1
|
Löffler L, Mashkoor M, Gögenur I, Gögenur M. Associations between pre-operative cholesterol levels with long-term survival after colorectal cancer surgery: a nationwide propensity score-matched cohort study. Int J Colorectal Dis 2024; 39:159. [PMID: 39387932 PMCID: PMC11467112 DOI: 10.1007/s00384-024-04735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Altered lipid metabolism frequently occurs in patients with solid cancers and dyslipidemia has been associated with poorer outcomes in patients with colorectal cancer. This study sought to investigate whether cholesterol levels are associated with clinical outcomes and can serve as survival predictors. METHODS We conducted a retrospective cohort study with Danish patients diagnosed with colorectal cancer who had surgery with curative intent for UICC stages I to III between 2015 and 2020. Using propensity score adjustment, we matched patients in a 1:1 ratio to examine the impact of total cholesterol (TC) > 4 mmol/L vs. ≤ 4 mmol/L within 365 days prior to surgery on overall survival (OS) and disease-free survival (DFS). RESULTS A total of 3443 patients were included in the study. Median follow-up time was 3.8 years. Following propensity score matching, 1572 patients were included in the main analysis. There was no statistically significant difference in OS or DFS between patients with TC > 4 mmol/L compared with TC ≤ 4 mmol/L (HR: 0.82, 95% CI, 0.65-1.03, HR: 0.87, 95% CI, 0.68-1.12, respectively.). A subgroup analysis investigating TC > 4 mmol/L as well as low-density lipoprotein (LDL) > 3 mmol/L found a significant correlation with OS (HR: 0.74, 95% CI, 0.54-0.99). CONCLUSION TC levels alone were not associated with OS or DFS in patients with colorectal cancer. Interestingly, higher TC and LDL levels were linked to better overall survival, suggesting the need for further exploration of cholesterol's role in colorectal cancer. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Lea Löffler
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark.
| | - Maliha Mashkoor
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Danish Colorectal Cancer Group, Copenhagen, Denmark
| | - Mikail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| |
Collapse
|
2
|
Sun X, Zhao X, Wang S, Liu Q, Wei W, Xu J, Wang H, Yang W. The pathological significance and potential mechanism of ACLY in cholangiocarcinoma. Front Immunol 2024; 15:1477267. [PMID: 39399493 PMCID: PMC11466796 DOI: 10.3389/fimmu.2024.1477267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aim Cholangiocarcinoma (CCA) is a rare cancer, yet its incidence and mortality rates have been steadily increasing globally over the past few decades. Currently, there are no effective targeted treatment strategies available for patients. ACLY (ATP Citrate Lyase), a key enzyme in de novo lipogenesis, is aberrantly expressed in several tumors and is associated with malignant progression. However, its role and mechanisms in CCA have not yet been elucidated. Methods The expression of ACLY in CCA was assessed using transcriptomic profiles and tissue microarrays. Kaplan-Meier curves were employed to evaluate the prognostic significance of ACLY in CCA. Functional enrichment analysis was used to explore the potential mechanisms of ACLY in CCA. A series of assays were conducted to examine the effects of ACLY on the proliferation and migration of CCA cells. Ferroptosis inducers and inhibitors, along with lipid peroxide probes and MDA assay kits, were utilized to explore the role of ACLY in ferroptosis within CCA. Additionally, lipid-depleted fetal bovine serum and several fatty acids were used to evaluate the impact of fatty acids on ferroptosis induced by ACLY inhibition. Correlation analyses were performed to elucidate the relationship between ACLY and tumor stemness as well as tumor microenvironment. Results The expression of ACLY was found to be higher in CCA tissues compared to adjacent normal tissues. Patients with elevated ACLY expression demonstrated poorer overall survival outcomes. ACLY were closed associated with fatty acid metabolism and tumor-initiating cells. Knockdown of ACLY did not significantly impact the proliferation and migration of CCA cells. However, ACLY inhibition led to increased accumulation of lipid peroxides and enhanced sensitivity of CCA cells to ferroptosis inducers. Polyunsaturated fatty acids were observed to inhibit the proliferation of ACLY-knockdown cells; nonetheless, this inhibitory effect was diminished when the cells were cultured in medium supplemented with lipid-depleted fetal bovine serum. Additionally, ACLY expression was negatively correlated with immune cell infiltration and immune scores in CCA. Conclusion ACLY promotes ferroptosis by disrupting the balance of saturated and unsaturated fatty acids. ACLY may therefore serve as a potential diagnostic and therapeutic target for CCA.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofang Zhao
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Senyan Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Wei
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Xu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Yang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
3
|
Vellan CJ, Islam T, De Silva S, Mohd Taib NA, Prasanna G, Jayapalan JJ. Exploring novel protein-based biomarkers for advancing breast cancer diagnosis: A review. Clin Biochem 2024; 129:110776. [PMID: 38823558 DOI: 10.1016/j.clinbiochem.2024.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review provides a contemporary examination of the evolving landscape of breast cancer (BC) diagnosis, focusing on the pivotal role of novel protein-based biomarkers. The overview begins by elucidating the multifaceted nature of BC, exploring its prevalence, subtypes, and clinical complexities. A critical emphasis is placed on the transformative impact of proteomics, dissecting the proteome to unravel the molecular intricacies of BC. Navigating through various sources of samples crucial for biomarker investigations, the review underscores the significance of robust sample processing methods and their validation in ensuring reliable outcomes. The central theme of the review revolves around the identification and evaluation of novel protein-based biomarkers. Cutting-edge discoveries are summarised, shedding light on emerging biomarkers poised for clinical application. Nevertheless, the review candidly addresses the challenges inherent in biomarker discovery, including issues of standardisation, reproducibility, and the complex heterogeneity of BC. The future direction section envisions innovative strategies and technologies to overcome existing challenges. In conclusion, the review summarises the current state of BC biomarker research, offering insights into the intricacies of proteomic investigations. As precision medicine gains momentum, the integration of novel protein-based biomarkers emerges as a promising avenue for enhancing the accuracy and efficacy of BC diagnosis. This review serves as a compass for researchers and clinicians navigating the evolving landscape of BC biomarker discovery, guiding them toward transformative advancements in diagnostic precision and personalised patient care.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tania Islam
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Galhena Prasanna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Szász I, Koroknai V, Várvölgyi T, Pál L, Szűcs S, Pikó P, Emri G, Janka E, Szabó IL, Ádány R, Balázs M. Identification of Plasma Lipid Alterations Associated with Melanoma Metastasis. Int J Mol Sci 2024; 25:4251. [PMID: 38673837 PMCID: PMC11050015 DOI: 10.3390/ijms25084251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to apply a state-of-the-art quantitative lipidomic profiling platform to uncover lipid alterations predictive of melanoma progression. Our study included 151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid species. Following quality control filters, 802 lipid species were included in the subsequent analyses. Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines (LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0)) overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma patients, including the presence of metastasis, and may also serve as indicators of patient survival.
Collapse
Affiliation(s)
- István Szász
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
| | - Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Tünde Várvölgyi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Péter Pikó
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Imre Lőrinc Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Róza Ádány
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| |
Collapse
|
5
|
Liu X, Yu H, Yan G, Xu B, Sun M, Feng M. Causal relationships between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers: univariable and multivariable Mendelian randomization. Eur J Nutr 2024; 63:469-483. [PMID: 38040849 DOI: 10.1007/s00394-023-03281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Coffee intake and apolipoprotein B levels have been linked to gastric, colorectal, and esophageal cancers in numerous recent studies. However, whether these associations are all causal remains unestablished. This study aimed to assess the potential causal associations of apolipoprotein B and coffee intake with the risk of gastric, colorectal, and esophageal cancers using Mendelian randomization analysis. METHODS In this study, we utilized a two-sample Mendelian randomization analysis to access the causal effects of coffee intake and apolipoprotein B on gastric, colorectal, and esophageal cancers. The summary statistics of coffee intake (n = 428,860) and apolipoprotein B (n = 439,214) were obtained from the UK Biobank. In addition, the summary statistics of gastric cancer, colorectal cancer, and esophageal cancer were obtained from the FinnGen biobank (n = 218,792). Inverse variance weighted, MR-Egger, weighted median, and weighted mode were applied to examine the causal relationship between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers. MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were performed to evaluate possible heterogeneity and pleiotropy. Steiger filtering and bidirectional mendelian randomization analysis were performed to evaluate the possible reverse causality. RESULTS The result of the inverse variance weighted method indicated that apolipoprotein B levels were significantly associated with a higher risk of gastric cancer (OR = 1.392, 95% CI 1.027-1.889, P = 0.0333) and colorectal cancer (OR = 1.188, 95% CI 1.001-1.411, P = 0.0491). Furthermore, multivariable Mendelian randomization analysis also revealed a positive association between apolipoprotein B levels and colorectal cancer risk, but the effect of apolipoprotein B on gastric cancer risk disappeared after adjustment of coffee intake, body mass index or lipid-related traits. However, we did not discover any conclusive evidence linking coffee intake to gastric, colorectal, or esophageal cancers. CONCLUSIONS This study suggested a causal association between genetically increased apolipoprotein B levels and higher risk of colorectal cancer. No causal relationship was observed between coffee intake and gastric, colorectal, or esophageal cancers.
Collapse
Affiliation(s)
- Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Han Yu
- School of Health Management, China Medical University, Shenyang, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Boyang Xu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingliang Feng
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Wang S, Wang L, Li H, Zhang J, Peng J, Cheng B, Song M, Hu Q. Correlation analysis of plasma lipid profiles and the prognosis of head and neck squamous cell carcinoma. Oral Dis 2024; 30:329-341. [PMID: 36444706 DOI: 10.1111/odi.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aims to clarify whether blood lipid profiles are indicators of prognosis in patients with head and neck squamous cell carcinoma (HNSCC). METHODS This retrospective study included 512 T1/2N0M0 HNSCC patients. The correlation between blood lipid profiles and progression-free survival (PFS) and disease-specific survival (DSS) was analyzed by multivariate analysis. The data from TCGA was also analyzed to investigate the expression levels and prognostic values of different lipoprotein receptors essential for specific lipid uptake. RESULTS A high level of low-density lipoprotein cholesterol (LDL-C) indicated better PFS and DSS, and a low level of apolipoprotein A-I (Apo A-I) indicated better PFS, while a high level of apolipoprotein B (Apo B) indicated poorer PFS and DSS. The Apo A-I receptor gene SCARB1 was upregulated and associated with poor survival in HNSCC patients. Activation of SCARB1 was implicated in a series of tumor-promoting pathways. There was no significant correlation between the expression of LDL-C and Apo B-related receptors and prognosis. CONCLUSION A high level of LDL-C and a low level of Apo A-I are protective factors for HNSCC, while a high level of Apo B is a risk factor. The upregulation of SCARB1 may participate in the progression of HNSCC.
Collapse
Affiliation(s)
- Siyu Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiayu Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Yang J, Gu J, Shen Y, Cao L, Zhou H, Zhu W. Effect of Shan Zha (Hawthorn or Crataegus) on gastrointestinal cancer: A network pharmacology and molecular docking study. CANCER PATHOGENESIS AND THERAPY 2023; 1:229-237. [PMID: 38327605 PMCID: PMC10846330 DOI: 10.1016/j.cpt.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2024]
Abstract
Background Shan Zha (Hawthorn or Crataegus) is a traditional Chinese medicine (TCM) most commonly used for the treatment of hyperlipidemia. Gastrointestinal cancer is closely correlated with blood lipid levels. This study illustrates the potential anticancer effects of Shan Zha on gastrointestinal tumors based on network pharmacology and molecular docking. Methods Hawthorn's bioactive ingredients and drug targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine version 2.0 (TCMIP v2.0), and Herbal Ingredients' Targets Platform (HIT 2.0) databases. Validated disease targets of gastrointestinal cancer were obtained from the Therapeutic Targets Database (TTD) and HIT 2.0 databases. Protein-protein interaction analysis of intersecting genes was performed using the Search Tool for the Retrieval of Interacting Genes (STRING) database. The functions of these genes were further analyzed by performing gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking verification was performed using Molecular Operating Environment (MOE) software. Results Four main bioactive components were identified in Shan Zha. A total of 271 potential drug targets were identified, and 393 gastrointestinal-tumor targets were obtained. Through protein interaction analysis of intersecting targets, the main components of Shan Zha were found to interact more closely with proteins such as tumor protein p53 (TP53), AKT serine/threonine kinase 1 (AKT1), JUN proto-oncogene (JUN), interleukin 6 (IL6), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor A (VEGFA). KEGG pathway enrichment analysis showed a total of 127 pathways, mainly involving pathways in multiple types of cancer, the Phosphatidylinositol 3-kinase-Akt (PI3K-Akt) signaling pathway, and EGFR tyrosine kinase inhibitor resistance. Combined with The Cancer Genome Atlas (TCGA) differential analysis, key targets, including TP53, cyclin D1 (CCND1), EGFR, and VEGFA, were screened. Molecular docking results showed that quercetin and kaempferol had the good binding potential for TP53, CCND1, EGFR, and VEGFA. Conclusion These findings suggest that Shan Zha exerts its effects on gastrointestinal cancers through a multitarget, multi-component, and a multi-pathway mechanism.
Collapse
Affiliation(s)
- Jing Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Jialin Gu
- Department of Traditional Chinese Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Ying Shen
- Department of Endocrinology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Ling Cao
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Hong Zhou
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
8
|
Mayengbam SS, Singh A, Yaduvanshi H, Bhati FK, Deshmukh B, Athavale D, Ramteke PL, Bhat MK. Cholesterol reprograms glucose and lipid metabolism to promote proliferation in colon cancer cells. Cancer Metab 2023; 11:15. [PMID: 37705114 PMCID: PMC10500936 DOI: 10.1186/s40170-023-00315-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Hypercholesterolemia is often correlated with obesity which is considered a risk factor for various cancers. With the growing population of hypercholesterolemic individuals, there is a need to understand the role of increased circulatory cholesterol or dietary cholesterol intake towards cancer etiology and pathology. Recently, abnormality in the blood cholesterol level of colon cancer patients has been reported. In the present study, we demonstrate that alteration in cholesterol levels (through a high-cholesterol or high-fat diet) increases the incidence of chemical carcinogen-induced colon polyp occurrence and tumor progression in mice. At the cellular level, low-density lipoprotein cholesterol (LDLc) and high-density lipoprotein cholesterol (HDLc) promote colon cancer cell proliferation by tuning the cellular glucose and lipid metabolism. Mechanistically, supplementation of LDLc or HDLc promotes cellular glucose uptake, and utilization, thereby, causing an increase in lactate production by colon cancer cells. Moreover, LDLc or HDLc upregulates aerobic glycolysis, causing an increase in total ATP production through glycolysis, and a decrease in ATP generation by OXPHOS. Interestingly, the shift in the metabolic status towards a more glycolytic phenotype upon the availability of cholesterol supports rapid cell proliferation. Additionally, an alteration in the expression of the molecules involved in cholesterol uptake along with the increase in lipid and cholesterol accumulation was observed in cells supplemented with LDLc or HDLc. These results indicate that colon cancer cells directly utilize the cholesterol associated with LDLc or HDLc. Moreover, targeting glucose metabolism through LDH inhibitor (oxamate) drastically abrogates the cellular proliferation induced by LDLc or HDLc. Collectively, we illustrate the vital role of cholesterol in regulating the cellular glucose and lipid metabolism of cancer cells and its direct effect on the colon tumorigenesis.
Collapse
Affiliation(s)
- Shyamananda Singh Mayengbam
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Abhijeet Singh
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Himanshi Yaduvanshi
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Firoz Khan Bhati
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Dipti Athavale
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Pranay L Ramteke
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India.
| |
Collapse
|
9
|
Liang Z, Zhang Z, Tan X, Zeng P. Lipids, cholesterols, statins and liver cancer: a Mendelian randomization study. Front Oncol 2023; 13:1251873. [PMID: 37746259 PMCID: PMC10516570 DOI: 10.3389/fonc.2023.1251873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Aim To investigate the causal relationship of serum lipid indicators and lipid-lowering drugs with the risk of liver cancer using Mendelian randomization study. Methods A two-sample Mendelian randomization (TSMR) study was performed to investigate the causal relationship between serum levels of lipid indicators and liver cancer, including low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG), total cholesterol (TC), Apolipoprotein B (ApoB), and Apolipoprotein A1 (ApoA1).Furthermore, instrumental variable weighted regression (IVW) and summary data-based MR (SMR) analyses were performed to investigate the causal effects of lipid-lowering drugs, including statins and PCSK9 inhibitors, on the risk of liver cancer. Results Serum LDL-c and serum TC levels showed negatively associated with liver cancer (n = 22 SNPs, OR = 0.363, 95% CI = 0.231 - 0.570; p = 1.070E-5) (n = 83 SNPs; OR = 0.627, 95% CI = 0.413-0.952; p = 0.028). However, serum levels of TG, HDL-c, and ApoA1 did not show any significant correlation with liver cancer. In the drug target MR (DMR) analyses, HMGCR-mediated level of LDL-c showed an inverse relationship with the risk of liver cancer in the IVW-MR analysis (n = 5 SNPs, OR = 0.201, 95% CI = 0.064 - 0.631; p = 5.95E-03) and SMR analysis (n = 20 SNPs, OR = 0.245, 95% CI = 0.065 - 0.926; p = 0.038) However, PCSK9 did not show any significant association with liver cancer based on both the IVW-MR and SMR analyses. Conclusion Our results demonstrated that reduced levels of LDL-c and TC were associated with an increased risk of liver cancer. Furthermore, lipid-lowering drugs targeting HMGCR such as statins were associated with increased risk of liver cancer.
Collapse
Affiliation(s)
- Zicheng Liang
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Xiaoning Tan
- Department of Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Puhua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Zhou J, Lu N, Lv X, Wang X, Li J, Ke L. Role of Huangqin Decoction in Intestinal Homeostasis and Colon Carcinogenesis Based on "SREBP1 Cholesterol Metabolism Treg Cell Differentiation". EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6715978. [PMID: 37305690 PMCID: PMC10250094 DOI: 10.1155/2023/6715978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 06/13/2023]
Abstract
Objective To explore the role of Huangqin Decoction in intestinal homeostasis maintenance and colon carcinogenesis based on "sterol regulatory element binding protein-1c (SREBP-1)-cholesterol metabolism regulatory T cell (Treg) differentiation." Methods It was decided to utilize a total of 50 healthy Wistar rats for the study, 20 of which were chosen at random to serve as controls, and 30 of which were used to create an intestinal homeostasis imbalance model. It was determined whether or not the modeling was successful by killing 10 rats from each of the two groups. The remaining 10 rats in the normal group were then employed as the control group for the experiment. The random number table method was used to split the rats into two groups: the Huangqin Decoction (n = 10) and the Natural Recovery (n = 10) groups. For seven days, participants in the Huangqin Decoction group received the herb, whereas those in the natural healing group received normal saline. The relative density of SREBP1, the levels of cholesterol ester (CE), free cholesterol (FC), total cholesterol (TC), and Treg cells were detected and compared. Results When compared to the control group, the relative density of SREBP1 increased significantly before administration in the Huangqin Decoction group and the natural recovery group, but decreased significantly after administration, with statistical significance (P < 0.05) in the Huangqin Decoction group and the natural recovery group; the Huangqin Decoction group and natural recovery group had significantly higher levels of CE, FC, and TC than the control group before to administration, and these levels increased significantly after administration. CE, FC, and TC levels in Huangqin Decoction and natural recovery groups were much lower than those in natural recovery groups, and the difference was statistically significant (P < 0.05), according to the results; Prior to administration, Treg cell levels in Huangqin Decoction group and the natural recovery group were significantly higher, and Treg cell levels in the Huangqin Decoction group and natural recovery group were significantly lower after administration; the decrease in the Huangqin Decoction group was significantly greater than that in natural recovery group. P < 0.05 indicated that the difference was significant. Conclusion Using Huangqin Decoction, one may efficiently regulate SREBP1, cholesterol metabolism, and Treg cell development, all of which play an important role in maintaining intestinal stability and minimizing the incidence of colon cancer.
Collapse
Affiliation(s)
- Junde Zhou
- Ward 3 of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China
| | - Nannan Lu
- Department of Pathology, Bei'an First People's Hospital, No. 222, Longjiang Road, Bei'an 164099, China
| | - Xinxin Lv
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| | - Xin Wang
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| | - Jing Li
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| | - Lixia Ke
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| |
Collapse
|
11
|
Qin S, Su Q, Li X, Shao M, Zhang Y, Yu F, Ni Y, Zhong J. Curcumin suppresses cell proliferation and reduces cholesterol absorption in Caco-2 cells by activating the TRPA1 channel. Lipids Health Dis 2023; 22:6. [PMID: 36641489 PMCID: PMC9840307 DOI: 10.1186/s12944-022-01750-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Curcumin (Cur) is a bioactive dietary polyphenol of turmeric with various biological activities against several cancers. Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Intestinal cholesterol homeostasis is associated with CRC. Chemotherapy for CRC is related to varied adverse effects. Therefore, natural products with anti-cancer properties represent a potential strategy for primary prevention of CRC. METHODS The present study used Cur as a therapeutic approach against CRC using the Caco-2 cell line. The cells were treated with different concentrations of Cur for different duration of time and then the proliferation ability of cells was assessed using Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine assays. Oil red O staining and cholesterol assay kit were used to evaluate cellular lipid content and cholesterol outward transportation. Finally, the protein expressions of cholesterol transport-related protein and signal transduction molecules were assessed using Western blot assay. RESULTS Cur inhibited cell proliferation in Caco-2 cells in a dose- and time-dependent manner by activating the transient receptor potential cation channel subfamily A member 1 (TRPA1) channel. Activation of the TRPA1 channel led to increased intracellular calcium, peroxisome proliferator-activated receptor gamma (PPARγ) upregulation, and the subsequent downregulation of the specificity protein-1 (SP-1)/sterol regulatory element-binding protein-2 (SREBP-2)/Niemann-Pick C1-like 1 (NPC1L1) signaling pathway-related proteins, and finally reduced cholesterol absorption in Caco-2 cells. CONCLUSIONS Cur inhibits cell proliferation and reduces cholesterol absorption in Caco-2 cells through the Ca2+/PPARγ/SP-1/SREBP-2/NPC1L1 signaling by activating the TRPA1 channel, suggesting that Cur can be used as a dietary supplement for the primary prevention of CRC. In Caco-2 cells, Cur first stimulates calcium influx by activating the TRPA1 channel, further upregulates PPARγ and downregulates SP-1/SREBP-2/NPC1L1 signaling pathway, and finally inhibits the absorption of cholesterol. TRPA1, transient receptor potential cation channel subfamily A member 1; NPC1L1, Niemann-Pick C1-like 1; PPARγ, peroxisome proliferator-activated receptor gamma; SP-1, specificity protein-1; SREBP-2, sterol regulatory element-binding protein-2; Cur, curcumin.
Collapse
Affiliation(s)
- Si Qin
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Qian Su
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Xiang Li
- grid.11135.370000 0001 2256 9319College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Muqing Shao
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Yindi Zhang
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Fadong Yu
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Yinxing Ni
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Jian Zhong
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| |
Collapse
|
12
|
Costantini S, Di Gennaro E, Capone F, De Stefano A, Nasti G, Vitagliano C, Setola SV, Tatangelo F, Delrio P, Izzo F, Avallone A, Budillon A. Plasma metabolomics, lipidomics and cytokinomics profiling predict disease recurrence in metastatic colorectal cancer patients undergoing liver resection. Front Oncol 2023; 12:1110104. [PMID: 36713567 PMCID: PMC9875807 DOI: 10.3389/fonc.2022.1110104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Purpose In metastatic colorectal cancer (mCRC) patients (pts), treatment strategies integrating liver resection with induction chemotherapy offer better 5-year survival rates than chemotherapy alone. However, liver resection is a complex and costly procedure, and recurrence occurs in almost 2/3rds of pts, suggesting the need to identify those at higher risk. The aim of this work was to evaluate whether the integration of plasma metabolomics and lipidomics combined with the multiplex analysis of a large panel of plasma cytokines can be used to predict the risk of relapse and other patient outcomes after liver surgery, beyond or in combination with clinical morphovolumetric criteria. Experimental design Peripheral blood metabolomics and lipidomics were performed by 600 MHz NMR spectroscopy on plasma from 30 unresectable mCRC pts treated with bevacizumab plus oxaliplatin-based regimens within the Obelics trial (NCT01718873) and subdivided into responder (R) and non-R (NR) according to 1-year disease-free survival (DFS): ≥ 1-year (R, n = 12) and < 1-year (NR, n = 18). A large panel of cytokines, chemokines, and growth factors was evaluated on the same plasma using Luminex xMAP-based multiplex bead-based immunoassay technology. A multiple biomarkers model was built using a support vector machine (SVM) classifier. Results Sparse partial least squares discriminant analysis (sPLS-DA) and loading plots obtained by analyzing metabolomics profiles of samples collected at the time of response evaluation when resectability was established showed significantly different levels of metabolites between the two groups. Two metabolites, 3-hydroxybutyrate and histidine, significantly predicted DFS and overall survival. Lipidomics analysis confirmed clear differences between the R and NR pts, indicating a statistically significant increase in lipids (cholesterol, triglycerides and phospholipids) in NR pts, reflecting a nonspecific inflammatory response. Indeed, a significant increase in proinflammatory cytokines was demonstrated in NR pts plasma. Finally, a multiple biomarkers model based on the combination of presurgery plasma levels of 3-hydroxybutyrate, cholesterol, phospholipids, triglycerides and IL-6 was able to correctly classify patients by their DFS with good accuracy. Conclusion Overall, this exploratory study suggests the potential of these combined biomarker approaches to predict outcomes in mCRC patients who are candidates for liver metastasis resection after induction treatment for defining personalized management and treatment strategies.
Collapse
Affiliation(s)
- Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Francesca Capone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Alfonso De Stefano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Guglielmo Nasti
- Innovative Therapy for Abdominal Metastases Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Sergio Venanzio Setola
- Radiology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Paolo Delrio
- Colorectal Oncological Surgery Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy,*Correspondence: Alfredo Budillon,
| |
Collapse
|
13
|
Zhao Q, Wang Y, Huo T, Li F, Zhou L, Feng Y, Wei Z. Exploration of Risk Factors for Pancreatic Cancer and Development of a Clinical High-Risk Group Rating Scale. J Clin Med 2023; 12:358. [PMID: 36615158 PMCID: PMC9821400 DOI: 10.3390/jcm12010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
(1) Background: There are few studies on people at high risk for clinical pancreatic cancer (PC). We aimed to explore the risk factors of PC and establish a scale for identifying high-risk populations of clinical PC. (2) Methods: We conducted a matched case-control study, retrospectively collecting demographic data and common clinical indicators from all subjects. Logistic regression was used to explore the risk factors of PC. Based on these factors, we created a high-risk population rating scale, which showed a higher diagnostic value. (3) Results: 385 cases and 428 controls were finally enrolled in our study. Multivariate analysis showed that body mass index (BMI) below 18.5 kg/m2 (OR 5.944, 95%CI: 1.759~20.084), smoking (OR 2.745, 95%CI: 1.555~4.844), new-onset diabetes (OR 5.239, 95%CI: 2.091~13.125), low high-density lipoprotein cholesterol (HDL-C) levels (OR 1.790, 95%CI: 1.044~3.069), and carbohydrate antigen 19-9 (CA19-9) levels no less than 35 U/mL (OR 160.328, 95%CI: 83.392~308.243) were associated with an increased risk of PC, whereas high total cholesterol (TC) levels were related to a lower risk of PC (OR 0.392, 95%CI: 0.211~0.730). The high-risk population scale, whose area under the receiver operating curve reached 0.948 (p < 0.001), showed a greater clinical diagnostic value. (4) Conclusions: Smoking history, new-onset diabetes, BMI, TC, HDL-C, and CA19-9 levels were associated with the risk of PC. The high-risk population rating scale might be used for early clinical PC screening.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Wang
- Hepatobiliary and Pancreatic Surgery and Liver Transplantation Center, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Tianyu Huo
- Hepatobiliary and Pancreatic Surgery and Liver Transplantation Center, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Furong Li
- Department of Pathology & Pathophysiology, School of Basic Medicine Shanxi Medical University, Taiyuan 030001, China
| | - Lu Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhigang Wei
- Hepatobiliary and Pancreatic Surgery and Liver Transplantation Center, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
14
|
Vignoli A, Meoni G, Ghini V, Di Cesare F, Tenori L, Luchinat C, Turano P. NMR-Based Metabolomics to Evaluate Individual Response to Treatments. Handb Exp Pharmacol 2023; 277:209-245. [PMID: 36318327 DOI: 10.1007/164_2022_618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy.
| |
Collapse
|
15
|
Halimi H, Farjadian S. Cholesterol: An important actor on the cancer immune scene. Front Immunol 2022; 13:1057546. [PMID: 36479100 PMCID: PMC9719946 DOI: 10.3389/fimmu.2022.1057546] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Based on the structural and signaling roles of cholesterol, which are necessary for immune cell activity, high concentrations of cholesterol and its metabolites not only trigger malignant cell activities but also impede immune responses against cancer cells. To proliferate and evade immune responses, tumor cells overcome environmental restrictions by changing their metabolic and signaling pathways. Overexpression of mevalonate pathway enzymes and low-density lipoprotein receptor cause elevated cholesterol synthesis and uptake, respectively. Accordingly, cholesterol can be considered as both a cause and an effect of cancer. Variations in the effects of blood cholesterol levels on the outcome of different types of cancer may depend on the stage of cancer. However, positive effects of cholesterol-lowering drugs have been reported in the treatment of patients with some malignancies.
Collapse
|
16
|
The Prognostic Value of Serum Apolipoprotein A-I Level and Neutrophil-to-Lymphocyte Ratio in Colorectal Cancer Liver Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:9149788. [PMID: 36204177 PMCID: PMC9532097 DOI: 10.1155/2022/9149788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer liver metastasis (CRLM) is a high degree of malignancy with rapid disease progression and has a poor prognosis. Both serum apolipoprotein A-I (ApoA-I) and neutrophil-to-lymphocyte ratio (NLR) play key roles in anti-inflammation and antitumor. This study is aimed at evaluating the implication of serum ApoA-I level in combination with NLR in the prognosis of CRLM. Methods We retrospectively analyzed the serum ApoA-I level and NLR in 237 patients with CRLM. Cox regression analyses were used to identify the independent prognostic significance of these indicators. Kaplan-Meier method and Log-rank test were applied to compute overall survival (OS). Both the ApoA-I and NLR were divided into three levels, according to their medians. A risk-stratified prediction model was established to evaluate the prognosis of patients with CRLM. The ROC curve AUC values were applied to evaluate the capability of the model. Results Higher levels of ApoA-I and lower NLR were strongly associated with prolonged OS (Log-rank test, P < 0.05). The patients were then grouped into three queues according to the ApoA-I level and NLR. There was a crucial diversity in the OS (P < 0.001) between the high-risk (ApoA − I ≤ 1.03 g/L and NLR > 3.24), medium-risk (ApoA − I > 1.03 g/L or NLR ≤ 3.24) and low-risk groups (ApoA − I > 1.03 g/L and NLR ≤ 3.24). The AUC value of the prediction model (AUC = 0.623, 95% CI: 0.557-0.639, P = 0.001) was higher than other individual indicators (including ApoA-I, NLR, cT classification, and cN classification). Additionally, the association of the prediction model and cTN classification (AUC = 0.715, 95% CI: 0.606-0.708, P < 0.001) was better than the model and cTN classification alone. Conclusion The combination of ApoA-I level and NLR could be a prognostic indicator for CRLM.
Collapse
|
17
|
Wang H, Liu D, Liang H, Ba Z, Ma Y, Xu H, Wang J, Wang T, Tian T, Yang J, Gao X, Qiao S, Qu Y, Yang Z, Guo W, Zhao M, Ao H, Zheng X, Yuan J, Yang W. A Nomogram for Predicting Survival in Patients With Colorectal Cancer Incorporating Cardiovascular Comorbidities. Front Cardiovasc Med 2022; 9:875560. [PMID: 35711348 PMCID: PMC9196079 DOI: 10.3389/fcvm.2022.875560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cardiovascular comorbidities (CVCs) affect the overall survival (OS) of patients with colorectal cancer (CRC). However, a prognostic evaluation system for these patients is currently lacking. Objectives This study aimed to develop and validate a nomogram, which takes CVCs into account, for predicting the survival of patients with CRC. Methods In total, 21,432 patients with CRC were recruited from four centers in China between January 2011 and December 2017. The nomogram was constructed, based on Cox regression, using a training cohort (19,102 patients), and validated using a validation cohort (2,330 patients). The discrimination and calibration of the model were assessed by the concordance index and calibration curve. The clinical utility of the model was measured by decision curve analysis (DCA). Based on the nomogram, we divided patients into three groups: low, middle, and high risk. Results Independent risk factors selected into our nomogram for OS included age, metastasis, malignant ascites, heart failure, and venous thromboembolism, whereas dyslipidemia was found to be a protective factor. The c-index of our nomogram was 0.714 (95% CI: 0.708–0.720) in the training cohort and 0.742 (95% CI: 0.725–0.759) in the validation cohort. The calibration curve and DCA showed the reliability of the model. The cutoff values of the three groups were 68.19 and 145.44, which were also significant in the validation cohort (p < 0.001). Conclusion Taking CVCs into account, an easy-to-use nomogram was provided to estimate OS for patients with CRC, improving the prognostic evaluation ability.
Collapse
Affiliation(s)
- Hao Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Dong Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Hanyang Liang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Zhengqing Ba
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Yue Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Haobo Xu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Juan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Tianjie Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Tao Tian
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Jingang Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Xiaojin Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Shubin Qiao
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Yanling Qu
- Department of Cardiology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Zhuoxuan Yang
- Department of Cardiology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Wei Guo
- Department of Oncology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Min Zhao
- Department of Oncology, Yunnan Cancer Hospital, Kunming, China
| | - Huiping Ao
- Department of Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Xiaodong Zheng
- Department of Oncology, Chongqing Cancer Hospital, Chongqing, China
| | - Jiansong Yuan
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
- Key Laboratory of Pulmonary Vascular Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jiansong Yuan,
| | - Weixian Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
- Key Laboratory of Pulmonary Vascular Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Weixian Yang,
| |
Collapse
|
18
|
Yu Y, Cai Y, Yang B, Xie S, Shen W, Wu Y, Sui Z, Cai J, Ni C, Ye J. High-Fat Diet Enhances the Liver Metastasis Potential of Colorectal Cancer through Microbiota Dysbiosis. Cancers (Basel) 2022; 14:cancers14112573. [PMID: 35681554 PMCID: PMC9179364 DOI: 10.3390/cancers14112573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary High-fat diet (HFD) is hypothesized to induce gut dysbiosis and promote colorectal cancer (CRC). However, the specific mechanisms involved require investigation. In this study, we established an animal model and utilized 16S sequencing to determine the effects of HFD on gut microbiota, as well as on the colon and liver. Furthermore, due to the abundance of Desulfovibrio (DSV) in the faecal samples of HFD-fed rats and CRC hepatic metastasis patients, we also conducted a DSV gavage animal experiment to determine the role of DSV in CRC development. Our study confirmed that HFD could cause microbiota dysbiosis, especially DSV enrichment, and may promote CRC initiation and metastasis. Abstract Obesity, metabolic changes, and intestinal microbiota disruption significantly affect tumorigenesis and metastasis in colorectal cancer (CRC). However, the relationships among these factors remain poorly understood. In this study, we found that a high-fat diet (HFD) promoted gut barrier dysfunction and inflammation in the colorectum and liver. We further investigated gut microbiota changes through 16S rRNA sequencing of faecal samples from HFD-fed rats and CRC hepatic metastasis patients and found an abundance of Desulfovibrio (DSV). DSV could also induce barrier dysfunction in the colorectum and inflammation in the colorectum and liver, suggesting that it contributes to the formation of a microenvironment conducive to CRC tumorigenesis and metastasis. These findings highlight that HFD-induced microbiota dysbiosis, especially DSV abundance, could promote CRC initiation and metastasis.
Collapse
Affiliation(s)
- Yina Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Yangke Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Bin Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Siyuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Wenjuan Shen
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Yaoyi Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Ziqi Sui
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou 310009, China;
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Chao Ni
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Correspondence: (C.N.); (J.Y.); Tel.: +86-571-87784642 (C.N. & J.Y.); Fax: +86-571-87022776 (C.N. & J.Y.)
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
- Correspondence: (C.N.); (J.Y.); Tel.: +86-571-87784642 (C.N. & J.Y.); Fax: +86-571-87022776 (C.N. & J.Y.)
| |
Collapse
|
19
|
Li X, Wang X, Yan K, Weng G, Zhu M. Effect of Rosa roxburghii fruit on blood lipid levels: a systematic review based on human and animal studies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2053710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xinran Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, GZ, China
| | - Xuying Wang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, GZ, China
| | - Kai Yan
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, GZ, China
| | - Guiying Weng
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, GZ, China
| | - Miao Zhu
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, GZ, China
| |
Collapse
|
20
|
Krauß D, Fari O, Sibilia M. Lipid Metabolism Interplay in CRC—An Update. Metabolites 2022; 12:metabo12030213. [PMID: 35323656 PMCID: PMC8951276 DOI: 10.3390/metabo12030213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) to date still ranks as one of the deadliest cancer entities globally, and despite recent advances, the incidence in young adolescents is dramatically increasing. Lipid metabolism has recently received increased attention as a crucial element for multiple aspects of carcinogenesis and our knowledge of the underlying mechanisms is steadily growing. However, the mechanism how fatty acid metabolism contributes to CRC is still not understood in detail. In this review, we aim to summarize our vastly growing comprehension and the accompanied complexity of cellular fatty acid metabolism in CRC by describing inputs and outputs of intracellular free fatty acid pools and how these contribute to cancer initiation, disease progression and metastasis. We highlight how different lipid pathways can contribute to the aggressiveness of tumors and affect the prognosis of patients. Furthermore, we focus on the role of lipid metabolism in cell communication and interplay within the tumor microenvironment (TME) and beyond. Understanding these interactions in depth might lead to the discovery of novel markers and new therapeutic interventions for CRC. Finally, we discuss the crucial role of fatty acid metabolism as new targetable gatekeeper in colorectal cancer.
Collapse
|
21
|
Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao DF, Qin L. Involvement of LDL and ox-LDL in Cancer Development and Its Therapeutical Potential. Front Oncol 2022; 12:803473. [PMID: 35251975 PMCID: PMC8889620 DOI: 10.3389/fonc.2022.803473] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023] Open
Abstract
Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in the rapid growth of cancer cells as well as the formation of metastatic lesions. Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer, colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and ox-LDL play important roles during the occurrence and development of cancers. LDL can deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-binding proteins (SREBPs), which subsequently promotes cholesterol uptake and synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer. Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential therapeutic effect of targeting lipid metabolism in cancer therapy warrants more investigation.
Collapse
Affiliation(s)
- Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
22
|
Patel KK, Kashfi K. Lipoproteins and cancer: The role of HDL-C, LDL-C, and cholesterol-lowering drugs. Biochem Pharmacol 2022; 196:114654. [PMID: 34129857 PMCID: PMC8665945 DOI: 10.1016/j.bcp.2021.114654] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
Cholesterol is an amphipathic sterol molecule that is vital for maintaining normal physiological homeostasis. It is a relatively complicated molecule with 27 carbons whose synthesis starts with 2-carbon units. This in itself signifies the importance of this molecule. Cholesterol serves as a precursor for vitamin D, bile acids, and hormones, including estrogens, androgens, progestogens, and corticosteroids. Although essential, high cholesterol levels are associated with cardiovascular and kidney diseases and cancer initiation, progression, and metastasis. Although there are some contrary reports, current literature suggests a positive association between serum cholesterol levels and the risk and extent of cancer development. In this review, we first present a brief overview of cholesterol biosynthesis and its transport, then elucidate the role of cholesterol in the progression of some cancers. Suggested mechanisms for cholesterol-mediated cancer progression are plentiful and include the activation of oncogenic signaling pathways and the induction of oxidative stress, among others. The specific roles of the lipoprotein molecules, high-density lipoprotein (HDL) and low-density lipoprotein (LDL), in this pathogenesis, are also reviewed. Finally, we hone on the potential role of some cholesterol-lowering medications in cancer.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
23
|
Exploring Serum NMR-Based Metabolomic Fingerprint of Colorectal Cancer Patients: Effects of Surgery and Possible Associations with Cancer Relapse. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Colorectal cancer (CRC) is the fourth most commonly diagnosed and third most deadly cancer worldwide. Surgery is the main treatment option for early disease; however, a relevant proportion of CRC patients relapse. Here, variations among preoperative and postoperative serum metabolomic fingerprint of CRC patients were studied, and possible associations between metabolic variations and cancer relapse were explored. Methods: A total of 41 patients with stage I-III CRC, planned for radical resection, were enrolled. Serum samples, collected preoperatively (t0) and 4–6 weeks after surgery before the start of any treatment (t1), were analyzed via NMR spectroscopy. NMR data were analyzed using multivariate and univariate statistical approaches. Results: Serum metabolomic fingerprints show differential clustering between t0 and t1 (82–85% accuracy). Pyruvate, HDL-related parameters, acetone, and 3-hydroxybutyrate appear to be the major players in this discrimination. Eight out of the 41 CRC patients enrolled developed cancer relapse. Postoperative, relapsed patients show an increase of pyruvate and HDL-related parameters, and a decrease of Apo-A1 Apo-B100 ratio and VLDL-related parameters. Conclusions: Surgery significantly alters the metabolomic fingerprint of CRC patients. Some metabolic changes seem to be associated with the development of cancer relapse. These data, if validated in a larger cohort, open new possibilities for risk stratification in patients with early-stage CRC.
Collapse
|
24
|
Li H, Lin J, Xiao Y, Zheng W, Zhao L, Yang X, Zhong M, Liu H. Colorectal Cancer Detected by Machine Learning Models Using Conventional Laboratory Test Data. Technol Cancer Res Treat 2021; 20:15330338211058352. [PMID: 34806496 PMCID: PMC8606732 DOI: 10.1177/15330338211058352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Current diagnostic methods for colorectal cancer (CRC) are colonoscopy and sigmoidoscopy, which are invasive and complex procedures with possible complications. This study aimed to determine models for CRC identification that involve minimally invasive, affordable, portable, and accurate screening variables. Methods: This was a retrospective study that used data from electronic medical records of patients with CRC and healthy individuals between July 2017 and June 2018. Laboratory data, including liver enzymes, lipid profiles, complete blood counts, and tumor biomarkers, were extracted from the electronic medical records. Five machine learning models (logistic regression, random forest, k-nearest neighbors, support vector machine [SVM], and naïve Bayes) were used to identify CRC. The performances were evaluated using the areas under the curve (AUCs), sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV). Results: A total of 1164 electronic medical records (CRC patients: 582; healthy controls: 582) were included. The logistic regression model achieved the highest performance in identifying CRC (AUC: 0.865, sensitivity: 89.5%, specificity: 83.5%, PPV: 84.4%, NPV: 88.9%). The first four weighted features in the model were carcinoembryonic antigen (CEA), hemoglobin (HGB), lipoprotein (a) (Lp(a)), and high-density lipoprotein (HDL). A diagnostic model for CRC was established based on the four indicators, with an AUC of 0.849 (0.840-0.860) for identifying all CRC patients, and it performed best in discriminating patients with late colon cancer from healthy individuals with an AUC of 0.905 (0.889-0.929). Conclusions: The logistic regression model based on CEA, HGB, Lp(a), and HDL might be a powerful, noninvasive, and cost-effective method to identify CRC.
Collapse
Affiliation(s)
- Hui Li
- 373651Department of Clinical Laboratory, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianmei Lin
- 373651Department of Clinical Laboratory, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanhong Xiao
- 373651Department of Clinical Laboratory, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenwen Zheng
- 373651Department of Clinical Laboratory, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Zhao
- 373651Department of Clinical Laboratory, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangling Yang
- 373651Department of Clinical Laboratory, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China.,373651Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minsheng Zhong
- Department of Artificial Intelligence Laboratory, Xuanwu Technology, Guangzhou, Guangdong, China
| | - Huanliang Liu
- 373651Department of Clinical Laboratory, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China.,373651Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, 26469Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Guo Y, Huang B, Li R, Li J, Tian S, Peng C, Dong W. Low APOA-1 Expression in Hepatocellular Carcinoma Patients Is Associated With DNA Methylation and Poor Overall Survival. Front Genet 2021; 12:760744. [PMID: 34790226 PMCID: PMC8591198 DOI: 10.3389/fgene.2021.760744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most frequent fatal malignancy, and it has a poor prognosis. Apolipoprotein 1 (APOA-1), the main protein component of high-density lipoproteins, is involved in numerous biological processes. Thus, this study was performed to detect the clinical significance of APOA-1 mRNA, APOA-1 expression, and APOA-1DNA methylation in patients with HCC. Methods: Data mining was performed using clinical and survival data from the Cancer Genome Atlas (TCGA) and Oncomine databases. The serum concentration of APOA-1 was measured in 316 patients with HCC and 100 healthy individuals at Renmin Hospital of Wuhan University, and the intact clinical information was reviewed and determined using univariate and multivariate Cox hazard models. Results: Bioinformatic analysis revealed that APOA-1 mRNA was present at lower levels in the serum of patients with HCC than in that of healthy individuals, and there was a strong negative correlation between levels of APOA-1 mRNA and APOA-1 DNA methylation. High expression of APOA-1 transcription correlated with better overall survival (p = 0.003), and APOA-1 hypermethylation correlated with progress-free survival (p = 0.045) in HCC sufferers. Next, the clinical data analysis demonstrated that APOA-1 protein levels in the serum were significantly lower in patients with HCC than in healthy controls. Furthermore, the expression of APOA-1 was significantly associated with some significant clinical indexes, and elevated APOA-1 expression was significantly associated with favorable (OS; HR:1.693, 95% CI: 1.194–2.401, p = 0.003) and better progression-free survival (PFS; HR = 1.33, 95% CI = 1.194–2.401, p = 0.045). Finally, enrichment analysis suggested that co-expressed genes of APOA-1 were involved in lipoprotein metabolism and FOXA2/3 transcription factor networks. Conclusion: APOA-1 mRNA expression is negatively regulated by DNA methylation in HCC. Low expression of APOA-1 might be a potential risk biomarker to predict survival in patients with HCC.
Collapse
Affiliation(s)
- Yingyun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Binglu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruixue Li
- Department of Gastroenterology, Macheng Renmin Hospital, Macheng, Huanggang, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Tian
- Department of Infectious, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Peng
- Department of Infectious, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Seo J, Yun J, Fukuda J, Chun YS. Tumor-intrinsic FABP5 is a novel driver for colon cancer cell growth via the HIF-1 signaling pathway. Cancer Genet 2021; 258-259:151-156. [PMID: 34775260 DOI: 10.1016/j.cancergen.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Dysfunctional lipid metabolism is a known cause of cancer development and progression, yet little is known about the underlying molecular mechanisms that contribute to cancer progression. In this study, we demonstrate that fatty acid binding protein 5 (FABP5) is elevated in colon cancer tissue and this increased expression is linked to upregulation of the hypoxia-inducible factor-1 (HIF-1) signaling pathway. Under physiologically in vivo mimicked conditions via a polydimethylsiloxane (PDMS)-based three-dimensional (3D) culture chip, FABP5-knockdown colon cancer cells exhibited attenuated cell growth throughout the culture period. FABP5 was found to regulate HIF-1α protein levels and gene expression levels within the HIF-1α signaling pathway under hypoxic conditions. Our results provide evidence that supports the use of FABP5 as a prognostic factor in colon cancer. The FABP5/HIF-1α axis is a promising target for ameliorating fatty acid-triggered cancer progression.
Collapse
Affiliation(s)
- Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea; Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - JeongEun Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
27
|
Feng JF, Zhao JM, Yang X, Wang L. The Prognostic Impact of Preoperative Serum Apolipoprotein A-I in Patients with Esophageal Basaloid Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:7373-7385. [PMID: 34588815 PMCID: PMC8474064 DOI: 10.2147/cmar.s328138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background Esophageal basaloid squamous cell carcinoma (EBSCC) is a rare malignancy. Serum apolipoprotein A-I (APO A-I) has proved to be a potentially useful prognostic indicator in various cancers. However, no studies have analyzed the prognostic significance of serum APO A-I in patients with EBSCC. The aim of this study was to investigate the prognostic impact of preoperative serum APO A-I in patients with EBSCC. Methods Between 2007 and 2018, a retrospective study of 4050 patients with resectable esophageal squamous cell carcinoma (ESCC) including the levels of preoperative serum lipids was conducted and evaluated. The best cut-off values of the preoperative serum lipids were evaluated by receiver operating characteristic (ROC) curves. Kaplan–Meier analyses and Cox regression analyses were analyzed the overall survival (OS) and recurrence-free survival (RFS). A prediction model of nomogram was developed to predict individual OS and RFS in EBSCC. Results There were 53 patients enrolled in the study, which accounted for 1.31% (53/4050) of all primary ESCC. The best cut-off point was 1.305 g/L for serum APO A-I according to the ROC curve. Patients with lower levels of serum preoperative APO A-I were associated with worse RFS (16.1% vs 54.5%, P = 0.006) and OS (29.0% vs 63.6%, P = 0.010). The results indicated that serum APO A-I serves as an independent predictor in patients with EBSCC regarding OS [hazard ratio (HR): 0.352; 95% confidence interval (CI): 0.154–0.808; P = 0.014] and RFS (HR: 0.397; 95% CI: 0.185–0.850; P = 0.017). Conclusion Preoperative serum APO A-I is an independent predictor regarding OS and RFS in EBSCC. As far as we know, this is the first study in EBSCC to explore the serum APO A-I in patients with EBSCC.
Collapse
Affiliation(s)
- Ji-Feng Feng
- Department of Thoracic Oncological Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian-Ming Zhao
- Department of Thoracic Surgery, Jinhua Guangfu Hospital, Jinghua, Zhejiang Province, People's Republic of China
| | - Xun Yang
- Department of Thoracic Oncological Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Liang Wang
- Department of Thoracic Oncological Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
28
|
Pakiet A, Sikora K, Kobiela J, Rostkowska O, Mika A, Sledzinski T. Alterations in complex lipids in tumor tissue of patients with colorectal cancer. Lipids Health Dis 2021; 20:85. [PMID: 34348720 PMCID: PMC8340484 DOI: 10.1186/s12944-021-01512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Accumulating evidence indicates alterations in lipid metabolism and lipid composition in neoplastic tissue. Earlier nuclear magnetic resonance studies showed that the contents of major lipid groups, such as triacylglycerols, phospholipids and cholesterol, are changed in colon cancer tissue. Methods In this study, a more detailed analysis of lipids in cancer and tumor adjacent tissues from colorectal cancer patients, using liquid chromatography–mass spectrometry, allowed for comparison of 199 different lipids between cancer tissue and tumor adjacent tissue using principal component analysis. Results Significant differences were found in 67 lipid compounds between the two types of tissue; many of these lipid compounds are bioactive lipids such as ceramides, lysophospholipids or sterols and can influence the development of cancer. Additionally, increased levels of phospholipids and sphingolipids were present, which are major components of the cell membrane, and increases in these lipids can lead to changes in cell membrane properties. Conclusions This study showed that many complex lipids are significantly increased or decreased in colon cancer tissue, reflecting significant alterations in lipid metabolism. This knowledge can be used for the selection of potential molecular targets of novel anticancer strategies based on the modulation of lipid metabolism and the composition of the cell membrane in colorectal cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01512-x.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Kinga Sikora
- Physics-Chemistry Workshops, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Jarek Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Olga Rostkowska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
29
|
Gu JN, Yao S, Cao YH, Deng SH, Mao FW, Jiang HY, He YT, Li XY, Ke SQ, Li HL, Li H, Liu XH, Liu HL, Wang JL, Wu K, Liu L, Cai KL. Novel parameter based on lipid indicators ratio improves prognostic value of plasma lipid levels in resectable colorectal cancer patients. World J Gastrointest Surg 2021; 13:689-701. [PMID: 34354802 PMCID: PMC8316850 DOI: 10.4240/wjgs.v13.i7.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND At present, the value of lipid indicators in evaluating the prognosis of colorectal cancer is still relatively limited.
AIM To evaluate the value of a novel parameter for colorectal cancer (CRC) prognosis scoring based on preoperative serum lipid levels.
METHODS Four key serum lipid factors, namely, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB), were detected. Two representative ratios, HDL-C-LDL-C ratio (HLR) and ApoA1-ApoB ratio (ABR) were calculated. The relationship of these parameters with the prognosis of CRC patients including progression-free survival (PFS) and overall survival (OS) was analyzed by Kaplan-Meier plot and Cox proportional hazards regression. A novel lipoprotein cholesterol-apolipoprotein (LA) score based on HLR and ABR was established and its value in prognosis evaluation for CRC patients was explored.
RESULTS Multivariate Cox proportional hazards regression analysis of PFS and OS showed that HDL-C, ApoA1, HLR, and ABR were positively associated with the prognosis of CRC patients. LA score was independently associated with a good prognosis in resectable CRC patients. Data processing of a dummy variable showed that the prognosis of patients with higher LA scores is better than that with lower LA scores.
CONCLUSION The newly established LA score might serve as a better predictor of the prognosis of resectable CRC patients.
Collapse
Affiliation(s)
- Jun-Nan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shuang Yao
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ying-Hao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Sheng-He Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Fu-Wei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hong-Yu Jiang
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yang-Ting He
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xin-Ying Li
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Song-Qing Ke
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hui-Li Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xing-Hua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hong-Li Liu
- Cancer Center, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ji-Liang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Kai-Lin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
30
|
Azoxymethane Alters the Plasma Metabolome to a Greater Extent in Mice Fed a High-Fat Diet Compared to an AIN-93 Diet. Metabolites 2021; 11:metabo11070448. [PMID: 34357342 PMCID: PMC8307161 DOI: 10.3390/metabo11070448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Consumption of a high-fat diet (HFD) links obesity to colon cancer in humans. Our data show that a HFD (45% energy fat versus 16% energy fat in an AIN-93 diet (AIN)) promotes azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) formation in a mouse cancer model. However, the underlying metabolic basis remains to be determined. In the present study, we hypothesize that AOM treatment results in different plasma metabolomic responses in diet-induced obese mice. An untargeted metabolomic analysis was performed on the plasma samples by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). We found that 53 of 144 identified metabolites were different between the 4 groups of mice (AIN, AIN + AOM, HFD, HFD + AOM), and sparse partial least-squares discriminant analysis showed a separation between the HFD and HFD + AOM groups but not the AIN and AIN + AOM groups. Moreover, the concentrations of dihydrocholesterol and cholesterol were inversely associated with AOM-induced colonic ACF formation. Functional pathway analyses indicated that diets and AOM-induced colonic ACF modulated five metabolic pathways. Collectively, in addition to differential plasma metabolomic responses, AOM treatment decreases dihydrocholesterol and cholesterol levels and alters the composition of plasma metabolome to a greater extent in mice fed a HFD compared to the AIN.
Collapse
|
31
|
Lu B, Li N, Luo CY, Cai J, Lu M, Zhang YH, Chen HD, Dai M. Colorectal cancer incidence and mortality: the current status, temporal trends and their attributable risk factors in 60 countries in 2000-2019. Chin Med J (Engl) 2021; 134:1941-1951. [PMID: 34238851 PMCID: PMC8382382 DOI: 10.1097/cm9.0000000000001619] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Globally, colorectal cancer (CRC) imposes a substantial burden on healthcare systems and confers considerable medical expenditures. We aimed to evaluate the global and regional burden in epidemiological trends and factors associated with the incidence and mortality of CRC. METHODS We used data from the GLOBOCAN database to estimate CRC incidence and mortality worldwide in 2020 and their association with the human development index (HDI). Trends of age-standardized rates of incidence and mortality in 60 countries (2000-2019) were evaluated by Joinpoint regression analysis using data of Global Burden of Disease 2019. The association between exposure to country-level lifestyle, metabolic and socioeconomic factors obtained from the World Health Organization Global Health Observatory and World Bank DataBank data and CRC incidence and mortality was determined by multivariable linear regression. RESULTS CRC incidence and mortality varied greatly in the 60 selected countries, and much higher incidence and mortality were observed in countries with higher HDIs, and vice versa. From 2000 to 2019, significant increases of incidence and mortality were observed for 33 countries (average annual percent changes [AAPCs], 0.24-3.82) and 18 countries (AAPCs, 0.41-2.22), respectively. A stronger increase in incidence was observed among males (AAPCs, 0.36-4.54) and individuals <50 years (AAPCs, 0.56-3.86). Notably, 15 countries showed significant decreases in both incidence (AAPCs, -0.24 to -2.19) and mortality (AAPCs, -0.84 to -2.74). A significant increase of incidence among individuals <50 years was observed in 30 countries (AAPCs, 0.28-3.62). Countries with higher incidence were more likely to have a higher prevalence of alcohol drinking, higher level of cholesterol level, higher level of unemployment, and a poorer healthcare system. CONCLUSIONS Some high-HDI countries showed decreasing trends in CRC incidence and mortality, whereas developing countries that previously had low disease burden showed significantly increased incidence and mortality trends, especially in males and populations ≥50 years, which require targeted preventive health programs.
Collapse
Affiliation(s)
- Bin Lu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Na Li
- Department of Cancer Prevention, Hunan Cancer Hospital, Changsha, Hunan 410006, China
| | - Chen-Yu Luo
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Cai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ming Lu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu-Han Zhang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong-Da Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Min Dai
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
32
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Zhu B, Zhang J, Zheng Q, Dong B, Wang M, Liu J, Cao Y. Free Fatty Acid is a Promising Biomarker in Triage Screening for Patients with Colorectal Cancer: A Case-Control Study. Cancer Manag Res 2021; 13:3749-3759. [PMID: 34007210 PMCID: PMC8123087 DOI: 10.2147/cmar.s307753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The aim of our study was to identify the diagnostic ability of free fatty acids (FFAs) in younger colorectal cancer (CRC) patients by comparing carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). Methods Patients screened for CRC at Fujian Medical University Union Hospital from January 2011 to December 2014 were recruited. Patients pathologically diagnosed with CRC or colorectal adenoma (CA) and healthy control participants were included. The enzyme endpoint method was applied to measure FFA levels. Receiver operating characteristic (ROC) curve analysis was performed to further evaluate the diagnostic ability of FFAs. Results FFA levels in late-stage patients (tumour-node-metastasis (TNM) stages III-IV) were higher than those in early-stage patients (TNM stages I-II) (P=0.02). The FFA levels in CRC patients were higher than those in controls of all ages, those younger than 50 years, males and females (P<0.001), and this difference was larger for patients younger than 50 years and females than for the all ages group. There was no significant difference in the FFA level between CA patients and healthy participants (P=0.53). The area under the curve (AUC) values of FFA, CEA, CA19-9, FFA+CEA, FFA+CA19-9 and FFA+CEA+CA19-9 distinguished CRC patients from controls at all ages, with values of 0.604, 0.731, 0.640, 0.754, 0.678 and 0.758, respectively; however, in the younger CRC patients (age≤50), the AUC values were 0.701, 0.735, 0.669, 0.798, 0.749, and 0.801. The AUC in female patients younger than 50 years was larger than that in males (0.769 vs 0.660), and this value was greater than the value for CEA in males (0.739) and females (0.729). Conclusion The FFA level not only can complement the predictive ability of the CEA and CA19-9 levels but also has a superior predictive ability in female and younger patients with CRC. FFA levels may have a potential role in triage screening of early CRC.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Junrong Zhang
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Qingzhu Zheng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Meihua Wang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Jin Liu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| |
Collapse
|
34
|
Hojo M, Yamamoto Y, Sakamoto Y, Maeno A, Ohnuki A, Suzuki J, Inomata A, Moriyasu T, Taquahashi Y, Kanno J, Hirose A, Nakae D. Histological sequence of the development of rat mesothelioma by MWCNT, with the involvement of apolipoproteins. Cancer Sci 2021; 112:2185-2198. [PMID: 33665882 PMCID: PMC8177772 DOI: 10.1111/cas.14873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
A rat model of mesothelioma development by peritoneal injection of multiwalled carbon nanotube (MWCNT) has been established and found to be useful to understand the mechanisms underlying fibrous particles‐associated carcinogenesis. Its detailed histological sequence, however, remains largely obscure. We therefore aimed to assess the time‐course of mesothelioma development by MWCNT and evaluate a set of lipoprotein‐related molecules as potential mechanism‐based biomarkers for the phenomenon. Male Fischer 344 rats were injected intraperitoneally (ip) with MWCNT (MWNT‐7) at 1 mg/kg body weight, and necropsied at 8, 16, 24, 32, or 42 wk after injection. For biochemical analyses of the lipoprotein‐related molecules, more samples, including severe mesothelioma cases, were obtained from 2 other carcinogenicity tests. Histologically, in association with chronic inflammation, mesothelial proliferative lesions appeared at c. Wk‐24. Before and at the beginning of the tumor development, a prominent infiltration of CD163‐positive cells was seen near mesothelial cells. The histological pattern of early mesothelioma was not a papillary structure, but was a characteristic structure with a spherical appearance, composed of the mesothelioma cells in the surface area that were underlain by connective tissue‐like cells. Along with the progression, mesotheliomas started to show versatile histological subtypes. Serum levels of apolipoprotein A‐I and A‐IV, and a ratio of HDL cholesterol to total cholesterol were inversely correlated with mesothelioma severity. Overall, the detailed histological sequence of mesotheliomagenesis by MWCNT is demonstrated, and indicated that the altered profile of apolipoproteins may be involved in its underlying mechanisms.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Aya Ohnuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Takako Moriyasu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yuhji Taquahashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Jun Kanno
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiko Hirose
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
35
|
Ma M, Wang M, Zhang Z, Lin B, Sun Z, Guan H, Lv W, Li J. Apolipoprotein A1 is negatively associated with male papillary thyroid cancer patients: a cross-sectional study of single academic center in China. BMC Endocr Disord 2021; 21:69. [PMID: 33853556 PMCID: PMC8048163 DOI: 10.1186/s12902-021-00714-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common type of thyroid cancer and the incidence of PTC has continued to increase over the past decades. Many studies have shown that obesity is an independent risk factor for PTC and obese PTC patients tend to have a relative larger tumor size and higher grade of tumor stage. Obesity is associated with disordered lipid metabolism and the relationship between serum lipids and PTC remains unclear. Therefore, this study aimed to investigate the association between serum lipid level and PTC. METHODS We retrospectively analyzed 1018 PTC patients diagnosed and treated in our hospital, all these cases were first diagnosed with PTC and had complete clinical information including ultrasound reports before surgery, serum lipid (CHOL, TG, HDL-c, LDL-c, Apo-A1, Apo-B, Apo-E) results, surgical records and pathological reports. RESULTS None of these lipid markers were associated with tumor size in the whole cohort and in the female group. In the male group, on crude analysis, Apo-A1 showed a marginally association with tumor size, [OR = 0.158 (0.021-1.777)], p = 0.072. After adjusting for age and multifocality, Apo-A1 showed a significant association with tumor size [OR = 0.126 (0.016-0.974)], p = 0.047. This association become more apparent in a young male subgroup, [OR = 0.051 (0.005-0.497)], p = 0.009. CHOL, TG, HDL-c, LDL-c, Apo-B, Apo-E did not show significant association with tumor size. As for LNM, neither in the male group nor in the female group were found to be associated with any serum lipid biomarkers. CONCLUSION As PTC incidences continues to increase, our findings demonstrated a negatively association between PTC and apoA-1 in male PTC patients, which may contribute to further investigation concerning diagnosing and preventing this most common type of thyroid cancer.
Collapse
Affiliation(s)
- Maoguang Ma
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Mingdian Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhanqiang Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Bo Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Haoyan Guan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China.
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China.
| |
Collapse
|
36
|
Revealing the Role of High-Density Lipoprotein in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073352. [PMID: 33805921 PMCID: PMC8037642 DOI: 10.3390/ijms22073352] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent malignancy with multifactorial etiology, which includes metabolic alterations as contributors to disease development. Studies have shown that lipid status disorders are involved in colorectal carcinogenesis. In line with this, previous studies have also suggested that the serum high-density lipoprotein cholesterol (HDL-C) level decreases in patients with CRC, but more recently, the focus of investigations has shifted toward the exploration of qualitative properties of HDL in this malignancy. Herein, a comprehensive overview of available evidences regarding the putative role of HDL in CRC will be presented. We will analyze existing findings regarding alterations of HDL-C levels but also HDL particle structure and distribution in CRC. In addition, changes in HDL functionality in this malignancy will be discussed. Moreover, we will focus on the genetic regulation of HDL metabolism, as well as the involvement of HDL in disturbances of cholesterol trafficking in CRC. Finally, possible therapeutic implications related to HDL will be presented. Given the available evidence, future studies are needed to resolve all raised issues concerning the suggested protective role of HDL in CRC, its presumed function as a biomarker, and eventual therapeutic approaches based on HDL.
Collapse
|
37
|
Mayengbam SS, Singh A, Pillai AD, Bhat MK. Influence of cholesterol on cancer progression and therapy. Transl Oncol 2021; 14:101043. [PMID: 33751965 PMCID: PMC8010885 DOI: 10.1016/j.tranon.2021.101043] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Abnormality in blood cholesterol level is significantly correlated with risk of different cancers. Majority of tumor tissue from cancer patient exhibits overexpression of LDLR and ACAT for supporting rapid cancer cell proliferation. Alteration of the cholesterol metabolism in cancer cells hampers therapeutic response. Targeting cholesterol metabolism for treatment of cancer with other conventional chemotherapeutic drugs appears to be beneficial.
Cholesterol is a fundamental molecule necessary for the maintenance of cell structure and is vital to various normal biological functions. It is a key factor in lifestyle-related diseases including obesity, diabetes, cardiovascular disease, and cancer. Owing to its altered serum chemistry status under pathological states, it is now being investigated to unravel the mechanism by which it triggers various health complications. Numerous clinical studies in cancer patients indicate an alteration in blood cholesterol level (either decreased or increased) in comparison to normal healthy individuals. This article elaborates on our understanding as to how cholesterol is being hijacked in the malignancy for the development, survival, stemness, progression, and metastasis of cancerous cells. Also, it provides a glimpse of how cholesterol derived entities, alters the signaling pathway towards their advantage. Moreover, deregulation of the cholesterol metabolism pathway has been often reported to hamper various treatment strategies in different cancer. In this context, attempts have been made to bring forth its relevance in being targeted, in pre-clinical and clinical studies for various treatment modalities. Thus, understanding the role of cholesterol and deciphering associated molecular mechanisms in cancer progression and therapy are of relevance towards improvement in the management of various cancers.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
38
|
Jun SY, Brown AJ, Chua NK, Yoon JY, Lee JJ, Yang JO, Jang I, Jeon SJ, Choi TI, Kim CH, Kim NS. Reduction of Squalene Epoxidase by Cholesterol Accumulation Accelerates Colorectal Cancer Progression and Metastasis. Gastroenterology 2021; 160:1194-1207.e28. [PMID: 32946903 DOI: 10.1053/j.gastro.2020.09.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Squalene epoxidase (SQLE), a rate-limiting enzyme in cholesterol biosynthesis, is suggested as a proto-oncogene. Paradoxically, SQLE is degraded by excess cholesterol, and low SQLE is associated with aggressive colorectal cancer (CRC). Therefore, we studied the functional consequences of SQLE reduction in CRC progression. METHODS Gene and protein expression data and clinical features of CRCs were obtained from public databases and 293 human tissues, analyzed by immunohistochemistry. In vitro studies showed underlying mechanisms of CRC progression mediated by SQLE reduction. Mice were fed a 2% high-cholesterol or a control diet before and after cecum implantation of SQLE genetic knockdown/control CRC cells. Metastatic dissemination and circulating cancer stem cells were demonstrated by in vivo tracking and flow cytometry analysis, respectively. RESULTS In vitro studies showed that SQLE reduction helped cancer cells overcome constraints by inducing the epithelial-mesenchymal transition required to generate cancer stem cells. Surprisingly, SQLE interacted with GSK3β and p53. Active GSK3β contributes to the stability of SQLE, thereby increasing cell cholesterol content, whereas SQLE depletion disrupted the GSK3β/p53 complex, resulting in a metastatic phenotype. This was confirmed in a spontaneous CRC metastasis mice model, where SQLE reduction, by a high-cholesterol regimen or genetic knockdown, strikingly promoted CRC aggressiveness through the production of migratory cancer stem cells. CONCLUSIONS We showed that SQLE reduction caused by cholesterol accumulation aggravates CRC progression via the activation of the β-catenin oncogenic pathway and deactivation of the p53 tumor suppressor pathway. Our findings provide new insights into the link between cholesterol and CRC, identifying SQLE as a key regulator in CRC aggressiveness and a prognostic biomarker.
Collapse
Affiliation(s)
- Soo Young Jun
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Jin Ok Yang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - InSu Jang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Su-Jin Jeon
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Nam-Soon Kim
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
39
|
Caramujo-Balseiro S, Faro C, Carvalho L. Metabolic pathways in sporadic colorectal carcinogenesis: A new proposal. Med Hypotheses 2021; 148:110512. [PMID: 33548761 DOI: 10.1016/j.mehy.2021.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Given the reports made about geographical differences in Colorectal Cancer (CRC) occurrence, suggesting a link between dietary habits, genes and cancer risk, we hypothesise that there are four fundamental metabolic pathways involved in diet-genes interactions, directly implicated in colorectal carcinogenesis: folate metabolism; lipid metabolism; oxidative stress response; and inflammatory response. Supporting this hypothesis are the evidence given by the significant associations between several diet-genes polymorphisms and CRC, namely: MTHFR, MTR, MTRR and TS (involved in folate metabolism); NPY, APOA1, APOB, APOC3, APOE, CETP, LPL and PON1 (involved in lipid metabolism); MNSOD, SOD3, CAT, GSTP1, GSTT1 and GSTM1 (involved in oxidative stress response); and IL-1, IL-6, TNF-α, and TGF-β (involved in inflammatory response). We also highlight the association between some foods/nutrients/nutraceuticals that are important in CRC prevention or treatment and the four metabolic pathways proposed, and the recent results of genome-wide association studies, both assisting our hypothesis. Finally, we propose a new line of investigation with larger studies, using accurate dietary biomarkers and investigating the four metabolic pathways genes simultaneously. This line of investigation will be essential to understand the full complexity of the association between nature and nurture in CRC and perhaps in other types of cancers. Only with this in-depth knowledge will it be possible to make personalised nutrition recommendations for disease prevention and management.
Collapse
Affiliation(s)
- Sandra Caramujo-Balseiro
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal; Department of Life Sciences - University of Coimbra, Coimbra, Portugal.
| | - Carlos Faro
- Department of Life Sciences - University of Coimbra, Coimbra, Portugal; UC Biotech, Cantanhede, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
Takanashi Y, Funai K, Sato S, Kawase A, Tao H, Takahashi Y, Sugimura H, Setou M, Kahyo T, Shiiya N. Sphingomyelin(d35:1) as a novel predictor for lung adenocarcinoma recurrence after a radical surgery: a case-control study. BMC Cancer 2020; 20:800. [PMID: 32831036 PMCID: PMC7446133 DOI: 10.1186/s12885-020-07306-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background To improve the postoperative prognosis of patients with lung cancer, predicting the recurrence high-risk patients is needed for the efficient application of adjuvant chemotherapy. However, predicting lung cancer recurrence after a radical surgery is difficult even with conventional histopathological prognostic factors, thereby a novel predictor should be identified. As lipid metabolism alterations are known to contribute to cancer progression, we hypothesized that lung adenocarcinomas with high recurrence risk contain candidate lipid predictors. This study aimed to identify candidate lipid predictors for the recurrence of lung adenocarcinoma after a radical surgery. Methods Frozen tissue samples of primary lung adenocarcinoma obtained from patients who underwent a radical surgery were retrospectively reviewed. Recurrent and non-recurrent cases were assigned to recurrent (n = 10) and non-recurrent (n = 10) groups, respectively. Extracted lipids from frozen tissue samples were subjected to liquid chromatography-tandem mass spectrometry analysis. The average total lipid levels of the non-recurrent and recurrent groups were compared. Candidate predictors were screened by comparing the folding change and P-value of t-test in each lipid species between the recurrent and non-recurrent groups. Results The average total lipid level of the recurrent group was 1.65 times higher than that of the non-recurrent group (P < 0.05). A total of 203 lipid species were increased (folding change, ≥2; P < 0.05) and 4 lipid species were decreased (folding change, ≤0.5; P < 0.05) in the recurrent group. Among these candidates, increased sphingomyelin (SM)(d35:1) in the recurrent group was the most prominent candidate predictor, showing high performance of recurrence prediction (AUC, 9.1; sensitivity, 1.0; specificity, 0.8; accuracy, 0.9). Conclusion We propose SM(d35:1) as a novel candidate predictor for lung adenocarcinoma recurrence. Our finding can contribute to precise recurrence prediction and qualified postoperative therapeutic strategy for lung adenocarcinomas. Trial registration This retrospective study was registered at the UMIN Clinical Trial Registry (UMIN000039202) on 21st January 2020.
Collapse
Affiliation(s)
- Yusuke Takanashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan.,First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shumpei Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hong Tao
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan.,Preppers Co. Ltd., 1-23-17 Kitashinagawa, Shinagawa Ward, Tokyo, 140-0001, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan.,Preppers Co. Ltd., 1-23-17 Kitashinagawa, Shinagawa Ward, Tokyo, 140-0001, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan. .,International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Norihiko Shiiya
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
41
|
Value of routine test for identifying colorectal cancer from patients with nonalcoholic fatty liver disease. BMC Gastroenterol 2020; 20:180. [PMID: 32517710 PMCID: PMC7285775 DOI: 10.1186/s12876-020-01327-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a risk factor for colorectal neoplasms. Our goal is to explore the relationship between NAFLD and colorectal cancer (CRC) and to analyze potential indicators for screening CRC in NAFLD based on clinical big data. Methods Demographic information and routine clinical indicators were extracted from Xiangya Medical Big Data Platform. 35,610 NAFLD cases without CRC (as group NAFLD-CRC), 306 NAFLD cases with CRC (as group NAFLD-NonCRC) and 10,477 CRC cases without NAFLD were selected and evaluated. The CRC incidence was compared between NAFLD population and general population by Chi-square test. Independent sample t-test was used to find differences of age, gender and routine clinical indicators in pairwise comparisons of NAFLD-CRC, NAFLD-NonCRC and nonNAFLD-CRC. Results NAFLD population had a higher CRC incidence than general population (7.779‰ vs 3.763‰, P < 0.001). Average age of NAFLD-CRC (58.79 ± 12.353) or nonNAFLD-CRC (59.26 ± 13.156) was significantly higher than NAFLD-nonCRC (54.15 ± 14.167, p < 0.001). But age had no significant difference between NAFLD-CRC and nonNAFLD-CRC (P > 0.05). There was no different gender distribution for three groups (P > 0.05). NAFLD-CRC had lower anaemia-related routine clinical indicators such as decrease of red blood cell count, mean hemoglobin content and hemoglobin than NAFLD-nonCRC (P < 0.05 for all). Anemia of NAFLD-CRC was typical but it might be slighter than nonNAFLD-CRC. More interestingly, NAFLD-CRC had distinct characteristics of leukocyte system such as lower white blood cell count (WBC) and neutrophil count (NEU_C) and higher basophil percentage (BAS_Per) than nonNAFLD-CRC and NAFLD-nonCRC (P < 0.05 for all). Compared with NAFLD-nonCRC, the change of WBC, BAS_Per and NEU_C in NAFLD-CRC was different from that in nonNAFLD-CRC. In addition, NAFLD-CRC had a higher level of low density lipoprotein (LDL) and high density lipoprotein (HDL), lower level of triglyceride (TG) and Albumin-to-globulin ratio (A/G) than NFLD-nonCRC (P < 0.05 for all). Conclusions NAFLD is associated with a high incidence of CRC. Age is an important factor for CRC and the CRC incidence increases with age. Anemia-related blood routine clinical indicators, leukocyte system and blood lipid indicators may be more important variables for identifying CRC in NAFLD. So blood routine test and liver function/blood lipid test are valuable for screening CRC in NAFLD.
Collapse
|
42
|
de Waal GM, de Villiers WJS, Forgan T, Roberts T, Pretorius E. Colorectal cancer is associated with increased circulating lipopolysaccharide, inflammation and hypercoagulability. Sci Rep 2020; 10:8777. [PMID: 32472080 PMCID: PMC7260372 DOI: 10.1038/s41598-020-65324-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Gut dysbiosis contributes to the development of a dysfunctional gut barrier, facilitating the translocation of bacteria and inflammagens, and is implicated in colorectal cancer (CRC) pathogenesis. Such 'leaky gut' conditions result in systemic inflammation, of which a hallmark is increased hypercoagulability. Fluorescence antibody confocal microscopy was used to determine circulating levels of lipopolysaccharide (LPS) in control and CRC populations. Here we showed that circulating levels of LPS are significantly elevated in the CRC population. We also showed that markers of inflammation and hypercoagulability are increased in this population. Furthermore, anomalous blood clotting and structural changes in blood components are presented. Importantly, the association between LPS levels, inflammation, and hematological dysfunction was analysed. Statistical regression models were applied to identify markers with strong association with CRC, and to investigate the correlation between markers. A core aim is enhanced biomarker discovery for CRC. We conclude that circulating LPS can promote systemic inflammation and contribute to the development of a pathological coagulation system, with resulting chronic inflammation and an activated coagulation system implicated in tumorigenesis. Blood-based screening tools are an emerging research area of interest for CRC screening. We propose the use of additional (novel) biomarkers to effectively screen for CRC.
Collapse
Affiliation(s)
- Greta M de Waal
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Willem J S de Villiers
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Internal Medicine, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy Forgan
- Consultant Colorectal Surgeon, Division of Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Academic Hospital, Western Cape, South Africa
| | - Timothy Roberts
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK
- University College London Hospital NHS Foundation Trust, 250 Euston Road, London, NW1 2PB, UK
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa.
| |
Collapse
|
43
|
Liu T, Tan Z, Yu J, Peng F, Guo J, Meng W, Chen Y, Rao T, Liu Z, Peng J. A conjunctive lipidomic approach reveals plasma ethanolamine plasmalogens and fatty acids as early diagnostic biomarkers for colorectal cancer patients. Expert Rev Proteomics 2020; 17:233-242. [PMID: 32306783 DOI: 10.1080/14789450.2020.1757443] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Colorectal cancer (CRC) represents a third leading cause of cancer-related death worldwide. The reliable diagnostic biomarkers for detecting CRC at early stage is critical for decreasing the mortality.Method: A conjunctive lipidomic approach was employed to investigate the differences in plasma lipid profiles of CRC patients (n = 101) and healthy volunteers (n = 52). Based on UHPLC-Q-TOF MS and UHPLC-QQQ MS platforms, a total of 236 lipids were structurally detected. Multivariate data analysis was conducted for biomarkers discovery.Results: A total of 11 lipid species, including 1 Glycerophosphoethanolamine (PE), 3 ethanolamine plasmalogens (PlsEtn), 1 plasmanyl glycerophosphatidylethanolamine (PE-O), 3 fatty acids (FFA), 1 Fatty acid ester of hydroxyl fatty acid (FAHFA) and 2 Diacylglycerophosphates (PA) were identified to distinguish the CRC patients at early stage from healthy controls. In addition, these potential lipid biomarkers achieved an estimated AUC=0.981 in a validation set for univariate ROC analysis.Conclusion: By combining Q-TOF MS and QQQ MS analysis, the 11 lipids exhibited good performance in differentiating early-stage CRC and healthy control. This study also demonstrated that lipidomics is a powerful tool in discovering new potential biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Tong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Feng Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jiwei Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Wenhui Meng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| |
Collapse
|
44
|
Zhang Y, Zheng L. Apolipoprotein: prospective biomarkers in digestive tract cancer. Transl Cancer Res 2020; 9:3712-3720. [PMID: 35117733 PMCID: PMC8799137 DOI: 10.21037/tcr-19-2106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
Digestive tract cancer, which is characterized by high morbidity and mortality, seriously affects the quality of life of patients worldwide. The digestive tract has abundant blood supply and nutriment, providing a suitable environment for tumor cells. Under chemical, physical, and biological stimuli, the activated cancer-related genes promote tumorigenesis. The synthesis of apolipoprotein occurs in the liver, intestine, and other digestive organs. However, the functions of apolipoproteins are not limited to lipid metabolism. An increasing number of studies have revealed that apolipoproteins take part in the regulation of tumor behavior. Apolipoprotein A (apoA) has recently been acknowledged as a beneficial indicator of several cancers, including colon, hepatocellular, and pancreatic cancer. Apolipoprotein E (apoE) can affect tumor susceptibility on account of genetic polymorphism. Levels of apolipoprotein C (apoC), B (apoB), and D (apoD) also impact tumor progression and the prognosis of patients. However, because of individual, racial, and genetic differences, a consensus has not yet been reached. Based on clinical data and analysis, apolipoproteins could be a novel target and marker in tumor therapy and prevention.
Collapse
Affiliation(s)
- Yibo Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
45
|
Evaluation of LDL receptor and Scavenger Receptor, Class B, Type 1 in the malignant and benign breast tumors: The correlation with the expression of miR-199a-5p, miR-199b-5p and miR-455-5p. Gene 2020; 749:144720. [PMID: 32360840 DOI: 10.1016/j.gene.2020.144720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
AIMS The purpose of present study was to examine the correlations of LDL (LDLR) and HDL (SR-B1) receptors with lipoproteins, miR-199a-5p, miR-199b-5p, miR-455-5p in the malignant and benign breast tumors. METHODS Total cholesterol-rich-lipoproteins and the receptors were determined using enzymatic-homogeneous and ELISA methods. The expression levels of miRNAs were detected by qRT-PCR. RESULTS Receptor expressions and lipoproteins concentration were significantly higher in the malignant tumors (p < 0.05). Positive correlation was found for LDLR with Ki67% and Her2+. HDL-C content of TNBC tumors was higher than those of Non-TNBC (p < 0.05). The expression level of miR-199a-5p was found to be downregulated significantly in the malignant tumors of <2 cm, TNBC, HER2- or stage3. The expression of miR-199b-5p was downregulated in the malignant tumors and was negatively associated with TNBC, stage and Her2+. The expression of miR-455-5p was significantly correlated with Her2- (p < 0.05). A positive correlation was observed for SR-B1 or LDLR with HDL-C or LDL-C and also for SR-B1 with LDLR, although a reverse association was detected for the expression of miR-199b-5p with LDLR in the malignant tumors (p < 0.05). No significant correlations were found for miR-199a-5p or miR-455-5p with LDLR or SR-B1 expressions and also for LDL-C and SR-B1 with clinicopathological features (p ≥ 0.05). CONCLUSIONS Mechanisms potentially involved in the present findings may be due to the lipid internalization and lipoprotein consumption through LDLR and SR-B1 over expression. It is noteworthy that the expression of miR-199b-5p is negatively correlated with LDLR which may suggest it as a suppressor for LDLR expression in the breast cancer.
Collapse
|
46
|
Brantley KD, Riis AH, Erichsen R, Thorlacius-Ussing O, Møller HJ, Lash TL. The association of serum lipid levels with colorectal cancer recurrence. Cancer Epidemiol 2020; 66:101725. [PMID: 32353773 DOI: 10.1016/j.canep.2020.101725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Biologic and epidemiologic evidence suggests that tumor cells depend on reprogrammed lipid metabolic function for survival and growth. Lipids may promote tumor recurrence by providing energy needed for proliferation. Studies have found associations of serum lipids with cancer incidence, mortality, and disease-free mortality, though they have yet to evaluate the prognostic potential of serum lipids for colorectal cancer (CRC) recurrence. METHODS 341 Danish CRC patients who underwent surgical resection were actively followed between 2003-2011 from date of surgery until December 31, 2012, or death. Serum lipids including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG), were collected at regular intervals. Lipids were assigned as time-varying exposures evaluated with a one-year lag. Cox proportional hazards models were used to assess recurrence rate, adjusting for clinically relevant covariates. A restricted analysis was performed in a group of non-statin users (n = 236). RESULTS Among 341 CRC patients, increased HDL-C appeared to have a beneficial impact on recurrence-free survival (RFS) for CRC patients, especially among statin users (hazard ratio [HR] for 0.1 mmol/L increase = 0.58; 95 % confidence interval [CI]: 0.43, 0.78). Increased LDL-C and TG were not associated with RFS. Increased lipids showed a near-null effect on CRC recurrence [e.g. HR (95 % CI) for 0.1 mmol/L increase LDL = 1.01 (0.97, 1.19)] among non-statin users. CONCLUSION Serum lipid levels of LDL-C and TG do not appear to be associated with CRC recurrence. Further investigation of the role of HDL-C in CRC recurrence may be of interest based on the suggestive inverse association observed here.
Collapse
Affiliation(s)
- Kristen D Brantley
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Anders H Riis
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Erichsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
47
|
Decreased Triacylglycerol Content and Elevated Contents of Cell Membrane Lipids in Colorectal Cancer Tissue: A Lipidomic Study. J Clin Med 2020; 9:jcm9041095. [PMID: 32290558 PMCID: PMC7230725 DOI: 10.3390/jcm9041095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that lipid composition in cancer tissues may undergo multiple alterations. However, no comprehensive analysis of various lipid groups in colorectal cancer (CRC) tissue has been conducted thus far. To address the problem in question, we determined the contents of triacylglycerols (TG), an energetic substrate, various lipids necessary for cell membrane formation, among them phospholipids (phosphatidylcholine, phosphatidylethanolamine), sphingolipids (sphingomyelin) and cholesterol (free, esterified and total), and fatty acids included in complex lipids. 1H-nuclear magnetic resonance (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the lipid composition of colon cancer tissue and normal large intestinal mucosa from 25 patients. Compared with normal tissue, cancer tissues had significantly lower TG content, along with elevated levels of phospholipids, sphingomyelin, and cholesterol. Moreover, the content of oleic acid, the main component of TG, was decreased in cancer tissues, whereas the levels of saturated fatty acids and polyunsaturated fatty acids (PUFAs), which are principal components of polar lipids, were elevated. These lipidome rearrangements were associated with the overexpression of genes associated with fatty acid oxidation, and the synthesis of phospholipids and cholesterol. These findings suggest that reprogramming of lipid metabolism might occur in CRC tissue, with a shift towards increased utilization of TG for energy production and enhanced synthesis of membrane lipids, necessary for the rapid proliferation of cancer cells.
Collapse
|
48
|
Wang Y, Hinz S, Uckermann O, Hönscheid P, von Schönfels W, Burmeister G, Hendricks A, Ackerman JM, Baretton GB, Hampe J, Brosch M, Schafmayer C, Shevchenko A, Zeissig S. Shotgun lipidomics-based characterization of the landscape of lipid metabolism in colorectal cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158579. [DOI: 10.1016/j.bbalip.2019.158579] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/20/2019] [Indexed: 01/18/2023]
|
49
|
Yang DD, Chen ZH, Wang DS, Yu HE, Lu JH, Xu RH, Zeng ZL. Prognostic value of the serum apolipoprotein B to apolipoprotein A-I ratio in metastatic colorectal cancer patients. J Cancer 2020; 11:1063-1074. [PMID: 31956353 PMCID: PMC6959062 DOI: 10.7150/jca.35659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The aim of our research was to assess the prognostic value of the apolipoprotein B (ApoB) to apolipoprotein A-I (ApoA-I) ratio (ApoB/ApoA-I) in metastatic colorectal cancer (mCRC) patients. Methods: We randomly assigned 838 patients into the training cohort (n=578) and the validation cohort (n=260). The cut-off value of the ApoB/ApoA-I in the training cohort identified by a receiver operating characteristic (ROC) curve was 0.69 and was further validated in the validation cohort. A propensity score matching (PSM) analysis was carried out to eliminate the imbalance in the baseline characteristics of the high and low ApoB/ApoA-I group. The PSM cohort of 542 mCRC patients was generated. We also validated our main findings and conclusions with an independent cohort (n=150). Univariate and multivariate analyses were conducted to explore the independent prognostic value of the ApoB/ApoA-I in the training cohort (n=578), the validation cohort (n=260), the PSM cohort (n=542) and the independent cohort (n=150). Results: Patients in the high ApoB/ApoA-I group had significantly shorter overall survival compared to those in the low ApoB/ApoA-I group in the training cohort, the validation cohort, the PSM cohort and the independent cohort (P <0.01). Multivariate analysis indicated that the ApoB/ApoA-I was an independent prognostic index for OS in the training cohort [hazard ratio (HR):1.371; 95% confidence interval (CI):1.205-1.870, P=0.045], the validation cohort (HR: 1.924; 95% CI: 1.360-2.723, P<0.001), the PSM cohort (HR: 1.599; 95% CI: 1.287-1.988, P<0.001) and the independent cohort (HR: 1.949; 95% CI: 1.014-3.747, P=0.046). Conclusions: An increased baseline serum ApoB/ApoA-I is an independent prognostic factor for a poor prognosis in mCRC patients.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Zhan-Hong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China.,Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - De-Shen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Hong-En Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Jia-Huan Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| |
Collapse
|
50
|
Ye J, Luo QY, Wang XP, Liu ZY, Chen MX, Huang H, Zhang L. Serum Apolipoprotein A-I Combined With C-Reactive Protein Serves As A Novel Prognostic Stratification System For Colorectal Cancer. Cancer Manag Res 2019; 11:9265-9276. [PMID: 31802946 PMCID: PMC6826184 DOI: 10.2147/cmar.s215599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background and objective Noninvasive prognostic tools for colorectal cancer (CRC) are urgently needed. This study was designed to investigate the prognostic value of preoperative serum lipid and lipoprotein concentrations (including ApoA-I, Apo-B, HDL-C, LDL-C, TC and TG) and CRP levels retrospectively in CRC patients. Methods Preoperative serum lipid and lipoprotein concentrations (including ApoA-I, Apo-B, HDL-C, LDL-C, TC and TG) and CRP levels were analyzed retrospectively in 250 patients with CRC. The prognostic significance of these indexes was determined by univariate and multivariate Cox hazard models. Results CRC patients with higher levels of ApoA-I and HDL-C and lower levels of CRP had significantly longer overall survival (OS, log rank test, p<0.05). Based on univariate analysis, ApoA-I levels (p=0.002), CRP levels (p=0.007), HDL-C levels (p=0.005), pT classification (p=0.005), pN classification (p<0.001), pM classification (p<0.001) and pTNM stage (p<0.001) were significantly associated with OS. Multivariate Cox proportional hazards regression analysis indicated that ApoA-I levels (HR: 1.52, p=0.023), CRP levels (HR: 1.85, p=0.035) and pTNM stage (HR: 2.53, p< 0.001) were independent predictors of CRC survival. The included patients were then stratified into three tiers based on the ApoA-I and CRP levels. In the whole cohort, the OS and disease-free survival differed significantly between the low-risk (ApoA-I≥1.08 mg/dL and CRP<3.04 mg/dL), medium-risk (ApoA-I≥1.08 mg/dL or CRP<3.04 mg/dL), and high-risk (ApoA-I<1.08 mg/dL and CRP ≥3.04 mg/dL) groups (p=0.001 and p=0.004). Conclusion Decreased levels of ApoA-I and HDL-C and increased levels of CRP were predictive of poor prognosis among patients with CRC. In addition, the combination of ApoA-I and CRP can serve as a novel prognostic stratification system for more accurate clinical staging of CRC.
Collapse
Affiliation(s)
- Juan Ye
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China.,Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Qiu-Yun Luo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xue-Ping Wang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Zhen-Yi Liu
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Mei-Xian Chen
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Hao Huang
- Department of Laboratory Science, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|