Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- Und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Zittermann A, Schmidt A, Haardt J, Kalotai N, Lehmann A, Egert S, Ellinger S, Kroke A, Lorkowski S, Louis S, Schulze MB, Schwingshackl L, Siener R, Stangl GI, Volkert D, Watzl B, Bischoff-Ferrari HA. Protein intake and bone health: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Osteoporos Int 2023; 34:1335-1353. [PMID: 37126148 PMCID: PMC10382330 DOI: 10.1007/s00198-023-06709-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/13/2023] [Indexed: 05/02/2023]
Abstract
This umbrella review aimed at assessing whether a protein intake exceeding the current recommendation for younger (0.8 g/kg body weight [BW]/day) and older (1.0 g/kg BW/day) adults affects bone mineral density and fracture risk. Moreover, the effect of animal or plant protein was evaluated. A systematic literature search was conducted in PubMed, Embase, and Cochrane Database of Systematic Reviews for systematic reviews (SRs) with or without meta-analysis of prospective studies published between 11/2008 and 08/2021. Methodological quality, outcome-specific certainty of evidence, and overall certainty of evidence of the retrieved SRs were assessed using established tools and predefined criteria. Eleven SRs of randomized controlled trials (RCTs) and/or cohort studies were included. In SRs of cohort studies and RCTs, protein intake/kg BW/day ranged between 0.21-0.95 g (low intake) and > 1.24 g (high intake), respectively, and between 0.67-1.1 g (control groups) and 1.01-1.69 g (intervention groups), respectively. The vast majority of outcome-specific certainty of evidence was rated "low" or "very low." The overall certainty of evidence for an association (cohort studies) or effect (RCTs) of total, animal or plant protein intake on each of the investigated outcomes was rated "insufficient," with the exception of possible evidence for a reduced hip fracture risk by high vs. low protein intake. Since protein intakes in low/control and high/intervention groups were very heterogeneous and with low certainty of evidence, it remains unclear whether a dose above the current recommendation or type of protein intake (animal or plant protein) affects bone health overall. However, there is possible evidence for reduced hip fracture risk with high versus low protein intake.
Collapse
Affiliation(s)
- Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz-und Diabeteszentrum Nordrhein Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany.
| | | | - Julia Haardt
- Science Department, German Nutrition Society, Bonn, Germany
| | - Nicole Kalotai
- Science Department, German Nutrition Society, Bonn, Germany
| | | | - Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Department of Nutrition and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Institute of Nutritionals Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-, Leipzig, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Halle, Germany
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Heike A Bischoff-Ferrari
- Department of Aging Medicine and Aging Research, University Hospital Zurich, University of Zurich, and City Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Auer J, Östlund J, Nilsson K, Johansson M, Herneke A, Langton M. Nordic Crops as Alternatives to Soy-An Overview of Nutritional, Sensory, and Functional Properties. Foods 2023; 12:2607. [PMID: 37444345 DOI: 10.3390/foods12132607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Soy (Glycine max) is used in a wide range of products and plays a major role in replacing animal-based products. Since the cultivation of soy is limited by cold climates, this review assessed the nutritional, sensory, and functional properties of three alternative cold-tolerant crops (faba bean (Vicia faba), yellow pea (Pisum sativum), and oat (Avena sativa)). Lower protein quality compared with soy and the presence of anti-nutrients are nutritional problems with all three crops, but different methods to adjust for these problems are available. Off-flavors in all pulses, including soy, and in cereals impair the sensory properties of the resulting food products, and few mitigation methods are successful. The functional properties of faba bean, pea, and oat are comparable to those of soy, which makes them usable for 3D printing, gelation, emulsification, and extrusion. Enzymatic treatment, fermentation, and fibrillation can be applied to improve the nutritional value, sensory attributes, and functional properties of all the three crops assessed, making them suitable for replacing soy in a broad range of products, although more research is needed on all attributes.
Collapse
Affiliation(s)
- Jaqueline Auer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johanna Östlund
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Klara Nilsson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Anja Herneke
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
15
|
Nieder R, Benbi DK. Reactive nitrogen compounds and their influence on human health: an overview. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:229-246. [PMID: 34022126 DOI: 10.1515/reveh-2021-0021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) is a critical component of food security, economy and planetary health. Human production of reactive nitrogen (Nr) via Haber-Bosch process and cultivation-induced biological N2 fixation (BNF) has doubled global N cycling over the last century. The most important beneficial effect of Nr is augmenting global food supplies due to increased crop yields. However, increased circulation of Nr in the environment is responsible for serious human health effects such as methemoglobinemia ("blue baby syndrome") and eutrophication of coastal and inland waters. Furthermore, ammonia (NH3) emission mainly from farming and animal husbandary impacts not only human health causing chronic lung disease, inflammation of human airways and irritation of eyes, sinuses and skin but is also involved in the formation of secondary particulate matter (PM) that plays a critical role in environment and human health. Nr also affects human health via global warming, depletion of stratospheric ozone layer resulting in greater intensity of ultra violet B rays (UVB) on the Earth's surface, and creation of ground-level ozone (through reaction of NO2 with O2). The consequential indirect human health effects of Nr include the spread of vector-borne pathogens, increased incidence of skin cancer, development of cataracts, and serious respiratory diseases, besides land degradation. Evidently, the strategies to reduce Nr and mitigate adverse environmental and human health impacts include plugging pathways of nitrogen transport and loss through runoff, leaching and emissions of NH3, nitrogen oxides (NO x ), and other N compounds; improving fertilizer N use efficiency; reducing regional disparity in access to N fertilizers; enhancing BNF to decrease dependence on chemical fertilizers; replacing animal-based proteins with plant-based proteins; adopting improved methods of livestock raising and manure management; reducing air pollution and secondary PM formation; and subjecting industrial and vehicular NO x emission to pollution control laws. Strategic implementation of all these presents a major challenge across the fields of agriculture, ecology and public health. Recent observations on the reduction of air pollution in the COVID-19 lockdown period in several world regions provide an insight into the achievability of long-term air quality improvement. In this review, we focus on complex relationships between Nr and human health, highlighting a wide range of beneficial and detrimental effects.
Collapse
Affiliation(s)
- Rolf Nieder
- Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dinesh K Benbi
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
16
|
Park YJ, Chung S, Hwang JT, Shon J, Kim E. A review of recent evidence of dietary protein intake and health. Nutr Res Pract 2022; 16:S37-S46. [PMID: 35651841 PMCID: PMC9127511 DOI: 10.4162/nrp.2022.16.s1.s37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
The Korea National Health and Nutrition Examination Survey of 2013 to 2017 reported that the average protein consumption of the Korean population is above the current recommended nutrient intake of protein proposed by the Dietary Reference Intakes for Koreans. Some health professionals and the media often advise consuming diets high in protein for promoting metabolic regulation, weight control, and muscle synthesis. However, due to lack of scientific evidence, the validity and safety of high protein consumption are yet to be fully ascertained. The present review assesses recent evidence published in 2014-2020 from human studies, focusing on adequate protein intake and protein sources for the prevention of chronic diseases, particularly metabolic disorders and sarcopenia.
Collapse
Affiliation(s)
- Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health & Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Sangwon Chung
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jinyoung Shon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| |
Collapse
|
17
|
FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nat Commun 2022; 13:1897. [PMID: 35393401 PMCID: PMC8991228 DOI: 10.1038/s41467-022-29499-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice. Conversely, mice lacking FGF21 fail to exhibit metabolic responses to protein restriction in early life, and in later life exhibit early onset of age-related weight loss, reduced physical performance, increased frailty, and reduced lifespan. These data demonstrate that protein restriction in aging male mice exerts marked beneficial effects on lifespan and metabolic health and that a single metabolic hormone, FGF21, is essential for the anti-aging effect of this dietary intervention.
Collapse
|
18
|
Katagiri R, Yamaji T, Sawada N, Iwasaki M, Inoue M, Tsugane S. Total, animal, and plant protein intake and pneumonia mortality in the Japan Public Health Center-based Prospective Study. Am J Clin Nutr 2022; 115:781-789. [PMID: 34918031 DOI: 10.1093/ajcn/nqab411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association between total protein intake and all-cause mortality is inconsistent. Pneumonia is a major cause of death among the elderly, and the association between protein intake and pneumonia mortality warrants clarification. OBJECTIVES We aimed to examine the association between total, plant, and animal protein intake and pneumonia mortality in a prospective design. METHODS The Japan Public Health Center (JPHC)-based Prospective Study prospectively follows 83,351 participants (37,652 men and 45,699 women). Total, plant, and animal protein intakes were calculated from a validated food-frequency questionnaire. A Cox hazards model was used to calculate HRs and 95% CIs, with adjustment for confounding factors. RESULTS During ∼18.4 y of follow-up, 990 pneumonia deaths (634 men and 356 women) were observed. In the multivariable-adjusted model and in the model further adjusted for fatty acid intake, increase in total protein intake was marginally significantly associated with lower pneumonia mortality in women [lowest vs. highest quartile, HR (95% CI): 0.71 (0.53, 0.97), P-trend = 0.01 in the multivariable-adjusted model, and 0.70 (0.45, 1.06), P-trend = 0.05 in the fatty acid intake-adjusted model]. Total protein intake in men and animal and plant protein intake in both men and women were not significantly associated with pneumonia mortality in the fatty acid-adjusted model. CONCLUSIONS Although the HR in the highest quartile was not significant and further research to determine the upper limit of recommended protein intake is required, higher total protein intake was associated with lower pneumonia mortality in women.
Collapse
Affiliation(s)
- Ryoko Katagiri
- Epidemiology and Prevention Group, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | | |
Collapse
|
19
|
Riseberg E, Lopez-Cepero A, Mangano KM, Tucker KL, Mattei J. Specific Dietary Protein Sources Are Associated with Cardiometabolic Risk Factors in the Boston Puerto Rican Health Study. J Acad Nutr Diet 2022; 122:298-308.e3. [PMID: 34144919 PMCID: PMC8671554 DOI: 10.1016/j.jand.2021.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Puerto Rican adults residing in the US mainland experience a high prevalence of metabolic syndrome (MetS). A diet containing healthy protein-rich sources may help control risk factors for MetS. OBJECTIVE This study aimed to evaluate 2-year longitudinal associations between intake of various protein-rich foods and changes in the six MetS components. DESIGN This is a secondary analysis of a longitudinal cohort study using data from the baseline (2004-2007) and 2-year follow-up visits (2006-2011) in the Boston Puerto Rican Health Study. PARTICIPANTS/SETTING Participants were self-identified Puerto Ricans, aged 45 to 75 years, residing in Boston, Massachusetts, or the surrounding area (n = 1,126). MAIN OUTCOME MEASURES MetS components were fasting glucose, high-density lipoprotein (HDL) cholesterol, triglycerides, systolic and diastolic blood pressures, and waist circumference. STATISTICAL ANALYSIS Baseline intake of foods reported in a semiquantitative food frequency questionnaire were expressed as servings/day, and protein-rich foods were categorized as unprocessed white meat, unprocessed red meat, processed meat, milk and yogurt, cheese, fish and seafood, beans, nuts, and eggs. Associations between each continuous protein food group and continuous 2-year change in MetS components were assessed using linear mixed models adjusted for socioeconomic and behavioral factors, and other dietary sources. RESULTS The top contributors to total protein intake were unprocessed red meat (13.3%) and unprocessed poultry (13.0%), and the lowest were eggs (2.92%) and nuts (0.91%). Higher intake of processed meats was associated with an increase in waist circumference over 2 years (β = 1.28; standard error [SE] = 0.63), whereas higher intake of fish and seafood was associated with a decrease in waist circumference (β = -3.47; SE = 1.39). Intake of unprocessed poultry was associated with a decrease in triglycerides (β = -24.5; SE = 9.13). No other significant associations were observed between protein sources and 2-year changes in MetS components. CONCLUSIONS Consuming less processed meat and more fish and seafood and unprocessed poultry was associated with decreases in waist circumference and triglycerides among US mainland Puerto Ricans. Other dietary protein sources were not related to cardiometabolic health.
Collapse
Affiliation(s)
- Emily Riseberg
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Andrea Lopez-Cepero
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Josiemer Mattei
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Effects of an increased habitual dietary protein intake followed by resistance training on fitness, muscle quality and body composition of seniors: a randomised controlled trial. Clin Nutr 2022; 41:1034-1045. [DOI: 10.1016/j.clnu.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
|
21
|
Høyer A, Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Lemming EW, Meltzer HM, Halldórsson ÞI, Þórsdóttir I, Schwab U, Trolle E, Blomhoff R. The Nordic Nutrition Recommendations 2022 - prioritisation of topics for de novo systematic reviews. Food Nutr Res 2021; 65:7828. [PMID: 35291553 PMCID: PMC8897982 DOI: 10.29219/fnr.v65.7828] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/04/2022] Open
Abstract
Background As part of the process of updating national dietary reference values (DRVs) and food-based dietary guidelines (FBDGs), the Nordic Nutrition Recommendations 2022 project (NNR2022) will select a limited number of topics for systematic reviews (SRs). Objective To develop and transparently describe the results of a procedure for prioritisation of topics that may be submitted for SRs in the NNR2022 project. Design In an open call, scientists, health professionals, national food and health authorities, food manufacturers, other stakeholders and the general population in the Nordic and Baltic countries were invited to suggest SR topics. The NNR2022 Committee developed scoping reviews (ScRs) for 51 nutrients and food groups aimed at identifying potential SR topics. These ScRs included the relevant nominations from the open call. SR topics were categorised, ranked and prioritised by the NNR2022 Committee in a modified Delphi process. Existing qualified SRs were identified to omit duplication. Results A total of 45 nominations with suggestion for more than 200 exposure-outcome pairs were received in the public call. A number of additional topics were identified in ScRs. In order to omit duplication with recently qualified SRs, we defined criteria and identified 76 qualified SRs. The NNR2022 Committee subsequently shortlisted 52 PI/ECOTSS statements, none of which overlapped with the qualified SRs. The PI/ECOTSS statements were then graded 'High' (n = 21), 'Medium' (n = 9) or 'Low' (n = 22) importance, and the PI/ECOTSS statements with 'High' were ranked in a Delphi process. The nine top prioritised PI/ECOTSS included the following exposure-outcome pairs: 1) plant protein intake in children and body growth, 2) pulses/legumes intake, and cardiovascular disease and type 2 diabetes, 3) plant protein intake in adults, and atherosclerotic/cardiovascular disease and type 2 diabetes, 4) fat quality and mental health, 5) vitamin B12 and vitamin B12 status, 6) intake of white meat (no consumption vs. high consumption and white meat replaced with red meat), and all-cause mortality, type 2 diabetes and risk factors, 7) intake of n-3 LPUFAs from supplements during pregnancy, and asthma and allergies in the offspring, 8) nuts intake and cardiovascular disease (CVD) and type 2 diabetes in adults, 9) dietary fibre intake (high vs. low) in children and bowel function. Discussion The selection of topics for de novo SRs is central in the NNR2022 project, as the results of these SRs may cause adjustment of existing DRVs and FBDGs. That is why we have developed this extensive process for the prioritisation of SR topics. For transparency, the results of the process are reported in this publication. Conclusion The principles and methodologies developed in the NNR2022 project may serve as a framework for national health authorities or organisations when developing national DRVs and FBDGs. This collaboration between the food and health authorities in Denmark, Estonia, Finland, Iceland, Latvia, Lithuania, Norway and Sweden represents an international effort for harmonisation and sharing of resources and competence when developing national DRVs and FBDGs.
Collapse
Affiliation(s)
- Anne Høyer
- The Norwegian Directorate of Health, Oslo, Norway
| | - Jacob Juel Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Oslo, Norway
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Erik Kristoffer Arnesen
- The Norwegian Directorate of Health, Oslo, Norway
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Rikke Andersen
- National Food Institute, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | | | - Maijaliisa Erkkola
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | | | - Helle Margrete Meltzer
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Inga Þórsdóttir
- School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Ellen Trolle
- National Food Institute, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Rune Blomhoff
- Department of Nutrition, University of Oslo, Oslo, Norway
- Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Capurso C. Whole-Grain Intake in the Mediterranean Diet and a Low Protein to Carbohydrates Ratio Can Help to Reduce Mortality from Cardiovascular Disease, Slow Down the Progression of Aging, and to Improve Lifespan: A Review. Nutrients 2021; 13:2540. [PMID: 34444699 PMCID: PMC8401068 DOI: 10.3390/nu13082540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Increase in the aging population is a phenomenon all over the world. Maintaining good functional ability, good mental health, and cognitive function in the absence of severe disease and physical disability define successful aging. A healthy lifestyle in middle age predisposes successful aging. Longevity is the result of a multifactorial phenomenon, which involves feeding. Diets that emphasize fruit and vegetables, whole grains rather than refined grains, low-fat dairy, lean meats, fish, legumes, and nuts are inversely associated with mortality or to a lower risk of becoming frail among elderly subjects. A regular physical activity and a regular intake of whole grain derivatives together with the optimization of the protein/carbohydrate ratio in the diet, where the ratio is significantly less than 1 such as in the Mediterranean diet and the Okinawan diet, reduces the risk of developing aging-related diseases and increases healthy life expectancy. The purpose of our review was to analyze cohort and case-control studies that investigated the effects of cereals in the diet, especially whole grains and derivatives as well as the effects of a diet with a low protein-carbohydrate ratio on the progression of aging, mortality, and lifespan.
Collapse
Affiliation(s)
- Cristiano Capurso
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
23
|
She Q, Chen B, Liu W, Li M, Zhao W, Wu J. Frailty Pathogenesis, Assessment, and Management in Older Adults With COVID-19. Front Med (Lausanne) 2021; 8:694367. [PMID: 34295914 PMCID: PMC8290059 DOI: 10.3389/fmed.2021.694367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The 2019 coronavirus disease (COVID-19) is a highly contagious and deadly disease. The elderly people are often accompanied by chronic inflammation and immunodeficiency, showing a frail state. The strength, endurance, and physiological function of the elderly are significantly decreased, and the ability to deal with stress response is weakened. They are the high-risk group that suffering from COVID-19, and rapidly developing to critical illness. Several recent studies suggest that the incidence rate of COVID-19 in elderly patients with frailty is high. Early assessment, detection, and effective intervention of frailty in COVID-19 patients are conducive to significantly improve the quality of life and improve prognosis. However, there are insufficient understanding and standards for the current evaluation methods, pathogenesis and intervention measures for COVID-19 combined with frailty. This study reviews the progress of the research on the potential pathogenesis, evaluation methods and intervention measures of the elderly COVID-19 patients with frailty, which provides a reference for scientific and reasonable comprehensive diagnosis and treatment in clinical.
Collapse
Affiliation(s)
- Quan She
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Chen
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weihong Zhao
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianqing Wu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Usual Protein Intake Amount and Sources of Nursing Home Residents with (Risk of) Malnutrition and Effects of an Individualized Nutritional Intervention: An enable Study. Nutrients 2021; 13:nu13072168. [PMID: 34202567 PMCID: PMC8308345 DOI: 10.3390/nu13072168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Nursing home (NH) residents with (risk of) malnutrition are at particular risk of low protein intake (PI). The aim of the present analysis was (1) to characterize usual PI (total amount/day (d) and meal, sources/d and meal) of NH residents with (risk of) malnutrition and (2) to evaluate the effects of an individualized nutritional intervention on usual PI. Forty residents (75% female, 85 ± 8 years) with (risk of) malnutrition and inadequate dietary intake received 6 weeks of usual care followed by 6 weeks of intervention. During the intervention phase, an additional 29 ± 11 g/d from a protein-energy drink and/or 2 protein creams were offered to compensate for individual energy and/or protein deficiencies. PI was assessed with two 3-day-weighing records in each phase and assigned to 4 meals and 12 sources. During the usual care phase, mean PI was 41 ± 10 g/d. Lunch and dinner contributed 31 ± 11% and 32 ± 9% to daily intake, respectively. Dairy products (median 9 (interquartile range 6–14) g/d), starchy foods (7 (5–10) g/d) and meat/meat products (6 (3–9) g/d) were the main protein sources in usual PI. During the intervention phase, an additional 18 ± 10 g/d were consumed. Daily PI from usual sources did not differ between usual care and intervention phase (41 ± 10 g/d vs. 42 ± 11 g/d, p = 0.434). In conclusion, daily and per meal PI were very low in NH residents with (risk of) malnutrition, highlighting the importance of adequate intervention strategies. An individualized intervention successfully increased PI without affecting protein intake from usual sources.
Collapse
|
25
|
Siener R. Nutrition and Kidney Stone Disease. Nutrients 2021; 13:1917. [PMID: 34204863 PMCID: PMC8229448 DOI: 10.3390/nu13061917] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of kidney stone disease is increasing worldwide. The recurrence rate of urinary stones is estimated to be up to 50%. Nephrolithiasis is associated with increased risk of chronic and end stage kidney disease. Diet composition is considered to play a crucial role in urinary stone formation. There is strong evidence that an inadequate fluid intake is the major dietary risk factor for urolithiasis. While the benefit of high fluid intake has been confirmed, the effect of different beverages, such as tap water, mineral water, fruit juices, soft drinks, tea and coffee, are debated. Other nutritional factors, including dietary protein, carbohydrates, oxalate, calcium and sodium chloride can also modulate the urinary risk profile and contribute to the risk of kidney stone formation. The assessment of nutritional risk factors is an essential component in the specific dietary therapy of kidney stone patients. An appropriate dietary intervention can contribute to the effective prevention of recurrent stones and reduce the burden of invasive surgical procedures for the treatment of urinary stone disease. This narrative review has intended to provide a comprehensive and updated overview on the role of nutrition and diet in kidney stone disease.
Collapse
Affiliation(s)
- Roswitha Siener
- University Stone Center, Department of Urology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
26
|
Juna CF, Cho Y, Ham D, Joung H. Association of Carbohydrate and Fat Intake with Prevalence of Metabolic Syndrome Can Be Modified by Physical Activity and Physical Environment in Ecuadorian Adults: The ENSANUT-ECU Study. Nutrients 2021; 13:nu13061834. [PMID: 34072138 PMCID: PMC8226586 DOI: 10.3390/nu13061834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
The associations of lifestyle and environment with metabolic syndrome (MetS) and cardiovascular disease have recently resulted in increased attention in research. This study aimed to examine interactive associations among carbohydrate and fat intake, physical environment (i.e., elevation and humidity), lifestyle, and MetS among Ecuadorian adults. We used data from the Ecuador National Health and Nutrition Survey 2012 (ENSANUT-ECU), with a total of 6023 participants aged 20 to 60 years included in this study. Logistic regression was used to determine the association of status of carbohydrate and fat intake, low-carbohydrate high-fat diet (LCHF) and medium-carbohydrate and fat (MCF) diet with MetS, where the high-carbohydrate low-fat (HCLF) diet was used as a reference. Women with LCHF and MCF diets showed lower prevalence of increased blood pressure (OR = 0.34, 95% CI: 0.19–0.59; OR = 0.50, 95% CI: 0.32–0.79, respectively). Women with MCF diet also showed lower prevalence of elevated fasting glucose (OR = 0.58, 95% CI: 0.37–0.91). Moreover, there were negative associations between MetS and reduced HDL cholesterol in women with MCF diet residing in low relative humidity (OR = 0.66, 95% CI: 0.45–0.98) and in women with LCHF diet residing at a high elevation (OR = 0.37, 95% CI: 0.16–0.86). Additionally, higher prevalence of increased waist circumference was observed in men with both MFC and LCHF diets who were physically inactive (OR = 1.89, 95% CI: 1.12–3.20; OR = 2.34, 95% CI: 1.19–4.60, respectively) and residing in high relative humidity (OR = 1.90, 95% CI: 1.08–2.89; OR = 2.63, 95% CI: 1.32–5.28, respectively). Our findings suggest that LCHF intake is associated with lower blood pressure, while MCF intake is associated with lower blood pressure and fasting glucose in Ecuadorian women. Furthermore, the associations of carbohydrate and fat intake with prevalence of MetS can be modified by physical activity, relative humidity, and elevation. The obtained outcomes may provide useful information for health programs focusing on dietary intake and lifestyle according to physical environment of the population to promote health and prevent metabolic diseases.
Collapse
Affiliation(s)
- Christian F. Juna
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
- Facultad de Enfermería, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Yoonhee Cho
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA
- Correspondence: (Y.C.); (H.J.); Tel.: +1-406-243-4529 (Y.C.); +82-2-880-2831 (H.J.)
| | - Dongwoo Ham
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea;
| | - Hyojee Joung
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea;
- Correspondence: (Y.C.); (H.J.); Tel.: +1-406-243-4529 (Y.C.); +82-2-880-2831 (H.J.)
| |
Collapse
|
27
|
Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. SUSTAINABILITY 2021. [DOI: 10.3390/su13084428] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food businesses in the European Union are preparing for a carbon-neutral future by gradually transitioning to a circular way of operating. Building upon results from the EU REFRESH project, we consider the most valuable food processing by-streams in Europe and discuss potential food safety risks that must be considered while valorizing them for human consumption. These risks are weighed against the nutritional benefits offered by these products and their potential applications in food supply chains. Broadly, we examine whether it is possible for spent grains, cheese whey, fruit and vegetable scraps, meat processing waste, and oilseed cakes and meals to be safe, sustainable, and nutritionally valuable at the same time. The discussion highlights that valorizing by-products obtained from food processing operations is feasible on a large scale only if consumers deem it to be a safe and acceptable practice. Extracting valuable compounds from by-products and using them in the preparation of functional foods could be a way to gain consumer acceptance. Furthermore, we find that current EU food safety legislation does not sufficiently accommodate food processing by-products. A way to bridge this regulatory gap could be through the adoption of private food safety standards that have shown proclivity for sustainability-related issues in food supply chains. Finally, by proposing a decision tree, we show that it is indeed feasible for some food processing by-products to be valorized while ensuring sustainability, food safety, and nutritional relevance.
Collapse
|
28
|
Dommerholt MB, Blankestijn M, Vieira‐Lara MA, van Dijk TH, Wolters H, Koster MH, Gerding A, van Os RP, Bloks VW, Bakker BM, Kruit JK, Jonker JW. Short-term protein restriction at advanced age stimulates FGF21 signalling, energy expenditure and browning of white adipose tissue. FEBS J 2021; 288:2257-2277. [PMID: 33089625 PMCID: PMC8048886 DOI: 10.1111/febs.15604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Dietary protein restriction has been demonstrated to improve metabolic health under various conditions. However, the relevance of ageing and age-related decline in metabolic flexibility on the effects of dietary protein restriction has not been addressed. Therefore, we investigated the effect of short-term dietary protein restriction on metabolic health in young and aged mice. Young adult (3 months old) and aged (18 months old) C57Bl/6J mice were subjected to a 3-month dietary protein restriction. Outcome parameters included fibroblast growth factor 21 (FGF21) levels, muscle strength, glucose tolerance, energy expenditure (EE) and transcriptomics of brown and white adipose tissue (WAT). Here, we report that a low-protein diet had beneficial effects in aged mice by reducing some aspects of age-related metabolic decline. These effects were characterized by increased plasma levels of FGF21, browning of subcutaneous WAT, increased body temperature and EE, while no changes were observed in glucose homeostasis and insulin sensitivity. Moreover, the low-protein diet used in this study was well-tolerated in aged mice indicated by the absence of adverse effects on body weight, locomotor activity and muscle performance. In conclusion, our study demonstrates that a short-term reduction in dietary protein intake can impact age-related metabolic health alongside increased FGF21 signalling, without negatively affecting muscle function. These findings highlight the potential of protein restriction as a strategy to induce EE and browning of WAT in aged individuals.
Collapse
Affiliation(s)
- Marleen B. Dommerholt
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Maaike Blankestijn
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Marcel A. Vieira‐Lara
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Henk Wolters
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Mirjam H. Koster
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Albert Gerding
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Ronald P. van Os
- Mouse Clinic for Cancer and AgingCentral Animal FacilityUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent W. Bloks
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Barbara M. Bakker
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Janine K. Kruit
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Johan W. Jonker
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
29
|
Soflaei SS, Shamsara E, Sahranavard T, Esmaily H, Moohebati M, Shabani N, Asadi Z, Tajfard M, Ferns GA, Ghayour-Mobarhan M. Dietary protein is the strong predictor of coronary artery disease; a data mining approach. Clin Nutr ESPEN 2021; 43:442-447. [PMID: 34024553 DOI: 10.1016/j.clnesp.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUNDS Coronary artery disease (CAD) is the major cause of mortality and morbidity globally. Diet is known to contribute to CAD risk, and the dietary intake of specific macro- or micro-nutrients might be potential predictors of CAD risk. Machine learning methods may be helpful in the analysis of the contribution of several parameters in dietary including macro- and micro-nutrients to CAD risk. Here we aimed to determine the most important dietary factors for predicting CAD. METHODS A total of 273 cases with more than 50% obstruction in at least one coronary artery and 443 healthy controls who completed a food frequency questionnaire (FFQ) were entered into the study. All dietary intakes were adjusted for energy intake. The QUEST method was applied to determine the diagnosis pattern of CAD. RESULTS A total of 34 dietary variables obtained from the FFQ were entered into the initial study analysis, of these variables 23 were significantly associated with CAD according to t-tests. Of these 23 dietary input variables, adjusted protein, manganese, biotin, zinc and cholesterol remained in the model. According to our tree, only protein intake could identify the patients with coronary artery stenosis according to angiography from healthy participant up to 80%. The dietary intake of manganese was the second most important variable. The accuracy of the tree was 84.36% for the training dataset and 82.94% for the testing dataset. CONCLUSION Among several dietary macro- and micro-nutrients, a combination of protein, manganese, biotin, zinc and cholesterol could predict the presence of CAD in individuals undergoing angiography.
Collapse
Affiliation(s)
- Sara Saffar Soflaei
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Shamsara
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Sahranavard
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Shabani
- Department of Biostatistics & Epidemiology, School of Health, Management & Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Asadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Tajfard
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Altashina MV, Ivannikova EV, Troshina EA. High protein diet: benefits and risks. OBESITY AND METABOLISM 2020; 17:393-400. [DOI: 10.14341/omet12662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The nature of human nutrition has become increasingly important as an effective element in the prevention and treatment of many pathologies, especially obesity, type 2 diabetes and cardiovascular diseases. High protein diets are some of the most popular eating patterns and the Dukan diet has taken the lead in popularity among the diets of this type. An increase of protein in the diet is effective in reducing body weight, primarily due to the loss of adipose tissue, without a significant effect on muscle mass. Another advantage of a high-protein diet is earlier and longer satiety compared to other diets, which makes it comfortable for use. Besides obesity, high protein diets are presumably effective for treating such diseases as nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular diseases However, despite the important advantages, this nutritional model is not universal and is contraindicated in patients with diseases of liver, kidneys and osteoporosis. Besides, the prolonged use of a high protein diet may increase the risks of urolithiasis and reduced mineral bone density even for healthy individuals. Thus, the increase in the proportion of protein in the diet should take place exclusively under the supervision of a physician.
Collapse
|
31
|
Di Daniele N. Association of Dietary Patterns with Metabolic Syndrome. Nutrients 2020; 12:nu12092840. [PMID: 32957427 PMCID: PMC7551145 DOI: 10.3390/nu12092840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS), as originally defined by Jean Vague in 1940, was identified as a cluster of chronic, inflammatory pathologies, such as arterial hypertension, abdominal obesity, high glucose levels, high triglyceride levels and low HDL levels in the blood [...].
Collapse
Affiliation(s)
- Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
32
|
Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling. Diabetol Int 2020; 11:224-239. [PMID: 32802703 DOI: 10.1007/s13340-020-00437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/11/2022]
|
33
|
Sohel MMH. Macronutrient modulation of mRNA and microRNA function in animals: A review. ACTA ACUST UNITED AC 2020; 6:258-268. [PMID: 33005759 PMCID: PMC7503081 DOI: 10.1016/j.aninu.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dietary macronutrients have been regarded as a basic source of energy and amino acids that are necessary for the maintenance of cellular homeostasis, metabolic programming as well as protein synthesis. Due to the emergence of “nutrigenomics”, a unique discipline that combines nutritional and omics technologies to study the impacts of nutrition on genomics, it is increasingly evident that macronutrients also have a significant role in the gene expression regulation. Gene expression is a complex phenomenon controlled by several signaling pathways and could be influenced by a wide variety of environmental and physiological factors. Dietary macronutrients are the most important environmental factor influencing the expression of both genes and microRNAs (miRNA). miRNA are tiny molecules of 18 to 22 nucleotides long that regulate the expression of genes. Therefore, dietary macronutrients can influence the expression of genes in both direct and indirect manners. Recent advancements in the state-of-the-art technologies regarding molecular genetics, such as next-generation sequencing, quantitative PCR array, and microarray, allowed us to investigate the occurrence of genome-wide changes in the expression of genes in relation to augmented or reduced dietary macronutrient intake. The purpose of this review is to accumulate the current knowledge focusing on macronutrient mediated changes in the gene function. This review will discuss the impact of altered dietary carbohydrate, protein, and fat intake on the expression of coding genes and their functions. In addition, it will also summarize the regulation of miRNA, both cellular and extracellular miRNA, expression modulated by dietary macronutrients.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey.,Genome and Stem Cell Centre, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
34
|
Araki E, Goto A, Kondo T, Noda M, Noto H, Origasa H, Osawa H, Taguchi A, Tanizawa Y, Tobe K, Yoshioka N. Japanese Clinical Practice Guideline for Diabetes 2019. Diabetol Int 2020; 11:165-223. [PMID: 32802702 PMCID: PMC7387396 DOI: 10.1007/s13340-020-00439-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Goto
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, Yokohama, Japan
| | - Tatsuya Kondo
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Kumamoto, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Ichikawa, Japan
| | - Hiroshi Noto
- Division of Endocrinology and Metabolism, St. Luke’s International Hospital, Tokyo, Japan
| | - Hideki Origasa
- Department of Biostatistics and Clinical Epidemiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Haruhiko Osawa
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | |
Collapse
|
35
|
Araki E, Goto A, Kondo T, Noda M, Noto H, Origasa H, Osawa H, Taguchi A, Tanizawa Y, Tobe K, Yoshioka N. Japanese Clinical Practice Guideline for Diabetes 2019. J Diabetes Investig 2020; 11:1020-1076. [PMID: 33021749 PMCID: PMC7378414 DOI: 10.1111/jdi.13306] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Eiichi Araki
- Department of Metabolic MedicineFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Atsushi Goto
- Department of Health Data ScienceGraduate School of Data ScienceYokohama City UniversityYokohamaJapan
| | - Tatsuya Kondo
- Department of Diabetes, Metabolism and EndocrinologyKumamoto University HospitalKumamotoJapan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and EndocrinologyIchikawa HospitalInternational University of Health and WelfareIchikawaJapan
| | - Hiroshi Noto
- Division of Endocrinology and MetabolismSt. Luke's International HospitalTokyoJapan
| | - Hideki Origasa
- Department of Biostatistics and Clinical EpidemiologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Haruhiko Osawa
- Department of Diabetes and Molecular GeneticsEhime University Graduate School of MedicineToonJapan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and TherapeuticsGraduate School of MedicineYamaguchi UniversityUbeJapan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Science and TherapeuticsGraduate School of MedicineYamaguchi UniversityUbeJapan
| | - Kazuyuki Tobe
- First Department of Internal MedicineGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | | |
Collapse
|
36
|
Yuan X, Murakami K, Asakura K, Uechi K, Masayasu S, Sasaki S. Formulas developed based on the ratio of urea nitrogen to creatinine concentrations obtained from multiple spot urine samples are acceptable to predict protein intake at group level but not at individual level. Nutr Res 2020; 78:50-59. [PMID: 32502763 DOI: 10.1016/j.nutres.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
In this study, we hypothesized that spot urine can be used to predict protein intake at both group and individual levels. Participants (n = 369) of this study were recruited from all 47 prefectures in Japan. Sex-specific formulas were developed based on the ratio of urea nitrogen to creatinine concentration obtained from 3 spot urine samples. Validity of the formulas was examined against two 24-hour urine collections for 7 combinations of spot urine (single and means of 2 or 3 samples) using t test (mean estimation), Spearman correlation, and Bland-Altman plot (individual bias). Means of measured protein intake based on 24-hour urinary excretions were 87.3 g/d (standard deviation 19.7) for men and 70.5 g/d (standard deviation 14.7) for women. Irrespective of sex, the predicted intakes were not significantly different (within 2.7% of differences) from those measured by urinary excretions. Predicted intakes were moderately correlated with measured intakes (men, 0.45-0.60; women, 0.35-0.53). Even after using the mean of 3 samples, Bland-Altman plots showed a considerably wide limit of agreement (men, -30 to 33 g/d; women, -27 to 24 g/d). Except for using single spot urine samples in women, the formula tended to overestimate intake at a lower and underestimate at a higher level of protein intake (slope: men, -0.47 [P < .0001]; women, -0.38 [P = .002]). In conclusion, predictive formulas developed in this study can be used to predict protein intake at group level or to rank individuals' intake but not to predict absolute intake at individual level.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Social and Preventive Epidemiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kentaro Murakami
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keiko Asakura
- School of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Ken Uechi
- Division of Community Health Nursing, Faculty of Health Science, Toho University, Chiba 274-8510, Japan
| | | | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
37
|
Effects of a High-Protein Diet on Cardiometabolic Health, Vascular Function, and Endocannabinoids-A PREVIEW Study. Nutrients 2020; 12:nu12051512. [PMID: 32455987 PMCID: PMC7284520 DOI: 10.3390/nu12051512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
An unfavorable lipid profile and being overweight are known mediators in the development of cardiovascular disease (CVD) risk. The effect of diet, particularly high in protein, remains under discussion. Therefore, this study examines the effects of a high-protein (HP) diet on cardiometabolic health and vascular function (i.e., endothelial function, arterial stiffness, and retinal microvascular structure), and the possible association with plasma endocannabinoids and endocannabinoid-related compounds in overweight participants. Thirty-eight participants (64.5 ± 5.9 (mean ± SD) years; body mass index (BMI) 28.9 ± 4.0 kg/m2) were measured for 48 h in a respiration chamber after body-weight maintenance for approximately 34 months following weight reduction. Diets with either a HP (n = 20) or moderate protein (MP; n = 18) content (25%/45%/30% vs. 15%/55%/30% protein/carbohydrate/fat) were provided in energy balance. Validated markers for cardiometabolic health (i.e., office blood pressure (BP) and serum lipoprotein concentrations) and vascular function (i.e., brachial artery flow-mediated vasodilation, pulse wave analysis and velocity, and retinal microvascular calibers) were measured before and after those 48 h. Additionally, 24 h ambulatory BP, plasma anandamide (AEA), 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and pregnenolone (PREG) were analyzed throughout the day. Office and ambulatory BP, serum lipoprotein concentrations, and vascular function markers were not different between the groups. Only heart rate (HR) was higher in the HP group. HR was positively associated with OEA, while OEA and PEA were also positively associated with total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol concentrations. Vascular function markers were not associated with endocannabinoids (or endocannabinoid-related substances). In conclusion, the HP diet did not affect cardiometabolic health and vascular function in overweight participants after completing a weight-loss intervention. Furthermore, our data indicate a possible association between OEA and PEA with TC and LDL cholesterol.
Collapse
|
38
|
The association of animal and plant protein with successful ageing: a combined analysis of MEDIS and ATTICA epidemiological studies. Public Health Nutr 2020; 24:2215-2224. [PMID: 32434609 DOI: 10.1017/s1368980020000427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the differences between the consumption of plant-based v. animal-based protein-rich diets on successful ageing, as well as to identify the optimal combination of dietary protein intake for facilitating successful ageing in people aged >50 years. DESIGN A combined analysis was conducted in older adults of the ATTICA and MEDIS population-based cross-sectional studies. Anthropometrical, clinical and sociodemographic characteristics, lifestyle parameters, dietary habits and level of protein intake were derived through standard procedures. Successful ageing was evaluated using the validated Successful Aging Index (SAI) composed of ten health-related social, lifestyle and clinical characteristics. SETTING Athens area and twenty Greek islands. PARTICIPANTS A total of 3349 Greek women and men over 50 years old. RESULTS Participants with high consumption of plant proteins were more likely to be male, physically active, with higher daily energy intake, higher adherence to the Mediterranean diet and higher level of SAI (P < 0·001). Participants with 'Low animal & High plant' and 'High animal & High plant' protein consumption had a 6 and 7 % higher SAI score, respectively, compared with the other participants (P < 0·001). In contrast, 'Low animal & Low plant' and 'High animal & Low plant' protein intake was negatively associated with SAI as compared to the combination of all other consumption categories (P < 0·02). CONCLUSIONS The consumption of a plant-based protein-rich diet seems to be a beneficial nutritional choice that should be promoted and encouraged to older people since it may benefit both individual's health and prolong successful ageing.
Collapse
|
39
|
Wali JA, Raubenheimer D, Senior AM, Le Couteur DG, Simpson SJ. Cardio-metabolic consequences of dietary carbohydrates: reconciling contradictions using nutritional geometry. Cardiovasc Res 2020; 117:386-401. [PMID: 32386289 DOI: 10.1093/cvr/cvaa136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates are the major source of dietary energy, but their role in health and disease remains controversial. Recent epidemiological evidence suggests that the increased consumption of carbohydrates is associated with obesity and increased risk of mortality and dietary trials show that carbohydrate restriction leads to weight loss and improved glycaemic status in obese and diabetic subjects. In contrast, the diets of populations with long and healthy lifespans (e.g. traditional Okinawans from Japan) are high in carbohydrate and low in protein, and several clinical and preclinical studies have linked low-carbohydrate-high-protein diets with increased mortality risk. In this paper we attempt to reconcile these contradictory findings by moving beyond traditional single-nutrient analyses to consider the interactions between nutrients on health outcomes. We do so using the Geometric Framework (GF), a nutritional modelling platform that explicitly considers the main and interactive effects of multiple nutrients on phenotypic characteristics. Analysis of human data by GF shows that weight loss and improved cardio-metabolic outcomes under carbohydrate restriction derive at least in part from reduced caloric intake due to the concomitantly increased proportion of protein in the diet. This is because, as in many animals, a specific appetite for protein is a major driver of food intake in humans. Conversely, dilution of protein in the diet leverages excess food intake through compensatory feeding for protein ('protein leverage'). When protein is diluted in the diet by readily digestible carbohydrates and fats, as is the case in modern ultra-processed foods, protein leverage results in excess calorie intake, leading to rising levels of obesity and metabolic disease. However, when protein is diluted in the diet by increased quantities of less readily digestible forms of carbohydrate and fibre, energy balance is maintained and health benefits accrue, especially during middle age and early late-life. We argue that other controversies in carbohydrate research can be resolved using the GF methodology in dietary studies.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,ANZAC Research Institute, The University of Sydney, Concord, Sydney, New South Wales 2139, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| |
Collapse
|
40
|
Replacing Animal-Based Proteins with Plant-Based Proteins Changes the Composition of a Whole Nordic Diet-A Randomised Clinical Trial in Healthy Finnish Adults. Nutrients 2020; 12:nu12040943. [PMID: 32231103 PMCID: PMC7231027 DOI: 10.3390/nu12040943] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Increased consumption of plant-based foods and decreased consumption of animal-based foods is recommended for healthy diets and sustainable food production. We investigated the effects of partial replacement of dietary animal proteins with plant-based ones on intake of energy-yielding nutrients, fibre, and plasma lipoproteins. This 12-week randomised clinical intervention comprised 107 women and 29 men (20–69 years) in three diet groups with different dietary protein compositions (“ANIMAL”: Animal 70%/plant 30%; “50/50”: Animal 50%/plant 50%; “PLANT”: Animal 30%/plant 70%; all: Protein intake 17 E%). Nutrient intakes were assessed by 4-day food records. Saturated fat intake (E%) was lower and polyunsaturated fatty acid intake (E%) higher in the PLANT and 50/50 groups compared to the ANIMAL group (p < 0.001 for all). Fibre intake was higher in the PLANT (p ˂ 0.001) and 50/50 (p = 0.012) groups. Total and LDL cholesterol were lower in the PLANT than in the ANIMAL group (p = 0.003 for both) but no differences in HDL cholesterol or triglycerides were observed (p > 0.05). Replacing animal protein with plant protein sources in the diet led to an increased fibre intake and improved dietary fat quality as well as blood lipoprotein profile. Flexitarian diets could provide healthy and more sustainable alternatives for the current, predominantly animal-based diets.
Collapse
|
41
|
Abstract
A wide variety of plant species provide edible seeds. Seeds are the dominant source of human calories and protein. The most important and popular seed food sources are cereals, followed by legumes and nuts. Their nutritional content of fiber, protein, and monounsaturated/polyunsaturated fats make them extremely nutritious. They are important additions to our daily food consumption. When consumed as part of a healthy diet, seeds can help reduce blood sugar, cholesterol, and blood pressure.
Collapse
|
42
|
He C, Wu Q, Hayashi N, Nakano F, Nakatsukasa E, Tsuduki T. Carbohydrate-restricted diet alters the gut microbiota, promotes senescence and shortens the life span in senescence-accelerated prone mice. J Nutr Biochem 2019; 78:108326. [PMID: 31952014 DOI: 10.1016/j.jnutbio.2019.108326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
This study examined the effects of a carbohydrate-restricted diet on aging, brain function, intestinal bacteria and the life span to determine long-term carbohydrate-restriction effects on the aging process in senescence-accelerated prone mice (SAMP8). Three-week-old male SAMP8 were divided into three groups after a week of preliminary feeding. One group was given a controlled diet, while the others fed on high-fat and carbohydrate-restricted diets, respectively. The mice in each group were further divided into two subgroups, of which one was the longevity measurement group. The other groups fed ad libitum until the mice were 50 weeks old. Before the test period termination, passive avoidance test evaluated the learning and memory abilities. Following the test period, serum and various mice organs were obtained and submitted for analysis. The carbohydrate-restricted diet group exhibited significant decrease in the survival rate as compared to the other two diet groups. The passive avoidance test revealed a remarkable decrease in the learning and memory ability of carbohydrate-restricted diet group as compared to the control-diet group. Measurement of lipid peroxide level in tissues displayed a marked increase in the brain and spleen of carbohydrate-restricted diet group than the control-diet and high-fat diet groups. Furthermore, notable serum IL-6 and IL-1β level (inflammation indicators) elevations, decrease in Enterobacteria (with anti-inflammatory action), increase in inflammation-inducing Enterobacteria and lowering of short-chain fatty acids levels in cecum were observed in the carbohydrate-restricted diet group. Hence, carbohydrate-restricted diet was revealed to promote aging and shortening of life in SAMP8.
Collapse
Affiliation(s)
- Chaoqi He
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Qiming Wu
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Nao Hayashi
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Fumika Nakano
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Eriko Nakatsukasa
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
43
|
Dietary habits contribute to define the risk of type 2 diabetes in humans. Clin Nutr ESPEN 2019; 34:8-17. [DOI: 10.1016/j.clnesp.2019.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/25/2022]
|
44
|
Verspoor E, Voortman T, van Rooij FJA, Rivadeneira F, Franco OH, Kiefte-de Jong JC, Schoufour JD. Macronutrient intake and frailty: the Rotterdam Study. Eur J Nutr 2019; 59:2919-2928. [PMID: 31728680 PMCID: PMC7501120 DOI: 10.1007/s00394-019-02131-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/29/2019] [Indexed: 02/04/2023]
Abstract
Purpose To investigate the longitudinal association between the macronutrient composition of the diet and frailty. Methods Data were obtained from 5205 Dutch middle-aged and older adults participating in the Rotterdam Study. Frailty was measured using a frailty index based on the accumulation of 38 health-related deficits, score between 0 and 100, and a higher score indicating more frailty. Frailty was assessed at baseline and 11 years later (range of 23 years). Macronutrient intake was assessed using food-frequency questionnaires. The association between macronutrients and frailty over time was evaluated using multivariable linear regression, adjusted for the frailty index at baseline, energy intake, and other relevant confounders. All analyses were performed in strata of BMI. Results Median frailty index score was 13.8 points (IQR 9.6; 19.1) at baseline and increased by a median of 2.3 points (IQR − 2.0; 7.6) after 11 years. Overall, we found no significant associations between intake of carbohydrates or fat and frailty over time. We did observe a significant positive association between an iso-energetic intake of 10 g protein and frailty over time (β 0.31 (95% CI 0.06; 0.55)) which was mainly driven by animal protein (β 0.31 (95% CI 0.07; 0.56)). It did not depend on whether it was substituted fat or carbohydrates. Conclusions Our findings suggest that a reduction in the intake of animal protein may improve the overall health status over time in a relatively healthy population. More research is needed on the optimal macronutrient composition of the diet and frailty in more vulnerable populations. Electronic supplementary material The online version of this article (10.1007/s00394-019-02131-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eline Verspoor
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center/LUMC Campus, The Hague, The Netherlands
| | - Josje D Schoufour
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Faculty of Sports and Nutrition, ACHIEVE-Centre of Applied Research, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Mariotti F. Animal and Plant Protein Sources and Cardiometabolic Health. Adv Nutr 2019; 10:S351-S366. [PMID: 31728490 PMCID: PMC6855969 DOI: 10.1093/advances/nmy110] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
The sources or types of protein in the diet have long been overlooked regarding their link to cardiometabolic health. The picture is complicated by the fact that animal and plant proteins are consumed along with other nutrients and substances which make up the "protein package" so plant and animal protein come with clear nutrient clusters. This review aimed at deciphering the relation between plant and animal protein and cardiometabolic health by examining different nutritional levels (such as amino acids, protein type, protein foods, protein patterns, and associated overall dietary and nutrient patterns) and varying levels of scientific evidence [basic science, randomized controlled trials (RCTs), observational data]. Plant protein in Western countries is a robust marker of nutrient adequacy of the diet, whereas the contribution of animal protein is highly heterogeneous. Yet recent data from large cohorts have confirmed that total and animal proteins are associated with the risk of cardiovascular disease and diabetes, even when fully adjusting for lifestyle and dietary or nutritional factors. Here again, there is marked variability depending on the type of animal protein. Protein from processed red meat and total red meat on the one hand, and from legumes, nuts, and seeds on the other, are often reported at the extremes of the risk range. RCTs using purified proteins have contributed little to the topic to date, inasmuch as the findings cannot readily be extrapolated to current or near-future diets, but RCTs studying whole protein foods have shown a beneficial effect of pulses. Despite the fact that many of the benefits of plant protein reported in observational or interventional studies may stem from the protein package that they convey and the nutrients that they displace, there are also important indications that protein per se may affect cardiometabolic health via the many amino acids that are present in typically contrasting levels in plant compared with animal proteins.
Collapse
Affiliation(s)
- François Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
46
|
Schoufour JD, Overdevest E, Weijs PJM, Tieland M. Dietary Protein, Exercise, and Frailty Domains. Nutrients 2019; 11:E2399. [PMID: 31597289 PMCID: PMC6835617 DOI: 10.3390/nu11102399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023] Open
Abstract
Increasing awareness of the impact of frailty on elderly people resulted in research focusing on factors that contribute to the development and persistence of frailty including nutrition and physical activity. Most effort so far has been spent on understanding the association between protein intake and the physical domain of frailty. Far less is known for other domains of frailty: cognition, mood, social health and comorbidity. Therefore, in the present narrative review, we elaborate on the evidence currently known on the association between protein and exercise as well as the broader concept of frailty. Most, but not all, identified studies concluded that low protein intake is associated with a higher prevalence and incidence of physical frailty. Far less is known on the broader concept of frailty. The few studies that do look into this association find a clear beneficial effect of physical activity but no conclusions regarding protein intake can be made yet. Similar, for other important aspects of frailty including mood, cognition, and comorbidity, the number of studies are limited and results are inconclusive. Future studies need to focus on the relation between dietary protein and the broader concept of frailty and should also consider the protein source, amount and timing.
Collapse
Affiliation(s)
- Josje D Schoufour
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands.
- Faculty Health, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands.
| | - Elvera Overdevest
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands.
| | - Peter J M Weijs
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands.
- Amsterdam University Medical Centers, University of Amsterdam, 1012 WX Amsterdam, The Netherlands.
| | - Michael Tieland
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Liao LM, Loftfield E, Etemadi A, Graubard BI, Sinha R. Substitution of dietary protein sources in relation to colorectal cancer risk in the NIH-AARP cohort study. Cancer Causes Control 2019; 30:1127-1135. [PMID: 31327110 DOI: 10.1007/s10552-019-01210-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the substitution effect of plant for animal protein with risk of CRC in the large prospective National Institutes of Health-AARP cohort study. METHODS Protein intake was assessed at baseline using a food frequency questionnaire. HRs and 95% CIs were estimated using multivariable adjusted hazard ratios from Cox proportional hazards models. We used a substitution model with total protein intake held constant, so that an increase in plant protein was offset by an equal decrease in animal protein. RESULTS Among 489,625 individuals, we identified 8,995 incident CRCs after a median follow-up of 15.5 years. Substituting plant protein for animal protein was associated with a reduced risk of CRC (HR for highest vs. lowest fifth 0.91; 95% CI 0.83-0.99). This reduction in CRC risk appeared to be primarily due to substituting plant protein for red meat protein (HR 0.89; 95% CI 0.81-0.97), not white meat protein (HR 0.96; 95% CI 0.88-1.05) or other animal protein (HR 0.94; 95% CI 0.86-1.03). When further evaluated by source, reduction in CRC risk was limited to the substitution of protein from bread, cereal, and pasta for red meat protein (HR 0.86; 95% CI 0.80-0.93); this association was stronger for distal colon (HR 0.78; 95% CI 0.67-0.90) and rectal cancer (HR 0.79; 95% CI 0.68-0.91) but null for proximal colon (HR 0.99; 95% CI 0.88-1.11). CONCLUSIONS This study shows that substituting plant protein for animal protein, especially red meat protein, is associated with a reduced risk of CRC, and suggests that protein source impacts CRC risk.
Collapse
Affiliation(s)
- Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. .,Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr., 6E424, Rockville, MD, 20850, USA.
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arash Etemadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Virtanen HEK, Voutilainen S, Koskinen TT, Mursu J, Tuomainen TP, Virtanen JK. Intake of Different Dietary Proteins and Risk of Heart Failure in Men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Circ Heart Fail 2019; 11:e004531. [PMID: 29844244 PMCID: PMC6023591 DOI: 10.1161/circheartfailure.117.004531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/11/2018] [Indexed: 01/11/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Animal and plant protein intakes have indicated opposite associations with cardiovascular mortality risk. Whether dietary proteins are associated with risk of heart failure (HF) is unclear. Thus, we examined the associations of proteins from different food sources with risk of HF. Methods and Results: The study included 2441 men aged 42 to 60 years at the baseline examinations in 1984 to 1989 in the Kuopio Ischaemic Heart Disease Risk Factor Study. Protein intakes at baseline were assessed with 4-day dietary records. Data on incident HF cases were obtained from national registers. HF risk according to protein intake was estimated by Cox proportional hazard ratios. During the mean follow-up of 22.2 years, 334 incident HF cases occurred. Higher intake of total protein indicated a trend toward increased risk of HF (multivariable-adjusted hazard ratio in the highest versus lowest quartile=1.33; 95% confidence interval: 0.95–1.85; P-trend=0.05). The associations between specific types and sources of protein with incident HF were consistent with this overall finding although not all associations reached statistical significance. For example, the hazard ratio in the highest versus lowest quartile was 1.43 (95% confidence interval: 1.00–2.03; P-trend=0.07) for total animal protein and 1.17 (95% confidence interval: 0.72–1.91; P-trend=0.35) for total plant protein. Conclusions: In middle-aged men, higher protein intake was marginally associated with increased risk of HF. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03221127
Collapse
Affiliation(s)
- Heli E K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Timo T Koskinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Jaakko Mursu
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio.
| |
Collapse
|
49
|
van den Born JC, Frenay ARS, Koning AM, Bachtler M, Riphagen IJ, Minovíc I, Feelisch M, Dekker MM, Bulthuis MLC, Gansevoort RT, Hillebrands JL, Pasch A, Bakker SJL, van Goor H. Urinary Excretion of Sulfur Metabolites and Risk of Cardiovascular Events and All-Cause Mortality in the General Population. Antioxid Redox Signal 2019; 30:1999-2010. [PMID: 29905081 DOI: 10.1089/ars.2017.7040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aims: Thiosulfate and sulfate are metabolites of hydrogen sulfide (H2S), a gaseous signaling molecule with cardiovascular (CV) protective properties. Urinary thiosulfate excretion and sulfate excretion are associated with favorable disease outcome in high-risk patient groups. We investigated the relationship between urinary excretion of sulfur metabolites, and risk of CV events and all-cause mortality in the general population. Results: Subjects (n = 6839) of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study were followed prospectively. At baseline, 24-h urinary excretion of thiosulfate and sulfate was determined. Median urinary thiosulfate and sulfate excretion values were 1.27 (interquartile range [IQR] 0.89-2.37) μmol/24 h and 15.7 (IQR 12.0-20.3) mmol/24 h, respectively. Neither thiosulfate nor sulfate excretion showed an independent association with risk of CV events. Sulfate, but not thiosulfate, was inversely associated with risk of all-cause mortality, independent of potential confounders (hazard ratio 0.73 [95% confidence interval 0.63-0.84], p < 0.001). This association appeared most pronounced for normolipidemic subjects (pinteraction = 0.019). Innovation: The strong association between sulfate excretion and mortality in the general population emphasizes the (patho)physiological importance of sulfate or its precursor H2S. Conclusion: We hypothesize that urinary sulfate excretion, which is inversely associated with all-cause mortality in the general population, holds clinical relevance as a beneficial modulator in health and disease. Antioxid. Redox Signal. 30, 1999-2010.
Collapse
Affiliation(s)
- Joost C van den Born
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Anne-Roos S Frenay
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Anne M Koning
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,2 Department of Surgery, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Matthias Bachtler
- 3 Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ineke J Riphagen
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,5 Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Isidor Minovíc
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Martin Feelisch
- 6 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,7 NIHR Biomedical Research Centre, University of Southampton, Southampton, United Kingdom.,8 University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Marinda M Dekker
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Marian L C Bulthuis
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Ron T Gansevoort
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Andreas Pasch
- 3 Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Stephan J L Bakker
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,5 Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Harry van Goor
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| |
Collapse
|
50
|
Effect of diet composition on insulin sensitivity in humans. Clin Nutr ESPEN 2019; 33:29-38. [PMID: 31451269 DOI: 10.1016/j.clnesp.2019.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
Diet composition has a marked impact on the risk of developing type 2 diabetes and cardiovascular disease. Prospective studies show that dietary patterns with elevated amount of animal products and low quantity of vegetable food items raise the risk of these diseases. In healthy subjects, animal protein intake intensifies insulin resistance whereas plant-based foods enhance insulin sensitivity. Similar effects have been documented in patients with diabetes. Accordingly, pre-pregnancy intake of meat (processed and unprocessed) has been strongly associated with a higher risk of gestational diabetes whereas greater pre-pregnancy vegetable protein consumption is associated with a lower risk of gestational diabetes. Population groups that modify their traditional dietary habit increasing the amount of animal products while reducing plant-based foods experience a remarkable rise in the frequency of type 2 diabetes. The association of animal protein intake with insulin resistance is independent of body mass index. In obese individuals that consume high animal protein diets, insulin sensitivity does not improve following weight loss. Diets aimed to lose weight that encourage restriction of carbohydrates and elevated consumption of animal protein intensify insulin resistance increasing the risk of developing type 2 diabetes and cardiovascular disease. The effect of dietary components on insulin sensitivity may contribute to explain the striking impact of eating habits on the risk of type 2 diabetes and cardiovascular disease. Insulin resistance predisposes to type 2 diabetes in healthy subjects and deteriorates metabolic control in patients with diabetes. In nondiabetic and diabetic individuals, insulin resistance is a major cardiovascular risk factor.
Collapse
|