1
|
Towers IR, O'Reilly-Nugent A, Sabot MEB, Vesk PA, Falster DS. Optimising height-growth predicts trait responses to water availability and other environmental drivers. PLANT, CELL & ENVIRONMENT 2024; 47:4849-4869. [PMID: 39101679 DOI: 10.1111/pce.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Future changes in climate, together with rising atmosphericCO 2 , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity,CO 2 and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.
Collapse
Affiliation(s)
- Isaac R Towers
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew O'Reilly-Nugent
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
- Climate Friendly, Sydney, New South Wales, Australia
| | - Manon E B Sabot
- Max Planck Institute for Biogeochemistry, Jena, Germany
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A Vesk
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel S Falster
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Merkin GV, Girons A, Okubamichael MA, Pittman K. Mucosal epithelial homeostasis: Reference intervals for skin, gill lamellae and filament for Atlantic salmon and other fish species. JOURNAL OF FISH DISEASES 2024:e14023. [PMID: 39315613 DOI: 10.1111/jfd.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Mucosal barriers are gatekeepers of health and exhibit homeostatic variation in relation to habitat and disease. Mucosal Mapping technology provides an in-depth examination of the dynamic mucous cells (MCs) in fish mucosal barriers on tangential sections, about 90° from the view of traditional histology. The method was originally developed and standardized in academia prior to the establishment of QuantiDoc AS to apply mucosal mapping, now trademarked as Veribarr™ for the analysis of skin, gills and gastrointestinal tracts. Veribarr™ uses design-based stereology for the selection and measurement of cell area (size) (μm2), the volumetric density of MCs in the epithelium (MCD, amount of the epithelia occupied by MCs, in %) and the calculated abundance of the MCs (barrier status or defence activity). MC production was mapped across the skin and gill epithelia in 12 species, discovering that gills consistently have two distinct groups of MCs, one on the lamellae where MCs are few and small and one on the filament where MCs are larger and more abundant. MCs were usually much larger in the skin than in the gills, with the latter requiring fewer and smaller cells for adequate respiration. The difference observed between MCs in gill lamella and gill filament is likely a result of functional demands. In addition, our findings also highlight a variation in the mucosal parameters between the species skin, which cannot be explained by the weight differences, and a potential link between MC distribution and species-specific lifestyles in the gill lamella. This diversity necessitates the development of species and tissue site-specific reference intervals for mucosal health evaluation. Mucosal bivariate reference intervals were developed for MC production, including size (trophy) and calculated defence activity (plasia) in the skin and gills of Atlantic salmon, to contrast new measurements against historical data patterns. The application of mucosal reference intervals demonstrates that stress from parasites and treatments can manifest as changes in mucosal architecture, as evidenced by MC hypertrophy and hyperplasia within the gill lamellae. These reference intervals also facilitate comparisons with wild Atlantic salmon, revealing a somewhat higher MC level in farmed salmon gill lamellae. These findings suggest that MC hyperplasia and hypertrophy in the gills are stress/environmental responses in aquaculture. They also advocate for developing specific mucosal bivariate homeostatic reference intervals in aquaculture to improve fish health and welfare across all farmed species.
Collapse
Affiliation(s)
| | | | | | - Karin Pittman
- QuantiDoc AS, Bergen, Norway
- University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Anderson PSL. Quality vs. Quantity: The Consequences of Elevated CO2 on Wood Biomaterial Properties. Integr Comp Biol 2024; 64:243-256. [PMID: 38918057 DOI: 10.1093/icb/icae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Since the late 1800s, anthropogenic activities such as fossil fuel consumption and deforestation have driven up the concentration of atmospheric CO2 around the globe by >45%. Such heightened concentrations of carbon dioxide in the atmosphere are a leading contributor to global climate change, with estimates of a 2-5° increase in global air temperature by the end of the century. While such climatic changes are mostly considered detrimental, a great deal of experimental work has shown that increased atmospheric CO2 will actually increase growth in various plants, which may lead to increased biomass for potential harvesting or CO2 sequestration. However, it is not clear whether this increase in growth or biomass will be beneficial to the plants, as such increases may lead to weaker plant materials. In this review, I examine our current understanding of how elevated atmospheric CO2 caused by anthropogenic effects may influence plant material properties, focusing on potential effects on wood. For the first part of the review, I explore how aspects of wood anatomy and structure influence resistance to bending and breakage. This information is then used to review how changes in CO2 levels may later these aspects of wood anatomy and structure in ways that have mechanical consequences. The major pattern that emerges is that the consequences of elevated CO2 on wood properties are highly dependent on species and environment, with different tree species showing contradictory responses to atmospheric changes. In the end, I describe a couple avenues for future research into better understanding the influence of atmospheric CO2 levels on plant biomaterial mechanics.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, 515 Morrill Hall, 505 S Goodwin Ave, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Zhang F, Liu YW, Qin J, Jansen S, Zhu SD, Cao KF. Xylem embolism induced by freeze-thaw and drought are influenced by different anatomical traits in subtropical montane evergreen angiosperm trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14567. [PMID: 39377145 DOI: 10.1111/ppl.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Subtropical evergreen broadleaved forests distributed in montane zones of southern China experience seasonal droughts and winter frost. Previously, studies have recognized that xylem anatomy is a determinant of its vulnerability to embolism caused by drought and freezing events. We hypothesized that there is a coordination of xylem resistance to freeze-thaw and drought-induced embolism for the subtropical montane evergreen broadleaved tree species because they are influenced by common xylem structural traits (e.g., vessel diameter). We examined the branch xylem anatomy, resistance to drought-induced embolism (P50), and the percent loss of branch hydraulic conductivity after a severe winter frost (PLCwinter) for 15 evergreen broadleaved tree species in a montane forest in South China. Our results showed that P50 of the studied species ranged from -2.81 to -5.13 MPa, which was not associated with most xylem anatomical properties except for the axial parenchyma-to-vessel connectivity. These tree species differed substantially in PLCwinter, ranging from 0% to 76.41%. PLCwinter was positively related to vessel diameter and negatively related to vessel density, vessel group index, and vessel-to-vessel connectivity, but no coordination with P50. This study suggests that hydraulic adaptation to frost is important to determine the distributional limit of subtropical montane evergreen woody angiosperms.
Collapse
Affiliation(s)
- Feng Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yi-Wen Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Nanjing University, Nanjing, Jiangsu, China
| | - Jie Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Tianjin University, Tianjin, Tianjin, China
| | | | - Shi-Dan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Han X, Yao J, Wang R, Xu Y, Huang J, Ding Y, Zang R. Effects of functional composition on plant competitors, stress-tolerators, ruderals ecological strategies in forest communities across different climatic zones. Ecol Evol 2024; 14:e11580. [PMID: 39234165 PMCID: PMC11371659 DOI: 10.1002/ece3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 09/06/2024] Open
Abstract
Ecological strategies identified by plant functional traits are valuable descriptors for understanding species, populations, communities, and ecosystems in response to environmental conditions. Ecological strategies, in conjunction with the functional structure of plant communities, serve as crucial tools for investigating complex relationships among the environment, vegetation, and ecosystem functions. However, it remains unclear whether the functional structure (specifically, community-weighted mean [CWM] traits) accurately reflects the optimal ecological strategies in forest communities. Here, we gathered seven functional traits for each species from four distinct forest vegetation types across four climatic zones, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf phosphorus concentration (LPC), leaf nitrogen concentration (LNC), wood density (WD) and maximum plant height (H). We based on CSR (Competitors, Stress-tolerators, Ruderals) theory and "StrateFy" ordination method utilizing LA, LDMC and SLA to position them within CSR triangle and categorize them into four ecological strategy groups: Competitive, Stress-tolerant, Intermediate, and Ruderal ecological strategy groups (C-group, S-group, Int-group, and R-group). We then determined the proportion of species in each group. Subsequently, we calculated the CWM trait values for the remaining four functional traits: WD (CWM-WD), LPC (CWM-LPC), LNC (CWM-LNC) and H (CWM-H). Non-metric multidimensional scaling and hierarchical partitioning revealed that CWM-WD, CWM-LPC, CWM-LNC and CWM-H significantly influenced the ecological strategies of forest communities. The synergistic interaction of CWM-WD and CWM-LPC had the most significant impact on ecological strategies within forest communities. Notably, CWM-WD emerged as the most crucial single CWM trait for explaining variation in ecological strategies within forest communities. In conclusion, our study demonstrates that CWM traits effectively reflect optimal CSR ecological strategies in forest communities across different climatic zones, with CWM-WD serving as a preferred indicator. This can improve our critical insights into key ecological processes in forest communities using trait-based approach.
Collapse
Affiliation(s)
- Xin Han
- Forestry College of Shandong Agricultural University State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River Taian China
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Centre for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu China
| | - Jie Yao
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Centre for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu China
| | - Ruixue Wang
- Shandong Provincial Forestry Protection and Development Service Center Jinan China
| | - Yue Xu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Centre for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu China
| | - Jihong Huang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Centre for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu China
| | - Yi Ding
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Centre for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu China
| | - Runguo Zang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Centre for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu China
| |
Collapse
|
6
|
Miranda MT, Pires GS, Pereira L, de Lima RF, da Silva SF, Mayer JLS, Azevedo FA, Machado EC, Jansen S, Ribeiro RV. Rootstocks affect the vulnerability to embolism and pit membrane thickness in Citrus scions. PLANT, CELL & ENVIRONMENT 2024; 47:3063-3075. [PMID: 38660960 DOI: 10.1111/pce.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.
Collapse
Affiliation(s)
- Marcela T Miranda
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center of Agricultural and Post-Harvest Biosystems, Agronomic Institute (IAC), Campinas, SP, Brazil
- Institute of Botany, Ulm University, Ulm, Germany
| | - Gabriel S Pires
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Rodrigo F de Lima
- Laboratory of Plant Anatomy, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Simone F da Silva
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana L S Mayer
- Laboratory of Plant Anatomy, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernando A Azevedo
- Center of Citriculture Sylvio Moreira, Agronomic Institute (IAC), Cordeirópolis, SP, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center of Agricultural and Post-Harvest Biosystems, Agronomic Institute (IAC), Campinas, SP, Brazil
| | | | - Rafael V Ribeiro
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
7
|
Anfodillo T, Olson ME. Stretched sapwood, ultra-widening permeability and ditching da Vinci: revising models of plant form and function. ANNALS OF BOTANY 2024; 134:19-42. [PMID: 38634673 PMCID: PMC11161570 DOI: 10.1093/aob/mcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.
Collapse
Affiliation(s)
- Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD) 35020, Italy
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
8
|
Zhang G, Fortunel C, Niu S, Zuo J, Maeght JL, Yang X, Xia S, Mao Z. Root topological order drives variation of fine root vessel traits and hydraulic strategies in tropical trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2951-2964. [PMID: 38426564 DOI: 10.1093/jxb/erae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.
Collapse
Affiliation(s)
- Guangqi Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Shan Niu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Juan Zuo
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jean-Luc Maeght
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Zhun Mao
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| |
Collapse
|
9
|
Liu S, Zheng J. Adaptive strategies based on shrub leaf-stem anatomy and their environmental interpretations in the eastern Qaidam Basin. BMC PLANT BIOLOGY 2024; 24:323. [PMID: 38658848 PMCID: PMC11040798 DOI: 10.1186/s12870-024-05026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Water stress seriously affects the survival of plants in natural ecosystems. Plant resistance to water stress relies on adaptive strategies, which are mainly based on plant anatomy with following relevant functions: (1) increase in water uptake and storage; (2) reduction of water loss; and (3) mechanical reinforcement of tissues. We measured 15 leaf-stem anatomical traits of five dominant shrub species from 12 community plots in the eastern Qaidam Basin to explore adaptive strategies based on plant leaf-stem anatomy at species and community levels. and their relationship with environmental stresses were tested. RESULTS Results showed that the combination of leaf-stem anatomical traits formed three types of adaptive strategies with the drought tolerance of leaf and stem taken as two coordinate axes. Three types of water stress were caused by environmental factors in the eastern Qaidam Basin, and the established adaptive strategy triangle could be well explained by these environmental stresses. The interpretation of the strategic triangle was as follows: (1) exploitative plant strategy, in which leaf and stem adopt the hydraulic efficiency strategy and safety strategy, respectively. This strategy is mostly applied to plants in sandy desert (i.e., Nitraria tangutorum, and Artemisia sphaerocephala) which is mainly influenced by drought stress; (2) stable plant strategy, in which both leaf/assimilation branches and stem adopt hydraulic safety strategy. This strategy is mostly applied to plants in salty desert (i.e., Kalidium foliatum and Haloxylon ammodendron) which aridity has little effect on them; and (3) opportunistic plant strategy, in which leaf and stem adopt hydraulic safety strategy and water transport efficiency strategy. This strategy is mostly applied to plants in multiple habitats (i.e., Sympegma regelii) which is mainly affected by coldness stress. CONCLUSION The proposed adaptive strategy system could provide a basis for elucidating the ecological adaptation mechanism of desert woody plants and the scientific management of natural vegetation in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Siyu Liu
- Beijing Key Laboratory of Forest Resource Ecosystem Processes, Beijing Forestry University, Beijing, 100083, China
| | - Jingming Zheng
- Beijing Key Laboratory of Forest Resource Ecosystem Processes, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
10
|
McElwain JC, Matthaeus WJ, Barbosa C, Chondrogiannis C, O' Dea K, Jackson B, Knetge AB, Kwasniewska K, Nair R, White JD, Wilson JP, Montañez IP, Buckley YM, Belcher CM, Nogué S. Functional traits of fossil plants. THE NEW PHYTOLOGIST 2024; 242:392-423. [PMID: 38409806 DOI: 10.1111/nph.19622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.
Collapse
Affiliation(s)
- Jennifer C McElwain
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - William J Matthaeus
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Catarina Barbosa
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Katie O' Dea
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Bea Jackson
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Antonietta B Knetge
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Kamila Kwasniewska
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Richard Nair
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Joseph D White
- Department of Biology, Baylor University, Waco, 76798-7388, TX, USA
| | - Jonathan P Wilson
- Department of Environmental Studies, Haverford College, Haverford, Pennsylvania, 19041, PA, USA
| | - Isabel P Montañez
- UC Davis Institute of the Environment, University of California, Davis, CA, 95616, USA
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Sandra Nogué
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| |
Collapse
|
11
|
Zhang KY, Yang D, Zhang YB, Ai XR, Yao L, Deng ZJ, Zhang JL. Linkages among stem xylem transport, biomechanics, and storage in lianas and trees across three contrasting environments. AMERICAN JOURNAL OF BOTANY 2024; 111:e16290. [PMID: 38380953 DOI: 10.1002/ajb2.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024]
Abstract
PREMISE Stem xylem transports water and nutrients, mechanically supports aboveground tissues, and stores water and nonstructural carbohydrates. These three functions are associated with three types of cells-vessel, fiber, and parenchyma, respectively. METHODS We measured stem theoretical hydraulic conductivity (Kt), modulus of elasticity (MOE), tissue water content, starch, soluble sugars, cellulose, and xylem anatomical traits in 15 liana and 16 tree species across three contrasting sites in Southwest China. RESULTS Lianas had higher hydraulic efficiency and tissue water content, but lower MOE and cellulose than trees. Storage traits (starch and soluble sugars) did not significantly differ between lianas and trees, and trait variation was explained mainly by site, highlighting how environment shapes plant storage strategies. Kt was significantly positively correlated with vessel diameter and vessel area fraction in lianas and all species combined. The MOE was significantly positively correlated with fiber area fraction, wood density, and cellulose in lianas and across all species. The tissue water content was significantly associated with parenchyma area fraction in lianas. Support function was strongly linked with transport and storage functions in lianas. In trees, transport and support functions were not correlated, while storage function was tightly linked with transport and support functions. CONCLUSIONS These findings enhance our understanding of the relationship between stem xylem structure and function in lianas and trees, providing valuable insights into how plants adapt to environmental changes and the distinct ecological strategies employed by lianas and by trees to balance the demands of hydraulic transport, mechanical support, and storage.
Collapse
Affiliation(s)
- Ke-Yan Zhang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Xun-Ru Ai
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Lan Yao
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Zhi-Jun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| |
Collapse
|
12
|
Wright CL, West JB, de Lima ALA, Souza ES, Medeiros M, Wilcox BP. Contrasting water-use strategies revealed by species-specific transpiration dynamics in the Caatinga dry forest. TREE PHYSIOLOGY 2024; 44:tpad137. [PMID: 37935389 DOI: 10.1093/treephys/tpad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
In forest ecosystems, transpiration (T) patterns are important for quantifying water and carbon fluxes and are major factors in predicting ecosystem change. Seasonal changes in rainfall and soil water content can alter the sensitivity of sap flux density to daily variations in vapor pressure deficit (VPD). This sensitivity is species-specific and is thought to be related to hydraulic strategies. The aim of this work is to better understand how the sap flux density of species with low versus high wood density differ in their sensitivity to VPD and soil water content and how potentially opposing water-use strategies influence T dynamics, and ultimately, correlations to evapotranspiration (ET). We use hysteresis area analysis to quantify the sensitivity of species-specific sap flux density to changes in the VPD, breakpoint-based models to determine the soil water content threshold instigating a T response and multiscalar wavelet coherency to correlate T to ET. We found that low wood density Commiphora leptophloeos (Mart.) Gillett had a more dynamic T pattern, a greater sensitivity to VPD at high soil water content, required a higher soil water content threshold for this sensitivity to be apparent, and had a significant coherency correlation with ET at daily to monthly timescales. This behavior is consistent with a drought avoidance strategy. High wood density Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis, conversely, had a more stable T pattern, responded to VPD across a range of soil water content, tolerated a lower soil water content threshold to T, and had a significant coherency correlation with ET at weekly timescales. This behavior is consistent with a drought-tolerant strategy. We build on previous research to show that these species have contrasting water-use strategies that should be considered in large-scale modeling efforts.
Collapse
Affiliation(s)
- Cynthia L Wright
- Southern Research Station, USDA Forest Service, 4700 Old Kingston Pike, Knoxville, TN 37919, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA
- Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| | - Jason B West
- Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| | - André L A de Lima
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Av. Gregório Ferraz Nogueira, S/n, Bairro: José Tomé de Souza Ramos, Caixa Postal 063, CEP: 56.909-535, Serra Talhada, Pernambuco, Brazil
| | - Eduardo S Souza
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Av. Gregório Ferraz Nogueira, S/n, Bairro: José Tomé de Souza Ramos, Caixa Postal 063, CEP: 56.909-535, Serra Talhada, Pernambuco, Brazil
| | - Maria Medeiros
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Av. Gregório Ferraz Nogueira, S/n, Bairro: José Tomé de Souza Ramos, Caixa Postal 063, CEP: 56.909-535, Serra Talhada, Pernambuco, Brazil
- Federal University of Pernambuco, Department of Botany, Avenida Professor Moraes Rego, s/n, Cidade Universitária, CEP: 50670-901, Recife, Pernambuco, Brazil
| | - Bradford P Wilcox
- Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| |
Collapse
|
13
|
Lamour J, Souza DC, Gimenez BO, Higuchi N, Chave J, Chambers J, Rogers A. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. PLANT, CELL & ENVIRONMENT 2023; 46:3806-3821. [PMID: 37635450 DOI: 10.1111/pce.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Forest disturbances increase the proportion of fast-growing tree species compared to slow-growing ones. To understand their relative capacity for carbon uptake and their vulnerability to climate change, and to represent those differences in Earth system models, it is necessary to characterise the physiological differences in their leaf-level control of water use efficiency and carbon assimilation. We used wood density as a proxy for the fast-slow growth spectrum and tested the assumption that trees with a low wood density (LWD) have a lower water-use efficiency than trees with a high wood density (HWD). We selected 5 LWD tree species and 5 HWD tree species growing in the same location in an Amazonian tropical forest and measured in situ steady-state gas exchange on top-of-canopy leaves with parallel sampling and measurement of leaf mass area and leaf nitrogen content. We found that LWD species invested more nitrogen in photosynthetic capacity than HWD species, had higher photosynthetic rates and higher stomatal conductance. However, contrary to expectations, we showed that the stomatal control of the balance between transpiration and carbon assimilation was similar in LWD and HWD species and that they had the same dark respiration rates.
Collapse
Affiliation(s)
- Julien Lamour
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Daisy C Souza
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Bruno O Gimenez
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
- Department of Geography, University of California, Berkeley, California, USA
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Jérôme Chave
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Jeffrey Chambers
- Department of Geography, University of California, Berkeley, California, USA
| | - Alistair Rogers
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
14
|
da Silva JR, Yule TS, Ribas ACDA, Scremin-Dias E. Do root secondary xylem functional traits differ between growth forms in Fabaceae species in a seasonally dry Neotropical environment? ANNALS OF BOTANY 2023; 132:401-412. [PMID: 37665958 PMCID: PMC10667001 DOI: 10.1093/aob/mcad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND AIMS Whole-plant performance in water-stressed and disturbance-prone environments depends on a suitable supply of water from the roots to the leaves, storage of reserves during periods of shortage, and a morphological arrangement that guarantees the maintenance of the plants anchored to the soil. All these functions are performed by the secondary xylem of roots. Here, we investigate whether different growth forms of Fabaceae species from the seasonally dry Neotropical environment have distinct strategies for water transport, mechanical support and non-structural carbon and water storage in the root secondary xylem. METHODS We evaluated cross-sections of root secondary xylem from species of trees, shrubs and subshrubs. We applied linear models to verify the variability in secondary xylem anatomical traits among growth forms. KEY RESULTS Secondary xylem with larger vessels and lower vessel density was observed in tree species. Vessel wall thickness, vessel grouping index, potential hydraulic conductivity and cell fractions (vessels, fibres, rays and axial parenchyma) were not statistically different between growth forms, owing to the high interspecific variation within the groups studied. CONCLUSION Our results showed that the variability in anatomical traits of the secondary xylem of the root is species specific. In summary, the cellular complexity of the secondary xylem ensures multiple functional strategies in species with distinct growth forms, a key trait for resource use in an environment with strong water seasonality.
Collapse
Affiliation(s)
- Jane Rodrigues da Silva
- Laboratório de Anatomia Vegetal, Instituto de Biociências (Inbio), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Tamires Soares Yule
- Laboratório de Anatomia Vegetal, Instituto de Biociências (Inbio), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Augusto Cesar de Aquino Ribas
- Agência de Tecnologia da Informação e Comunicação, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Edna Scremin-Dias
- Laboratório de Anatomia Vegetal, Instituto de Biociências (Inbio), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| |
Collapse
|
15
|
Alvarado MV, Terrazas T. Tree species differ in plant economic spectrum traits in the tropical dry forest of Mexico. PLoS One 2023; 18:e0293430. [PMID: 37943793 PMCID: PMC10635469 DOI: 10.1371/journal.pone.0293430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
In tropical dry forests, studies on wood anatomical traits have concentrated mainly on variations in vessel diameter and frequency. Recent research suggests that parenchyma and fibers also play an important role in water conduction and in xylem hydraulic safety. However, these relationships are not fully understood, and wood trait variation among different functional profiles as well as their variation under different water availability scenarios have been little studied. In this work, we aim to (1) characterize a set of wood anatomical traits among six selected tree species that represent the economic spectrum of tropical dry forests, (2) assess the variation in these traits under three different rainfall regimes, and (3) determine the relationships between wood anatomical traits and possible functional trade-offs. Differences among species and sites in wood traits were explored. Linear mixed models were fitted, and model comparison was performed. Most variation occurred among species along the economic spectrum. Obligate deciduous, low wood density species were characterized by wood with wide vessels and low frequency, suggesting high water transport capacity but sensitivity to drought. Moreover, high cell fractions of carbon and water storage were also found in these tree species related to the occurrence of abundant parenchyma or septate fibers. Contrary to what most studies show, Cochlospermum vitifolium, a succulent tree species, presented the greatest variation in wood traits. Facultative deciduous, high wood density species were characterized by a sturdy vascular system that may favor resistance to cavitation and low reserve storage. Contrary to our expectations, variation among the rainfall regimes was generally low in all species and was mostly related to vessel traits, while fiber and parenchyma traits presented little variation among species. Strong functional associations between wood anatomical traits and functional trade-offs were found for the six tree species studied along the economic spectrum of tropical dry forests.
Collapse
Affiliation(s)
- Marco V. Alvarado
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
16
|
Zhang G, Mao Z, Maillard P, Brancheriau L, Gérard B, Engel J, Fortunel C, Heuret P, Maeght JL, Martínez-Vilalta J, Stokes A. Functional trade-offs are driven by coordinated changes among cell types in the wood of angiosperm trees from different climates. THE NEW PHYTOLOGIST 2023; 240:1162-1176. [PMID: 37485789 DOI: 10.1111/nph.19132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Zhun Mao
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Loïc Brancheriau
- CIRAD, UPR BioWooEB, Montpellier, 34000, France
- BioWooEB, University of Montpellier, CIRAD, Montpellier, 34000, France
| | - Bastien Gérard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Julien Engel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Claire Fortunel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Patrick Heuret
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jean-Luc Maeght
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Alexia Stokes
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
17
|
Franklin O, Fransson P, Hofhansl F, Jansen S, Joshi J. Optimal balancing of xylem efficiency and safety explains plant vulnerability to drought. Ecol Lett 2023; 26:1485-1496. [PMID: 37330625 DOI: 10.1111/ele.14270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
In vast areas of the world, forests and vegetation are water limited and plant survival depends on the ability to avoid catastrophic hydraulic failure. Therefore, it is remarkable that plants take hydraulic risks by operating at water potentials (ψ) that induce partial failure of the water conduits (xylem). Here we present an eco-evolutionary optimality principle for xylem conduit design that explains this phenomenon based on the hypothesis that conductive efficiency and safety are optimally co-adapted to the environment. The model explains the relationship between the tolerance to negative water potential (ψ50 ) and the environmentally dependent minimum ψ (ψmin ) across a large number of species, and along the xylem pathway within individuals of two species studied. The wider hydraulic safety margin in gymnosperms compared to angiosperms can be explained as an adaptation to a higher susceptibility to accumulation of embolism. The model provides a novel optimality-based perspective on the relationship between xylem safety and efficiency.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Peter Fransson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Florian Hofhansl
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
18
|
Aritsara ANA, Ni MY, Wang YQ, Yan CL, Zeng WH, Song HQ, Cao KF, Zhu SD. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. TREE PHYSIOLOGY 2023; 43:1307-1318. [PMID: 37067918 DOI: 10.1093/treephys/tpad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.
Collapse
Affiliation(s)
- Amy N A Aritsara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
- College of Life Sciences and Technology, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Ming-Yuan Ni
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| |
Collapse
|
19
|
Schönauer M, Hietz P, Schuldt B, Rewald B. Root and branch hydraulic functioning and trait coordination across organs in drought-deciduous and evergreen tree species of a subtropical highland forest. FRONTIERS IN PLANT SCIENCE 2023; 14:1127292. [PMID: 37377798 PMCID: PMC10291250 DOI: 10.3389/fpls.2023.1127292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/26/2023] [Indexed: 06/29/2023]
Abstract
Vessel traits are key in understanding trees' hydraulic efficiency, and related characteristics like growth performance and drought tolerance. While most plant hydraulic studies have focused on aboveground organs, our understanding of root hydraulic functioning and trait coordination across organs remains limited. Furthermore, studies from seasonally dry (sub-)tropical ecosystems and mountain forests are virtually lacking and uncertainties remain regarding potentially different hydraulic strategies of plants differing in leaf habit. Here, we compared wood anatomical traits and specific hydraulic conductivities between coarse roots and small branches of five drought-deciduous and eight evergreen angiosperm tree species in a seasonally dry subtropical Afromontane forest in Ethiopia. We hypothesized that largest vessels and highest hydraulic conductivities are found in roots, with greater vessel tapering between roots and equally-sized branches in evergreen angiosperms due to their drought-tolerating strategy. We further hypothesized that the hydraulic efficiencies of root and branches cannot be predicted from wood density, but that wood densities across organs are generally related. Root-to-branch ratios of conduit diameters varied between 0.8 and 2.8, indicating considerable differences in tapering from coarse roots to small branches. While deciduous trees showed larger branch xylem vessels compared to evergreen angiosperms, root-to-branch ratios were highly variable within both leaf habit types, and evergreen species did not show a more pronounced degree of tapering. Empirically determined hydraulic conductivity and corresponding root-to-branch ratios were similar between both leaf habit types. Wood density of angiosperm roots was negatively related to hydraulic efficiency and vessel dimensions; weaker relationships were found in branches. Wood density of small branches was neither related to stem nor coarse root wood densities. We conclude that in seasonally dry subtropical forests, similar-sized coarse roots hold larger xylem vessels than small branches, but the degree of tapering from roots to branches is highly variable. Our results indicate that leaf habit does not necessarily influence the relationship between coarse root and branch hydraulic traits. However, larger conduits in branches and a low carbon investment in less dense wood may be a prerequisite for high growth rates of drought-deciduous trees during their shortened growing season. The correlation of stem and root wood densities with root hydraulic traits but not branch wood points toward large trade-offs in branch xylem towards mechanical properties.
Collapse
Affiliation(s)
- Marian Schönauer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Forest Work Science and Engineering, Department of Forest Sciences and Forest Ecology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Peter Hietz
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Tharandt, Germany
| | - Boris Rewald
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
20
|
Ferdous J, Islam M, Rahman M. The role of tree size, wood anatomical and leaf stomatal traits in shaping tree hydraulic efficiency and safety in a South Asian tropical moist forest. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
21
|
Simioni PF, Emilio T, Giles AL, Viana de Freitas G, Silva Oliveira R, Setime L, Pierre Vitoria A, Pireda S, Vieira da Silva I, Da Cunha M. Anatomical traits related to leaf and branch hydraulic functioning on Amazonian savanna plants. AOB PLANTS 2023; 15:plad018. [PMID: 37214224 PMCID: PMC10198777 DOI: 10.1093/aobpla/plad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/23/2023] [Indexed: 05/24/2023]
Abstract
Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.
Collapse
Affiliation(s)
| | - Thaise Emilio
- Programa Nacional de Pós-Doutorado (PNPD), Programa de Pós-Graduação em Ecologia, Instituto de Biologia, UNICAMP, Campinas, Brasil
| | - André L Giles
- Instituo Nacional de Pesquisa da Amazonia (INPA), Manaus, Amazonas, Brasil
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | - Gustavo Viana de Freitas
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | | | - Lara Setime
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Angela Pierre Vitoria
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Saulo Pireda
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Ivone Vieira da Silva
- Laboratório de Biologia Vegetal, Universidade do Estado do Mato Grosso, Alta Floresta, MT, Brasil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| |
Collapse
|
22
|
Jerbi A, Laur J, Lajoie K, Gallant PP, Barnabé S, Pitre FE, Labrecque M. Irrigation with primary wastewater alters wood anatomy and composition in willow Salix miyabeana SX67. FRONTIERS IN PLANT SCIENCE 2023; 14:1087035. [PMID: 36938004 PMCID: PMC10018808 DOI: 10.3389/fpls.2023.1087035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Traditional treatment of wastewaters is a burden for local governments. Using short rotation coppice willow (SRCW) as vegetal filter has several environmental and economic benefits. Here, we investigated the effect of primary wastewater irrigation on wood structure and composition of the willow cultivar Salix miyabeana 'SX67' following two years of growth. Compared to unirrigated plants (UI), stem sections of plants irrigated with primary wastewater (WWD) showed an unexpected decrease of hydraulic conductance (KS) associated with a decrease in vessel density but not vessel diameter. The majority (86%) of vessels had diameters range groups [20-30[, [30-40[and [40-50[µm and contributed to > 75% of theoretical KS, while the group class [50-60[µm (less than 10% of vessels) still accounted for > 20% of total KS regardless irrigation treatments. WWD significantly alters the chemical composition of wood with an increase of glucan content by 9 to 16.4% and a decrease of extractives by 35.3 to 36.4% when compared to UI or to plants irrigated with potable water (PW). The fertigation did also increase the proportion of the tension wood which highly correlated with glucan content. In the context of energetic transition and mitigation of climate change, such results are of high interest since WWD effectively permit the phytofiltration of large amounts of organic contaminated effluents without impairing SRCW physiology.
Collapse
Affiliation(s)
- Ahmed Jerbi
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
| | - Joan Laur
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
- Montreal Botanical Garden, Research and Development Division, Montréal, QC, Canada
| | - Kevin Lajoie
- Institut d’Innovations sur les Écomatériaux, Écoproduits et Écoénergies à base de biomasse (I2E3), Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | | | - Simon Barnabé
- Institut d’Innovations sur les Écomatériaux, Écoproduits et Écoénergies à base de biomasse (I2E3), Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Frederic E. Pitre
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
- Montreal Botanical Garden, Research and Development Division, Montréal, QC, Canada
| | - Michel Labrecque
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
- Montreal Botanical Garden, Research and Development Division, Montréal, QC, Canada
| |
Collapse
|
23
|
Avila RT, Kane CN, Batz TA, Trabi C, Damatta FM, Jansen S, McAdam SAM. The relative area of vessels in xylem correlates with stem embolism resistance within and between genera. TREE PHYSIOLOGY 2023; 43:75-87. [PMID: 36070431 DOI: 10.1093/treephys/tpac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.
Collapse
Affiliation(s)
- Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Cade N Kane
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Timothy A Batz
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Christophe Trabi
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Fábio M Damatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Steven Jansen
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Yang D, Pereira L, Peng G, Ribeiro RV, Kaack L, Jansen S, Tyree MT. A unit pipe pneumatic model to simulate gas kinetics during measurements of embolism in excised angiosperm xylem. TREE PHYSIOLOGY 2023; 43:88-101. [PMID: 36049079 DOI: 10.1093/treephys/tpac105] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The pneumatic method has been introduced to quantify embolism resistance in plant xylem of various organs by applying a partial vacuum to cut-open xylem. Despite the similarity in vulnerability curves between the pneumatic and other methods, a modeling approach is needed to investigate if changes in xylem embolism during dehydration can be accurately quantified based on gas diffusion kinetics. Therefore, a unit pipe pneumatic (UPPn) model was developed to estimate gas extraction from intact conduits, which were axially interconnected by inter-conduit pit membranes to cut-open conduits. The physical laws used included Fick's law for diffusion, Henry's law for gas concentration partitioning between liquid and gas phases at equilibrium and the ideal gas law. The UPPn model showed that 91% of the extracted gas came from the first five series of embolized, intact conduits and only 9% from the aqueous phase after 15 s of simulation. Considering alternative gas sources, embolism resistance measured with a pneumatron device was systematically overestimated by 2-17%, which corresponded to a typical measuring error of 0.11 MPa for P50 (the water potential equivalent to 50% of the maximum amount of gas extracted). It is concluded that pneumatic vulnerability curves directly measure embolism of intact conduits due to the fast movement of gas across interconduit pit membranes, while gas extraction from sap and diffusion across hydrated cell walls is about 100 times slower. We expect that the UPPn model will also contribute to the understanding of embolism propagation based on temporal gas dynamics.
Collapse
Affiliation(s)
- Dongmei Yang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Luciano Pereira
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, P.O. Box 6109, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11 Ulm D-89081, Germany
| | - Guoquan Peng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, P.O. Box 6109, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11 Ulm D-89081, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11 Ulm D-89081, Germany
| | - Melvin T Tyree
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
25
|
Zhang C, Khan A, Duan CY, Cao Y, Wu DD, Hao GY. Xylem hydraulics strongly influence the niche differentiation of tree species along the slope of a river valley in a water-limited area. PLANT, CELL & ENVIRONMENT 2023; 46:106-118. [PMID: 36253806 DOI: 10.1111/pce.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Xylem hydraulic characteristics govern plant water transport, affecting both drought resistance and photosynthetic gas exchange. Therefore, they play critical roles in determining the adaptation of different species to environments with various water regimes. Here, we tested the hypothesis that variation in xylem traits associated with a trade-off between hydraulic efficiency and safety against drought-induced embolism contributes to niche differentiation of tree species along a sharp water availability gradient on the slope of a unique river valley located in a semi-humid area. We found that tree species showed clear niche differentiation with decreasing water availability from the bottom towards the top of the valley. Tree species occupying different positions, in terms of vertical distribution distance from the bottom of the valley, showed a strong trade-off between xylem water transport efficiency and safety, as evidenced by variations in xylem structural traits at both the tissue and pit levels. This optimized their xylem hydraulics in their respective water regimes. Thus, the trade-off between hydraulic efficiency and safety contributes to clear niche differentiation and, thereby, to the coexistence of tree species in the valley with heterogeneous water availability.
Collapse
Affiliation(s)
- Chi Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Attaullah Khan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chun-Yang Duan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- Institute of Sand Land Control and Utilization, Liaoning Province, Fuxin, China
| | - De-Dong Wu
- Institute of Sand Land Control and Utilization, Liaoning Province, Fuxin, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
26
|
Shifts in Community Vegetative Organs and Their Dissimilar Trade-Off Patterns in a Tropical Coastal Secondary Forest, Hainan Island, Southern China. DIVERSITY 2022. [DOI: 10.3390/d14100823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ecology of functional features highlights the importance of the leaf economic spectrum (LES) in understanding plant trade-offs between conservative and commercial resource use. However, it is still unclear whether changes in the plant attributes of various vegetative organs can be altered and whether the plant economic spectrum (PES) is categorized by multiple vegetative organs. We investigated a total of 12 functional features of 174 woody tree species, with leaf and stem attributes, on Hainan Island. We used principal component analysis (PCA) to analyze the changes in attributes and connections to understand how the plant trade-offs differ. We detected that stem organic matter (SOM) and stem organic carbon (SOC) contributed most to the first principal component, followed by leaf organic matter (LOM) and leaf organic carbon (LOC). Using Spearman correlation analysis, we determined that leaf total nitrogen (LTN) and specific leaf area (SLA), LTN and leaf total phosphorus (LTP), and finally stem total nitrogen (STN) and stem total phosphorus (STP) were positively significantly correlated. These significant variations in the traits of nutrients are regulated, while the morphological traits of aboveground vegetative organs are diverse. The coexistence of species and community assembly can increase our knowledge on the tropical coastal secondary forests. Furthermore, our outcomes can help us to better understand the restoration of habitats and green infrastructure design, suggesting that selecting different species across multiple trait axes can help ensure functionality at the maximum level.
Collapse
|
27
|
Dória LC, Sonsin-Oliveira J, Rossi S, Marcati CR. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. ANNALS OF BOTANY 2022; 130:445-456. [PMID: 35863898 PMCID: PMC9486921 DOI: 10.1093/aob/mcac095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.
Collapse
Affiliation(s)
| | - Julia Sonsin-Oliveira
- Departamento de Biologia Vegetal, Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasilia (UnB), Brasília, DF, Brazil
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Carmen Regina Marcati
- Departamento de Ciência Florestal, Solos e Ambiente, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, SP, Brazil
| |
Collapse
|
28
|
Functional susceptibility of tropical forests to climate change. Nat Ecol Evol 2022; 6:878-889. [PMID: 35577983 DOI: 10.1038/s41559-022-01747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.
Collapse
|
29
|
Fajardo A, Piper FI, García‐Cervigón AI. The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Frida I. Piper
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Ana I. García‐Cervigón
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, c/Tulipán s/n Móstoles 28933 Spain
| |
Collapse
|
30
|
Hietz P, Rungwattana K, Scheffknecht S, George JP. Effects of Provenance, Growing Site, and Growth on Quercus robur Wood Anatomy and Density in a 12-Year-Old Provenance Trial. FRONTIERS IN PLANT SCIENCE 2022; 13:795941. [PMID: 35574121 PMCID: PMC9100569 DOI: 10.3389/fpls.2022.795941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Vessels are responsible for an efficient and safe water transport in angiosperm xylem. Whereas large vessels efficiently conduct the bulk of water, small vessels might be important under drought stress or after winter when large vessels are embolized. Wood anatomy can adjust to the environment by plastic adaptation, but is also modified by genetic selection, which can be driven by climate or other factors. To distinguish between plastic and genetic components on wood anatomy, we used a Quercus robur trial where trees from ten Central European provenances were planted in three locations in Austria along a rainfall gradient. Because wood anatomy also adjusts to tree size and in ring-porous species, the vessel size depends on the amount of latewood and thereby ring width, we included tree size and ring width in the analysis. We found that the trees' provenance had a significant effect on average vessel area (VA), theoretical specific hydraulic conductivity (Ks), and the vessel fraction (VF), but correlations with annual rainfall of provenances were at best weak. The trial site had a strong effect on growth (ring width, RW), which increased from the driest to the wettest site and wood density (WD), which increased from wet to dry sites. Significant site x provenance interactions were seen only for WD. Surprisingly, the drier site had higher VA, higher VF, and higher Ks. This, however, is mainly a result of greater RW and thus a greater proportion of latewood in the wetter forest. The average size of vessels > 70 μm diameter increased with rainfall. We argue that Ks, which is measured per cross-sectional area, is not an ideal parameter to compare the capacity of ring-porous trees to supply leaves with water. Small vessels (<70 μm) on average contributed only 1.4% to Ks, and we found no evidence that their number or size was adaptive to aridity. RW and tree size had strong effect on all vessel parameters, likely via the greater proportion of latewood in wide rings. This should be accounted for when searching for wood anatomical adaptations to the environment.
Collapse
Affiliation(s)
- Peter Hietz
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kanin Rungwattana
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Susanne Scheffknecht
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jan-Peter George
- Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Vienna, Austria
- Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
31
|
Zhang G, Mao Z, Fortunel C, Martínez-Vilalta J, Viennois G, Maillard P, Stokes A. Parenchyma fractions drive the storage capacity of nonstructural carbohydrates across a broad range of tree species. AMERICAN JOURNAL OF BOTANY 2022; 109:535-549. [PMID: 35266560 DOI: 10.1002/ajb2.1838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Nonstructural carbohydrates (NSCs) play a key role in tree performance and functioning and are stored in radial and axial parenchyma (RAP) cells. Whether this relationship is altered among species and climates or is linked to functional traits describing xylem structure (wood density) and tree stature is not known. METHODS In a systematic review, we collated data for NSC content and the proportion of RAP in stems for 68 tree species. To examine the relationships of NSCs and RAP with climatic factors and other functional traits, we also collected climatic data at each tree's location, as well as wood density and maximum height. A phylogenetic tree was constructed to examine the influence of species' evolutionary relationships on the associations among NSCs, RAP, and functional traits. RESULTS Across all 68 tree species, NSCs were positively correlated with RAP and mean annual temperature, but relationships were only weakly significant in temperate species and angiosperms. When separating RAP into radial parenchyma (RP) and axial parenchyma (AP), both NSCs and wood density were positively correlated with RP but not with AP. Wood in taller trees was less dense and had lower RAP than in shorter trees, but height was not related to NSCs. CONCLUSIONS In trees, NSCs are stored mostly in the RP fraction, which has a larger surface area in warmer climates. Additionally, NSCs were only weakly linked to wood density and tree height. Our analysis of evolutionary relationships demonstrated that RAP fractions and NSC content were always closely related across all 68 tree species, suggesting that RAP can act as a reliable proxy for potential NSC storage capacity in tree stems.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Zhun Mao
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Claire Fortunel
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Gaëlle Viennois
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, 54280 Champenoux, France
| | - Alexia Stokes
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| |
Collapse
|
32
|
Moravčík M, Mamoňová M, Račko V, Kováč J, Dvořák M, Krajňáková J, Ďurkovič J. Different Responses in Vascular Traits between Dutch Elm Hybrids with a Contrasting Tolerance to Dutch Elm Disease. J Fungi (Basel) 2022; 8:215. [PMID: 35330217 PMCID: PMC8954630 DOI: 10.3390/jof8030215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
The ascomycetous fungus Ophiostoma novo-ulmi is the causative agent of the current Dutch elm disease (DED) pandemic, which has ravaged many tens of millions of European and North American elm trees. Host responses in vascular traits were studied in two Dutch elm hybrids, 'Groeneveld' and 'Dodoens', which show different vascular architecture in the secondary xylem and possess contrasting tolerances to DED. 'Groeneveld' trees, sensitive to DED, possessed a high number of small earlywood vessels. However, these trees showed a poor response to DED infection for the earlywood vascular characteristics. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 decreased from 65.4% down to 53.2%. A delayed response in the increasing density of vessels showing a reduced size in the latewood prevented neither the rapid fungal spread nor the massive colonisation of the secondary xylem tissues resulting in the death of the infected trees. 'Dodoens' trees, tolerant to DED, possessed a low number of large earlywood vessels and showed a prominent and fast response to DED infection. Vessel lumen areas of newly formed earlywood vessels were severely reduced together with the vessel size : number ratio. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 increased from 75.6% up to 92.9%. A trend in the increasing density of vessels showing a reduced size was maintained not only in the latewood that was formed in the year of infection but also in the earlywood that was formed in the consecutive year. The occurrence of fungal hyphae in the earlywood vessels that were formed a year following the infection was severely restricted, as revealed by X-ray micro-computed tomography imaging. Possible reasons responsible for a contrasting survival of 'Groeneveld' and 'Dodoens' trees are discussed.
Collapse
Affiliation(s)
- Michal Moravčík
- Department of Phytology, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (M.M.); (J.K.)
- Department of Pesticide Registration, ÚKSÚP Bratislava, SNP 99, 96202 Vígľaš, Slovakia
| | - Miroslava Mamoňová
- Department of Wood Science, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (M.M.); (V.R.)
| | - Vladimír Račko
- Department of Wood Science, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (M.M.); (V.R.)
| | - Ján Kováč
- Department of Phytology, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (M.M.); (J.K.)
| | - Miloň Dvořák
- Department of Forest Protection and Wildlife Management, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic;
| | | | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (M.M.); (J.K.)
| |
Collapse
|
33
|
Luna‐Nieves AL, González EJ, Cortés‐Flores J, Ibarra‐Manríquez G, Maldonado‐Romo A, Meave JA. Interplay of environmental cues and wood density in the vegetative and reproductive phenology of seasonally dry tropical forest trees. Biotropica 2022. [DOI: 10.1111/btp.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Adriana L. Luna‐Nieves
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Edgar J. González
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Jorge Cortés‐Flores
- Jardín Botánico Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Guillermo Ibarra‐Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Morelia Mich. Mexico
| | - Axel Maldonado‐Romo
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Jorge A. Meave
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| |
Collapse
|
34
|
Ávila-Lovera E, Goldsmith GR, Kay KM, Funk JL. Above- and below-ground functional trait coordination in the Neotropical understory genus Costus. AOB PLANTS 2022; 14:plab073. [PMID: 35035869 PMCID: PMC8757582 DOI: 10.1093/aobpla/plab073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Jennifer L Funk
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
35
|
Barbeta A, Burlett R, Martín-Gómez P, Fréjaville B, Devert N, Wingate L, Domec JC, Ogée J. Evidence for distinct isotopic compositions of sap and tissue water in tree stems: consequences for plant water source identification. THE NEW PHYTOLOGIST 2022; 233:1121-1132. [PMID: 34767646 DOI: 10.1111/nph.17857] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The long-standing hypothesis that the isotopic composition of plant stem water reflects that of source water is being challenged by studies reporting bulk water from woody stems with an isotopic composition that cannot be attributed to any potential water source. The mechanism behind such source-stem water isotopic offsets is still poorly understood. Using a novel technique to extract selectively sap water from xylem conduits, we show that, in cut stems and potted plants, the isotopic composition of sap water reflects that of irrigation water, demonstrating unambiguously that no isotopic fractionation occurs during root water uptake or sap water extraction. By contrast, water in nonconductive xylem tissues is always depleted in deuterium compared with sap water, irrespective of wood anatomy. Previous studies have shown that isotopic heterogeneity also exists in soils at the pore scale in which water adsorbed onto soil particles is more depleted in deuterium than unbound water. Data collected at a riparian forest indicated that sap water matches best unbound soil water from depth below -70 cm, while bulk stem and soil water differ markedly. We conclude that source-stem isotopic offsets can be explained by micrometre-scale heterogeneity in the isotope ratios of water within woody stems and soil micro-pores.
Collapse
Affiliation(s)
- Adrià Barbeta
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
- BEECA, Universitat de Barcelona, Barcelona, Catalonia, 08028, Spain
| | - Régis Burlett
- Université de Bordeaux, INRAE, BIOGECO, Pessac, 33615, France
| | | | | | - Nicolas Devert
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
| | - Lisa Wingate
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
| | | | - Jérôme Ogée
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
| |
Collapse
|
36
|
Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME, van Bodegom PM, Cornelissen JHC, Díaz S, Hattingh WN, Kramer K, Lens F, Niinemets Ü, Reich PB, Reichstein M, Römermann C, Schrodt F, Anand M, Bahn M, Byun C, Campetella G, Cerabolini BEL, Craine JM, Gonzalez-Melo A, Gutiérrez AG, He T, Higuchi P, Jactel H, Kraft NJB, Minden V, Onipchenko V, Peñuelas J, Pillar VD, Sosinski Ê, Soudzilovskaia NA, Weiher E, Mahecha MD. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol 2022; 6:36-50. [PMID: 34949824 PMCID: PMC8752441 DOI: 10.1038/s41559-021-01616-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.
Collapse
Affiliation(s)
- Julia S. Joswig
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Christian Wirth
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Systematic Botany and Functional Biodiversity, University of Leipzig, Leipzig, Germany
| | - Meredith C. Schuman
- grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Jens Kattge
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Björn Reu
- grid.411595.d0000 0001 2105 7207Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ian J. Wright
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Sydney, New South Wales Australia
| | - Sebastian D. Sippel
- grid.5801.c0000 0001 2156 2780Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ,grid.454322.60000 0004 4910 9859Norwegian Institute of Bioeconomy Research, Oslo, Norway
| | - Nadja Rüger
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Department of Economics, University of Leipzig, Leipzig, Germany ,grid.438006.90000 0001 2296 9689Smithsonian Tropical Research Institute, Ancón, Panama
| | - Ronny Richter
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Systematic Botany and Functional Biodiversity, University of Leipzig, Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Michael E. Schaepman
- grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Peter M. van Bodegom
- grid.5132.50000 0001 2312 1970Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, the Netherlands
| | - J. H. C. Cornelissen
- grid.12380.380000 0004 1754 9227Systems Ecology, Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sandra Díaz
- grid.10692.3c0000 0001 0115 2557Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Koen Kramer
- grid.4818.50000 0001 0791 5666Chairgroup Forest Ecology and Forest Management, Wageningen University, Wageningen, the Netherlands ,Land Life Company, Amsterdam, the Netherlands
| | - Frederic Lens
- grid.425948.60000 0001 2159 802XResearch Group Functional Traits, Naturalis Biodiversity Center, Leiden, the Netherlands ,grid.5132.50000 0001 2312 1970Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Ülo Niinemets
- grid.16697.3f0000 0001 0671 1127Estonian University of Life Sciences, Tartu, Estonia
| | - Peter B. Reich
- grid.17635.360000000419368657Department of Forest Resources, University of Minnesota, St Paul, MN USA ,grid.1029.a0000 0000 9939 5719Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales Australia ,grid.214458.e0000000086837370Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Markus Reichstein
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Christine Römermann
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9613.d0000 0001 1939 2794Department of Plant Biodiversity, Institute of Ecology and Evolution, Friedrich-Schiller University, Jena, Germany
| | - Franziska Schrodt
- grid.4563.40000 0004 1936 8868School of Geography, University of Nottingham, Nottingham, UK
| | - Madhur Anand
- grid.34429.380000 0004 1936 8198School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Michael Bahn
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Chaeho Byun
- grid.252211.70000 0001 2299 2686Department of Biological Sciences and Biotechnology, Andong National University, Andong, Korea
| | - Giandiego Campetella
- grid.5602.10000 0000 9745 6549Plant Diversity and Ecosystems Management Unit, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Bruno E. L. Cerabolini
- grid.18147.3b0000000121724807Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | | | - Andres Gonzalez-Melo
- grid.412191.e0000 0001 2205 5940Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Alvaro G. Gutiérrez
- grid.443909.30000 0004 0385 4466Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Tianhua He
- grid.1032.00000 0004 0375 4078School of Molecular and Life Sciences, Curtin University, Perth, Western Australia Australia ,grid.1025.60000 0004 0436 6763College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia Australia
| | - Pedro Higuchi
- grid.412287.a0000 0001 2150 7271Department of Forestry, Universidade do Estado de Santa, Catarina, Lages, Brazil
| | - Hervé Jactel
- grid.508391.60000 0004 0622 9359INRAE University Bordeaux, BIOGECO, Cestas, France
| | - Nathan J. B. Kraft
- grid.19006.3e0000 0000 9632 6718Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA USA
| | - Vanessa Minden
- grid.8767.e0000 0001 2290 8069Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium ,grid.5560.60000 0001 1009 3608Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Vladimir Onipchenko
- grid.14476.300000 0001 2342 9668Department of Ecology and Plant Geography, Moscow State Lomonosov University, Moscow, Russia
| | - Josep Peñuelas
- grid.4711.30000 0001 2183 4846CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain ,grid.452388.00000 0001 0722 403XCREAF, Cerdanyola del Vallés, Spain
| | - Valério D. Pillar
- grid.8532.c0000 0001 2200 7498Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ênio Sosinski
- grid.460200.00000 0004 0541 873XEmbrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Nadejda A. Soudzilovskaia
- grid.12155.320000 0001 0604 5662Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium ,grid.5132.50000 0001 2312 1970Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Evan Weiher
- grid.267460.10000 0001 2227 2494Department of Biology, University of Wisconsin, Eau Claire, WI USA
| | - Miguel D. Mahecha
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Remote Sensing Centre for Earth System Research, University of Leipzig, Leipzig, Germany ,grid.7492.80000 0004 0492 3830Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
37
|
Yang S, Sterck FJ, Sass-Klaassen U, Cornelissen JHC, van Logtestijn RSP, Hefting M, Goudzwaard L, Zuo J, Poorter L. Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. FRONTIERS IN PLANT SCIENCE 2022; 13:769551. [PMID: 35310622 PMCID: PMC8930200 DOI: 10.3389/fpls.2022.769551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark). The trait variation was explained by major taxa (38%), stem compartments (24%), and species within major taxa (19%). A continuous plant strategy gradient was found across and within taxa, running from hydraulic safe gymnosperms to conductive angiosperms. Both groups showed a second strategy gradient related to chemical defense. Gymnosperms strongly converged in their trait strategies because of their uniform tracheids. Angiosperms strongly diverged because of their different vessel arrangement and tissue types. The bark had higher concentrations of nutrients and phenolics whereas the wood had stronger physical defense. The gymnosperms have a conservative strategy associated with strong hydraulic safety and physical defense, and a narrow, specialized range of trait values, which allow them to grow well in drier and unproductive habitats. The angiosperm species show a wider trait variation in all stem compartments, which makes them successful in marginal- and in mesic, productive habitats. The associations between multiple wood and bark traits collectively define a slow-fast stem strategy spectrum as is seen also for each stem compartment.
Collapse
Affiliation(s)
- Shanshan Yang
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Shanshan Yang, ;
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - J. Hans C. Cornelissen
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Richard S. P. van Logtestijn
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Mariet Hefting
- Landscape Ecology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Leo Goudzwaard
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Juan Zuo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
38
|
Lübbe T, Lamarque LJ, Delzon S, Torres Ruiz JM, Burlett R, Leuschner C, Schuldt B. High variation in hydraulic efficiency but not xylem safety between roots and branches in four temperate broad‐leaved tree species. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torben Lübbe
- Plant Ecology Albrecht von Haller Institute for Plant Sciences University of Goettingen Goettingen Germany
| | - Laurent J. Lamarque
- Département des Sciences de l'environnement Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada
- University of Bordeaux INRAE BIOGECO Pessac France
| | | | | | | | - Christoph Leuschner
- Plant Ecology Albrecht von Haller Institute for Plant Sciences University of Goettingen Goettingen Germany
| | - Bernhard Schuldt
- Plant Ecology Albrecht von Haller Institute for Plant Sciences University of Goettingen Goettingen Germany
- Julius‐von‐Sachs‐Institute of Biological Sciences, Ecophysiology and Vegetation Ecology University of Würzburg Würzburg Germany
| |
Collapse
|
39
|
Fontes CG, Pinto‐Ledezma J, Jacobsen AL, Pratt RB, Cavender‐Bares J. Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clarissa G. Fontes
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
| | - Jesús Pinto‐Ledezma
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
| | | | | | | |
Collapse
|
40
|
Levionnois S, Salmon C, Alméras T, Clair B, Ziegler C, Coste S, Stahl C, González-Melo A, Heinz C, Heuret P. Anatomies, vascular architectures, and mechanics underlying the leaf size-stem size spectrum in 42 Neotropical tree species. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7957-7969. [PMID: 34390333 DOI: 10.1093/jxb/erab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The leaf size-stem size spectrum is one of the main dimensions of plant ecological strategies. Yet the anatomical, mechanical, and hydraulic implications of small versus large shoots are still poorly understood. We investigated 42 tropical rainforest tree species in French Guiana, with a wide range of leaf areas at the shoot level. We quantified the scaling of hydraulic and mechanical constraints with shoot size, estimated as the water potential difference (ΔΨ) and the bending angle (ΔΦ), respectively. We investigated how anatomical tissue area, flexural stiffness and xylem vascular architecture affect such scaling by deviating (or not) from theoretical isometry with shoot size variation. Vessel diameter and conductive path length were found to be allometrically related to shoot size, thereby explaining the independence between ΔΨ and shoot size. Leaf mass per area, stem length, and the modulus of elasticity were allometrically related to shoot size, explaining the independence between ΔΦ and shoot size. Our study also shows that the maintenance of both water supply and mechanical stability across the shoot size range are not in conflict.
Collapse
Affiliation(s)
- Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34000 Montpellier, France
| | - Camille Salmon
- UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34000 Montpellier, France
| | - Tancrède Alméras
- LMGC, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Bruno Clair
- LMGC, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- UMR SILVA, INRAE, Université de Lorraine, 54000 Nancy, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | | | - Christine Heinz
- UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34000 Montpellier, France
| | - Patrick Heuret
- UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34000 Montpellier, France
| |
Collapse
|
41
|
Arenas-Navarro M, Oyama K, García-Oliva F, Torres-Miranda A, de la Riva EG, Terrazas T. The role of wood anatomical traits in the coexistence of oak species along an environmental gradient. AOB PLANTS 2021; 13:plab066. [PMID: 34858567 PMCID: PMC8633429 DOI: 10.1093/aobpla/plab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Oaks (Quercus) are a dominant woody plant genus in the northern hemisphere, which occupy a wide range of habitats and are ecologically diverse. We analysed the wood anatomical traits, the variables derived and the relative hydraulic conductivity of 21 oak species to identify their performance according to abiotic factors, leaf phenological patterns and phylogenetic restrictions by analysing the interspecific variation along an environmental gradient. First, we determine the causes of anatomical trait variation in the oaks, analysing the functional trade-offs related to distribution along the environmental gradient. We measure the phenotypic plasticity of the anatomical traits to determine the role of environment and geographic distance in the range of phenotypic plasticity. Second, we examined if oaks co-occurred along the environmental gradient. Then we analysed if wood anatomical traits reflect differences among their phylogenetic section, leaf habit and a phylogenetic section/leaf habit category. Last, we tested the phylogenetic signal. Our results showed that vessel diameter, vessel frequency, wood density and relative hydraulic conductivity are the main axes of trait variation in the species analysed among leaf habit categories. The aridity index and seasonal precipitation drive the variation in the analysed traits. Higher environmental distance resulted in a higher relative distance plasticity index among traits. Co-occurrence of oak species with different leaf habits and phylogenetic trajectories may promote complementary resource acquisition. The phylogenetic signal in the oak species studied was low, which implies labile wood traits.
Collapse
Affiliation(s)
- Maribel Arenas-Navarro
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán CDMX CP 04510, México
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán CP 58190, México
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán CP 58190, México
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán CP 58190, México
| | - Andrés Torres-Miranda
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán CP 58190, México
| | - Enrique G de la Riva
- Department of Ecology, Brandenburg University of Technology, 03046 Cottbus, Germany
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán CDMX CP 04510, México
| |
Collapse
|
42
|
Zhang KY, Yang D, Zhang YB, Ellsworth DS, Xu K, Zhang YP, Chen YJ, He F, Zhang JL. Differentiation in stem and leaf traits among sympatric lianas, scandent shrubs and trees in a subalpine cold temperate forest. TREE PHYSIOLOGY 2021; 41:1992-2003. [PMID: 33823048 PMCID: PMC8597974 DOI: 10.1093/treephys/tpab049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 05/25/2023]
Abstract
The scandent shrub plant form is a variant of liana that has upright and self-supporting stems when young but later becomes a climber. We aimed to explore the associations of stem and leaf traits among sympatric lianas, scandent shrubs and trees, and the effects of growth form and leaf habit on variation in stem or leaf traits. We measured 16 functional traits related to stem xylem anatomy, leaf morphology and nutrient stoichiometry in eight liana, eight scandent shrub and 21 tree species co-occurring in a subalpine cold temperate forest at an elevation of 2600-3200 m in Southwest China. Overall, lianas, scandent shrubs and trees were ordered along a fast-slow continuum of stem and leaf functional traits, with some traits overlapping. We found a consistent pattern of lianas > scandent shrubs > trees for hydraulically weighted vessel diameter, maximum vessel diameter and theoretical hydraulic conductivity. Vessel density and sapwood density showed a pattern of lianas = scandent shrubs < trees, and lianas < scandent shrubs = trees, respectively. Lianas had significantly higher specific leaf area and lower carbon concentration than co-occurring trees, with scandent shrubs showing intermediate values that overlapped with lianas and trees. The differentiation among lianas, scandent shrubs and trees was mainly explained by variation in stem traits. Additionally, deciduous lianas were positioned at the fast end of the trait spectrum, and evergreen trees at the slow end of the spectrum. Our results showed for the first time clear differentiation in stem and leaf traits among sympatric liana, scandent shrub and tree species in a subalpine cold temperate forest. This work will contribute to understanding the mechanisms responsible for variation in ecological strategies of different growth forms of woody plants.
Collapse
Affiliation(s)
| | | | | | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Kun Xu
- Lijiang Forest Ecosystem Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China
| | - Yi-Ping Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | | |
Collapse
|
43
|
Xu H, Wang H, Prentice IC, Harrison SP, Wright IJ. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. THE NEW PHYTOLOGIST 2021; 232:1286-1296. [PMID: 34324717 PMCID: PMC9291854 DOI: 10.1111/nph.17656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 05/13/2023]
Abstract
Close coupling between water loss and carbon dioxide uptake requires coordination of plant hydraulics and photosynthesis. However, there is still limited information on the quantitative relationships between hydraulic and photosynthetic traits. We propose a basis for these relationships based on optimality theory, and test its predictions by analysis of measurements on 107 species from 11 sites, distributed along a nearly 3000-m elevation gradient. Hydraulic and leaf economic traits were less plastic, and more closely associated with phylogeny, than photosynthetic traits. The two sets of traits were linked by the sapwood to leaf area ratio (Huber value, vH ). The observed coordination between vH and sapwood hydraulic conductivity (KS ) and photosynthetic capacity (Vcmax ) conformed to the proposed quantitative theory. Substantial hydraulic diversity was related to the trade-off between KS and vH . Leaf drought tolerance (inferred from turgor loss point, -Ψtlp ) increased with wood density, but the trade-off between hydraulic efficiency (KS ) and -Ψtlp was weak. Plant trait effects on vH were dominated by variation in KS , while effects of environment were dominated by variation in temperature. This research unifies hydraulics, photosynthesis and the leaf economics spectrum in a common theoretical framework, and suggests a route towards the integration of photosynthesis and hydraulics in land-surface models.
Collapse
Affiliation(s)
- Huiying Xu
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - I. Colin Prentice
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Life SciencesGeorgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- School of Archaeology, Geography and Environmental Sciences (SAGES)University of ReadingReadingRG6 6AHUK
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| |
Collapse
|
44
|
Abstract
Wood microdensitometry provides an integrated measurement of inter and intra-annual changes in wood anatomy and lignification. Although it can be acquired through a wide array of techniques, X-ray-based techniques are still the standard. Conversion of a grayscale X-ray image to density and annual ring boundaries delimitation is performed through image analysis software. Proprietary software has dominated these applications, albeit Free Open Source Software (FOSS) has been developed recently. We present ρ-MtreeRing, a user-friendly FOSS that streamlines the entire microdensitometry analysis process through a graphical user interface based on Shiny R Software without any programming knowledge. We compared the results of this program with the most widely used commercial software (WinDendro), showing the validity of the results. ρ-MtreeRing can be personalized and developed by the microdensitometry research community.
Collapse
|
45
|
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, Roumet C, van Ruijven J, Sabatini FM, Semchenko M, Sweeney CJ, Valverde-Barrantes OJ, York LM, McCormack ML. An integrated framework of plant form and function: the belowground perspective. THE NEW PHYTOLOGIST 2021; 232:42-59. [PMID: 34197626 DOI: 10.1111/nph.17590] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.
Collapse
Affiliation(s)
- Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Karl Andraczek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Colleen M Iversen
- Oak Ridge National Laboratory, Climate Change Science Institute and Environmental Sciences Division, Oak Ridge, TN, 37831, USA
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), Paulinenaue, 14641, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Grégoire T Freschet
- Theoretical and Experimental Ecology Station (SETE), National Center for Scientific Research (CNRS), Moulis, 09200, France
| | - Nathaly R Guerrero-Ramírez
- Biodiversity, Macroecology & Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, 37077, Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Functional Biogeography, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| | - Thom W Kuyper
- Soil Biology Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Ina C Meier
- Functional Forest Ecology, Department of Biology, Universität Hamburg, Barsbüttel-Willinghusen, 22885, Germany
| | - Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Catherine Roumet
- CEFE, CNRS, EPHE, IRD, University Montpellier, Montpellier, 34293, France
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Francesco Maria Sabatini
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Marina Semchenko
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Christopher J Sweeney
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Oscar J Valverde-Barrantes
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Larry M York
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - M Luke McCormack
- The Root Lab, Center for Tree Science, The Morton Arboretum, Lisle, IL, 60515, USA
| |
Collapse
|
46
|
Vargas G G, Brodribb TJ, Dupuy JM, González-M R, Hulshof CM, Medvigy D, Allerton TAP, Pizano C, Salgado-Negret B, Schwartz NB, Van Bloem SJ, Waring BG, Powers JS. Beyond leaf habit: generalities in plant function across 97 tropical dry forest tree species. THE NEW PHYTOLOGIST 2021; 232:148-161. [PMID: 34171131 DOI: 10.1111/nph.17584] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/15/2021] [Indexed: 05/12/2023]
Abstract
Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.
Collapse
Affiliation(s)
- German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Juan M Dupuy
- Centro de Investigación Científica de Yucatán, Unidad de Recursos Naturales, Calle 43 # 130 entre 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, México
| | - Roy González-M
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Carrera #1 16-20, Bogotá, 111311, Colombia
| | - Catherine M Hulshof
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tristan A P Allerton
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC, 29442, USA
| | - Camila Pizano
- Departamento de Biología, Universidad ICESI, Calle 18 # 122-135, Cali, 760031, Colombia
| | - Beatriz Salgado-Negret
- Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Carrera 30 Calle 45, Bogotá, 111321, Colombia
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Skip J Van Bloem
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC, 29442, USA
| | - Bonnie G Waring
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
47
|
Wright CL, de Lima ALA, de Souza ES, West JB, Wilcox BP. Plant functional types broadly describe water use strategies in the Caatinga, a seasonally dry tropical forest in northeast Brazil. Ecol Evol 2021; 11:11808-11825. [PMID: 34522343 PMCID: PMC8427645 DOI: 10.1002/ece3.7949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022] Open
Abstract
In seasonally dry tropical forests, plant functional type can be classified as deciduous low wood density, deciduous high wood density, or evergreen high wood density species. While deciduousness is often associated with drought-avoidance and low wood density is often associated with tissue water storage, the degree to which these functional types may correspond to diverging and unique water use strategies has not been extensively tested.We examined (a) tolerance to water stress, measured by predawn and mid-day leaf water potential; (b) water use efficiency, measured via foliar δ13C; and (c) access to soil water, measured via stem water δ18O.We found that deciduous low wood density species maintain high leaf water potential and low water use efficiency. Deciduous high wood density species have lower leaf water potential and variable water use efficiency. Both groups rely on shallow soil water. Evergreen high wood density species have low leaf water potential, higher water use efficiency, and access alternative water sources. These findings indicate that deciduous low wood density species are drought avoiders, with a specialized strategy for storing root and stem water. Deciduous high wood density species are moderately drought tolerant, and evergreen high wood density species are the most drought tolerant group.Synthesis. Our results broadly support the plant functional type framework as a way to understand water use strategies, but also highlight species-level differences.
Collapse
Affiliation(s)
- Cynthia L. Wright
- Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| | - André L. A. de Lima
- Universidade Federal Rural de Pernambuco/Unidade Acadêmica de Serra Talhada (UFRPE/UAST)Serra TalhadaBrasil
| | - Eduardo S. de Souza
- Universidade Federal Rural de Pernambuco/Unidade Acadêmica de Serra Talhada (UFRPE/UAST)Serra TalhadaBrasil
| | - Jason B. West
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| | - Bradford P. Wilcox
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
48
|
Rodriguez-Zaccaro FD, Henry IM, Groover A. Genetic Regulation of Vessel Morphology in Populus. FRONTIERS IN PLANT SCIENCE 2021; 12:705596. [PMID: 34497621 PMCID: PMC8419429 DOI: 10.3389/fpls.2021.705596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
During secondary growth, forest trees can modify the anatomy of the wood produced by the vascular cambium in response to environmental conditions. Notably, the trees of the model angiosperm genus, Populus, reduce the risk of cavitation and hydraulic failure under water stress by producing water-conducting vessel elements with narrow lumens, which are more numerous and more interconnected with each other. Here, we determined the genetic architecture of vessel traits affecting hydraulic physiology and resilience to water stress. Vessel traits were measured for clonally replicated genotypes of a unique Populus deltoides x nigra population carrying genomically defined insertions and deletions that create gene dosage variation. We found significant phenotypic variation for all traits measured (mean vessel diameter, height-corrected mean vessel diameter, vessel frequency, height-corrected vessel frequency, vessel grouping index, and mean vessel circularity), and that all traits were under genetic control and showed moderate heritability values, ranging from 0.32 to 0.53. Whole-genome scans of correlations between gene dosage and phenotypic traits identified quantitative trait loci for tree height, mean vessel diameter, height-corrected mean vessel diameter, height-corrected vessel frequency, and vessel grouping index. Our results demonstrate that vessel traits affecting hydraulic physiology are under genetic control, and both pleiotropic and trait-specific quantitative trait loci are found for these traits.
Collapse
Affiliation(s)
- F. Daniela Rodriguez-Zaccaro
- US Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Isabelle M. Henry
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Andrew Groover
- US Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
49
|
Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proc Natl Acad Sci U S A 2021; 118:2104336118. [PMID: 34389676 PMCID: PMC8379947 DOI: 10.1073/pnas.2104336118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant vascular systems play a central role in global water and carbon cycles and drought resistance. These vascular systems perform multiple functions that affect the fitness of plants, and trade-offs are present among these functions. Some trade-offs are well established, but studies have not examined the full suite of functions of these complex systems. Here, we used a powerful multivariate method, structural equation modeling, to test hypotheses about the trade-offs that govern this vital and globally important tissue. We show that xylem traits are broadly governed by trade-offs related to transport, mechanical support, and storage, which are rooted in cellular structure, and that the level of dehydration experienced by plants in the field exerts a strong influence over these relationships. The xylem in plants is specialized to transport water, mechanically support the plant body, and store water and carbohydrates. Balancing these functions leads to trade-offs that are linked to xylem structure. We proposed a multivariate hypothesis regarding the main xylem functions and tested it using structural equation modeling. We sampled 29 native shrub species from field sites in semiarid Southern California. We quantified xylem water transport (embolism resistance and transport efficiency), mechanical strength, storage of water (capacitance) and starch, minimum hydrostatic pressures (Pmin), and proportions of fibers, vessels, and parenchyma, which were treated as a latent variable representing “cellular trade-offs.” We found that xylem functions (transport, mechanical support, water storage, and starch storage) were independent, a result driven by Pmin. Pmin was strongly and directly or indirectly associated with all xylem functions as a hub trait. More negative Pmin was associated with increased embolism resistance and tissue strength and reduced capacitance and starch storage. We found strong support for a trade-off between embolism resistance and transport efficiency. Tissue strength was not directly associated with embolism resistance or transport efficiency, and any associations were indirect involving Pmin. With Pmin removed from the model, cellular trade-offs were central and related to all other traits. We conclude that xylem traits are broadly governed by functional trade-offs and that the Pmin experienced by plants in the field exerts a strong influence over these relationships. Angiosperm xylem contains different cell types that contribute to different functions and that underpin trade-offs.
Collapse
|
50
|
Altomare M, Vasconcelos HL, Raymundo D, Lopes S, Vale V, Prado-Junior J. Assessing the fire resilience of the savanna tree component through a functional approach. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|