1
|
Cheng CW, Pedicini L, Alcala CM, Deligianni F, Smith J, Murray RD, Todd HJ, Forde N, McKeown L. RNA-seq analysis reveals transcriptome changes in livers from Efcab4b knockout mice. Biochem Biophys Rep 2025; 41:101944. [PMID: 40034259 PMCID: PMC11872658 DOI: 10.1016/j.bbrep.2025.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
EFCAB4B is an evolutionarily conserved protein that encodes for the Rab GTPase Rab46, and the CRAC channel modulator, CRACR2A. Previous genome wide association studies have demonstrated the association of EFCAB4B variants in the progression of non-alcoholic fatty liver disease (NAFLD). In this study we show that mice with global depletion of Efcab4b -/- have significantly larger livers than their wild-type (WT) counterparts. We performed RNA-sequencing (RNA-seq) analysis of liver tissues to investigate differential global gene expression among Efcab4b -/- and WT mice. Of the 69 differentially expressed genes (DEGs), analyses of biological processes found significant enrichment in liver and bile development, with 6 genes (Pck1, Aacs, Onecut1, E2f8, Xbp1, and Hes1) involved in both processes. Specific consideration of possible roles of DEGs or their products in NAFLD progression to (NASH) and hepatocarcinoma (HCC), demonstrated DEGs in the livers of Efcab4b -/- mice had roles in molecular pathways including lipid metabolism, inflammation, ER stress and fibrosis. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with EFCAB4B.
Collapse
Affiliation(s)
- Chew W. Cheng
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lucia Pedicini
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Cintli Morales Alcala
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Fenia Deligianni
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Jessica Smith
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Ryan D. Murray
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Harriet J. Todd
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Niamh Forde
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| |
Collapse
|
2
|
Masci I, Bozal C, Lezón C, Martin M, Brites F, Bonetto J, Alvarez L, Kurtz M, Tasat D. Exposure to airborne particulate matter and undernutrition in young rats: An in-depth histopathological and biochemical study on lung and excretory organs. Food Chem Toxicol 2025; 197:115246. [PMID: 39793949 DOI: 10.1016/j.fct.2025.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Environmental stressors, such as air particulate matter (PM) and nutrient deficiencies, can significantly impact crucial organs involved in detoxifying xenobiotics, including lungs, liver, and kidneys, especially in vulnerable populations like children. This study investigated the effect of 4-week exposure to Residual Oil Fly Ash (ROFA) on these organs in young rats under growth-restricted nutrition (NGR). We assessed histological, histomorphometric and biochemical parameters. ROFA exposure induced histological changes and inflammation in all three organs when compared to control (C) animals. Specifically, in lungs ROFA caused a significant reduction in alveolar airspace (C: 55.8 ± 1.8% vs. ROFA: 38.7 ± 3.0%, p < 0.01) and alveolar number along with changes in alveolar size distribution, and disruption of the smooth muscle layer which may impaired respiratory function. In the liver, ROFA increased binucleated cells, macro and microvesicles and both AST and ALT serum biomarkers (AST: C = 77.7 ± 1.3 vs. ROFA = 81.6 ± 1.3, p < 0.05; ALT: C = 44.5 ± 0.9 vs. ROFA = 49.4 ± 1.3, p < 0.05). In the kidneys, a reduced Bowman's space (C: 2.15 ± 0.2 mm2 vs. ROFA: 1.74 ± 0.2 mm2, p < 0.05) was observed, indicative of glomerular filtration failure. NGR alone reduced Bowman's space (C: 2.15 ± 0.2 mm2 vs. NGR: 1.06 ± 0.1 mm2, p < 0.001). In lung and liver NGR showed higher levels of proinflammatory cytokine IL-6 (p < 0.01 and p < 0.001, respectively) when compared to C. In conclusion, both stressors negatively affected lung and excretory organs in young rats, with nutritional status further modulating the physiological response to ROFA. These findings highlight the compounded risks posed by environmental pollutants and poor nutrition in vulnerable populations.
Collapse
Affiliation(s)
- Ivana Masci
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina
| | - Carola Bozal
- Cátedra de Histología y Embriología. Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christian Lezón
- Cátedra de Fisiología. Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Martin
- Laboratorio de Lípidos y Lipoproteínas, Departamento de Bioquímica Clínica. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Lipoproteínas, Departamento de Bioquímica Clínica. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julián Bonetto
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina
| | - Laura Alvarez
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana. Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Kurtz
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina.
| | - Deborah Tasat
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina; Cátedra de Anatomía Patológica. Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Jiang Z, Yang L, Liu Q, Qiu M, Chen Y, Teng M, Zhang Y, Liu X, Zhao Z, Zheng Y, Andersen M, Qu W. Haloacetamides exacerbate non-alcoholic fatty liver disease induced by a high-fat diet in C57BL/6J mice. Toxicol Sci 2025; 204:57-69. [PMID: 39689017 DOI: 10.1093/toxsci/kfae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Obesity, a significant global health issue, heightens the risk of non-alcoholic fatty liver disease (NAFLD). Its interaction with environmental pollutants might exacerbate NAFLD's severity. Haloacetamides (HAcAms), a group of emerging nitrogenous disinfection byproducts (DBPs) and potent oxidative stressors, are found in chlorinated drinking water. Since oxidative stress is associated with HAcAms-DBP cytotoxicity and a key factor in NAFLD pathogenesis, we hypothesize that HAcAms-DBPs could exacerbate liver injury and NAFLD, particularly with high-fat diets. This study examined HAcAms-DBPs' impact on liver lipid metabolism in mice treated with 1 to 100 times the background drinking water level (13.05 µg/L) for up to 16 weeks of oral administration. Compared to a high-fat-only group, mice co-exposed to a high-fat diet and HAcAms-DBPs for 16 weeks had elevated serum alanine transaminase, aspartate transaminase, triglyceride, hepatic lipid aggregation, and inflammation response. Under high-fat conditions, background drinking water levels of HAcAms significantly upregulated liver Acetyl-CoA carboxylase 1, fatty acid synthase, peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator-1α, glucose transporter 1 and 4 protein expression in C57BL/6J mice; 10 times background significantly increased expression of inflammatory marker tumor necrosis factor and liver fibrosis marker protein alpha-smooth muscle actin; 100 times further increased both liver damage and markers of early non-alcoholic steatohepatitis phenotypes like steatosis and lobular inflammation. HAcAms-DBPs plus high-fat conditions worsened liver damage. The possible health risks of NAFLD induced by HAcAms in obese individuals deserve further study.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lili Yang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qinxin Liu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Meiyue Qiu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Mengying Teng
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xing Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Melvin Andersen
- ScitoVation LLC, Research Triangle Park, NC 27713, United States
| | - Weidong Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Li S, Yang H, Zhou W, Wang R, Li L, Zhang C, Zhang J, Liu Y, Huang Z, Li G. Selenium Nanoparticles Decorated With Stevioside Potentially Attenuate Fructose Palmitate Induced Lipid Accumulation in HepG2 Cells. Mediators Inflamm 2025; 2025:7942947. [PMID: 39981401 PMCID: PMC11842145 DOI: 10.1155/mi/7942947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/12/2024] [Accepted: 12/23/2024] [Indexed: 02/22/2025] Open
Abstract
The excessive accumulation of lipid droplets within hepatocytes stands as a hallmark characteristic of metabolic-associated fatty liver disease (MAFLD). Selenium (Se) nanoparticles (NPs) have garnered considerable attention for their notable bioavailability, minimal toxicity, and exceptional antioxidant properties. However, a critical limitation lies in the propensity of SeNPs to aggregate into the biologically inactive elemental Se, thereby constraining their utility. Here, we utilized Stevioside (SV), a natural sweetener, to modify SeNPs and obtained the SV-SeNPs with a size of about 187 ± 7 nm. We aimed to investigate the effect of SV-SeNPs on high fructose-palmitate (HFP) induced lipid accumulation in HepG2 cells. Noteworthy is the absence of overt cytotoxicity attributed to SV-SeNPs on normal HepG2 cells. Of significance, our findings delineate the profound inhibitory effects of SV-SeNPs on the expression of key genes implicated in de novo lipogenesis, such as fatty-acid synthase (FASN), acetyl-CoA-carboxylase 1 (ACC1), and stearoyl-CoA desaturase-1 (SCD1) within HFP-induced HepG2 cells. Furthermore, our investigation reveals that SV-SeNPs mediate a significant reduction in lipid accumulation by activating the PI3K/AKT/Nrf2 signaling cascades. Additionally, the antioxidative properties of SV-SeNPs are underscored by their ability to counteract oxidative stress via the upregulation of two pivotal antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx). In conclusion, our study unveils the potential beneficial effects of SV-SeNPs on the prevention and treatment of MAFLD by effectively suppressing lipid accumulation and ameliorating oxidative stress.
Collapse
Affiliation(s)
- Shuai Li
- Medical Department, Jingchu University of Technology, Jingmen, China
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hui Yang
- Department of Health Management of the Guangdong Second Provincial General Hospital and Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenjun Zhou
- Medical Department, Jingchu University of Technology, Jingmen, China
| | - Ruoting Wang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Likang Li
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jingyi Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yingxin Liu
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zhi Huang
- Department of Health Management of the Guangdong Second Provincial General Hospital and Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, 1280 Main St West, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Li P, Zhang R, Hu P, Wang T, Wang J. Cepharanthine relieves nonalcoholic steatohepatitis through inhibiting STAT1/CXCL10 axis-mediated lipogenesis and inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119358. [PMID: 39805479 DOI: 10.1016/j.jep.2025.119358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stephania rotunda Lour., a medicinal herb, has been utilized in both Traditional Chinese Medicine (TCM) and Traditional Indian Medicine to treat conditions such as fever, dysentery, and inflammation. Cepharanthine (CEP), a primary active ingredient of Stephania rotunda Lour., has demonstrated a range of pharmacological activities, including anti-oxidative, anti-inflammatory, anti-cancer, anti-viral and anti-parasitic properties. However, the effects and underlying mechanisms of CEP on improving nonalcoholic steatohepatitis (NASH) remain unclear. AIM OF THE STUDY This study aimed to investigate the effects of CEP on mitigating diet-induced NASH and explore its underlying mechanisms. MATERIALS AND METHODS A High-Fat Diet (HFD) and the high levels of free fatty acids (FFA) were used to establish in vivo and in vitro NASH models to evaluate the intervention effect of CEP. Subsequently, RNA-sequencing, western blotting, quantitative real-time PCR (qRT-PCR) and siRNA transfection were employed to investigate its underlying mechanisms. RESULTS Our findings indicated that CEP significantly reduced lipogenesis and inflammatory responses in both HFD-fed rats and FFA-induced hepatic cells (including HepG2, L02 and AML12 cell lines), as is evidenced by the reduction of triglyceride (TG), lipid accumulation, and the release of inflammatory cytokines such as TNF-α, IL-6 and IL-1β. Mechanistically, CEP significantly inhibits CXC motif chemokine ligand 10 (CXCL10) expression both in vivo and in vitro. It also regulates sterol regulatory element binding protein-1c (SREBP1c)-induced lipogenic gene expression and CXCL10-mediated nuclear factor kappa B (NFκB) activation. Notably, knockdown of CXCL10 mimics the ability of CEP to reduce lipid accumulation and inflammatory responses, which is also observed following the blockade of signal transducer and activator of transcription 1 (STAT1) in HepG2 cells. CONCLUSION CEP alleviates NASH by inhibiting lipogenesis and inflammatory responses in a STAT1/CXCL10 axis-dependent manner.
Collapse
Affiliation(s)
- Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Ruoyu Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, 999077, PR China
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
6
|
Yamaguchi R, Oda T, Nagashima K. Comparison of the diagnostic accuracy of shear wave elastography with transient elastography in adult nonalcoholic fatty liver disease: a systematic review and network meta-analysis of diagnostic test accuracy. Abdom Radiol (NY) 2025; 50:734-746. [PMID: 39240377 PMCID: PMC11794403 DOI: 10.1007/s00261-024-04546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE To compare the diagnostic test accuracy (DTA) of shear wave elastography (SWE) to that of transient elastography (TE) for liver fibrosis grade assessment in nonalcoholic fatty liver disease adults. METHODS MEDLINE, The Cochrane Library, and Web of Science were searched. Inclusion criteria were primary studies examining DTA of TE, point SWE (pSWE), two-dimensional SWE (2D-SWE), or magnetic resonance elastography (MRE) with liver biopsy. Network meta-analysis was conducted using a Bayesian bivariate mixed-effects model. RESULTS For fibrosis grade 2 or higher, 15 studies with 25 observations (16 observations for TE, 1 for MRE, 4 for pSWE and 2D-SWE; 2,066 patients) were included; the pooled sensitivity and specificity were 0.79 (95% credible interval (CrI) 0.70-0.86; 95% prediction interval (PI) 0.36-0.96) and 0.73 (95% CrI 0.62-0.82; 95% PI 0.23-0.96) for TE, 0.68 (95% CrI 0.48-0.83; 95% PI 0.23-0.94) and 0.75 (95% CrI 0.53-0.88; 95% PI 0.24-0.97) for pSWE, 0.85 (95% CrI 0.70-0.93; 95% PI 0.40-0.98) and 0.72 (95% CrI 0.49-0.86; 95% PI 0.20-0.96) for 2D-SWE, respectively. The proportion of studies classified as unclear in QUADAS-2 was high, and the results were heterogeneous. CONCLUSION 2D-SWE could be recommended as TE is for liver fibrosis assessment. The protocol of this systematic review and network meta-analysis has been registered in PROSPERO (CRD42022327249). All included primary papers have already been published and the information and data can be used freely.
Collapse
Affiliation(s)
- Ruri Yamaguchi
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan.
| | - Tetsuro Oda
- Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, 160-8582, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| |
Collapse
|
7
|
Hu L, Du H, Zhou Q, Liu C, Zhang T, Yuan M. Web of Science-Based Visualization of Metabolic Dysfunction-Associated Fatty Liver Disease in Pediatric and Adolescent Populations: A Bibliometric Study. Health Sci Rep 2025; 8:e70409. [PMID: 39897463 PMCID: PMC11779742 DOI: 10.1002/hsr2.70409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Background and Aims The prevalence of metabolism-associated fatty liver disease (MAFLD) in children is on the rise. This study employs visualization and analysis to evaluate the research implications, current advancements, and emerging trends in pediatric MAFLD, with the aim of elucidating its pathogenesis and informing the development of clinical treatment strategies. Methods Using visualization software, we conducted a visual analysis and mapping of the journal distribution, leading institutions, prominent authors, annual publication trends, and keyword frequencies among the 1179 scholarly articles retrieved from the Web of Science Core Collection for this study. Results The overall publication volume demonstrated an upward trend, with a total of 200 journals, contributions from 63 countries, 882 research institutions, and 5605 authors involved, including 84 who were identified as core authors. The main research team is led by Nobili, Valerio. The main research institutions are concentrated in Italy, the United States, and China. A total of 473 keywords were included, and the keywords with high frequency and medium centricity are insulin resistance, metabolic syndrome, children, steatohepatitis, adolescents, hepatic steatosis, nash, obesity, diagnosis, and fibrosis, which resulted in six keyword clusters. Conclusion MAFLD represents a significant public health concern. Research on children and adolescents with MAFLD continues to attract high interest. Noninvasive diagnostic methods, pathogenesis (intestinal microbiota research), disease prediction (gene research) are current research hotspots.
Collapse
Affiliation(s)
- Liangyu Hu
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huarong Du
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - QianQian Zhou
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunlei Liu
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Min Yuan
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
8
|
Fernandez-Canadas I, Badajoz A, Jimenez-Gonzalez J, Wirenfeldt M, Paniagua-Torija B, Bravo-Jimenez C, Del Cerro M, Arevalo-Martin A, Garcia-Ovejero D. Spinal cord injury induces transient activation of hepatic stellate cells in rat liver. Sci Rep 2025; 15:2826. [PMID: 39843526 PMCID: PMC11754611 DOI: 10.1038/s41598-025-87131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH). However, none of the existent studies have focused on hepatic stellate cells (HSCs), liver resident cells that are the primary drivers of collagen deposition and fibrosis following sustained liver damage. Here, we describe the transient activation of HSCs after a thoracic contusion in rats, considered a clinically relevant model of experimental SCI. We studied HSC during the time course of SCI, from 1 to 45 days post injury. We found a transient activation of HSCs after SCI, beginning with the acute downregulation of Glial Fibrillar Acidic Protein 1dpi. This is followed by a morphological and phenotypical transformation into alpha-smooth muscle actin (ACTA2/SMA) immunoreactive myofibroblast-like cells, peaking at 14 days post-injury and returning to control-like levels at later timepoints (45 days post-injury). These changes are not accompanied by fibrosis development but collagen deposition in peri-portal areas is observed at 45 days.
Collapse
Affiliation(s)
- Inmaculada Fernandez-Canadas
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Alejandro Badajoz
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Jesús Jimenez-Gonzalez
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Martin Wirenfeldt
- Department of Pathology, University Hospital of Southern Denmark, Esbjerg, DK-6000, Denmark
- Department of Regional Health Research, BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, DK-5230, Denmark
| | - Beatriz Paniagua-Torija
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Clara Bravo-Jimenez
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Mar Del Cerro
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Angel Arevalo-Martin
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain.
| | - Daniel Garcia-Ovejero
- Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain.
| |
Collapse
|
9
|
Mikołajczyk-Stecyna J, Zuk E, Chmurzynska A, Blatkiewicz M, Jopek K, Rucinski M. Exposure to a choline-deficient diet during pregnancy and lactation alters the liver transcriptome profile in offspring of dams with fatty liver. Clin Nutr ESPEN 2025; 66:9-23. [PMID: 39800134 DOI: 10.1016/j.clnesp.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND & AIMS The developmental origin of health and disease hypothesis shows that early adverse exposures can have lifelong health effects. Thus, the aim of this study was to analyze the impact of choline intake during pregnancy and/or lactation on gene expression profiles in the liver of 24-day-old male rat offspring from dams with non-alcoholic fatty liver disease (NAFLD). METHODS Phenotypic characteristic, histological examination and global transcriptome pattern of liver tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global gene expression profile was analyzed by using microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time polymerase chain reaction (qPCR). RESULTS The histological examination of rat liver sections indicated alternations typical for fatty liver in all analyzed groups with increased progression among groups deprived of choline. Choline deficiency in the maternal diet was associated with changes in body mass and composition but not with biochemical marker levels, except for the high density lipoprotein fraction of cholesterol (HDL). Enhanced expression of genes involved in oxidative stress, cell proliferation, activation of catabolic processes related to hepatocyte dysfunction and cell membrane composition were simultaneously observed in all choline-deficient groups. CONCLUSIONS An adequate amount of choline in the diet of a mother with fatty liver during pregnancy and/or lactation can regulate gene expression in the offspring's liver and contribute to a milder stage of the disease in the progeny. Moreover, proper choline supply during the postpartum period is as crucial as during the prenatal period.
Collapse
Affiliation(s)
- Joanna Mikołajczyk-Stecyna
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Ewelina Zuk
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Agata Chmurzynska
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland
| | | | - Karol Jopek
- University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Marcin Rucinski
- University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| |
Collapse
|
10
|
Ha YS, Kim TK, Heo J, Oh J, Kim SK, Kim J, Lee J, Yang SR, Hwang S, Kim SJ. Rocaglamide-A mitigates LPS-induced hepatic inflammation by modulating JNK/AP-1 signaling cascade and ROS production in hepatocytes. Toxicol Res 2025; 41:47-59. [PMID: 39802115 PMCID: PMC11717754 DOI: 10.1007/s43188-024-00263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025] Open
Abstract
Lipopolysaccharide (LPS), a gut-derived endotoxin, is a recognized risk factor for both Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Rocaglamide-A (Roc-A), a natural compound derived from the genus Aglaia, is known for its pharmacological and immunosuppressive effects on various cell types. Although our recent investigations have unveiled Roc-A's anti-adipogenic role in adipocytes, its mechanism in hepatic inflammation remains elusive. This study delves into Roc-A's protective effects on LPS-induced hepatic inflammation. Our results demonstrated that Roc-A treatment significantly reduced the LPS-induced production of inflammatory cytokines in hepatocytes. Intriguingly, Roc-A decreased LPS-induced production of reactive oxygen species (ROS), upregulated antioxidant gene expression, and downregulated endoplasmic reticulum (ER) stress-related gene expression. Mechanistically, Roc-A significantly attenuated LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1). Notably, this effect was abolished by the JNK activator Anisomycin, while the JNK inhibitor SP600125 enhanced it. Furthermore, Roc-A suppressed the expression of NF-κB target genes, including inducible nitric oxide synthase (iNOS), thereby alleviating iNOS-derived nitric oxide (NO) production. These findings collectively indicate that Roc-A has the potential to alleviate LPS-induced nitrosative/oxidative stress and hepatic inflammation by inhibiting JNK phosphorylation. Thus, Roc-A emerges as a promising anti-inflammatory intervention for LPS-induced hepatic inflammation. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00263-y.
Collapse
Affiliation(s)
- Yoon-su Ha
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Taek-Kyong Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Jun Heo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Jintaek Oh
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Seung-Kyoon Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 34134 Daejeon, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Jeonghyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Se-Ran Yang
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
- Department of Medicine, Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, 46241 Busan, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Islam MA, Khairnar R, Fleishman J, Reznik SE, Ragolia L, Gobbooru S, Kumar S. Female C57BL/6 mice exhibit protection against nonalcoholic fatty liver disease and diabesity accompanied by differential regulation of hepatic lipocalin prostaglandin D 2 synthase. Mol Cell Endocrinol 2025; 595:112404. [PMID: 39505230 DOI: 10.1016/j.mce.2024.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its development into nonalcoholic steatohepatitis (NASH) are challenging health concerns globally. Clinically, the prevalence and severity of NAFLD/NASH are higher in men than in premenopausal women. NAFLD is strongly correlated with obesity, both of which are tied to high-fat/fructose-rich western diets. Therefore, we aimed to investigate sexual dimorphism in NAFLD pathogenesis in male and female C57BL/6 mice fed different diets. Male and female C57BL/67 mice were divided into four groups and kept on a chow (C), chow plus high fructose (CF), high fat (HF), and high fat plus high fructose (HFF) diet for 22 weeks. Liver tissues were collected at the end of the study and processed for NAFLD/NASH-related histology (H&E and trichrome staining), protein expression (SREBP1, SCAP, FABP4, α-SMA, TGF-β and L-PGDS), and biochemical parameters measurement. Our results displayed that female mice exhibited protection against NAFLD and diabesity on HF and HFF diets compared to male mice fed similar diets. Additionally, female mice showed protection from fibrosis compared to male mice. Both male and female mice fed HF and HFF diet groups displayed the cytosol-to-nuclear translocation of Lipocalin Prostaglandin D2 Synthase (L-PGDS). Cytoplasmic levels of L-PGDS were absent in females compared to low levels in males, revealing a possible sex-specific mechanism tied to fructose and fat metabolism. Collectively, female mice showed protection against NAFLD and diabesity relative to male mice, accompanied by differential regulation of hepatic lipocalin prostaglandin D2 synthase.
Collapse
Affiliation(s)
- Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Louis Ragolia
- NYU Grossman Long Island School of Medicine, Mineola, NY, 11501, USA
| | - Shruthi Gobbooru
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
12
|
Dionisi T, Galasso L, Antuofermo L, Mancarella FA, Esposto G, Mignini I, Ainora ME, Gasbarrini A, Addolorato G, Zocco MA. Shear Wave Dispersion Elastography in ALD and MASLD: Comparative Pathophysiology and Clinical Potential-A Narrative Review. J Clin Med 2024; 13:7799. [PMID: 39768720 PMCID: PMC11728374 DOI: 10.3390/jcm13247799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Alcohol-related liver disease (ALD) is a major cause of global morbidity and mortality, progressing from steatosis to cirrhosis and hepatocellular carcinoma. While liver biopsy remains the gold standard for identifying liver disease, non-invasive methods like shear wave dispersion (SWD) elastography offer promising alternatives. This scoping review evaluates SWD's potential in the study of ALD, comparing it to metabolic dysfunction-associated steatotic liver disease (MASLD). SWD measures changes in shear wave speed in relation to liver viscosity and necroinflammation. Studies in MASLD suggest that SWD effectively correlates with fibrosis and inflammation stages, but its application in ALD remains underexplored. Both ALD and MASLD show similar inflammatory and fibrotic pathways, despite having different etiologies and histological features. This review emphasizes the necessity to identify ALD-specific SWD reference values and verify SWD's ability to improve diagnosis and disease progression. Prospective studies comparing SWD findings with histological benchmarks in ALD are essential for establishing its clinical utility. Incorporating SWD into clinical practice could revolutionize the non-invasive evaluation of ALD, offering a safer, cost-effective, and repeatable diagnostic tool.
Collapse
Affiliation(s)
- Tommaso Dionisi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, IRCCS “A. Gemelli” University Polyclinic Foundation, 00168 Rome, Italy; (T.D.); (F.A.M.); (A.G.); (G.A.)
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (G.E.); (I.M.); (M.E.A.)
| | - Luigiandrea Antuofermo
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Antonio Mancarella
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, IRCCS “A. Gemelli” University Polyclinic Foundation, 00168 Rome, Italy; (T.D.); (F.A.M.); (A.G.); (G.A.)
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (G.E.); (I.M.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (G.E.); (I.M.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (G.E.); (I.M.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, IRCCS “A. Gemelli” University Polyclinic Foundation, 00168 Rome, Italy; (T.D.); (F.A.M.); (A.G.); (G.A.)
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (G.E.); (I.M.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giovanni Addolorato
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, IRCCS “A. Gemelli” University Polyclinic Foundation, 00168 Rome, Italy; (T.D.); (F.A.M.); (A.G.); (G.A.)
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (G.E.); (I.M.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
13
|
Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology 2024; 80:1462-1479. [PMID: 38607725 DOI: 10.1097/hep.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Heavy alcohol intake induces a wide spectrum of liver diseases ranging from steatosis, steatohepatitis, cirrhosis, and HCC. Although alcohol consumption is a well-known risk factor for the development, morbidity, and mortality of HCC globally, alcohol-associated hepatocellular carcinoma (A-HCC) is poorly characterized compared to viral hepatitis-associated HCC. Most A-HCCs develop after alcohol-associated cirrhosis (AC), but the direct carcinogenesis from ethanol and its metabolites to A-HCC remains obscure. The differences between A-HCC and HCCs caused by other etiologies have not been well investigated in terms of clinical prognosis, genetic or epigenetic landscape, molecular mechanisms, and heterogeneity. Moreover, there is a huge gap between basic research and clinical practice due to the lack of preclinical models of A-HCC. In the current review, we discuss the pathogenesis, heterogeneity, preclinical approaches, epigenetic, and genetic profiles of A-HCC, and discuss the current insights into and the prospects for future research on A-HCC. The potential effect of alcohol on cholangiocarcinoma and liver metastasis is also discussed.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tim F Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Hudson D, Afzaal T, Bualbanat H, AlRamdan R, Howarth N, Parthasarathy P, AlDarwish A, Stephenson E, Almahanna Y, Hussain M, Diaz LA, Arab JP. Modernizing metabolic dysfunction-associated steatotic liver disease diagnostics: the progressive shift from liver biopsy to noninvasive techniques. Therap Adv Gastroenterol 2024; 17:17562848241276334. [PMID: 39553445 PMCID: PMC11565685 DOI: 10.1177/17562848241276334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/27/2024] [Indexed: 11/19/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing public health concern worldwide. Liver biopsy is the gold standard for diagnosing and staging MASLD, but it is invasive and carries associated risks. In recent years, there has been significant progress in developing noninvasive techniques for evaluation. This review article discusses briefly current available noninvasive assessments and the various liver biopsy techniques available for MASLD, including invasive techniques such as transjugular and transcutaneous needle biopsy, intraoperative/laparoscopic biopsy, and the evolving role of endoscopic ultrasound-guided biopsy. In addition to discussing the various biopsy techniques, we review the current state of knowledge on the histopathologic evaluation of MASLD, including the various scoring systems used to grade and stage the disease. We also explore current and alternative modalities for histopathologic evaluation, such as whole slide imaging and the utility of immunohistochemistry. Overall, this review article provides a comprehensive overview of the progress in liver biopsy techniques for MASLD and compares invasive and noninvasive modalities. However, beyond clinical trials, the practical application of liver biopsy may be limited, as ongoing advancements in noninvasive fibrosis assessments are expected to more effectively identify candidates for MASLD treatment in real-world settings.
Collapse
Affiliation(s)
- David Hudson
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Tamoor Afzaal
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Hasan Bualbanat
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Raaed AlRamdan
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Nisha Howarth
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Pavithra Parthasarathy
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Alia AlDarwish
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Emily Stephenson
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Yousef Almahanna
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Maytham Hussain
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Luis Antonio Diaz
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- MASLD Research Center, Division of MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA
| | - Juan Pablo Arab
- Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, 1201 E. Broad St. P.O. Box 980341, Richmond, VA 23284, USA
| |
Collapse
|
15
|
Moyana TN. Metabolic dysfunction-associated steatotic liver disease: The question of long-term high-normal alanine aminotransferase as a screening test. World J Gastroenterol 2024; 30:4576-4582. [PMID: 39563746 PMCID: PMC11572615 DOI: 10.3748/wjg.v30.i42.4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/31/2024] Open
Abstract
The growing prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is being driven by the obesity epidemic. The quest for solutions continues particularly with regard to early detection. This editorial comments on the utility of long-term high-normal alanine aminotransferase (ALT) in screening for MASLD. Chen et al found that new onset MASLD can be detected by repetitively high normal ALT. Implicit in this concept is the question of what should be the accepted upper limit of normal (ULN) for ALT. It was previously set at 40 IU/L based on studies that included people with subclinical liver disease but the new consensus is 30/19 U/L in healthy males/females. Thus, when Chen et al defines the ULN as 40 U/L, others may view it as excessively high. It is important to recognize the variables affecting ULN e.g. instrumentation, diurnal variations, exercise and ageing. These variables matter when the distinctions are subtle e.g. normal vs high-normal. In this regard, the utility of long-term high normal ALT as a disease marker could be enhanced by combining it with other biomarkers, imaging and MASLD genetics to create machine learning classifiers. All in all, Chen et al's work on long-term high normal ALT as a marker of new-onset MASLD deserves merit.
Collapse
Affiliation(s)
- Terence N Moyana
- Department of Pathology and Laboratory Medicine, University of Ottawa and The Ottawa Hospital, Ottawa K1H 8L6, Ontario, Canada
| |
Collapse
|
16
|
Velliou RI, Giannousi E, Ralliou C, Kassi E, Chatzigeorgiou A. Ex Vivo Tools and Models in MASLD Research. Cells 2024; 13:1827. [PMID: 39594577 PMCID: PMC11592755 DOI: 10.3390/cells13221827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) presents a growing global health challenge with limited therapeutic choices. This review delves into the array of ex vivo tools and models utilized in MASLD research, encompassing liver-on-a-chip (LoC) systems, organoid-derived tissue-like structures, and human precision-cut liver slice (PCLS) systems. Given the urgent need to comprehend MASLD pathophysiology and identify novel therapeutic targets, this paper aims to shed light on the pivotal role of advanced ex vivo models in enhancing disease understanding and facilitating the development of potential therapies. Despite challenges posed by the elusive disease mechanism, these innovative methodologies offer promise in reducing the utilization of in vivo models for MASLD research while accelerating drug discovery and biomarker identification, thereby addressing critical unmet clinical needs.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Christiana Ralliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| |
Collapse
|
17
|
Meyer T, Castelein J, Schattenfroh J, Sophie Morr A, Vieira da Silva R, Tzschätzsch H, Reiter R, Guo J, Sack I. Magnetic resonance elastography in a nutshell: Tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:1-14. [PMID: 39645347 DOI: 10.1016/j.pnmrs.2024.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 12/09/2024]
Abstract
Magnetic resonance elastography (MRE) is an emerging clinical imaging modality for characterizing the viscoelastic properties of soft biological tissues. MRE shows great promise in the noninvasive diagnosis of various diseases, especially those associated with soft tissue changes involving the extracellular matrix, cell density, or fluid turnover including altered blood perfusion - all hallmarks of inflammation from early events to cancer development. This review covers the fundamental principles of measuring tissue viscoelasticity by MRE, which are based on the stimulation and encoding of shear waves and their conversion into parameter maps of mechanical properties by inverse problem solutions of the wave equation. Technical challenges posed by real-world biological tissue properties such as viscosity, heterogeneity, anisotropy, and nonlinear elastic behavior of tissues are discussed. Applications of MRE measurement in both humans and animal models are presented, with emphasis on the detection, characterization, and staging of diseases related to the cascade of biomechanical property changes from early to chronic inflammation in the liver and brain. Overall, MRE provides valuable insights into the biophysics of soft tissues for imaging-based detection and staging of inflammation-associated tissue changes.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Castelein
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Netherlands; Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Anna Sophie Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Rafaela Vieira da Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Germany
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Germany
| | - Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
18
|
Belilos E, Strzepka J, Ritz E, Reau N, Aloman C. Characterizing outcomes in a large cohort of latinx patients with autoimmune hepatitis. Ann Hepatol 2024; 30:101570. [PMID: 39276991 DOI: 10.1016/j.aohep.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION AND OBJECTIVES This study aimed to characterize a large cohort of Latinx patients with autoimmune hepatitis (AIH) and analyze clinical outcomes, including biochemical remission, duration of steroid treatment, fibrosis regression, and incidence of clinical endpoints (hepatic decompensation, need for liver transplant, and death). MATERIALS AND METHODS This was a retrospective descriptive study of patients with biopsy proven AIH (2009-2019) at a single urban center. Demographics, medical comorbidities, histology, treatment course, biochemical markers, fibrosis using dynamic non-invasive testing (NIT), and clinical outcomes at three months and at one, two, and three years were analyzed. RESULTS 121 adult patients with biopsy-proven AIH were included: 43 Latinx (35.5%) and 78 non-Latinx (65.5%). Latinx patients were more likely to have metabolic dysfunction-associated steatotic liver disease (MASLD) (p = 0.004), and had higher Fibrosis-4 (FIB-4) (p = 0.0279) and AST-to-Platelet-Ratio-Index (APRI) (p = 0.005) at one year. Latinx patients took longer to reach biochemical remission than non-Hispanic Whites (p = 0.031) and longer to stop steroids than non-Hispanic Blacks (p = 0.016). There were no significant differences based on ethnicity in histological fibrosis stage at presentation or incidence of clinical endpoints. CONCLUSIONS MASLD overlap is highly prevalent in Latinx AIH patients. Longer time to biochemical remission and worse NITs support that this population may have slower fibrosis regression with standard of care AIH treatment. This may indicate differing response rates due to genetic polymorphisms affecting drug metabolism and immune response among Latinx individuals and is less likely related to AIH/MASLD overlap based on the findings of this study.
Collapse
Affiliation(s)
- Eleanor Belilos
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.
| | - Jessica Strzepka
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ethan Ritz
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Nancy Reau
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Costica Aloman
- Department of Internal Medicine, New York Medical College, Westchester Medical Center, Vahalla, NY, USA
| |
Collapse
|
19
|
Li Y, Chen L, Papadopoulos V. The mitochondrial translocator protein (TSPO, 18 kDa): A key multifunctional molecule in liver diseases. Biochimie 2024; 224:91-103. [PMID: 38065288 DOI: 10.1016/j.biochi.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 08/23/2024]
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Seubnooch P, Montani M, Dufour JF, Masoodi M. Spatial lipidomics reveals zone-specific hepatic lipid alteration and remodeling in metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100599. [PMID: 39032559 PMCID: PMC11388789 DOI: 10.1016/j.jlr.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Alteration in lipid metabolism plays a pivotal role in developing metabolic dysfunction-associated steatohepatitis (MASH). However, our understanding of alteration in lipid metabolism across liver zonation in MASH remains limited. Within this study, we investigated MASH-associated zone-specific lipid metabolism in a diet and chemical-induced MASH mouse model. Spatial lipidomics using mass spectrometry imaging in a MASH mouse model revealed 130 lipids from various classes altered across liver zonation and exhibited zone-specific lipid signatures in MASH. Triacylglycerols, diacylglycerols, sphingolipids and ceramides showed distinct zone-specific changes and re-distribution from pericentral to periportal localization in MASH. Saturated and monounsaturated fatty acids (FA) were the primary FA composition of increased lipids in MASH, while polyunsaturated FAs were the major FA composition of decreased lipids. We observed elevated fibrosis in the periportal region, which could be the result of observed metabolic alteration across zonation. Our study provides valuable insights into zone-specific hepatic lipid metabolism and demonstrates the significance of spatial lipidomics in understanding liver lipid metabolism. Identifying unique lipid distribution patterns may offer valuable insights into the pathophysiology of MASH and facilitate the discovery of diagnostic markers associated with liver zonation.
Collapse
Affiliation(s)
- Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Matteo Montani
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Francois Dufour
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
21
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
22
|
Jeong BK, Choi WI, Choi W, Moon J, Lee WH, Choi C, Choi IY, Lee SH, Kim JK, Ju YS, Kim P, Moon YA, Park JY, Kim H. A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma. Nat Commun 2024; 15:6506. [PMID: 39090079 PMCID: PMC11294468 DOI: 10.1038/s41467-024-50660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The lack of an appropriate preclinical model of metabolic dysfunction-associated steatotic liver disease (MASLD) that recapitulates the whole disease spectrum impedes exploration of disease pathophysiology and the development of effective treatment strategies. Here, we develop a mouse model (Streptozotocin with high-fat diet, STZ + HFD) that gradually develops fatty liver, metabolic dysfunction-associated steatohepatitis (MASH), hepatic fibrosis, and hepatocellular carcinoma (HCC) in the context of metabolic dysfunction. The hepatic transcriptomic features of STZ + HFD mice closely reflect those of patients with obesity accompanying type 2 diabetes mellitus, MASH, and MASLD-related HCC. Dietary changes and tirzepatide administration alleviate MASH, hepatic fibrosis, and hepatic tumorigenesis in STZ + HFD mice. In conclusion, a murine model recapitulating the main histopathologic, transcriptomic, and metabolic alterations observed in MASLD patients is successfully established.
Collapse
Affiliation(s)
- Byung-Kwan Jeong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Won-Il Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.
| | - Jieun Moon
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Won Hee Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Sang-Hyun Lee
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Jung Kuk Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, 22212, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea.
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea.
- Biomedical Research Center, KAIST, Daejeon, Korea.
| |
Collapse
|
23
|
Tavakoli R, Maleki MH, Vakili O, Taghizadeh M, Zal F, Shafiee SM. Bilirubin, once a toxin but now an antioxidant alleviating non-alcoholic fatty liver disease in an autophagy-dependent manner in high-fat diet-induced rats: a molecular and histopathological analysis. Res Pharm Sci 2024; 19:475-488. [PMID: 39399727 PMCID: PMC11468170 DOI: 10.4103/rps.rps_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose As an endogenous antioxidant, bilirubin has surprisingly been inversely correlated with the risk of non-alcoholic fatty liver disease (NAFLD). Thereupon, the current evaluation was designed to assess the positive effects of bilirubin on the autophagy flux, as well as the other pathogenic processes and parameters involved in the expansion of NAFLD. Experimental approach Thirty adult male rats weighing 150-200 g with free access to sucrose solution (18%) were randomly subdivided into 5 groups (n = 6). Subsequently, the animals were euthanized, and their blood specimens and liver tissue samples were collected to measure serum biochemical indices, liver histopathological changes, intrahepatic triglycerides content, and tissue stereological alterations. Furthermore, the expression levels of autophagy-related genes (Atgs) were measured to assess the state of the autophagy flux. Findings/Results Fasting blood glucose, body weight, as well as liver weight, liver-specific enzyme activity, and serum lipid profile indices markedly decreased in rats that underwent a six-week bilirubin treatment compared to the control group. In addition, histopathological studies showed that hepatic steatosis, fibrosis, inflammation, and necrosis significantly decreased in the groups that received bilirubin compared to the control animals. Bilirubin also caused significant alterations in the expression levels of the Atgs, as well as the Beclin- 1 protein. Conclusion and implication Bilirubin may have potential ameliorative effects on NAFLD-associated liver damage. Moreover, the beneficial effects of bilirubin on intrahepatic lipid accumulation and steatosis were comparable with the group that did not ever receive bilirubin.
Collapse
Affiliation(s)
- Ramin Tavakoli
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Tangestani H, Jamshidi A, Farhadi A, Ghalandari H, Dehghani P, Moghaddas N, Safaei Z, Emamat H. The effects of pomegranate (Punica granatum) on nonalcoholic fatty liver disease: A systematic review of in vivo interventional studies. Phytother Res 2024; 38:4189-4201. [PMID: 38923154 DOI: 10.1002/ptr.8272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disorder in which excess fat accumulates in hepatocytes and can lead to serious complications. Oxidative stress is one of the leading causes of NAFLD. Pomegranates are considered antioxidant-rich fruit. This systematic review study was aimed to investigate the impact of pomegranate on NAFLD. PubMed, Scopus, and Google Scholar databases/search engines (from inception up to July 2023) were searched for interventional studies (human and animal) that examined the effects of supplementation with different parts of pomegranate including fruits, peels, seeds, or flower on NAFLD outcomes. A total of 222 articles were retrieved following the initial search. After excluding duplicates, the title and abstract of 114 articles were screened. Afterward, irrelevant articles were removed and the full texts of the remaining 27 articles were reviewed. Eventually, 19 articles (16 animal and three human interventional studies) that met the inclusion criteria, published between 2009 and 2023, were included in this systematic review. Our study indicates the potential beneficial effects of different parts of pomegranate on the improvement of NAFLD. However, given that the majority of the included articles were animal studies, further investigations in the form of human clinical trials are warranted to suggest a clinical indication of such interventions.
Collapse
Affiliation(s)
- Hadith Tangestani
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Jamshidi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Dehghani
- Students Research Committee, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nika Moghaddas
- Students Research Committee, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Safaei
- Department of Library and Medical Information, School of Paramedical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hadi Emamat
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
25
|
Takano S, Kani K, Kasai K, Igarashi N, Kato M, Goto K, Matsuura Y, Ichimura-Shimizu M, Watanabe S, Tsuneyama K, Furusawa Y, Nagai Y. Antibiotic effects on gut microbiota modulate diet-induced metabolic dysfunction-associated steatohepatitis development in C57BL/6 mice. Genes Cells 2024; 29:635-649. [PMID: 38864277 DOI: 10.1111/gtc.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
The potential involvement of the gut microbiota in metabolic dysfunction-associated steatohepatitis (MASH) pathogenesis has garnered increasing attention. In this study, we elucidated the link between high-fat/cholesterol/cholate-based (iHFC)#2 diet-induced MASH progression and gut microbiota in C57BL/6 mice using antibiotic treatments. Treatment with vancomycin (VCM), which targets gram-positive bacteria, exacerbated the progression of liver damage, steatosis, and fibrosis in iHFC#2-fed C57BL/6 mice. The expression levels of inflammation- and fibrosis-related genes in the liver significantly increased after VCM treatment for 8 weeks. F4/80+ macrophage abundance increased in the livers of VCM-treated mice. These changes were rarely observed in the iHFC#2-fed C57BL/6 mice treated with metronidazole, which targets anaerobic bacteria. A16S rRNA sequence analysis revealed a significant decrease in α-diversity in VCM-treated mice compared with that in placebo-treated mice, with Bacteroidetes and Firmicutes significantly decreased, while Proteobacteria and Verrucomicrobia increased markedly. Finally, VCM treatment dramatically altered the level and balance of bile acid (BA) composition in iHFC#2-fed C57BL/6 mice. Thus, the VCM-mediated exacerbation of MASH progression depends on the interaction between the gut microbiota, BA metabolism, and inflammatory responses in the livers of iHFC#2-fed C57BL/6 mice.
Collapse
Affiliation(s)
- Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Miyuna Kato
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Kana Goto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Yudai Matsuura
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|
26
|
Tan ZX, Mehta B, Kusel K, Seow J, Zelesco M, Abbott S, Simons R, Boardman G, Welman CJ, Ayonrinde OT. Hepatic steatosis: Qualitative and quantitative sonographic assessment in comparison to histology. Australas J Ultrasound Med 2024; 27:179-188. [PMID: 39328258 PMCID: PMC11423484 DOI: 10.1002/ajum.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Introduction Globally, B-mode ultrasound is the most common modality used for the diagnosis of hepatic steatosis. We aimed to assess the correlation between qualitative liver ultrasound parameters, attenuation imaging (ATI) and histopathology-diagnosed steatosis grade obtained from liver biopsy. Our secondary aim was to examine the interobserver variability of qualitative ultrasound features. Methods A retrospective cohort study was performed which included adult patients (age ≥ 18 years) who had same-day liver ultrasound, ATI and liver biopsy for grading hepatic steatosis severity between 2018 and 2022. The qualitative US features for hepatic steatosis were independently scored by three radiologists and interobserver variability was examined. Histologic steatosis grade, ATI and qualitative ultrasound parameters were compared. Results Ninety patients were included; 67% female with a median age of 54 (IQR 39-65) years. The radiologist's overall impression had the highest correlation (very strongly correlated) with histologic steatosis grade (r = 0.82, P < 0.001). ATI coefficient and all qualitative ultrasound B-mode features except for liver echotexture and focal fat sparing were strongly correlated with histologic steatosis grade (r ≥ 0.70, P < 0.001). Most qualitative ultrasound features had good agreement between observers (Kappa statistic 0.61-1.0, P < 0.001), (Kendall coefficient 0.92, P < 0.001). Conclusion The examined qualitative ultrasound parameters and ATI had good-excellent performance for diagnosing clinically significant hepatic steatosis; however, the radiologist's overall impression had the best correlation with histologic steatosis grade. Our findings suggest an ongoing role for qualitative liver ultrasound assessment of hepatic steatosis despite the emergence of newer quantitative measures.
Collapse
Affiliation(s)
- Zhi Xin Tan
- Gastroenterology and Hepatology Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Bryan Mehta
- Gastroenterology and Hepatology Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Kieran Kusel
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - James Seow
- Department of Radiology Royal Perth Hospital Perth Western Australia Australia
| | - Marilyn Zelesco
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Steven Abbott
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Rebecca Simons
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Glenn Boardman
- SMHS Research Support and Development Unit Murdoch Western Australia Australia
| | - Christopher J Welman
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
- Department of Radiology Royal Perth Hospital Perth Western Australia Australia
| | - Oyekoya T Ayonrinde
- Gastroenterology and Hepatology Fiona Stanley Hospital Murdoch Western Australia Australia
- Medical School The University of Western Australia Crawley Western Australia Australia
- Faculty of Health Sciences Curtin University Perth Western Australia Australia
| |
Collapse
|
27
|
Mishra F, Yuan Y, Yang JJ, Li B, Chan P, Liu Z. Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment. Int J Mol Sci 2024; 25:7447. [PMID: 39000553 PMCID: PMC11242029 DOI: 10.3390/ijms25137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
Collapse
Affiliation(s)
- Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
28
|
Igarashi N, Kasai K, Tada Y, Kani K, Kato M, Takano S, Goto K, Matsuura Y, Ichimura-Shimizu M, Watanabe S, Tsuneyama K, Furusawa Y, Nagai Y. Impacts of liver macrophages, gut microbiota, and bile acid metabolism on the differences in iHFC diet-induced MASH progression between TSNO and TSOD mice. Inflamm Res 2024; 73:1081-1098. [PMID: 38619583 DOI: 10.1007/s00011-024-01884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Tsumura-Suzuki non-obese (TSNO) mice exhibit a severe form of metabolic dysfunction-associated steatohepatitis (MASH) with advanced liver fibrosis upon feeding a high-fat/cholesterol/cholate-based (iHFC) diet. Another ddY strain, Tsumura-Suzuki diabetes obese (TSOD) mice, are impaired in the progression of iHFC diet-induced MASH. AIM To elucidate the underlying mechanisms contributing to the differences in MASH progression between TSNO and TSOD mice. METHODS We analyzed differences in the immune system, gut microbiota, and bile acid metabolism in TSNO and TSOD mice fed with a normal diet (ND) or an iHFC diet. RESULTS TSOD mice had more anti-inflammatory macrophages in the liver than TSNO mice under ND feeding, and were impaired in the iHFC diet-induced accumulation of fibrosis-associated macrophages and formation of histological hepatic crown-like structures in the liver. The gut microbiota of TSOD mice also exhibited a distinct community composition with lower diversity and higher abundance of Akkermansia muciniphila compared with that in TSNO mice. Finally, TSOD mice had lower levels of bile acids linked to intestinal barrier disruption under iHFC feeding. CONCLUSIONS The dynamics of liver macrophage subsets, and the compositions of the gut microbiota and bile acids at steady state and post-onset of MASH, had major impacts on MASH development.
Collapse
Affiliation(s)
- Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miyuna Kato
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kana Goto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yudai Matsuura
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
29
|
Vegda HS, Patel B, Girdhar GA, Pathan MSH, Ahmad R, Haque M, Sinha S, Kumar S. Role of Nonalcoholic Fatty Liver Disease in Periodontitis: A Bidirectional Relationship. Cureus 2024; 16:e63775. [PMID: 39100036 PMCID: PMC11297857 DOI: 10.7759/cureus.63775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and periodontitis share common risk factors such as obesity, insulin resistance (IR), and dyslipidemia, which contribute to systemic inflammation. It has been suggested that a bidirectional relationship exists between NAFLD and periodontitis, indicating that one condition may exacerbate the other. NAFLD is characterized by excessive fat deposition in the liver and is associated with low-grade chronic inflammation. There are several risk factors for the development of NAFLD, including gender, geriatric community, race, ethnicity, poor sleep quality and sleep deprivation, physical activity, nutritional status, dysbiosis gut microbiota, increased oxidative stress, overweight, obesity, higher body mass index (BMI), IR, type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), dyslipidemia (hypercholesterolemia), and sarcopenia (decreased skeletal muscle mass). This systemic inflammation can contribute to the progression of periodontitis by impairing immune responses and exacerbating the inflammatory processes in the periodontal tissues. Furthermore, individuals with NAFLD often exhibit altered lipid metabolism, which may affect oral microbiota composition, leading to dysbiosis and increased susceptibility to periodontal disease. Conversely, periodontitis has been linked to the progression of NAFLD through mechanisms involving systemic inflammation and oxidative stress. Chronic periodontal inflammation can release pro-inflammatory cytokines and bacterial toxins into the bloodstream, contributing to liver inflammation and exacerbating hepatic steatosis. Moreover, periodontitis-induced oxidative stress may promote hepatic lipid accumulation and IR, further aggravating NAFLD. The interplay between NAFLD and periodontitis underscores the importance of comprehensive management strategies targeting both conditions. Lifestyle modifications such as regular exercise, a healthy diet, and proper oral hygiene practices are crucial for preventing and managing these interconnected diseases. Additionally, interdisciplinary collaboration between hepatologists and periodontists is essential for optimizing patient care and improving outcomes in individuals with NAFLD and periodontitis.
Collapse
Affiliation(s)
- Hardika S Vegda
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
30
|
Şen İ, Dumlu Ş. Liver Fatty Acid-binding Protein Is a More Reliable Biomarker for Liver Injury in Nonalcoholic Steatohepatitis than Other Etiologies of Hepatitis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:568-576. [PMID: 39128054 PMCID: PMC11363397 DOI: 10.5152/tjg.2024.23444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/15/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Liver fatty acid-binding protein (LFABP) controls hepatocyte lipid metabolism and can be a biomarker in liver diseases. We compared the correlation of LFABP levels with liver histology in viral hepatitis and nonalcoholic fatty liver disease (NAFLD) and investigated the utility of serum LFABP as a biomarker for liver damage. MATERIALS AND METHODS We included 142 patients (60 chronic viral hepatitis B [CHB], 35 chronic viral hepatitis C [CHC], 47 NAFLD) and 40 healthy controls. LFABP levels were determined in all participants, and a liver biopsy was performed on patients. The nonalcoholic steatohepatitis (NASH) activity score (NAS), hepatosteatosis, liver inflammation, and fibrosis were evaluated for NAFLD patients. Ishak's histological scores were used for viral hepatitis. The correlation between LFABP levels and histologic scores was assessed in each group. RESULTS Serum LFABP levels in CHB, CHC, NAFLD, and control groups were 2.2, 3.5, 7.6, and 2.1 ng/mL, respectively. LFABP levels were significantly higher in the NAFLD group compared to the control, CHC, and CHB groups. LFABP was significantly higher in the NASH group than in nonalcoholic steatohepatitis, 8 ng/mL and 5.4 ng/mL, respectively (P = .001). In the NAFLD group, LFABP levels showed a moderate positive correlation with NAS score (r = 0.58, P <.001), ballooning degeneration (r = 0.67, P <.001), and lobular inflammation (r = 0.62, P <.001). A logistic regression study showed that the level of LFABP was predictive of NASH independent of age, gender, homeostasis model of IR, body mass index, aspartate aminotransferase, and alanine aminotransferase (OR = 1.869, P = .01). CONCLUSION LFABP specifically correlates with liver histology in NAFLD compared to viral hepatitis. Additionally, it can distinguish NASH from simple steatosis. LFABP may be a valuable biomarker for hepatocyte injury in NASH.
Collapse
Affiliation(s)
- İlker Şen
- Department of Gastroenterology, Şişli Hamidiye Etfal Education and Research Hospital, İstanbul, Türkiye
| | - Şükrü Dumlu
- Department of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
31
|
Solleiro-Villavicencio H, Méndez-García LA, Ocampo-Aguilera NA, Baltazar-Pérez I, Arreola-Miranda JA, Aguayo-Guerrero JA, Alfaro-Cruz A, González-Chávez A, Fonseca-Sánchez MA, Fragoso JM, Escobedo G. Decreased Hepatic and Serum Levels of IL-10 Concur with Increased Lobular Inflammation in Morbidly Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:862. [PMID: 38929479 PMCID: PMC11205754 DOI: 10.3390/medicina60060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Accumulating evidence in animal models suggests that loss of interleukin-10 (IL-10) anti-inflammatory actions might contribute to lobular inflammation, considered one of the first steps toward NASH development. However, the role of IL-10 in lobular inflammation remains poorly explored in humans. We examined mRNA and protein levels of IL-10 in liver biopsies and serum samples from morbidly obese patients, investigating the relationship between IL-10 and lobular inflammation degree. Materials and Methods: We prospectively enrolled morbidly obese patients of both sexes, assessing the lobular inflammation grade by the Brunt scoring system to categorize participants into mild (n = 7), moderate (n = 19), or severe (n = 13) lobular inflammation groups. We quantified the hepatic mRNA expression of IL-10 by quantitative polymerase chain reaction and protein IL-10 levels in liver and serum samples by Luminex Assay. We estimated statistical differences by one-way analysis of variance (ANOVA) and Tukey's multiple comparison test. Results: The hepatic expression of IL-10 significantly diminished in patients with severe lobular inflammation compared with the moderate lobular inflammation group (p = 0.01). The hepatic IL-10 protein levels decreased in patients with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.008 and p = 0.0008, respectively). In circulation, IL-10 also significantly decreased in subjects with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.005 and p < 0.0001, respectively). Conclusions: In liver biopsies and serum samples of morbidly obese patients, the protein levels of IL-10 progressively decrease as lobular inflammation increases, supporting the hypothesis that lobular inflammation develops because of the loss of the IL-10-mediated anti-inflammatory counterbalance.
Collapse
Affiliation(s)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Nydia A. Ocampo-Aguilera
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Itzel Baltazar-Pérez
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Arreola-Miranda
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Ana Alfaro-Cruz
- Pathological Anatomy Department, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | - Antonio González-Chávez
- Clínica de Atención Integral para Pacientes con Diabetes y Obesidad (CAIDO), General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | | | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| |
Collapse
|
32
|
Aumailley L, Dubois MJ, Marette A, Lebel M. Integrated liver and serum proteomics uncover sexual dimorphism and alteration of several immune response proteins in an aging Werner syndrome mouse model. Aging (Albany NY) 2024; 16:8417-8445. [PMID: 38795389 PMCID: PMC11164518 DOI: 10.18632/aging.205866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/18/2024] [Indexed: 05/27/2024]
Abstract
Werner syndrome (WS) is a progeroid disorder caused by mutations in a protein containing both a DNA exonuclease and DNA helicase domains. Previous studies indicated that males lacking the helicase domain of the Wrn protein orthologue exhibited hepatic transcriptomic and metabolic alterations. In this study, we used a label-free liquid chromatography-tandem mass spectrometry approach to uncover proteins abundance associated with specific biological processes that differed depending on the age (four or ten months) and/or the genotype (wild type or Wrn mutant) in the serum and liver of mice. Principal component analysis of the proteomic data from both serum and hepatic tissue revealed a sexual dimorphism regardless of the age and the genotype of the mice. Moreover, although all Wrn mutant mice exhibited fatty liver by the age of ten months, a significant age and genotype dependent enrichment of proteins involved in lipid and fatty acid metabolic processes were uncovered only in males. Also, a genotype dependent increase in serum oxidant detoxification processes was observed in the serum of Wrn mutant males. Despite these sexual differences, several aspects of the immune system were affected in both females and males. Finally, an increase of specific immunoglobulin molecules was common in the liver and serum of both older Wrn mutant females and males. Such results suggest that specific immunoglobulin variants maybe associated with fatty liver progression in WS.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City G1V 4G2, Canada
| | - Marie Julie Dubois
- Quebec Heart and Lung Institute, Faculty of Medicine, Université Laval, Québec City G1V 0A6, Canada
| | - André Marette
- Quebec Heart and Lung Institute, Faculty of Medicine, Université Laval, Québec City G1V 0A6, Canada
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City G1V 4G2, Canada
| |
Collapse
|
33
|
Moreno J, Gluud LL, Galsgaard ED, Hvid H, Mazzoni G, Das V. Identification of ligand and receptor interactions in CKD and MASH through the integration of single cell and spatial transcriptomics. PLoS One 2024; 19:e0302853. [PMID: 38768139 PMCID: PMC11104622 DOI: 10.1371/journal.pone.0302853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.
Collapse
Affiliation(s)
- Jaime Moreno
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Gianluca Mazzoni
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Vivek Das
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| |
Collapse
|
34
|
López-Pascual E, Rienda I, Perez-Rojas J, Rapisarda A, Garcia-Llorens G, Jover R, Castell JV. Drug-Induced Fatty Liver Disease (DIFLD): A Comprehensive Analysis of Clinical, Biochemical, and Histopathological Data for Mechanisms Identification and Consistency with Current Adverse Outcome Pathways. Int J Mol Sci 2024; 25:5203. [PMID: 38791241 PMCID: PMC11121209 DOI: 10.3390/ijms25105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid β-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.
Collapse
Affiliation(s)
- Ernesto López-Pascual
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Judith Perez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Anna Rapisarda
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Guillem Garcia-Llorens
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramiro Jover
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Castell
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
35
|
Papadopoulos G, Giannousi E, Avdi AP, Velliou RI, Nikolakopoulou P, Chatzigeorgiou A. Τ cell-mediated adaptive immunity in the transition from metabolic dysfunction-associated steatohepatitis to hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1343806. [PMID: 38774646 PMCID: PMC11106433 DOI: 10.3389/fcell.2024.1343806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the progressed version of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by inflammation and fibrosis, but also a pathophysiological "hub" that favors the emergence of liver malignancies. Current research efforts aim to identify risk factors, discover disease biomarkers, and aid patient stratification in the context of MASH-induced hepatocellular carcinoma (HCC), the most prevalent cancer among MASLD patients. To investigate the tumorigenic transition in MASH-induced HCC, researchers predominantly exploit preclinical animal-based MASH models and studies based on archived human biopsies and clinical trials. Recapitulating the immune response during tumor development and progression is vital to obtain mechanistic insights into MASH-induced HCC. Notably, the advanced complexity behind MASLD and MASH pathogenesis shifted the research focus towards innate immunity, a fundamental element of the hepatic immune niche that is usually altered robustly in the course of liver disease. During the last few years, however, there has been an increasing interest for deciphering the role of adaptive immunity in MASH-induced HCC, particularly regarding the functions of the various T cell populations. To effectively understand the specific role of T cells in MASH-induced HCC development, scientists should urgently fill the current knowledge gaps in this field. Pinpointing the metabolic signature, sketching the immune landscape, and characterizing the cellular interactions and dynamics of the specific T cells within the MASH-HCC liver are essential to unravel the mechanisms that adaptive immunity exploits to enable the emergence and progression of this cancer. To this end, our review aims to summarize the current state of research regarding the T cell functions linked to MASH-induced HCC.
Collapse
Affiliation(s)
- Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini P. Avdi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institute and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Drai C, Chierici A, Pavone G, Benamran D, Alromayan M, Alamri A, Anty R, Liddo G, Iannelli A. Remission of nonalcoholic steatohepatitis after bariatric surgery: a single referral center cohort study. Surg Obes Relat Dis 2024; 20:482-489. [PMID: 38195314 DOI: 10.1016/j.soard.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Obesity is associated with nonalcoholic steatohepatitis (NASH), which leads to an increased rate of primary liver cancers, cirrhosis, and decreased life expectancy. Metabolic/bariatric surgery (MBS) determines long-term weight loss and the resolution of obesity-related medical problems. OBJECTIVE The aim of this study was to evaluate the impact of MBS on liver histologic features in individuals with obesity. SETTING Tertiary referral university hospital. METHODS We retrospectively analyzed data on 37 patients undergoing MBS from a prospectively held database. All patients had a liver biopsy at the time of MBS and a second liver biopsy in case of further surgery or for NASH follow-up. Eighteen patients had NASH on the first liver biopsy. The primary endpoint was the resolution of steatohepatitis without worsening of fibrosis on the second liver biopsy. Secondary endpoints were the evolution of liver steatosis, hepatocyte ballooning, nonalcoholic fatty liver disease activity score, and biochemical parameters from the time of the first to the second liver biopsy. RESULTS Fifteen (83.3%) patients had significant resolution of steatohepatitis (P < .001) without fibrosis worsening. There was a statistically significant improvement of all blood tests except for low-density lipoprotein, alkaline phosphatases, and bilirubinemia. The Homeostatic Model Assessment (HOMA) index was significantly improved after MBS (P < .001), and circulating insulin and leptin concentrations were significantly reduced. Mean weight loss was 47 kg, with a 16.6 kg/m2 body mass index reduction and a % of total weight loss (%TWL) of 40.3 ±14% from the moment of MBS to the last follow-up. CONCLUSION MBS is effective in determining NASH regression without fibrosis worsening and in reducing HOMA index and leptin and insulin concentrations.
Collapse
Affiliation(s)
- Céline Drai
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Andrea Chierici
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Giovanna Pavone
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Dorith Benamran
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Mohamed Alromayan
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Security Forces Medical City, Riyadh, Saudi Arabia
| | - Abdulrhamane Alamri
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Department of Surgery, Medical College, Najran University. Najran, Saudi Arabia
| | - Rodolphe Anty
- Department of Gastroenterology, Digestive Center, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France; Université Côte d'Azur, Nice, France
| | - Guido Liddo
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Antonio Iannelli
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Université Côte d'Azur, Nice, France; Team 8 "Hepatic complications of obesity and alcohol," Inserm U1065, Nice, France.
| |
Collapse
|
37
|
Njei B, Osta E, Njei N, Al-Ajlouni YA, Lim JK. An explainable machine learning model for prediction of high-risk nonalcoholic steatohepatitis. Sci Rep 2024; 14:8589. [PMID: 38615137 PMCID: PMC11016071 DOI: 10.1038/s41598-024-59183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Early identification of high-risk metabolic dysfunction-associated steatohepatitis (MASH) can offer patients access to novel therapeutic options and potentially decrease the risk of progression to cirrhosis. This study aimed to develop an explainable machine learning model for high-risk MASH prediction and compare its performance with well-established biomarkers. Data were derived from the National Health and Nutrition Examination Surveys (NHANES) 2017-March 2020, which included a total of 5281 adults with valid elastography measurements. We used a FAST score ≥ 0.35, calculated using liver stiffness measurement and controlled attenuation parameter values and aspartate aminotransferase levels, to identify individuals with high-risk MASH. We developed an ensemble-based machine learning XGBoost model to detect high-risk MASH and explored the model's interpretability using an explainable artificial intelligence SHAP method. The prevalence of high-risk MASH was 6.9%. Our XGBoost model achieved a high level of sensitivity (0.82), specificity (0.91), accuracy (0.90), and AUC (0.95) for identifying high-risk MASH. Our model demonstrated a superior ability to predict high-risk MASH vs. FIB-4, APRI, BARD, and MASLD fibrosis scores (AUC of 0.95 vs. 0.50, 0.50, 0.49 and 0.50, respectively). To explain the high performance of our model, we found that the top 5 predictors of high-risk MASH were ALT, GGT, platelet count, waist circumference, and age. We used an explainable ML approach to develop a clinically applicable model that outperforms commonly used clinical risk indices and could increase the identification of high-risk MASH patients in resource-limited settings.
Collapse
Affiliation(s)
- Basile Njei
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, 06510, USA
- Global Clinical Scholars Research Program, Harvard Medical School, Boston, MA, USA
- Artificial Intelligence Programme, University of Oxford Said Business School, Oxford, UK
| | - Eri Osta
- University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Nelvis Njei
- Centers for Medicare and Medicaid Services, Baltimore, MD, USA
| | | | - Joseph K Lim
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
38
|
Lee EH, Kim JY, Yang HR. Sex-specific differences in ectopic fat and metabolic characteristics of paediatric nonalcoholic fatty liver disease. Int J Obes (Lond) 2024; 48:486-494. [PMID: 38114813 DOI: 10.1038/s41366-023-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND/OBJECTIVES Sex-specific differences in obesity-related metabolic characteristics of non-alcoholic fatty liver disease (NAFLD) have rarely been explored, particularly in children with biopsy-verified NAFLD. The influence of sex hormones on ectopic fat disposition may cause inter-sex differences in various metabolic factors. This study aimed to assess the sex-based differences in ectopic fat and metabolic characteristics in children with NAFLD. SUBJECT/METHODS We enrolled 63 children with biopsy-verified NAFLD (48 boys; mean age, 12.9 ± 3.2 years; mean body mass index z-score [BMI-z], 2.49 ± 1.21). Ectopic fat in the liver and pancreas was quantified based on magnetic resonance imaging within 2 days of the liver biopsy. Laboratory tests, body composition, blood pressure, and anthropometric measurements were also assessed. RESULTS Sex-based differences were neither observed in age, BMI-z, or total body fat percentage nor in the proportions of obesity, abdominal obesity, diabetes, dyslipidaemia, hypertension, or metabolic syndrome. Furthermore, liver enzyme levels, lipid profiles, and pancreatic fat did not differ between the sexes. However, boys had significantly higher fasting insulin (median 133.2 vs. 97.8 pmol/L; p = 0.039), fasting plasma glucose (median 5.30 vs. 4.83 mmol/L; p = 0.013), homeostasis model assessment of insulin resistance (median 5.4 vs. 3.6; p = 0.025), serum uric acid (404.1 ± 101.2 vs. 322.4 ± 87.1 μmol/L; p = 0.009), and liver fat (median 26.3% vs. 16.3%; p = 0.014). CONCLUSIONS Male-predominant hepatic steatosis and insulin resistance caused by sex-specific ectopic fat accumulation may contribute to higher uric acid levels in boys than in girls with NAFLD.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea
| | - Ji Young Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Ran Yang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea.
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
39
|
Aller R, Calleja JL, Crespo J, Romero-Gómez M, Turnes J, Benmarzouk-Hidalgo OJ, Subirán R, Gil A. Advanced fibrosis associated with non-alcoholic steatohepatitis (NASH) in Spain: results of a Delphi study. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:337-346. [PMID: 37343722 DOI: 10.1016/j.gastrohep.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE To describe in detail the epidemiology, diagnosis, clinical management, treatment options, impact on quality of life and unmet needs of patients with advanced liver fibrosis (F3-F4) associated with non-alcoholic steatohepatitis (NASH) in Spain. METHODOLOGY Delphi study of two rounds of consultation rounds with 41 expert hepatologists from 16 autonomous communities to collect their experience in clinical practice. RESULTS The estimated prevalence of adult patients diagnosed with F3-F4 fibrosis associated with NASH in Spain is 0.019% (95% confidence interval [CI]: 0.019-0.020%). Approximately 7,588 adults with this condition are currently diagnosed and managed in the Digestive System Services of Spanish hospitals, and around 1,881 new patients are diagnosed each year. Management is multidisciplinary and includes the specialties of Digestive System, Endocrinology and Internal Medicine, considering the frequently associated metabolic comorbidities (obesity, type 2 diabetes mellitus or dysmetabolic iron overload). Despite a clear impact on quality of life, this it is not routinely evaluated in clinical practice. The most widely used non-invasive diagnostic techniques are transitional elastography and liver fibrosis index 4 (FIB-4). The absence of effective and safe treatments appears as the main unmet need for the management of these patients. CONCLUSIONS This study provides a representation of the current situation of patients diagnosed with F3-F4 fibrosis associated with NASH in Spain, increasing the evidence available and contributing to informed decision-making by professionals and the health system.
Collapse
Affiliation(s)
- Rocío Aller
- Servicio de Gastroenterología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - José Luis Calleja
- Servicio de Gastroenterología, Hospital Universitario Puerta de Hierro, Madrid, España
| | - Javier Crespo
- Servicio de Gastroenterología, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - Manuel Romero-Gómez
- Servicio de Gastroenterología, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Juan Turnes
- Servicio de Gastroenterología, Complejo Hospitalario de Pontevedra, Pontevedra, España
| | | | | | - Alicia Gil
- Omakase Consulting S.L., Barcelona, España.
| |
Collapse
|
40
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
41
|
Oruc M, Gedik ME, Uner M, Ulug E, Unal RN, Gunaydin G, Dogrul AB. Effectiveness of metformin for the reversal of cold-ischemia-induced damage in hepatosteatosis. Clin Res Hepatol Gastroenterol 2024; 48:102314. [PMID: 38467276 DOI: 10.1016/j.clinre.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Primary dysfunction and rejection are more common in donor liver tissues with steatosis. AMP-activated protein kinase (AMPK) assumes organ-protective functions during ischemia. Metformin was used for the activation of AMPK in hepatocytes. The aim of this study is to investigate the effectiveness of metformin administration for the reversal of cold-ischemia-induced damage in hepatosteatosis. MATERIAL AND METHODS Seven-week-old C7BL56 male-mice (n = 109) were separated into four groups depending on diet type and metformin use. A specific diet model was followed for 10 weeks to induce hepatosteatosis. A group of the animals was administered with metformin for the last four weeks via oral gavage. After resection, the liver tissues were perfused and kept for 0-6-12-24 h in the UW solution. Histopathological examinations were performed, and Western blot was utilized to analyze p-AMPK and AMPK expression levels. RESULTS Hepatosteatosis decreased significantly with metformin. The steatotic liver group had more prominent pericentral inflammation, necrosis as well as showing a decreased and more delayed AMPK response than the non-fat group. All these alterations could be corrected using metformin. CONCLUSION Metformin can increase the resistance of livers with hepatosteatosis to cold-ischemia-induced damage, which in turn may pave the way for successful transplantation of fatty living-donor livers.
Collapse
Affiliation(s)
- Mustafa Oruc
- Department of General Surgery, Faculty Of Medicine, School of Medicine, Hacettepe University, Floor B, 06230, Ankara, Altindag 06230, Turkey
| | - Mustafa Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Meral Uner
- Department of Pathology, Hacettepe University School of Medicine, Ankara 06230, Turkey
| | - Elif Ulug
- Department of Nutrition and Dietetics, Hacettepe University, Ankara 06230, Turkey
| | - Reyhan Nergiz Unal
- Department of Nutrition and Dietetics, Hacettepe University, Ankara 06230, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Ahmet Bulent Dogrul
- Department of General Surgery, Faculty Of Medicine, School of Medicine, Hacettepe University, Floor B, 06230, Ankara, Altindag 06230, Turkey.
| |
Collapse
|
42
|
Chiang CH, Zhang TR, Hsu PS, Lin SP, Chen CY. Weight regain, but not weight loss exacerbates hepatic fibrosis during multiple weight cycling events in male mice. Eur J Nutr 2024; 63:965-976. [PMID: 38265751 DOI: 10.1007/s00394-024-03326-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE Weight cycling is a phenomenon characterized by fluctuating body weight that is commonly observed in individuals employing intentional weight loss methods. Despite its prevalence, the impact of weight cycling on health remains equivocal. The current investigation aimed to examine the effects of weight cycling on liver health. METHODS The weight cycling model was established by switching the feeding method of mice between ad libitum (AL) and restricted intake (DR or 60% of AL) of the breeding diet to cause weight gain and weight loss, respectively. The weight cycling model comprised two and a half cycles, with one group terminating the experience during the weight-gain period (S-AL) and the other during the weight-loss period (S-DR). Liver tissue was collected to investigate morphology alterations, apoptosis, lipid metabolism, and mitochondrial homeostasis. RESULTS The results demonstrated that the termination point of weight cycling affected body weight and hepatic steatosis. All parameters examined in the S-DR mice exhibited a comparable trend to those observed in the DR mice. Notably, S-AL mice showed a significant increase in lipid metabolism-related proteins in the liver compared to AL-fed mice, along with reduced lipid droplets. Moreover, hepatic apoptosis and fibrosis were exacerbated in the S-AL mice compared to AL mice, whereas mitochondrial fusion, biogenesis, and mitophagy were decreased in the S-AL mice. CONCLUSION Weight cycling ending in weight gain exacerbated hepatic fibrosis, potentially by inducing apoptosis or disrupting mitochondrial homeostasis. Conversely, weight cycling ending in weight loss demonstrated beneficial effects on hepatic health.
Collapse
Affiliation(s)
- Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ting-Rui Zhang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
Abbas NAT, Fayed FA, El Sebaey RS, Hassan HA. Telmisartan and candesartan promote browning of white adipose tissue and reverse fatty liver changes in high fat diet fed male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2359-2378. [PMID: 37831115 DOI: 10.1007/s00210-023-02771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Obesity is a key risk factor for many diseases, as cardiovascular disorders, diabetes, infertility, osteoarthritis, sleep apnea, non-alcoholic fatty liver disease (NAFLD) as well as increased risk for many cancers. Telmisartan and Candesartan cilexetil are angiotensin II receptor blockers which had proven to involve in pathogenesis of obesity and NAFLD. AIMS This work is designed to explore the possible mitigated effects of Telmisartan and Candesartan cilexetil on weight gain and fatty liver in high fat diet (HFD) fed rats. MAIN METHODS The HFD rat model was achieved with induction of NAFLD. For Seven weeks either telmisartan or candesartan were orally administered at doses of 5 and 10 mg/kg respectively once daily. The effects of both drugs were evaluated by measurements of rat's body weight, food intakes, length, body mass index (BMI), liver weight, inguinal and interscapular fat weights. In addition, we assayed lipid profile, liver functions tests, serum inflammatory cytokines, adipokine and leptin. Lastly, liver and adipose tissue histopathological structures were evaluated. KEY FINDINGS at end of experiment, telmisartan and candesartan were highly effective in decreasing rat's body weight from (213.1±2.68 to 191.2±2.54 and 203.5±5.89 gm , respectively), BMI, liver weight, fat weights in addition reduced serum levels of lipid and liver enzymes. Also, inflammatory cytokines were reduced with repaired histopathological insults in liver by significantly damped NAFLD score from (6.5 ±0.17 to 1±0 and 4 ±0, respectively) and decreased areas of adipocytes from (21239.12 to 5355.7 and 11607.1 um2 , respectively). SIGNIFICANCE Telmisartan and candesartan have therapeutic potential against obesity and NAFLD induced by HFD in rats. All the previous indices showed more improvement in telmisartan than candesartan group.
Collapse
Affiliation(s)
- Noha A T Abbas
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fawkia A Fayed
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab Saber El Sebaey
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| |
Collapse
|
44
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Athipornchai A, Changklungmoa N, Kueakhai P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals (Basel) 2024; 17:220. [PMID: 38399435 PMCID: PMC10892392 DOI: 10.3390/ph17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The ability of oil supplementation to inhibit various metabolic syndromes has been recognized. However, there are currently no studies determining the effects of oil supplements on healthy conditions. Plukenetia volubilis L., also known as Sacha inchi, is a seed rich in essential unsaturated fatty acids that improves metabolic syndrome diseases, such as obesity and nonalcoholic fatty liver. However, the health benefits and effects of Sacha inchi oil (SIO) supplementation remain unclear. This study aims to evaluate the chemical effects and properties of Sacha inchi oil. The results of the chemical compound analysis showed that Sacha inchi is an abundant source of ω-3 fatty acids, with a content of 44.73%, and exhibits scavenging activity of 240.53 ± 11.74 and 272.41 ± 6.95 µg Trolox/g, determined via DPPH and ABTS assays, respectively, while both olive and lard oils exhibited lower scavenging activities compared with Sacha inchi. Regarding liver histology, rats given Sacha inchi supplements showed lower TG accumulation and fat droplet distribution in the liver than those given lard supplements, with fat areas of approximately 14.19 ± 6.49% and 8.15 ± 2.40%, respectively. In conclusion, our findings suggest that Sacha inchi oil is a plant source of ω-3 fatty acids and antioxidants and does not induce fatty liver and pathology in the kidney, pancreas, and spleen. Therefore, it has the potential to be used as a dietary supplement to improve metabolic syndrome diseases.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Anan Athipornchai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| |
Collapse
|
45
|
Li YJ, Baumert BO, Stratakis N, Goodrich JA, Wu HT, He JX, Zhao YQ, Aung MT, Wang HX, Eckel SP, Walker DI, Valvi D, La Merrill MA, Ryder JR, Inge TH, Jenkins T, Sisley S, Kohli R, Xanthakos SA, Baccarelli AA, McConnell R, Conti DV, Chatzi L. Circulating microRNA expression and nonalcoholic fatty liver disease in adolescents with severe obesity. World J Gastroenterol 2024; 30:332-345. [PMID: 38313232 PMCID: PMC10835537 DOI: 10.3748/wjg.v30.i4.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in children and adolescents. NAFLD ranges in severity from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), wherein hepatocellular inflammation and/or fibrosis coexist with steatosis. Circulating microRNA (miRNA) levels have been suggested to be altered in NAFLD, but the extent to which miRNA are related to NAFLD features remains unknown. This analysis tested the hypothesis that plasma miRNAs are significantly associated with histological features of NAFLD in adolescents. AIM To investigate the relationship between plasma miRNA expression and NAFLD features among adolescents with NAFLD. METHODS This study included 81 adolescents diagnosed with NAFLD and 54 adolescents without NAFLD from the Teen-Longitudinal Assessment of Bariatric Surgery study. Intra-operative core liver biopsies were collected from participants and used to characterize histological features of NAFLD. Plasma samples were collected during surgery for miRNA profiling. A total of 843 plasma miRNAs were profiled using the HTG EdgeSeq platform. We examined associations of plasma miRNAs and NAFLD features using logistic regression after adjusting for age, sex, race, and other key covariates. Ingenuity Pathways Analysis was used to identify biological functions of miRNAs that were associated with multiple histological features of NAFLD. RESULTS We identified 16 upregulated plasma miRNAs, including miR-193a-5p and miR-193b-5p, and 22 downregulated plasma miRNAs, including miR-1282 and miR-6734-5p, in adolescents with NAFLD. Moreover, 52, 16, 15, and 9 plasma miRNAs were associated with NASH, fibrosis, ballooning degeneration, and lobular inflammation, respectively. Collectively, 16 miRNAs were associated with two or more histological features of NAFLD. Among those miRNAs, miR-411-5p was downregulated in NASH, ballooning, and fibrosis, while miR-122-5p, miR-1343-5p, miR-193a-5p, miR-193b-5p, and miR-7845-5p were consistently and positively associated with all histological features of NAFLD. Pathway analysis revealed that most common pathways of miRNAs associated with multiple NAFLD features have been associated with tumor progression, while we also identified linkages between miR-122-5p and hepatitis C virus and between miR-199b-5p and chronic hepatitis B. CONCLUSION Plasma miRNAs were associated with NAFLD features in adolescent with severe obesity. Larger studies with more heterogeneous NAFLD phenotypes are needed to evaluate miRNAs as potential biomarkers of NAFLD.
Collapse
Affiliation(s)
- Yi-Jie Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Nikos Stratakis
- Barcelona Institute of Global Health, Barcelona Institute of Global Health, Barcelona 08036, Spain
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hao-Tian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Jing-Xuan He
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Yin-Qi Zhao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hong-Xu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30329, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Justin R Ryder
- Department of Surgery, Lurie Children’s Hospital of Chicago, Chicago, IL 60611, United States
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Thomas H Inge
- Department of Surgery, Lurie Children’s Hospital of Chicago, Chicago, IL 60611, United States
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Todd Jenkins
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Stephanie Sisley
- Department of Pediatrics, Children’s Nutrition Research Center USDA/ARS, Baylor College of Medicine, Houston, TX 77030, United States
| | - Rohit Kohli
- Department of Gastroenterology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, United States
| | - Stavra A Xanthakos
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| |
Collapse
|
46
|
Lakkis NA, Mokalled NM, Osman MH, Musharrafieh UM, Eljammal M. Liver Cancer and Risk Factors in the MENA Region: Epidemiology and Temporal Trends Based on the 2019 Global Burden of Disease Data. Cancer Control 2024; 31:10732748241297346. [PMID: 39487107 PMCID: PMC11531006 DOI: 10.1177/10732748241297346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Liver cancer (LivCa) is a growing concern in the MENA region, driven by diverse factors, including viral hepatitis, lifestyle-related risks, and other causes. METHODS Utilizing GBD 2019 data, we assessed LivCa patterns, emphasizing chronic viral hepatitis, non-viral factors, and health care disparities across the MENA region. RESULTS Rising LivCa rates, particularly related to chronic viral hepatitis, highlight the region's health challenges. Lifestyle factors, such as obesity and diabetes, contribute significantly. Disparities in health care access and cancer registration hinder accurate assessments. CONCLUSION A comprehensive strategy is vital, encompassing vaccination promotion, health care enhancements, and lifestyle awareness. Urgent coordinated efforts are needed to address disparities, implement evidence-based interventions, and alleviate the escalating LivCa burden in the MENA region.
Collapse
Affiliation(s)
- Najla A. Lakkis
- Department of Family Medicine, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| | - Nour M. Mokalled
- Department of Internal Medicine, Hematology-Oncology, American University of Beirut (AUB), Beirut, Lebanon
| | - Mona H. Osman
- Department of Family Medicine, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| | - Umayya M. Musharrafieh
- Department of Family Medicine, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| | - Mohammad Eljammal
- Faculty of Medicine, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| |
Collapse
|
47
|
Torkzaban M, Wessner CE, Halegoua-DeMarzio D, Lyshchik A, Nam K. Diagnostic Performance of Quantitative Ultrasound Parameters in Non-alcoholic Fatty Liver Disease. Acad Radiol 2024; 31:199-211. [PMID: 37507328 DOI: 10.1016/j.acra.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE AND OBJECTIVES Marked liver steatosis, steatohepatitis, and significant fibrosis are risk factors for unfavorable outcomes in non-alcoholic fatty liver disease (NAFLD). In this study, the diagnostic performance of attenuation coefficient (AC), liver stiffness (LS), and dispersion slope (DS) was evaluated separately and combined in the diagnosis of liver steatosis and fibrosis in NAFLD suspects using biopsy or magnetic resonance imaging (MRI) as a reference standard. MATERIALS AND METHODS Seventy-four NAFLD suspects were prospectively imaged with an Aplio i800 ultrasound scanner (Canon Medical Systems, Tustin, CA). AC, LS, and DS measurements were obtained from the right liver lobe. RESULTS Thirty-four patients underwent liver biopsy, and 40 had MRI. There were 32 patients (43%) with liver steatosis and fibrosis (S + F), 22 (30%) with steatosis (S), 5 (7%) with fibrosis (F), and 15 (20%) with normal liver (N). Mean ACs were significantly higher in steatotic livers (n = 54) than in non-steatotic livers (n = 20) (P < 0.0001). LS and DS were significantly higher in patients with liver fibrosis (n = 37) compared to non-fibrotic livers (n = 37) (P = 0.0004 and P = 0.0002, respectively). In detecting (S + F), the area under the receiver operating characteristic curve (AUROCC) was 0.87 for combined ultrasound parameters of LS and AC (negative predictive value [NPV]: 75%, positive predictive value [PPV]: 77%, P < 0.0001). In detecting patients with liver steatosis and fibrosis stage ≥2, LS had an AUROCC of 0.93 (NPV: 87%, PPV: 82%, P < 0.0001). In the biopsy group, 32% (11/34) were diagnosed with non-alcoholic steatohepatitis (NASH). DS values showed a significant difference among patients with (n = 23) or without (n = 11) hepatocellular ballooning (P = 0.02). AUROCC was 0.87 for combined ultrasound parameters of AC, LS, and DS with body mass index (BMI) in detecting NASH (NPV: 80%, PPV: 87%, P = 0.0006). CONCLUSION AC and LS showed high diagnostic value in detecting liver steatosis and fibrosis, respectively. The combined AC and LS values further improved the diagnostic accuracy in detecting NAFLD and high-risk NAFLD patients.
Collapse
Affiliation(s)
- Mehnoosh Torkzaban
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (M.T., C.E.W., A.L., K.N.)
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (M.T., C.E.W., A.L., K.N.)
| | - Dina Halegoua-DeMarzio
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, Pennsylvania (D.H.)
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (M.T., C.E.W., A.L., K.N.)
| | - Kibo Nam
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (M.T., C.E.W., A.L., K.N.).
| |
Collapse
|
48
|
Xu J, Zhang H, Chen H, Zhu X, Jia H, Xu Z, Huo D, Zhang H, Li C, Ding Y. Safety, tolerability, pharmacokinetics and pharmacodynamics of a novel farnesoid X receptor (FXR) agonist-TQA3526 in healthy Chinese volunteers: a double-blind, randomized, placebo-controlled, dose-escalation, food effect phase I study. Ann Med 2023; 55:2264850. [PMID: 38071661 PMCID: PMC10836247 DOI: 10.1080/07853890.2023.2264850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 12/18/2023] Open
Abstract
Background: TQA3526 is a novel farnesoid X receptor agonist developed to treat non-alcoholic steatohepatitis (NASH) or primary biliary cholangitis (PBC). This study aimed to evaluate the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of TQA3526 in healthy Chinese patients.Methods: Healthy subjects aged 18-55 years were enrolled in this double-blinded, first-in-human, placebo-controlled single ascending dose (1, 2, 5, and 10 mg) comprising food effect investigation (10 mg) and multiple dose study (2 mg and 0.2 + 0.5 + 1 mg). Safety was assessed on the basis of adverse events. The TQA3526 concentrations were analysed in the PK study. Alkaline phosphatase (ALP), fibroblast growth factor-19 (FGF19), bile acid precursor C4 (7α-hydroxy-cholest-4-ene-3-one), cholesterol, and bile acid were selected for PD analysis.Results: TQA3526 was well tolerated, and the primary adverse drug reaction was pruritus, as expected. The exposure to TQA3526 increased in a dose-dependent manner after a single dose of 1-10 mg. The exposure was higher after food intake. A steady state was reached around 5 days, and obvious plasma accumulation of TQA3526 was observed in the multiple dose study. TQA3526 increased circulating FGF-19 and decreased C4 levels in a dose-dependent manner. ALP increased only mildly in the 2 mg multiple dose cohort.Conclusions: TQA3526 (<10 mg/day) was safe and tolerable in healthy Chinese subjects. The safety profile and PK/PD characteristics of TQA3526 support further evaluation of patients with NASH or PBC. This study was registered at https://www.chictr.org.cn/ under the identifier ChiCTR1800019570.
Collapse
Affiliation(s)
- Jia Xu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Hong Zhang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Hong Chen
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Haiyan Jia
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Zhongnan Xu
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing, China
| | - Dandan Huo
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing, China
| | - Hong Zhang
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing, China
| | - Cuiyun Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
49
|
Ichimura-Shimizu M, Kojima M, Suzuki S, Miyata M, Osaki Y, Matsui K, Mizui T, Tsuneyama K. Brain-derived neurotrophic factor knock-out mice develop non-alcoholic steatohepatitis. J Pathol 2023; 261:465-476. [PMID: 37781961 DOI: 10.1002/path.6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023]
Abstract
While brain-derived neurotrophic factor (BDNF), which is a growth factor associated with cognitive improvement and the alleviation of depression symptoms, is known to regulate food intake and body weight, the role of BDNF in peripheral disease is not fully understood. Here, we show that reduced BDNF expression is associated with weight gain and the chronic liver disease non-alcoholic steatohepatitis (NASH). At 10 months of age, BDNF-heterozygous (BDNF+/- ) mice developed symptoms of NASH: centrilobular/perivenular steatosis, lobular inflammation with infiltration of neutrophils, ballooning hepatocytes, and fibrosis of the liver. Obesity and higher serum levels of glucose and insulin - major pathologic features in human NASH - were dramatic. Dying adipocytes were surrounded by macrophages in visceral fat, suggesting that chronic inflammation occurs in peripheral organs. RNA sequencing (RNA-seq) studies of the liver revealed that the most significantly enriched Gene Ontology term involved fatty acid metabolic processes and the modulation of neutrophil aggregation, pathologies that well characterise NASH. Gene expression analysis by RNA-seq also support the notion that BDNF+/- mice are under oxidative stress, as indicated by alterations in the expression of the cytochrome P450 family and a reduction in glutathione S-transferase p, an antioxidant enzyme. Histopathologic phenotypes of NASH were also observed in a knock-in mouse (BDNF+/pro ), in which the precursor BDNF is inefficiently converted into the mature form of BDNF. Lastly, as BDNF reduction causes overeating and subsequent obesity, a food restriction study was conducted in BDNF+/pro mice. Pair-fed BDNF+/pro mice developed hepatocellular damage and showed infiltration of inflammatory cells, including neutrophils in the liver, despite having body weights and blood parameters that were comparable to those of controls. This is the first report demonstrating that reduced BDNF expression plays a role in the pathogenic mechanism of NASH, which is a hepatic manifestation of metabolic syndrome. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Yui Osaki
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Konomi Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Toshiyuki Mizui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
50
|
De la Cruz-Ku G, Zevallos A, Rázuri-Bustamante CR, Kalipatnapu S, Príncipe-Meneses FS, Dongo P, Chambergo-Michilot D, Salinas-Sedo G, Valcarcel B. Predictors of Nonalcoholic Steatohepatitis Severity in Obese Patients Undergoing Bariatric Surgery: A Cross-Sectional Study. Bariatr Surg Pract Patient Care 2023; 18:218-224. [DOI: 10.1089/bari.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Affiliation(s)
- Gabriel De la Cruz-Ku
- General Surgery, University of Massachusetts, Worcester, Massachusetts, USA
- Universidad Científica del Sur, Lima, Perú
| | | | | | - Sasank Kalipatnapu
- General Surgery, University of Massachusetts, Worcester, Massachusetts, USA
| | | | | | - Diego Chambergo-Michilot
- Universidad Científica del Sur, Lima, Perú
- Tau-RELAPED Group, Trujillo, Perú
- Departamento de Investigación Cardiológica, Centro Nacional de Investigación Torres de Salud, Lima, Perú
| | | | - Bryan Valcarcel
- The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|