1
|
Chauvet L, Brunel A, Le Gouar Y, Guérin S, Janvier R, Henry G, Cahu A, Dupont D, Lemaire M, Le Huërou-Luron I, Deglaire A. Protein Ingredient Quality within Infant Formulas Impacts Plasma Amino Acid Concentrations in Neonatal Minipiglets. J Nutr 2024; 154:2029-2041. [PMID: 38801861 DOI: 10.1016/j.tjnut.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Infant formulas (IFs), the only adequate substitute to human milk, are complex matrices that require numerous ingredients and processing steps that may impact protein digestion and subsequent amino acid (AA) absorption. OBJECTIVES The objective was to understand the impact of the protein ingredient quality within IFs on postprandial plasma AA profiles. METHODS Four isonitrogenous and isocaloric IFs were produced at a semi-industrial scale using whey proteins from different origins (cheese compared with ideal whey) and denaturation levels (IF-A, -B, -C), and caseins with different supramolecular organizations (IF-C, -D). Ten Yucatan minipiglets (12- to 27-d-old) were used as a human infant model and received each IF for 3 d according to a Williams Latin square followed by a 2-d wash-out period. Jugular plasma was regularly sampled from 10 min preprandial to 4 h postprandial on the third day to measure free AAs, urea, insulin, and glucose concentrations. Data were statistically analyzed using a mixed linear model with diet (IFs), time, and sex as fixed factors and piglet as random factor. RESULTS IFs made with cheese whey (IF-A and -B) elicited significantly higher plasma total and essential AA concentrations than IFs made with ideal whey (IF-C and -D), regardless of the pre- and postprandial times. Most of the differences observed postprandially were explained by AA homeostasis modifications. IFs based on cheese whey induced an increased plasma concentration of Thr due to both a higher Thr content in these IFs and a Thr-limiting degrading capability in piglets. The use of a nonmicellar casein ingredient led to reduced plasma content of AA catabolism markers (IF-D compared with IF-C). CONCLUSIONS Overall, our results highlight the importance of the protein ingredient quality (composition and structure) within IFs on neonatal plasma AA profiles, which may further impact infant protein metabolism.
Collapse
Affiliation(s)
- Lucile Chauvet
- STLO, INRAE, L'Institut Agro, Rennes, France; Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint Gilles, France; Centre Recherche and Innovation, SODIAAL International, Rennes, France
| | | | | | - Sylvie Guérin
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint Gilles, France
| | - Régis Janvier
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint Gilles, France
| | | | - Armelle Cahu
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint Gilles, France
| | | | - Marion Lemaire
- Centre Recherche and Innovation, SODIAAL International, Rennes, France
| | | | | |
Collapse
|
2
|
Pinckaers PJ, Domić J, Petrick HL, Holwerda AM, Trommelen J, Hendriks FK, Houben LH, Goessens JP, van Kranenburg JM, Senden JM, de Groot LC, Verdijk LB, Snijders T, van Loon LJ. Higher Muscle Protein Synthesis Rates Following Ingestion of an Omnivorous Meal Compared with an Isocaloric and Isonitrogenous Vegan Meal in Healthy, Older Adults. J Nutr 2024; 154:2120-2132. [PMID: 37972895 DOI: 10.1016/j.tjnut.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.
Collapse
Affiliation(s)
- Philippe Jm Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacintha Domić
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Heather L Petrick
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Floris K Hendriks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisanne Hp Houben
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy Pb Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau Mx van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisette Cpgm de Groot
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Trommelen J, van Loon LJC. Quantification and interpretation of postprandial whole-body protein metabolism using stable isotope methodology: a narrative review. Front Nutr 2024; 11:1391750. [PMID: 38812936 PMCID: PMC11133538 DOI: 10.3389/fnut.2024.1391750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Stable isotopes are routinely applied to determine the impact of factors such as aging, disease, exercise, and feeding on whole-body protein metabolism. The most common approaches to quantify whole-body protein synthesis, breakdown, and oxidation rates and net protein balance are based on the quantification of plasma amino acid kinetics. In the postabsorptive state, plasma amino acid kinetics can easily be assessed using a constant infusion of one or more stable isotope labeled amino acid tracers. In the postprandial state, there is an exogenous, dietary protein-derived amino acid flux that needs to be accounted for. To accurately quantify both endogenous as well as exogenous (protein-derived) amino acid release in the circulation, the continuous tracer infusion method should be accompanied by the ingestion of intrinsically labeled protein. However, the production of labeled protein is too expensive and labor intensive for use in more routine research studies. Alternative approaches have either assumed that 100% of exogenous amino acids are released in the circulation or applied an estimated percentage based on protein digestibility. However, such estimations can introduce large artifacts in the assessment of whole-body protein metabolism. The preferred estimation approach is based on the extrapolation of intrinsically labeled protein-derived plasma bioavailability data obtained in a similar experimental design setting. Here, we provide reference data on exogenous plasma amino acid release that can be applied to allow a more accurate routine assessment of postprandial protein metabolism. More work in this area is needed to provide a more extensive reference data set.
Collapse
Affiliation(s)
| | - Luc J. C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
4
|
van der Heijden I, West S, Monteyne AJ, Finnigan TJA, Abdelrahman DR, Murton AJ, Stephens FB, Wall BT. Ingestion of a variety of non-animal-derived dietary protein sources results in diverse postprandial plasma amino acid responses which differ between young and older adults. Br J Nutr 2024; 131:1540-1553. [PMID: 38220222 PMCID: PMC11043913 DOI: 10.1017/s0007114524000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Sam West
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Alistair J. Monteyne
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | | | - Doaa R. Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew J. Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Francis B. Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Benjamin T. Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| |
Collapse
|
5
|
Pinckaers PJM, Smeets JSJ, Kouw IWK, Goessens JPB, Gijsen APB, de Groot LCPGM, Verdijk LB, van Loon LJC, Snijders T. Post-prandial muscle protein synthesis rates following the ingestion of pea-derived protein do not differ from ingesting an equivalent amount of milk-derived protein in healthy, young males. Eur J Nutr 2024; 63:893-904. [PMID: 38228945 PMCID: PMC10948472 DOI: 10.1007/s00394-023-03295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Plant-derived proteins have received considerable attention as an alternative to animal-derived proteins. However, plant-derived proteins are considered to have less anabolic properties when compared with animal-derived proteins. The lower muscle protein synthesis rates following ingestion of plant- compared with animal-derived protein have been attributed to the lower essential amino acid content of plant-derived proteins and/or their specific amino acid deficiencies. This study aimed to compare post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein with 30 g milk-derived protein in healthy, young males. METHODS In a randomized, double-blind, parallel-group design, 24 young males (24 ± 3 y) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g pea (PEA) or 30 g milk-derived protein (MILK). Blood and muscle biopsies were collected frequently for 5 h to assess post-prandial plasma amino acid profiles and subsequent post-prandial muscle protein synthesis rates. RESULTS MILK increased plasma essential amino acid concentrations more than PEA over the 5 h post-prandial period (incremental area under curve 151 ± 31 vs 102 ± 15 mmol∙300 min∙L-1, respectively; P < 0.001). Ingestion of both MILK and PEA showed a robust muscle protein synthetic response with no significant differences between treatments (0.053 ± 0.013 and 0.053 ± 0.017%∙h-1, respectively; P = 0.96). CONCLUSION Post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein do not differ from the response following ingestion of an equivalent amount of milk-derived protein. International Clinical Trials Registry Platform (NTR6548; 27-06-2017).
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imre W K Kouw
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy P B Goessens
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemarie P B Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisette C P G M de Groot
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- TiFN, Wageningen, The Netherlands.
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Tim Snijders
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
6
|
González-Lamuño D, Morencos C, Arrieta FJ, Venegas E, Vicente-Rodríguez G, Casajús JA, Couce ML, Aldámiz-Echevarría L. Supplementation for Performance and Health in Patients with Phenylketonuria: An Exercise-Based Approach to Improving Dietary Adherence. Nutrients 2024; 16:639. [PMID: 38474766 DOI: 10.3390/nu16050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Supplementation is crucial for improving performance and health in phenylketonuria (PKU) patients, who face dietary challenges. Proteins are vital for athletes, supporting muscle growth, minimizing catabolism, and aiding muscle repair and glycogen replenishment post-exercise. However, PKU individuals must limit phenylalanine (Phe) intake, requiring supplementation with Phe-free amino acids or glycomacropeptides. Tailored to meet nutritional needs, these substitutes lack Phe but fulfill protein requirements. Due to limited supplement availability, athletes with PKU may need higher protein intake. Various factors affect tolerated Phe levels, including supplement quantity and age. Adhering to supplement regimens optimizes performance and addresses PKU challenges. Strategically-timed protein substitutes can safely enhance muscle synthesis and sports performance. Individualized intake is essential for optimal outcomes, recognizing proteins' multifaceted role. Here, we explore protein substitute supplementation in PKU patients within the context of physical activity, considering limited evidence.
Collapse
Affiliation(s)
- Domingo González-Lamuño
- University Hospital "Marqués de Valdecilla", Universidad de Cantabria and Research Institute Valdecilla (IDIVAL), 39008 Santander, Spain
- Exercise and Health in Special Population Spanish Research Net (EXERNET), 50009 Zaragoza, Spain
- Asociación Española para el Estudio de los Errores Congénitos del Metabolismo (AECOM)-AECOM&Sociedad, 28221 Majadahonda, Spain
| | | | - Francisco J Arrieta
- Asociación Española para el Estudio de los Errores Congénitos del Metabolismo (AECOM)-AECOM&Sociedad, 28221 Majadahonda, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Eva Venegas
- Asociación Española para el Estudio de los Errores Congénitos del Metabolismo (AECOM)-AECOM&Sociedad, 28221 Majadahonda, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Germán Vicente-Rodríguez
- Exercise and Health in Special Population Spanish Research Net (EXERNET), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- EXER-GENUD (Growth, Exercise, Nutrition and Development) Research Group, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28040 Madrid, Spain
- Faculty of Health and Sport Sciences, FCSD, Ronda Misericordia 5, 22001 Huesca, Spain
| | - José Antonio Casajús
- Exercise and Health in Special Population Spanish Research Net (EXERNET), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- EXER-GENUD (Growth, Exercise, Nutrition and Development) Research Group, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28040 Madrid, Spain
- Faculty of Health and Sport Sciences, FCSD, Ronda Misericordia 5, 22001 Huesca, Spain
| | - Maria Luz Couce
- Asociación Española para el Estudio de los Errores Congénitos del Metabolismo (AECOM)-AECOM&Sociedad, 28221 Majadahonda, Spain
- Unit for Diagnosis and Treatment of Congenital Metabolic Disorders, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Luís Aldámiz-Echevarría
- Asociación Española para el Estudio de los Errores Congénitos del Metabolismo (AECOM)-AECOM&Sociedad, 28221 Majadahonda, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Pinckaers PJM, Weijzen MEG, Houben LHP, Zorenc AH, Kouw IWK, de Groot LCPGM, Verdijk LB, Snijders T, van Loon LJC. The muscle protein synthetic response following corn protein ingestion does not differ from milk protein in healthy, young adults. Amino Acids 2024; 56:8. [PMID: 38315260 PMCID: PMC10844360 DOI: 10.1007/s00726-023-03377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/04/2023] [Indexed: 02/07/2024]
Abstract
Plant-derived proteins are generally believed to possess lesser anabolic properties when compared with animal-derived proteins. This is, at least partly, attributed to the lower leucine content of most plant-derived proteins. Corn protein has a leucine content that is highest among most plant-derived proteins and it even exceeds the levels observed in animal-derived proteins such as whey protein. Therefore, this study aimed to compare muscle protein synthesis rates following the ingestion of 30 g corn protein and a 30 g blend of corn plus milk protein with 30 g milk protein. In a randomized, double blind, parallel-group design, 36 healthy young males (26 ± 4 y) received primed continuous L-[ring-13C6]-phenylalanine infusions and ingested 30 g corn protein (CORN), 30 g milk protein (MILK), or a 30 g proteinblend with 15 g corn plus 15 g milk protein (CORN + MILK). Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. The results show that Ingestion of protein increased myofibrillar protein synthesis rates from basal post-absorptive values in all treatments(P < 0.001). Post-prandial myofibrillar protein synthesis rates did not differ between CORN vs MILK (0.053 ± 0.013 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.90), or between CORN + MILK vs MILK (0.052 ± 0.024 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.92). Ingestion of 30 g corn protein, 30 g milk protein, or a blend of 15 g corn plus 15 g milk protein robustly increases muscle protein synthesis rates in young males. The muscle protein synthetic response to the ingestion of 30 g corn-derived protein does not differ from the ingestion of an equivalent amount of milk protein in healthy, young males. Clinical Trial Registry number. NTR6548 (registration date: 27-06-2017) https://www.trialregister.nl/ .
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands
| | - Michelle E G Weijzen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands
| | - Lisanne H P Houben
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands
| | - Imre W K Kouw
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands
| | - Lisette C P G M de Groot
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands
| | - Tim Snijders
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands
| | - Luc J C van Loon
- TiFN, Wageningen, The Netherlands.
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
9
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
10
|
Jyväkorpi SK, Niskanen RT, Markkanen M, Salminen K, Sibakov T, Lehtonen KM, Kunvik S, Pitkala KH, Turpeinen AM, Suominen MH. Effect of Milk Fat Globule Membrane- and Protein-Containing Snack Product on Physical Performance of Older Women-A Randomized Controlled Trial. Nutrients 2023; 15:2922. [PMID: 37447248 DOI: 10.3390/nu15132922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Sarcopenia is common in people 70+ years of age, and its prevalence increases with further aging. Insufficient energy and protein intake accelerates muscle loss, whereas sufficient protein intake and milk fat globule membrane (MFGM) may suppress age-associated deterioration of muscle mass and strength. Our objective was to test whether a snack product high in MFGM and protein would improve physical performance in older women. METHODS In this 12-week randomized controlled trial, women ≥ 70 years, with protein intake < 1.2 g/body weight (BW) kg/day (d), were randomized into intervention (n = 51) and control (n = 50) groups. The intervention group received a daily snack product containing ≥ 23 g of milk protein and 3.6-3.9 g of MFGM. Both groups were advised to perform a five-movement exercise routine. The primary outcome was the change in the five-time-sit-to-stand test between the groups. Secondary outcomes included changes in physical performance, cognition, hand grip strength, and health-related quality of life. RESULTS The change in the five-time-sit-to-stand test did not differ between the intervention and the control groups. The change in the total Short Physical Performance Battery score differed significantly, favoring the intervention group (p = 0.020), and the balance test showed the largest difference. Protein intake increased significantly in the intervention group (+14 g) compared to the control group (+2 g). No other significant changes were observed. CONCLUSIONS Our results indicate that the combination of MFGM and protein may improve the physical performance-related balance of older women.
Collapse
Affiliation(s)
- Satu K Jyväkorpi
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Riikka T Niskanen
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Marianna Markkanen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Society for Gerontological Nutrition in Finland, 00700 Helsinki, Finland
| | - Karoliina Salminen
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Susanna Kunvik
- Faculty of Health and Welfare, Satakunta University of Applied Sciences, 28101 Pori, Finland
| | - Kaisu H Pitkala
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | | | - Merja H Suominen
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
- Society for Gerontological Nutrition in Finland, 00700 Helsinki, Finland
| |
Collapse
|
11
|
Dos Santos EM, Moreira ASB, Huguenin GVB, Tibiriça E, De Lorenzo A. Effects of Whey Protein Isolate on Body Composition, Muscle Mass, and Strength of Chronic Heart Failure Patients: A Randomized Clinical Trial. Nutrients 2023; 15:nu15102320. [PMID: 37242203 DOI: 10.3390/nu15102320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is associated with a reduction of skeletal muscle mass. Whey protein isolate (WPI) has been beneficial in increasing muscle mass and strength, in addition to improving body composition. The goal of this research was to evaluate the effect of WPI on the body composition, muscle mass, and strength of chronic HF patients. For this purpose, twenty-five patients of both genders with predominantly NYHA I functional class and a median age of 65.5 (60.5-71.0) years were used to conduct a randomized, single-blind, placebo-controlled clinical trial and received 30 g per day of WPI for 12 weeks. Anthropometric measurements, body composition analysis, and biochemical exams were performed at the beginning and end of the study. An increase in skeletal muscle mass was observed in the intervention group after 12 weeks. A reduction in waist circumference, body fat percentage, and an increase in skeletal muscle index was observed when compared to the placebo group. No significant effect on muscle strength was observed after 12 weeks of intervention. These data demonstrate that WPI consumption contributed to the increase of skeletal muscle mass, strength, and reduction of body fat in HF patients.
Collapse
Affiliation(s)
- Elisa M Dos Santos
- Institute of Heart Edson Saad, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
- Department of Clinical Research, National Institute of Cardiology, Rio de Janeiro 22240-006, RJ, Brazil
| | - Annie S B Moreira
- Department of Clinical Research, National Institute of Cardiology, Rio de Janeiro 22240-006, RJ, Brazil
| | - Grazielle V B Huguenin
- Departamento de Nutrição e Dietética, Faculdade de Nutrição Emília de Jesus Ferreiro, Federal Fluminense University, Niterói 24020-140, RJ, Brazil
| | - Eduardo Tibiriça
- Department of Clinical Research, National Institute of Cardiology, Rio de Janeiro 22240-006, RJ, Brazil
| | - Andrea De Lorenzo
- Institute of Heart Edson Saad, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
- Department of Clinical Research, National Institute of Cardiology, Rio de Janeiro 22240-006, RJ, Brazil
| |
Collapse
|
12
|
Impact of elderly gastrointestinal alterations on gastric emptying and enzymatic hydrolysis of skim milk: An in vitro study using a dynamic stomach system. Food Chem 2023; 402:134365. [DOI: 10.1016/j.foodchem.2022.134365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
|
13
|
Kassis A, Fichot MC, Horcajada MN, Horstman AMH, Duncan P, Bergonzelli G, Preitner N, Zimmermann D, Bosco N, Vidal K, Donato-Capel L. Nutritional and lifestyle management of the aging journey: A narrative review. Front Nutr 2023; 9:1087505. [PMID: 36761987 PMCID: PMC9903079 DOI: 10.3389/fnut.2022.1087505] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
With age, the physiological responses to occasional or regular stressors from a broad range of functions tend to change and adjust at a different pace and restoring these functions in the normal healthy range becomes increasingly challenging. Even if this natural decline is somehow unavoidable, opportunities exist to slow down and attenuate the impact of advancing age on major physiological processes which, when weakened, constitute the hallmarks of aging. This narrative review revisits the current knowledge related to the aging process and its impact on key metabolic functions including immune, digestive, nervous, musculoskeletal, and cardiovascular functions; and revisits insights into the important biological targets that could inspire effective strategies to promote healthy aging.
Collapse
Affiliation(s)
- Amira Kassis
- Whiteboard Nutrition Science, Beaconsfield, QC, Canada,Amira Kassis,
| | | | | | | | - Peter Duncan
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Nicolas Preitner
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Diane Zimmermann
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Laurence Donato-Capel
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland,*Correspondence: Laurence Donato-Capel,
| |
Collapse
|
14
|
Pinckaers PJM, Kouw IWK, Gorissen SHM, Houben LHP, Senden JM, Wodzig WKHW, de Groot LCPGM, Verdijk LB, Snijders T, van Loon LJC. The Muscle Protein Synthetic Response to the Ingestion of a Plant-Derived Protein Blend Does Not Differ from an Equivalent Amount of Milk Protein in Healthy Young Males. J Nutr 2023; 152:2734-2743. [PMID: 36170964 PMCID: PMC9839989 DOI: 10.1093/jn/nxac222] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Plant-derived proteins are considered to have lesser anabolic properties when compared with animal-derived proteins. The attenuated rise in muscle protein synthesis rates following ingestion of plant-derived compared with animal-derived protein has been, at least partly, attributed to deficiencies in specific amino acids such as leucine, lysine, and/or methionine. Combining different plant-derived proteins could provide plant-derived protein blends with a more balanced amino acid profile. OBJECTIVES This study aimed to compare postprandial muscle protein synthesis rates following the ingestion of 30 g milk protein with a 30 g blend combining wheat, corn, and pea protein in healthy young men. METHODS In a randomized, double-blind, parallel-group design, 24 young males (aged 24 ± 4 y) received a primed continuous l-[ring-13C6]-phenylalanine infusion after which they ingested 30 g milk protein (MILK) or a 30 g plant-derived protein blend combining 15 g wheat, 7.5 g corn, and 7.5 g pea protein (PLANT-BLEND). Blood and muscle biopsies were collected frequently for 5 h to assess postprandial plasma amino acid profiles (secondary outcome) and subsequent muscle protein synthesis rates (primary outcome). Data were analyzed by 2-factor repeated measures ANOVA and 2-samples t tests. RESULTS MILK increased plasma essential amino acid concentrations more than PLANT-BLEND over the 5 h postprandial period (incremental AUC = 151 ± 31 compared with 79 ± 12 mmol·300 min·L-1, respectively; P < 0.001). Ingestion of both MILK and PLANT-BLEND increased myofibrillar protein synthesis rates (P < 0.001), with no significant differences between treatments (0.053 ± 0.013%/h and 0.064 ± 0.016%/h, respectively; P = 0.08). CONCLUSIONS Ingestion of 30 g plant-derived protein blend combining wheat-, corn-, and pea-derived protein increases muscle protein synthesis rates in healthy young males. The muscle protein synthetic response to the ingestion of 30 g of this plant-derived protein blend does not differ from the ingestion of an equivalent amount of a high-quality animal-derived protein.Clinical trial registry number for Nederlands Trial Register: NTR6548 (https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6548).
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- TiFN, Wageningen, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imre W K Kouw
- TiFN, Wageningen, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Stefan H M Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisanne H P Houben
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- TiFN, Wageningen, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Will K H W Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisette C P G M de Groot
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- TiFN, Wageningen, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Snijders
- TiFN, Wageningen, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- TiFN, Wageningen, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
15
|
de Marco Castro E, Valli G, Buffière C, Guillet C, Mullen B, Pratt J, Horner K, Naumann-Gola S, Bader-Mittermaier S, Paganini M, De Vito G, Roche HM, Dardevet D. Peripheral Amino Acid Appearance Is Lower Following Plant Protein Fibre Products, Compared to Whey Protein and Fibre Ingestion, in Healthy Older Adults despite Optimised Amino Acid Profile. Nutrients 2022; 15:35. [PMID: 36615694 PMCID: PMC9824653 DOI: 10.3390/nu15010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Plant-based proteins are generally characterised by lower Indispensable Amino Acid (IAA) content, digestibility, and anabolic properties, compared to animal-based proteins. However, they are environmentally friendlier, and wider consumption is advocated. Older adults have higher dietary protein needs to prevent sarcopenia, a disease marked by an accelerated loss of muscle mass and function. Given the lower environmental footprint of plant-based proteins and the importance of optimising dietary protein quality among older adults, this paper aims to assess the net peripheral Amino Acid (AA) appearance after ingestion of three different plant protein and fibre (PPF) products, compared to whey protein with added fibre (WPF), in healthy older adults. In a randomised, single-blind, crossover design, nine healthy men and women aged ≥65 years consumed four test meals balanced in AA according to the FAO reference protein for humans, matched for leucine, to optimally stimulate muscle protein synthesis in older adults. A fasted blood sample was drawn at each visit before consuming the test meal, followed by postprandial arterialise blood sampling every 30 min for 3 h. The test meal was composed of a soup containing either WPF or PPF 1-3. The PPF blends comprised pea proteins with varying additional rice, pumpkin, soy, oat, and/or almond protein. PPF product ingestion resulted in a lower maximal increase of postprandial leucine concentration and the sum of branched-chain AA (BCAA) and IAA concentrations, compared to WPF, with no effect on their incremental area under the curve. Plasma methionine and cysteine, and to a lesser extent threonine, appearance were limited after consuming the PPF products, but not WPF. Despite equal leucine doses, the WPF induced greater postprandial insulin concentrations than the PPF products. In conclusion, the postprandial appearance of AA is highly dependent on the protein source in older adults, despite providing equivalent IAA levels and dietary fibre. Coupled with lower insulin concentrations, this could imply less anabolic potential. Further investigation is required to understand the applicability of plant-based proteins in healthy older adults.
Collapse
Affiliation(s)
- Elena de Marco Castro
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Giacomo Valli
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Caroline Buffière
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Rte de Theix, 63122 Saint-Genès-Champanelle, France
| | - Christelle Guillet
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Rte de Theix, 63122 Saint-Genès-Champanelle, France
| | - Brian Mullen
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jedd Pratt
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Katy Horner
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Susanne Naumann-Gola
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str., 85354 Freising, Germany
| | | | - Matteo Paganini
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Giuseppe De Vito
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Helen M. Roche
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biological Sciences, The Institute for Global Food Security, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Dominique Dardevet
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Rte de Theix, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
16
|
Smith R, Clegg M, Methven L. Review of protein intake and suitability of foods for protein-fortification in older adults in the UK. Crit Rev Food Sci Nutr 2022; 64:3971-3988. [PMID: 36271698 DOI: 10.1080/10408398.2022.2137777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Protein is a vital dietary component for combating negative health outcomes associated with malnutrition in older adults, including sarcopenia, functional decline and reduced quality of life. Yet, recommended daily protein intake is consistently unmet, as evidenced in the literature and reaffirmed in this review. Poor appetite is recognized as a major determinant of protein-energy undernutrition and thus fortification of regular food or drinks provides a flexible and relevant approach for older adults with reduced appetite. To increase the likelihood of fortified products being successfully incorporated into the diets of older adults, they must be adaptable to older adults eating patterns, cater for their preferences and take the specific age-related problems that complicate food intake into account. This paper aims to highlight older adults' current sources of protein, shopping habits, typical eating patterns and commonly consumed foods, and hence consider appropriate carriers for protein enrichment. Data were reanalyzed from a combination of freely available UK datasets, including the National Dietary and Nutrition Survey and the Food and You Survey, alongside data purchased from market research consultancy, Kantar. These insights draw attention to the potential suitability of foods for fortification purposes, with the ultimate objective to promote eating pleasure and prevent malnutrition.
Collapse
Affiliation(s)
- Rachel Smith
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Miriam Clegg
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| |
Collapse
|
17
|
PINCKAERS PHILIPPEJM, HENDRIKS FLORISK, HERMANS WESLEYJ, GOESSENS JOYP, SENDEN JOANM, VAN KRANENBURG JANNEAUMX, WODZIG WILLKHW, SNIJDERS TIM, VAN LOON LUCJC. Potato Protein Ingestion Increases Muscle Protein Synthesis Rates at Rest and during Recovery from Exercise in Humans. Med Sci Sports Exerc 2022; 54:1572-1581. [PMID: 35438672 PMCID: PMC9390237 DOI: 10.1249/mss.0000000000002937] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l -[ ring - 13 C 6 ]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h -1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h -1 , respectively; P < 0.001), with no differences between treatments ( P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h -1 after ingesting potato and milk protein, respectively ( P < 0.001), with no differences between treatments ( P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg ( P < 0.05). CONCLUSIONS Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein.
Collapse
Affiliation(s)
- PHILIPPE J. M. PINCKAERS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - FLORIS K. HENDRIKS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - WESLEY J.H. HERMANS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - JOY P.B. GOESSENS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - JOAN M. SENDEN
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - JANNEAU M. X. VAN KRANENBURG
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - WILL K. H. W. WODZIG
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - TIM SNIJDERS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - LUC J. C. VAN LOON
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| |
Collapse
|
18
|
Li L, Baima C, Jiang J, Liu Z, Wang J, Chen XD, Wu P. In vitro gastric digestion and emptying of tsampa under simulated elderly and young adult digestive conditions using a dynamic stomach system. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
de Bie TH, Balvers MGJ, de Vos RCH, Witkamp RF, Jongsma MA. The influence of a tomato food matrix on the bioavailability and plasma kinetics of oral gamma-aminobutyric acid (GABA) and its precursor glutamate in healthy men. Food Funct 2022; 13:8399-8410. [PMID: 35852458 DOI: 10.1039/d2fo01358d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) and its precursor glutamate play signaling roles in a range of tissues. Both function as neurotransmitters in the central nervous system, but they also modulate pancreatic and immune functioning, for example. Besides endogenous production, both compounds are found in food products, reaching relatively high levels in tomatoes. Recent studies in rodents suggest beneficial effects of oral GABA on glucose homeostasis and blood pressure. However, the bioavailability from food remains unknown. We studied the bioavailability of GABA and glutamate from tomatoes relative to a solution in water. After a fasting blood sample was taken, eleven healthy men randomly received 1 liter of 4 different drinks in a cross-over design with a one-week interval. The drinks were a solution of 888 mg L-1 GABA, a solution of 3673 mg L-1 glutamate, pureed fresh tomatoes and plain water as the control. Following intake, 18 blood samples were taken at intervals for 24 hours. Plasma GABA and glutamate concentrations were determined by ultra-pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fasting plasma GABA and glutamate concentrations were found to be 16.71 (SD 2.18) ng mL-1 and 4626 (SD 1666) ng mL-1, respectively. Fasting GABA levels were constant (5.8 CV%) between individuals, while fasting glutamate levels varied considerably (23.5 CV%). GABA from pureed tomatoes showed similar bioavailability to that of a solution in water. For glutamate, the absorption from pureed tomatoes occurred more slowly as seen from a longer tmax (0.98 ± 0.14 h vs. 0.41 ± 0.04 h, P = 0.003) and lower Cmax (7815 ± 627 ng mL-1vs. 16 420 ± 2778 ng mL-1, P = 0.006). These data suggest that GABA is bioavailable from tomatoes, and that food products containing GABA could potentially induce health effects similar to those claimed for GABA supplements. The results merit further studies on the bioavailability of GABA from other food products and the health effects of GABA-rich diets. The clinical trial registry number is NCT04086108 (https://clinicaltrials.gov/ct2/show/NCT04303468).
Collapse
Affiliation(s)
- Tessa H de Bie
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands. .,Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Maarten A Jongsma
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
20
|
Nambi G, Alghadier M, Elnegamy TE, Basuodan RM, Alwhaibi RM, Vellaiyan A, Nwihadh NA, Aldhafian OR, Verma A, Pakkir Mohamed SH, Chevidikunnan MF, Khan F. Clinical (BMI and MRI) and Biochemical (Adiponectin, Leptin, TNF-α, and IL-6) Effects of High-Intensity Aerobic Training with High-Protein Diet in Children with Obesity Following COVID-19 Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127194. [PMID: 35742443 PMCID: PMC9223643 DOI: 10.3390/ijerph19127194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Objective: To find the clinical and biochemical effects of high-intensity aerobic training with a high-protein diet in children with obesity following COVID-19 infection. Methods: By using the block randomization method, the eligible participants were randomized into two groups. The first group received high-intensity aerobic training with a high-protein diet (Group A; n = 38) and the second group were allowed to do regular physical activities and eat a regular diet (Group B; n = 38) for 8 weeks. Clinical (basal metabolic index (BMI) and muscle-mass-cross-sectional area (CSA)) and biochemical (Adiponectin, leptin, TNF-α, and IL-6) measures were measured at baseline, on the 8th week, and at 6-months follow-up. Results: Baseline demographic and clinical attributes show homogenous presentation among the study groups (p > 0.05). After eight weeks of intervention, and at the end of 6-months follow-up, the basal metabolic index (BMI) (6.3) (CI 95% 4.71 to 7.88), mid-arm CSA (17) (CI 95% 14.70 to 19.29), mid-thigh CSA (13.10) (CI 95% 10.60 to 15.59), mid-calf CSA (11.3) (CI 95% 9.30 to 13.29), adiponectin (−1.9) (CI 95% −2.13 to −1.66), leptin (5.64) (CI 95% 5.50 to 5.77), TNF-α (0.5) (CI 95% 0.42 to 0.57), and IL-6 (0.21) (CI 95% 0.18 to 0.23) showed more improvement (p < 0.001) in Group A than Group B (p > 0.05). Conclusion: Overall, this trial found that high-intensity aerobic training with a high-protein diet decreased the BMI percentile and muscle mass (arm, thigh, and calf), and positively altered the biochemical variables in children with obesity.
Collapse
Affiliation(s)
- Gopal Nambi
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11947, Saudi Arabia; (M.A.); (T.E.E.)
- Correspondence: ; Tel.: +966-501-878-382
| | - Mshari Alghadier
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11947, Saudi Arabia; (M.A.); (T.E.E.)
| | - Tamer E. Elnegamy
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11947, Saudi Arabia; (M.A.); (T.E.E.)
| | - Reem M. Basuodan
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.M.B.); (R.M.A.)
| | - Reem M. Alwhaibi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.M.B.); (R.M.A.)
| | - Arul Vellaiyan
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11947, Saudi Arabia;
| | - Naif A. Nwihadh
- Department of Surgery, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11947, Saudi Arabia; (N.A.N.); (O.R.A.)
| | - Osama R. Aldhafian
- Department of Surgery, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11947, Saudi Arabia; (N.A.N.); (O.R.A.)
| | - Anju Verma
- Department of Exercise and Sports, University of Sydney, Sydney, NSW 2006, Australia;
| | - Shahul Hameed Pakkir Mohamed
- Department of Physical Therapy, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohamed Faisal Chevidikunnan
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (M.F.C.); (F.K.)
| | - Fayaz Khan
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (M.F.C.); (F.K.)
| |
Collapse
|
21
|
Hjorth M, Galigniana NM, Ween O, Ulven SM, Holven KB, Dalen KT, Sæther T. Postprandial Effects of Salmon Fishmeal and Whey on Metabolic Markers in Serum and Gene Expression in Liver Cells. Nutrients 2022; 14:1593. [PMID: 35458155 PMCID: PMC9027870 DOI: 10.3390/nu14081593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Fish is considered an important part of a healthy diet, in part due to the content of long chain omega-3 fatty acids. However, both lean and fatty fish have beneficial health effects, suggesting that micronutrients and proteins may play a role. In a randomised, controlled, cross-over trial, five healthy male participants consumed 5.2 g of protein from either salmon fishmeal or whey. Blood samples were taken before and 30 and 60 min after intake. The concentration of glucose, lipids, hormones and metabolites, including 28 different amino acids and derivatives, were measured in serum or plasma. Cultured HepG2 cells were incubated with or without serum from the participants, and transcriptomic profiling was performed using RNA sequencing. The ingestion of both salmon fishmeal and whey reduced the glucose and triglyceride levels in serum. Protein intake, independent of the source, increased the concentration of 22 amino acids and derivatives in serum. Fishmeal increased the concentration of arginine, methionine, serine, glycine, cystathionine and 2-aminobutyric acid more than whey did. Incubation with postprandial serum resulted in large transcriptomic alterations in serum-fasted HepG2 cells, with the differential expression of >4500 protein coding genes. However, when comparing cells cultivated in fasting serum to postprandial serum after the ingestion of fishmeal and whey, we did not detect any differentially regulated genes, neither with respect to the protein source nor with respect to the time after the meal. The comparable nutrigenomic effects of fishmeal and whey do not change the relevance of fish by-products as an alternative food source.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
| | - Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway;
| | - Ola Ween
- Møreforskning AS, Borgundvegen 340, 6009 Ålesund, Norway;
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, P.O. Box 4959, Nydalen, 0424 Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway;
| |
Collapse
|
22
|
Hermans WJH, Fuchs CJ, Hendriks FK, Houben LHP, Senden JM, Verdijk LB, van Loon LJC. Cheese Ingestion Increases Muscle Protein Synthesis Rates Both at Rest and During Recovery from Exercise in Healthy, Young Males: A Randomized Parallel-group Trial. J Nutr 2022; 152:1022-1030. [PMID: 36967159 PMCID: PMC8971000 DOI: 10.1093/jn/nxac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Protein ingestion increases muscle protein synthesis rates. The food matrix in which protein is provided can strongly modulate the postprandial muscle protein synthetic response. So far, the muscle protein synthetic response to the ingestion of whole foods remains largely unexplored. Objectives To compare the impact of ingesting 30 g protein provided as milk protein or cheese on postprandial plasma amino acid concentrations and muscle protein synthesis rates at rest and during recovery from exercise in vivo in young males. Methods In this randomized, parallel-group intervention trial, 20 healthy males aged 18–35 y ingested 30 g protein provided as cheese or milk protein concentrate following a single-legged resistance-type exercise session consisting of 12 sets of leg press and leg extension exercises. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data were analyzed using repeated measures Time × Group (× Leg) ANOVA. Results Plasma total amino acid concentrations increased after protein ingestion (Time: P < 0.001), with 38% higher peak concentrations following milk protein than cheese ingestion (Time × Group: P < 0.001). Muscle protein synthesis rates increased following both cheese and milk protein ingestion from 0.037 ± 0.014 to 0.055 ± 0.018%·h–1 and 0.034 ± 0.008 to 0.056 ± 0.010%·h–1 at rest and even more following exercise from 0.031 ± 0.010 to 0.067 ± 0.013%·h–1 and 0.030 ± 0.008 to 0.063 ± 0.010%·h–1, respectively (Time: all P < 0.05; Time × Leg: P = 0.002), with no differences between cheese and milk protein ingestion (Time × Group: both P > 0.05). Conclusion Cheese ingestion increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial muscle protein synthetic response to the ingestion of cheese or milk protein does not differ when 30 g protein is ingested at rest or during recovery from exercise in healthy, young males.
Collapse
Affiliation(s)
- Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lisanne H P Houben
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Weijzen MEG, van Gassel RJJ, Kouw IWK, Trommelen J, Gorissen SHM, van Kranenburg J, Goessens JPB, van de Poll MCG, Verdijk LB, van Loon LJC. Ingestion of Free Amino Acids Compared with an Equivalent Amount of Intact Protein Results in More Rapid Amino Acid Absorption and Greater Postprandial Plasma Amino Acid Availability Without Affecting Muscle Protein Synthesis Rates in Young Adults in a Double-Blind Randomized Trial. J Nutr 2021; 152:59-67. [PMID: 34642762 PMCID: PMC8754581 DOI: 10.1093/jn/nxab305] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The rate of protein digestion and amino acid absorption determines the postprandial rise in circulating amino acids and modulates postprandial muscle protein synthesis rates. OBJECTIVE We sought to compare protein digestion, amino acid absorption kinetics, and the postprandial muscle protein synthetic response following ingestion of intact milk protein or an equivalent amount of free amino acids. METHODS Twenty-four healthy, young participants (mean ± SD age: 22 ± 3 y and BMI 23 ± 2 kg/m2; sex: 12 male and 12 female participants) received a primed continuous infusion of l-[ring-2H5]-phenylalanine and l-[ring-3,5-2H2]-tyrosine, after which they ingested either 30 g intrinsically l-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of free amino acids labeled with l-[1-13C]-phenylalanine. Blood samples and muscle biopsies were obtained to assess protein digestion and amino acid absorption kinetics (secondary outcome), whole-body protein net balance (secondary outcome), and mixed muscle protein synthesis rates (primary outcome) throughout the 6-h postprandial period. RESULTS Postprandial plasma amino acid concentrations increased after ingestion of intact milk protein and free amino acids (both P < 0.001), with a greater increase following ingestion of the free amino acids than following ingestion of intact milk protein (P-time × treatment < 0.001). Exogenous phenylalanine release into plasma, assessed over the 6-h postprandial period, was greater with free amino acid ingestion (76 ± 9%) than with milk protein treatment (59 ± 10%; P < 0.001). Ingestion of free amino acids and intact milk protein increased mixed muscle protein synthesis rates (P-time < 0.001), with no differences between treatments (from 0.037 ± 0.015%/h to 0.053 ± 0.014%/h and 0.039 ± 0.016%/h to 0.051 ± 0.010%/h, respectively; P-time × treatment = 0.629). CONCLUSIONS Ingestion of a bolus of free amino acids leads to more rapid amino acid absorption and greater postprandial plasma amino acid availability than ingestion of an equivalent amount of intact milk protein. Ingestion of free amino acids may be preferred over ingestion of intact protein in conditions where protein digestion and amino acid absorption are compromised.
Collapse
Affiliation(s)
- Michelle E G Weijzen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Rob J J van Gassel
- Department of Intensive Care Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands,Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imre W K Kouw
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Stefan H M Gorissen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau van Kranenburg
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marcel C G van de Poll
- Department of Intensive Care Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands,Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
24
|
Dewansingh P, Reckman GAR, Mijlius CF, Krijnen WP, van der Schans CP, Jager-Wittenaar H, van den Heuvel EGHM. Protein, Calcium, Vitamin D Intake and 25(OH)D Status in Normal Weight, Overweight, and Obese Older Adults: A Systematic Review and Meta-Analysis. Front Nutr 2021; 8:718658. [PMID: 34568405 PMCID: PMC8461258 DOI: 10.3389/fnut.2021.718658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
The aging process is often accompanied by increase in body weight. Older adults with overweight or obesity might have an overconsumption in energy that is accompanied by inadequate intake of protein, vitamin D, and calcium. It is unclear if intake of protein and vitamin D and calcium is sufficient in older adults with overweight/obesity, and whether it differs from older adults with normal weight, since a recent overview of the literature review is lacking. Therefore, we systematically analyzed the current evidence on differences in nutrient intake/status of protein, vitamin D and calcium between older adults with different body mass index (BMI) categories. Randomized controlled trials and prospective cohort studies were identified from PubMed and EMBASE. Studies reporting nutrient intake/status in older adults aged ≥50 years with overweight/obesity and studies comparing between overweight/obesity and normal weight were included. Nutrient intake/status baseline values were reviewed and when possible calculated for one BMI category (single-group meta-analysis), or compared between BMI categories (meta-analysis). Nutrient intake/status was compared with international recommendations. Mean protein (N = 8) and calcium intake (N = 5) was 0.98 gram/kilogram body weight/day (g/kg/d) [95% Confidence Interval (CI) 0.89-1.08] and 965 mg [95% CI: 704-1225] in overweight/obese. Vitamin D intake was insufficient in all BMI categories (N = 5). The pooled mean for vitamin D intake was 6 ug [95% CI 4-9]. For 25(OH)D, the pooled mean was 54 nmol/L [95% CI 45-62], 52 nmol/L [95% CI 46-58], and 48 nmol/l [95% CI 33-62] in normal (N = 7), combined overweight and obese (N = 12), and obese older adults (N = 4), respectively. In conclusion, older adults with overweight and obesity have a borderline sufficient protein and sufficient calcium intake, but insufficient vitamin D intake. The 25(OH)D concentration is deficient for the obese older adults.
Collapse
Affiliation(s)
- Priya Dewansingh
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
| | - Gerlof A. R. Reckman
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Caspar F. Mijlius
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wim P. Krijnen
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, Netherlands
| | - Cees P. van der Schans
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Faculty of Medical Sciences, University Medical Center Groningen, Groningen, Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Health Psychology Research, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Harriët Jager-Wittenaar
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Department of Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
25
|
Pinckaers PJM, Trommelen J, Snijders T, van Loon LJC. The Anabolic Response to Plant-Based Protein Ingestion. Sports Med 2021; 51:59-74. [PMID: 34515966 PMCID: PMC8566416 DOI: 10.1007/s40279-021-01540-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
There is a global trend of an increased interest in plant-based diets. This includes an increase in the consumption of plant-based proteins at the expense of animal-based proteins. Plant-derived proteins are now also frequently applied in sports nutrition. So far, we have learned that the ingestion of plant-derived proteins, such as soy and wheat protein, result in lower post-prandial muscle protein synthesis responses when compared with the ingestion of an equivalent amount of animal-based protein. The lesser anabolic properties of plant-based versus animal-derived proteins may be attributed to differences in their protein digestion and amino acid absorption kinetics, as well as to differences in amino acid composition between these protein sources. Most plant-based proteins have a low essential amino acid content and are often deficient in one or more specific amino acids, such as lysine and methionine. However, there are large differences in amino acid composition between various plant-derived proteins or plant-based protein sources. So far, only a few studies have directly compared the muscle protein synthetic response following the ingestion of a plant-derived protein versus a high(er) quality animal-derived protein. The proposed lower anabolic properties of plant- versus animal-derived proteins may be compensated for by (i) consuming a greater amount of the plant-derived protein or plant-based protein source to compensate for the lesser quality; (ii) using specific blends of plant-based proteins to create a more balanced amino acid profile; (iii) fortifying the plant-based protein (source) with the specific free amino acid(s) that is (are) deficient. Clinical studies are warranted to assess the anabolic properties of the various plant-derived proteins and their protein sources in vivo in humans and to identify the factors that may or may not compromise the capacity to stimulate post-prandial muscle protein synthesis rates. Such work is needed to determine whether the transition towards a more plant-based diet is accompanied by a transition towards greater dietary protein intake requirements.
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
26
|
Dietary Protein Intake and Transition between Frailty States in Octogenarians Living in New Zealand. Nutrients 2021; 13:nu13082843. [PMID: 34445004 PMCID: PMC8401514 DOI: 10.3390/nu13082843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Adequate nutritional status may influence progression to frailty. The purpose of this study is to determine the prevalence of frailty and examine the relationship between dietary protein intake and the transition between frailty states and mortality in advanced age. We used data from a longitudinal cohort study of Māori (80–90 years) and non-Māori (85 years). Dietary assessments (24-h multiple pass dietary recalls) were completed at the second year of follow-up (wave 2 and forms the baseline in this study). Frailty was defined using the Fried Frailty criteria. Multi-state modelling examined the association of protein intake and transitions between frailty states and death over four years. Over three quarters of participants were pre-frail or frail at baseline (62% and 16%, respectively). Those who were frail had a higher co-morbidity (p < 0.05), where frailty state changed, 44% showed a worsening of frailty status (robust → pre-frail or pre-frail → frail). Those with higher protein intake (g/kg body weight/day) were less likely to transition from robust to pre-frail [Hazard Ratio (95% Confidence Interval): 0.28 (0.08–0.91)] but also from pre-frail to robust [0.24 (0.06–0.93)]. Increased protein intake was associated with lower risk of transitioning from pre-frailty to death [0.19 (0.04–0.80)], and this association was moderated by energy intake [0.22 (0.03–1.71)]. Higher protein intake in this sample of octogenarians was associated with both better and worse outcomes.
Collapse
|
27
|
Impaired skeletal muscle hypertrophy signaling and amino acid deprivation response in Apoe knockout mice with an unhealthy lipoprotein distribution. Sci Rep 2021; 11:16423. [PMID: 34385572 PMCID: PMC8360952 DOI: 10.1038/s41598-021-96000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
This study explores if unhealthy lipoprotein distribution (LPD) impairs the anabolic and amino acid sensing responses to whey-protein feeding. Thus, if impairment of such anabolic response to protein consumption is seen by the LPD this may negatively affect the skeletal muscle mass. Muscle protein synthesis (MPS) was measured by puromycin labeling in Apolipoprotein E knockout (Apoe KO), characterized by an unhealthy LPD, and wild type mice post-absorptive at 10 and 20 weeks, and post-prandial after whey-protein feeding at 20 weeks. Hypertrophy signaling and amino acid sensing mechanisms were studied and gut microbiome diversity explored. Surprisingly, whey-protein feeding did not affect MPS. p-mTOR and p-4E-BP1 was increased 2 h after whey-protein feeding in both genotypes, but with general lower levels in Apoe KO compared to wild type. At 20 weeks of age, Apoe KO had a greater mRNA-expression for SNAT2, CD98, ATF4 and GCN2 compared to wild type. These responses were not associated with gut microbiota compositional differences. Regardless of LPD status, MPS was similar in Apoe KO and wild type. Surprisingly, whey-protein did not stimulate MPS. However, Apoe KO had lower levels of hypertrophy signaling, was amino acid deprived, and had impaired amino acid sensing mechanisms.
Collapse
|
28
|
Zaromskyte G, Prokopidis K, Ioannidis T, Tipton KD, Witard OC. Evaluating the Leucine Trigger Hypothesis to Explain the Post-prandial Regulation of Muscle Protein Synthesis in Young and Older Adults: A Systematic Review. Front Nutr 2021; 8:685165. [PMID: 34307436 PMCID: PMC8295465 DOI: 10.3389/fnut.2021.685165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Background: The "leucine trigger" hypothesis was originally conceived to explain the post-prandial regulation of muscle protein synthesis (MPS). This hypothesis implicates the magnitude (amplitude and rate) of post-prandial increase in blood leucine concentrations for regulation of the magnitude of MPS response to an ingested protein source. Recent evidence from experimental studies has challenged this theory, with reports of a disconnect between blood leucine concentration profiles and post-prandial rates of MPS in response to protein ingestion. Aim: The primary aim of this systematic review was to qualitatively evaluate the leucine trigger hypothesis to explain the post-prandial regulation of MPS in response to ingested protein at rest and post-exercise in young and older adults. We hypothesized that experimental support for the leucine trigger hypothesis will depend on age, exercise status (rest vs. post-exercise), and type of ingested protein (i.e., isolated proteins vs. protein-rich whole food sources). Methods: This qualitative systematic review extracted data from studies that combined measurements of post-prandial blood leucine concentrations and rates of MPS following ingested protein at rest and following exercise in young and older adults. Data relating to blood leucine concentration profiles and post-prandial MPS rates were extracted from all studies, and reported as providing sufficient or insufficient evidence for the leucine trigger hypothesis. Results: Overall, 16 of the 29 eligible studies provided sufficient evidence to support the leucine trigger hypothesis for explaining divergent post-prandial rates of MPS in response to different ingested protein sources. Of these 16 studies, 13 were conducted in older adults (eight of which conducted measurements post-exercise) and 14 studies included the administration of isolated proteins. Conclusion: This systematic review underscores the merits of the leucine trigger hypothesis for the explanation of the regulation of MPS. However, our data indicate that the leucine trigger hypothesis confers most application in regulating the post-prandial response of MPS to ingested proteins in older adults. Consistent with our hypothesis, we provide data to support the idea that the leucine trigger hypothesis is more relevant within the context of ingesting isolated protein sources rather than protein-rich whole foods. Future mechanistic studies are warranted to understand the complex series of modulatory factors beyond blood leucine concentration profiles within a food matrix that regulate post-prandial rates of MPS.
Collapse
Affiliation(s)
- Gabriele Zaromskyte
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Theofilos Ioannidis
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Kevin D Tipton
- Institute of Performance Nutrition, London, United Kingdom
| | - Oliver C Witard
- Department of Nutritional Sciences, King's College London, London, United Kingdom.,Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Pre-Sleep Casein Supplementation, Metabolism, and Appetite: A Systematic Review. Nutrients 2021; 13:nu13061872. [PMID: 34070862 PMCID: PMC8229753 DOI: 10.3390/nu13061872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/04/2023] Open
Abstract
Protein intake is an important factor for augmenting the response to resistance training in healthy individuals. Although food intake can help with anabolism during the day, the period of time during sleep is typically characterized by catabolism and other metabolic shifts. Research on the application of nighttime casein protein supplementation has introduced a new research paradigm related to protein timing. Pre-sleep casein supplementation has been attributed to improved adaptive response by skeletal muscle to resistance training through increases in muscle protein synthesis, muscle mass, and strength. However, it remains unclear what the effect of this nutritional strategy is on non-muscular parameters such as metabolism and appetite in both healthy and unhealthy populations. The purpose of this systematic review is to understand the effects of pre-sleep casein protein on energy expenditure, lipolysis, appetite, and food intake in both healthy and overweight or obese individuals. A systematic review following PRISMA guidelines was conducted in CINAHL, Cochrane, and SPORTDiscus during March 2021, and 11 studies met the inclusion criteria. A summary of the main findings shows limited to no effects on metabolism or appetite when ingesting 24-48 g of casein 30 min before sleep, but data are limited, and future research is needed to clarify the relationships observed.
Collapse
|
30
|
Hermans WJH, Senden JM, Churchward-Venne TA, Paulussen KJM, Fuchs CJ, Smeets JSJ, van Loon JJA, Verdijk LB, van Loon LJC. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr 2021; 114:934-944. [PMID: 34020450 PMCID: PMC8408844 DOI: 10.1093/ajcn/nqab115] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Insects have recently been identified as a more sustainable protein-dense food source and may represent a viable alternative to conventional animal-derived proteins. OBJECTIVES We aimed to compare the impacts of ingesting lesser mealworm- and milk-derived protein on protein digestion and amino acid absorption kinetics, postprandial skeletal muscle protein synthesis rates, and the incorporation of dietary protein-derived amino acids into de novo muscle protein at rest and during recovery from exercise in vivo in humans. METHODS In this double-blind randomized controlled trial, 24 healthy, young men ingested 30 g specifically produced, intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled lesser mealworm- or milk-derived protein after a unilateral bout of resistance-type exercise. Primed continuous l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle tissue samples. RESULTS A total of 73% ± 7% and 77% ± 7% of the lesser mealworm and milk protein-derived phenylalanine was released into the circulation during the 5 h postprandial period, respectively, with no significant differences between groups (P < 0.05). Muscle protein synthesis rates increased after both lesser mealworm and milk protein concentrate ingestion from 0.025 ± 0.008%/h to 0.045 ± 0.017%/h and 0.028 ± 0.010%/h to 0.056 ± 0.012%/h at rest and from 0.025 ± 0.012%/h to 0.059 ± 0.015%/h and 0.026 ± 0.009%/h to 0.073 ± 0.020%/h after exercise, respectively (all P < 0.05), with no differences between groups (both P > 0.05). Incorporation of mealworm and milk protein-derived l-[1-13C]-phenylalanine into de novo muscle protein was greater after exercise than at rest (P < 0.05), with no differences between groups (P > 0.05). CONCLUSIONS Ingestion of a meal-like amount of lesser mealworm-derived protein is followed by rapid protein digestion and amino acid absorption and increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial protein handling of lesser mealworm does not differ from ingesting an equivalent amount of milk protein concentrate in vivo in humans.This trial was registered at www.trialregister.nl as NL6897.
Collapse
Affiliation(s)
- Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kevin J M Paulussen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
31
|
Lorenzo AD, Santos EMD, Bello Moreira AS, Huguenin GVB, Tibirica E. Dietary supplementation with whey protein improves systemic microvascular function in heart failure patients: a pilot study. ACTA ACUST UNITED AC 2021; 54:e10577. [PMID: 33886810 PMCID: PMC8055180 DOI: 10.1590/1414-431x202010577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction is a well-known component of the pathophysiology of heart failure (HF), with proven prognostic value. Dietary supplementation with whey protein (WP) has been widely used to increase skeletal muscle mass, but it also has vascular effects, which are less understood. This study aimed to evaluate the effects of WP supplementation on the systemic microvascular function of HF patients. This was a blinded, randomized, placebo-controlled clinical trial that evaluated the effects of 12-week WP dietary supplementation on systemic microvascular function, in patients with HF New York Heart Association (NYHA) classes I/II. Cutaneous microvascular flow and reactivity were assessed using laser speckle contrast imaging, coupled with pharmacological local vasodilator stimuli. Fifteen patients (aged 64.5±6.2 years, 11 males) received WP supplementation and ten patients (aged 68.2±8.8 years, 8 males) received placebo (maltodextrin). The increase in endothelial-dependent microvascular vasodilation, induced by skin iontophoresis of acetylcholine, was improved after WP (P=0.03) but not placebo (P=0.37) supplementation. Moreover, endothelial-independent microvascular vasodilation induced by skin iontophoresis of sodium nitroprusside, was also enhanced after WP (P=0.04) but not placebo (P=0.42) supplementation. The results suggested that dietary supplementation with WP improved systemic microvascular function in patients with HF.
Collapse
Affiliation(s)
- A De Lorenzo
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | - E M Dos Santos
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | - A S Bello Moreira
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil.,Departamento de Nutrição Social, Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - G V B Huguenin
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil.,Departamento de Nutrição e Dietética, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - E Tibirica
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
32
|
Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. Int J Sport Nutr Exerc Metab 2021; 31:292-301. [PMID: 33741748 DOI: 10.1123/ijsnem.2020-0356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022]
Abstract
Branched-chain amino acids (BCAA) are one of the most popular sports supplements, marketed under the premise that they enhance muscular adaptations. Despite their prevalent consumption among athletes and the general public, the efficacy of BCAA has been an ongoing source of controversy in the sports nutrition field. Early support for BCAA supplementation was derived from extrapolation of mechanistic data on their role in muscle protein metabolism. Of the three BCAA, leucine has received the most attention because of its ability to stimulate the initial acute anabolic response. However, a substantial body of both acute and longitudinal research has now accumulated on the topic, affording the ability to scrutinize the effects of BCAA and leucine from a practical standpoint. This article aims to critically review the current literature and draw evidence-based conclusions about the putative benefits of BCAA or leucine supplementation on muscle strength and hypertrophy as well as illuminate gaps in the literature that warrant future study.
Collapse
|
33
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
34
|
No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males. Br J Nutr 2021; 126:1832-1842. [PMID: 33597056 DOI: 10.1017/s0007114521000635] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plant-derived proteins have been suggested to have less anabolic properties when compared with animal-derived proteins. Whether blends of plant- and animal-derived proteins can compensate for their lesser anabolic potential has not been assessed. The present study compares post-prandial muscle protein synthesis rates following the ingestion of milk protein with wheat protein or a blend of wheat plus milk protein in healthy, young males. In a randomised, double-blind, parallel-group design, 36 males (23 (sd 3) years) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g milk protein (MILK), 30 g wheat protein (WHEAT) or a 30 g blend combining 15 g wheat plus 15 g milk protein (WHEAT+MILK). Blood and muscle biopsies were collected frequently for 5 h to assess post-prandial plasma amino acid profiles and subsequent myofibrillar protein synthesis rates. Ingestion of protein increased myofibrillar protein synthesis rates in all treatments (P < 0·001). Post-prandial myofibrillar protein synthesis rates did not differ between MILK v. WHEAT (0·053 (sd 0·013) v. 0·056 (sd 0·012) %·h-1, respectively; t test P = 0·56) or between MILK v. WHEAT+MILK (0·053 (sd 0·013) v. 0·059 (sd 0·025) %·h-1, respectively; t test P = 0·46). In conclusion, ingestion of 30 g milk protein, 30 g wheat protein or a blend of 15 g wheat plus 15 g milk protein increases muscle protein synthesis rates in young males. Furthermore, muscle protein synthesis rates following the ingestion of 30 g milk protein do not differ from rates observed after ingesting 30 g wheat protein or a blend with 15 g milk plus 15 g wheat protein in healthy, young males.
Collapse
|
35
|
Dietary protein considerations for muscle protein synthesis and muscle mass preservation in older adults. Nutr Res Rev 2020; 34:147-157. [PMID: 32883378 DOI: 10.1017/s0954422420000219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amino acid bioavailability is critical for muscle protein synthesis (MPS) and preservation of skeletal muscle mass (SMM). Ageing is associated with reduced responsiveness of MPS to essential amino acids (EAA). Further, the older adult population experiences anabolic resistance, leading to increased frailty, functional decline and depleted muscle mass preservation, which facilitates the need for increased protein intake to increase their SMM. This review focuses on the role of proteins in muscle mass preservation and examines the contribution of EAA and protein intake patterns to MPS. Leucine is the most widely studied amino acid for its role as a potent stimulator of MPS, though due to inadequate data little is yet known about the role of other EAA. Reaching a conclusion on the best pattern of protein intake has proven difficult due to conflicting studies. A mixture of animal and plant proteins can contribute to increased MPS and potentially attenuate muscle wasting conditions; however, there is limited research on the biological impact of protein blends in older adults. While there is some evidence to suggest that liquid protein foods with higher than the RDA of protein may be the best strategy for achieving high MPS rates in older adults, clinical trials are warranted to confirm an association between food form and SMM preservation. Further research is warranted before adequate recommendations and strategies for optimising SMM in the elderly population can be proposed.
Collapse
|
36
|
Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes. Nutrients 2020; 12:nu12092670. [PMID: 32883033 PMCID: PMC7551889 DOI: 10.3390/nu12092670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary protein is critical for the maintenance of musculoskeletal health, where appropriate intake (i.e., source, dose, timing) can mitigate declines in muscle and bone mass and/or function. Animal-derived protein is a potent anabolic source due to rapid digestion and absorption kinetics stimulating robust increases in muscle protein synthesis and promoting bone accretion and maintenance. However, global concerns surrounding environmental sustainability has led to an increasing interest in plant- and collagen-derived protein as alternative or adjunct dietary sources. This is despite the lower anabolic profile of plant and collagen protein due to the inferior essential amino acid profile (e.g., lower leucine content) and subordinate digestibility (versus animal). This review evaluates the efficacy of animal-, plant- and collagen-derived proteins in isolation, and as protein blends, for augmenting muscle and bone metabolism and health in the context of ageing, exercise and energy restriction.
Collapse
|
37
|
Gorissen SHM, Trommelen J, Kouw IWK, Holwerda AM, Pennings B, Groen BBL, Wall BT, Churchward-Venne TA, Horstman AMH, Koopman R, Burd NA, Fuchs CJ, Dirks ML, Res PT, Senden JMG, Steijns JMJM, de Groot LCPGM, Verdijk LB, van Loon LJC. Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans. J Nutr 2020; 150:2041-2050. [PMID: 32069356 PMCID: PMC7398787 DOI: 10.1093/jn/nxaa024] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. OBJECTIVE We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. METHODS We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine-labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein-derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. RESULTS A total of 50% ± 14% of dietary protein-derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein-derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein-derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein-derived phenylalanine appearing in the circulation, respectively (P = 0.001). CONCLUSIONS Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492.
Collapse
Affiliation(s)
- Stefan H M Gorissen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Bart Pennings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Bart B L Groen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Benjamin T Wall
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Astrid M H Horstman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - René Koopman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Nicholas A Burd
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Marlou L Dirks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Peter T Res
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Joan M G Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | | | | | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands,Address correspondence to LJCvL (e-mail: )
| |
Collapse
|
38
|
Giezenaar C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Effects of Age on Acute Appetite-Related Responses to Whey-Protein Drinks, Including Energy Intake, Gastric Emptying, Blood Glucose, and Plasma Gut Hormone Concentrations-A Randomized Controlled Trial. Nutrients 2020; 12:nu12041008. [PMID: 32268554 PMCID: PMC7231005 DOI: 10.3390/nu12041008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used commonly to increase energy intake in undernourished older people. This study aimed to establish age effects on energy intake, appetite, gastric emptying, blood glucose, and gut hormones in response to protein-rich drinks. In a randomized double-blind, order, 13 older men (age: 75 ± 2 yrs, body mass index (BMI): 26 ± 1 kg/m2) and 13 younger (23 ± 1 yrs, 24 ± 1 kg/m2) men consumed (i) a control drink (~2 kcal) or drinks (450 mL) containing protein/fat/carbohydrate: (ii) 70 g/0 g/0 g (280 kcal/'P280'), (iii) 14 g/12.4 g/28 g (280 kcal/'M280'), (iv) 70 g/12.4 g/28 g (504 kcal/'M504'), on four separate days. Appetite (visual analog scales), gastric emptying (3D ultrasonography), blood glucose, plasma insulin, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) concentrations (0-180 min), and ad-libitum energy intake (180-210 min) were determined. Older men, compared to younger men, had higher fasting glucose and CCK concentrations and lower fasting GLP-1 concentrations (all p < 0.05). Energy intake by P280 compared to control was less suppressed in older men (increase: 49 ± 42 kcal) than it was in younger men (suppression: 100 ± 54 kcal, p = 0.038). After the caloric drinks, the suppression of hunger and the desire to eat, and the stimulation of fullness was less (p < 0.05), and the stimulation of plasma GLP-1 was higher (p < 0.05) in older men compared to younger men. Gastric emptying, glucose, insulin, ghrelin, and CCK responses were similar between age groups. In conclusion, ageing reduces the responses of caloric drinks on hunger, the desire to eat, fullness, and energy intake, and protein-rich nutrition supplements may be an effective strategy to increase energy intake in undernourished older people.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand;
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
- Correspondence: ; Tel.: +61-8-8313-3638
| |
Collapse
|
39
|
Chaillou T, Sanna I, Kadi F. Glutamine-stimulated in vitro hypertrophy is preserved in muscle cells from older women. Mech Ageing Dev 2020; 187:111228. [PMID: 32142719 DOI: 10.1016/j.mad.2020.111228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/16/2023]
Abstract
Age-related loss of muscle mass may result from reduced protein synthesis stimulation in response to anabolic stimuli, such as amino acid (AA) supplementation. The exact etiology of anabolic resistance to AA remains unclear. Therefore, the aim of this study was to investigate the anabolic response [cell size, protein synthesis and mechanistic target of rapamycin (mTOR) pathway] to the AA glutamine (a strong anabolic AA highly present in skeletal muscle) in myotubes obtained from 8 young (YW; 21-35 yrs) and 8 older (OW; 65-70 yrs) healthy women. This in vitro model of human primary myogenic cells explores the intrinsic behavior of muscle cells, while excluding potential influences of external factors. We showed that despite lower muscle mass, strength and cardiorespiratory fitness in OW compared to YW, myotube size (myotube diameter and area) and protein synthesis were not altered in OW, and glutamine-induced myotube hypertrophy and protein synthesis were preserved in OW. Apart from a lower glutamine-induced increase in P70S6 kinase phosphorylation in OW, no significant differences in other components of the mTOR pathway were observed between groups. Altogether, our data support the idea that the intrinsic capacity of muscle cells to respond to glutamine stimulation is preserved in healthy older women.
Collapse
Affiliation(s)
- Thomas Chaillou
- Department of Health Sciences, Örebro University, Örebro, Sweden.
| | - Igor Sanna
- Department of Health Sciences, Örebro University, Örebro, Sweden.
| | - Fawzi Kadi
- Department of Health Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
40
|
Yokomichi H, Kondo K, Nagamine Y, Yamagata Z, Kondo N. Dementia risk by combinations of metabolic diseases and body mass index: Japan Gerontological Evaluation Study Cohort Study. J Diabetes Investig 2020; 11:206-215. [PMID: 31207179 PMCID: PMC6944839 DOI: 10.1111/jdi.13103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
AIMS/INTRODUCTION To compare the dementia risk associated with pre-existing diabetes, hypertension, dyslipidemia, obesity (body mass index [BMI] ≥25 kg/m2 ) and underweight (BMI <18.5 kg/m2 ) among older adults. We also explored the dementia risk associated with combinations of metabolic diseases and BMI. MATERIALS AND METHODS We used data from the Japan Gerontological Evaluation Study. Participants completed a health checkup in 2010 and were followed for 5.8 years on average. Dementia was measured by municipal long-term care insurance registration. Diabetes, hypertension, dyslipidemia, obesity and underweight were diagnosed by medication use or health examination results. We calculated the incidence of dementia and adjusted hazard ratios (HRs). RESULTS Among 3,696 participating older adults, 338 developed dementia. Adjusted HRs (95% confidence intervals) in men and women (reference: those without corresponding disease of normal weight) were as follows: 2.22 (1.26-3.90) and 2.00 (1.07-3.74) for diabetes; 0.56 (0.29-1.10) and 1.05 (0.64-1.71) for hypertension; 1.30 (0.87-1.94) and 0.73 (0.49-1.08) for dyslipidemia; 0.73 (0.42-1.28) and 0.82 (0.49-1.37) for BMI of 25-29.9 kg/m2 ; and 1.04 (0.51-2.10) and 1.72 (1.05-2.81) for underweight. Dementia risk was significantly higher in underweight men with dyslipidemia (HR 4.15, 95% CI 1.79-9.63) compared with normal-weight men without dyslipidemia, and in underweight women with hypertension (HR 3.79, 1.55-9.28) compared with normal-weight women without hypertension. Dementia incidence was highest among underweight older adults with hypertension followed by dyslipidemia. CONCLUSIONS Among Japanese older adults, underweight and prevalent diabetes are risk factors for developing dementia. Lower BMI is also associated with a higher incidence of dementia.
Collapse
Affiliation(s)
| | - Katsunori Kondo
- Department of Social Preventive Medical SciencesCenter for Preventive Medical SciencesChiba UniversityChibaJapan
- Department of Gerontological EvaluationCenter for Gerontology and Social ScienceNational Center for Geriatrics and GerontologyAichiJapan
| | - Yuiko Nagamine
- Department of Social Preventive Medical SciencesCenter for Preventive Medical SciencesChiba UniversityChibaJapan
| | - Zentaro Yamagata
- Department of Health SciencesUniversity of YamanashiYamanashiJapan
| | - Naoki Kondo
- Department of Health Education and Health SociologySchool of Public HealthThe University of TokyoTokyoJapan
| |
Collapse
|
41
|
Abstract
Industrial heat treatment of milk results in protein glycation. A high protein glycation level has been suggested to compromise the post-prandial rise in plasma amino acid availability following protein ingestion. In the present study, we assessed the impact of glycation level of milk protein on post-prandial plasma amino acid responses in humans. Fifteen healthy, young men (age 26 (SEM 1) years, BMI 24 (SEM 1) kg/m2) participated in this randomised cross-over study and ingested milk protein powder with protein glycation levels of 3, 20 and 50 % blocked lysine. On each trial day, arterialised blood samples were collected at regular intervals during a 6-h post-prandial period to assess plasma amino acid concentrations using ultra-performance liquid chromatography. Plasma essential amino acid (EAA) concentrations increased following milk protein ingestion, with the 20 and 50 % glycated milk proteins showing lower overall EAA responses compared with the 3 % glycated milk protein (161 (SEM 7) and 142 (SEM 7) v. 178 (SEM 9) mmol/l × 6 h, respectively; P ≤ 0·011). The lower post-prandial plasma amino acid responses were fully attributed to an attenuated post-prandial rise in circulating plasma lysine concentrations. Plasma lysine responses (incremental AUC) following ingestion of the 20 and 50 % glycated milk proteins were 35 (SEM 4) and 92 (SEM 2) % lower compared with the 3 % glycated milk protein (21·3 (SEM 1·4) and 2·8 (SEM 0·7) v. 33·3 (SEM 1·7) mmol/l × 6 h, respectively; P < 0·001). Milk protein glycation lowers post-prandial plasma lysine availability in humans. The lower post-prandial availability of lysine following ingestion of proteins with a high glycation level may compromise the anabolic properties of a protein source.
Collapse
|
42
|
Damanti S, Azzolino D, Roncaglione C, Arosio B, Rossi P, Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients 2019; 11:E1991. [PMID: 31443594 PMCID: PMC6770476 DOI: 10.3390/nu11091991] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is an age-related and accelerated process characterized by a progressive loss of muscle mass and strength/function. It is a multifactorial process associated with several adverse outcomes including falls, frailty, functional decline, hospitalization, and mortality. Hence, sarcopenia represents a major public health problem and has become the focus of intense research. Unfortunately, no pharmacological treatments are yet available to prevent or treat this age-related condition. At present, the only strategies for the management of sarcopenia are mainly based on nutritional and physical exercise interventions. The purpose of this review is, thus, to provide an overview on the role of proteins and other key nutrients, alone or in combination with physical exercise, on muscle parameters.
Collapse
Affiliation(s)
- Sarah Damanti
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy.
| | - Carlotta Roncaglione
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Paolo Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
43
|
Moro T, Brightwell CR, Velarde B, Fry CS, Nakayama K, Sanbongi C, Volpi E, Rasmussen BB. Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. J Nutr 2019; 149:1149-1158. [PMID: 31095313 PMCID: PMC7443767 DOI: 10.1093/jn/nxz053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Muscle protein synthesis (MPS) can be stimulated by ingestion of protein sources, such as whey, casein, or soy. Protein supplementation can enhance muscle protein synthesis after exercise and may preserve skeletal muscle mass and function in aging adults. Therefore, identifying protein sources with higher anabolic potency is of high significance. OBJECTIVE The aim of this study was to determine the anabolic potency and efficacy of a novel whey protein hydrolysate mixture (WPH) on mechanistic target of rapamycin complex 1 (mTORC1) signaling and skeletal MPS in healthy young subjects. METHODS Ten young men (aged 28.7 ± 3.6 y, 25.2 ± 2.9 kg/m2 body mass index [BMI]) were recruited into a double-blind two-way crossover trial. Subjects were randomized to receive either 0.08 g/kg of body weight (BW) of WPH or an intact whey protein (WHEY) mixture during stable isotope infusion experiments. Fractional synthetic rate, leucine and phenylalanine kinetics, and markers of amino acid sensing were assessed as primary outcomes before and 1-3 h after protein ingestion using a repeated measures mixed model. RESULTS Blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle and intracellular muscle leucine concentration significantly increased to a similar extent 1 h after ingestion of both mixtures (P < 0.05). Phosphorylation of S6K1 (i.e. a marker of mTORC1 activation) increased equally by ∼20% 1-h postingestion (P < 0.05). Ingestion of WPH and WHEY increased mixed MPS similarly in both groups by ∼43% (P < 0.05); however, phenylalanine utilization for synthesis increased in both treatments 1-h postingestion but remained elevated 3-h postingestion only in the WPH group (P < 0.05). CONCLUSIONS We conclude that a small dose of WPH effectively increases leucine transport into muscle, activating mTORC1 and stimulating MPS in young men. WPH anabolic potency and efficacy for promoting overall muscle protein anabolism is similar to WHEY, an intact protein source. This trial was registered at clinicaltrials.gov as NCT03313830.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | | | | | - Christopher S Fry
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Kyosuke Nakayama
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Chiaki Sanbongi
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Elena Volpi
- Department of Internal Medicine/Geriatrics,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX,Address correspondence to BBR (e-mail: )
| |
Collapse
|
44
|
Kayri V, Orhan C, Tuzcu M, Deeh Defo PB, Telceken H, Irmak M, Sahin N, Tastan H, Komorowski JR, Sahin K. Combination of Soy Protein, Amylopectin, and Chromium Stimulates Muscle Protein Synthesis by Regulation of Ubiquitin-Proteasome Proteolysis Pathway after Exercise. Biol Trace Elem Res 2019; 190:140-149. [PMID: 30293129 DOI: 10.1007/s12011-018-1539-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022]
Abstract
The present study was undertaken to investigate the effect of the combination of soy protein, amylopectin, and chromium (SAC) on muscle protein synthesis and signal transduction pathways involved in protein synthesis (mTOR pathways, IGF-1, and AktSer473) and proteolysis (FOXO1Ser256; MURF1, MAFbx) after exercise. Thirty-five Wistar rats were randomly divided into five groups: (1) control (C); (2) exercise (E); (3) exercise + soy protein (3.1 g/kg/day) (E + S); (4) exercise + soy protein + chromium (E + S + Cr); (5) exercise + soy protein + amylopectin + chromium (E + S + A + Cr). Post-exercise ingestion of SAC significantly increased the fractional rate of protein synthesis (FSR), insulin, glycogen, and amino acid levels with the highest effect observed in E + S + A + Cr group (P ˂ 0.05). However, SAC supplementation decreased the lactic acid concentration (P ˂ 0.05). A reduction in forkhead box protein O1 (FOXO1) and forkhead box protein O3 (FOXO3) (regulators of ubiquitin-related proteolysis) and muscle atrophy F-box (MAFbx) levels was noted after treatment with SAC (P < 0.05). Insulin-like growth factor 1(IGF-1) level was increased in the E + S, E + S + Cr, and E + S + A + Cr groups (P < 0.05). While the phosphorylation of 4E-BP1Thr37/46, AktSer473, mTORSer2448, and S6K1Thr389 levels increased after SAC supplementation, phosphorylated muscle ring finger 1 (MuRF-1, an E3-ubiquitin ligase gene) was found to be significantly lower compared with the E group (P ˂ 0.05). These results indicate that SAC supplementation improves FSR, insulin, and glycogen levels after exercise. SAC improves protein synthesis by inhibiting the ubiquitin-proteasome pathway and inducing anabolic metabolism.
Collapse
Affiliation(s)
- Veysi Kayri
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Hafize Telceken
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Mehmet Irmak
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Hakki Tastan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - James R Komorowski
- Scientific and Regulatory Affairs, Nutrition 21 Inc, 1 Manhattanville Road, Purchase, NY, USA
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
45
|
Ross M, Lithgow H, Hayes L, Florida-James G. Potential Cellular and Biochemical Mechanisms of Exercise and Physical Activity on the Ageing Process. Subcell Biochem 2019; 91:311-338. [PMID: 30888658 DOI: 10.1007/978-981-13-3681-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exercise in young adults has been consistently shown to improve various aspects of physiological and psychological health but we are now realising the potential benefits of exercise with advancing age. Specifically, exercise improves cardiovascular, musculoskeletal, and metabolic health through reductions in oxidative stress, chronic low-grade inflammation and modulating cellular processes within a variety of tissues. In this this chapter we will discuss the effects of acute and chronic exercise on these processes and conditions in an ageing population, and how physical activity affects our vasculature, skeletal muscle function, our immune system, and cardiometabolic risk in older adults.
Collapse
Affiliation(s)
- Mark Ross
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK.
| | - Hannah Lithgow
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Lawrence Hayes
- Active Ageing Research Group, University of Cumbria, Lancaster, UK
| | | |
Collapse
|
46
|
Endocrine responses following exhaustive strength exercise with and without the use of protein and protein-carbohydrate supplements. Biol Sport 2018; 35:399-405. [PMID: 30765926 PMCID: PMC6358528 DOI: 10.5114/biolsport.2018.75754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/27/2017] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the effect of carbohydrate-protein supplementation with whey protein (CHO-PROw) after resistance training, and casein protein (PROc) before bedtime on the concentration of growth hormone (GH), insulin (I) and insulin-like growth factor (IGF-1), as well as serum creatine kinase (CK) activity. Twelve strength trained male subjects (age: 25.8 ± 4.7 years; training experience 6.1 ± 0.79 years; body mass 75.9 ± 2.7 kg; body height 171.8 ± 13.3 cm) were recruited for the study. They were randomly divided into an experimental group (group E, n = 6) and a control group (group C, n = 6). All study participants completed full barbell squats with a constant external load of 90% one-repetition maximum (1RM) and a volume of 12 sets. In each set three repetitions were performed with 3 min rest periods after each set. Immediately after the exercise protocol, the subjects from the experimental group received a carbohydrate-protein complex (CHO-PROw) with a dose of 0.5 g/kg of body mass, while before bedtime they ingested a protein supplement (PROc) consisting of 90% casein protein with a dose of 0.3 g/kg of body weight The results indicate that a ignificant increase in GH concentration occurred in the experimental group between the pre-exercise level and after 24 h of recovery (p<0.01), as well as between 1 h and 24 hours of recovery (p<0.01). Significantly higher levels of GH were also found between the control group and the experimental group 24 hours after exercise (p<0.01). The results showed significantly higher levels of IGF-1 in the experimental than in the control group after 24 hours of recovery (p<0.05). In the case of insulin, no significant differences were observed when comparing levels before exercise, after exercise, after 1 hour of recovery and after 24 hours of recovery. The CHO-PROw and the PROc supplements did not reduce post-exercise muscle membrane damage as evidenced by serum CK activity. The intake of these supplements after high-intensity resistance exercise caused an increase in GH and IGF-1 concentration, which could stimulate muscle hypertrophy and inhibit proteolysis.
Collapse
|
47
|
Montoya CA, Cabrera DL, Zou M, Boland MJ, Moughan PJ. The Rate at Which Digested Protein Enters the Small Intestine Modulates the Rate of Amino Acid Digestibility throughout the Small Intestine of Growing Pigs. J Nutr 2018; 148:1743-1750. [PMID: 30383281 DOI: 10.1093/jn/nxy193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/22/2018] [Indexed: 11/14/2022] Open
Abstract
Background Actinidin, a cysteine protease in kiwifruit (KF), increases both the gastric digestion and gastric-emptying rate of beef muscle protein. Objective This study aimed to determine the relation between the rate of digested nitrogen entering the small intestine (SI; a function of the extent of gastric digestion and gastric-emptying rate) and the disappearance of amino acids (AAs) in different parts of the SI at set times postfeeding. Methods Male 9-wk-old pigs (n = 90; mean ± SD body weight: 28 ± 2.9 kg) were fed a diet containing 14% beef for 3 d. The beef-based diet was supplemented with green KF pulp (containing actinidin), gold KF pulp supplemented with actinidin, or gold KF pulp alone (no actinidin). The KF or actinidin amounts corresponded to the intake of 2 KFs/human meal. On day 3, pigs were killed at 0.5, 1, 3, 5, and 7 h postprandially. Stomach chyme was analyzed to determine the rate of digested nitrogen entering the SI. Apparent AA digestibility at set times was determined in the proximal, medial, and distal SI. Polynomial and correlation analyses were conducted. Results The rate of digested nitrogen entering the SI was higher (P < 0.001) with actinidin (e.g., >44% at 5 h postprandially). Actinidin also increased the apparent AA digestibility at the proximal and medial SI (P ≤ 0.05) at set times (e.g., 42% and 15% greater for arginine, respectively), but not in general for the distal SI (P > 0.05). At the proximal SI, apparent AA digestibility was correlated more strongly with the digested nitrogen entering the SI (r = 0.73, P < 0.001; n = 57) than with gastric emptying (r = 0.64, P < 0.001) or gastric protein digestion (r = 0.57, P < 0.001). Similar trends were observed for the medial SI. Conclusion The rate of digested nitrogen entering the SI is an accurate predictor of the rate of AA digestibility and the location of AA absorption in the pig SI.
Collapse
Affiliation(s)
- Carlos A Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Diana L Cabrera
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Maggie Zou
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Mike J Boland
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
48
|
Wilkinson D, Piasecki M, Atherton P. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 2018; 47:123-132. [PMID: 30048806 PMCID: PMC6202460 DOI: 10.1016/j.arr.2018.07.005] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Loss of muscle mass with age is due to atrophy and loss of individual muscle fibres. Anabolic resistance is fundamental in age-related fibre atrophy. Fibre loss is associated with denervation and remodelling of motor units. The plasticity of both factors should be considered in future research.
Age-related loss of skeletal muscle mass and function, sarcopenia, is associated with physical frailty and increased risk of morbidity (chronic diseases), in addition to all-cause mortality. The loss of muscle mass occurs incipiently from middle-age (∼1%/year), and in severe instances can lead to a loss of ∼50% by the 8–9th decade of life. This review will focus on muscle deterioration with ageing and highlight the two underpinning mechanisms regulating declines in muscle mass and function: muscle fibre atrophy and muscle fibre loss (hypoplasia) – and their measurement. The mechanisms of muscle fibre atrophy in humans relate to imbalances in muscle protein synthesis (MPS) and breakdown (MPB); however, since there is limited evidence for basal alterations in muscle protein turnover, it would appear that “anabolic resistance” to fundamental environmental cues regulating diurnal muscle homeostasis (namely physical activity and nutrition), underlie age-related catabolic perturbations in muscle proteostasis. While the ‘upstream’ drivers of the desensitization of aged muscle to anabolic stimuli are poorly defined, they most likely relate to impaired efficiency of the conversion of nutritional/exercise stimuli into signalling impacting mRNA translation and proteolysis. Additionally, loss of muscle fibres has been shown in cadaveric studies using anatomical fibre counts, and from iEMG studies demonstrating motor unit loss, albeit with few molecular investigations of this in humans. We suggest that defining countermeasures against sarcopenia requires improved understandings of the co-ordinated regulation of muscle fibre atrophy and fibre loss, which are likely to be inextricably linked.
Collapse
|
49
|
Yoshii N, Sato K, Ogasawara R, Nishimura Y, Shinohara Y, Fujita S. Effect of Mixed Meal and Leucine Intake on Plasma Amino Acid Concentrations in Young Men. Nutrients 2018; 10:nu10101543. [PMID: 30340425 PMCID: PMC6213454 DOI: 10.3390/nu10101543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023] Open
Abstract
Dietary protein intake is critical for the maintenance of skeletal muscle mass. Plasma amino acid concentrations increase with protein intake and increases in muscle protein synthesis are dependent on leucine concentrations. We aimed to investigate the effect of a mixed meal and free amino acids intake on plasma leucine concentrations. In this randomized crossover study, 10 healthy young men (age 25 ± 1 years, height 1.73 ± 0.02 m, weight 65.8 ± 1.5 kg) underwent tests under different conditions—intake of 2 g of leucine (LEU), intake of a mixed meal (protein 27.5 g, including 2.15 g of leucine, protein: fat: carbohydrate ratio—22:25:53) only (MEAL), intake of 2 g of leucine immediately after a mixed meal (MEAL-LEU) and intake of 2 g of leucine 180 min after a mixed meal (MEAL-LEU180). Blood samples were collected within 420 min (240 min for LEU only) after intake and changes in amino acid concentrations were evaluated. Although the maximum plasma leucine concentration increased to 442 ± 24 µM for LEU, it was lower at 347 ± 16 µM (p < 0.05 vs. LEU) for MEAL-LEU, 205 ± 8 µM (p < 0.05 vs. LEU) for MEAL. The maximum plasma leucine concentration for MEAL-LEU180 increased to 481 ± 27 µM and compared to LEU there was no significant difference (p > 0.1). The observation that rapid elevations in plasma leucine concentrations are suppressed when leucine is ingested at the same time as a meal suggests that the timing of its intake must be considered to maximize the anabolic response.
Collapse
Affiliation(s)
- Naomi Yoshii
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Koji Sato
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
| | - Yusuke Nishimura
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, West Midlands B15 2TT, UK.
| | - Yasushi Shinohara
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Satoshi Fujita
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
50
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|