1
|
Mouchlis VD, Hsu YH, Hayashi D, Cao J, Li S, McCammon JA, Dennis EA. The mechanism of allosteric regulation of calcium-independent phospholipase A 2 by ATP and calmodulin binding to the ankyrin domain. Proc Natl Acad Sci U S A 2024; 121:e2411539121. [PMID: 39560651 PMCID: PMC11621833 DOI: 10.1073/pnas.2411539121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024] Open
Abstract
Group VIA calcium-independent phospholipase A2 (iPLA2) is a member of the PLA2 superfamily that exhibits calcium-independent activity in contrast to the other two major types, secreted phospholipase A2 (sPLA2) and cytosolic phospholipase A2 (cPLA2), which both require calcium for their enzymatic activity. Adenosine triphosphate (ATP) has been reported to allosterically activate iPLA2, and this has now been verified with a lipidomics-based mixed-micelle assay, but its mechanism of action has been unknown. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to identify ATP interaction peptide regions located within the ankyrin repeat domain at which ATP interacts. Molecular dynamics simulations revealed the mechanism by which ATP binds to its site and the main residues that interact. Site-directed mutagenesis was used to verify the importance of these residues in the role of ATP in regulating iPLA2 activity. Importantly, calcium was found to abolish the enhancing regulatory function of ATP and to promote the inhibitory activity by calmodulin. Given previous evidence that calcium does not bind directly to iPLA2, its effect appears to be indirect via association with ATP and/or calmodulin. Using HDX-MS, we found that calmodulin interacts with the N terminus peptide region of iPLA2 consisting of residues 20 to 28. These two regulatory iPLA2 sites open the road to the development of potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Varnavas D. Mouchlis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Daiki Hayashi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Jian Cao
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Sheng Li
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA92093
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| |
Collapse
|
2
|
White TD, Almutairi A, Gai-Tusing Y, Stephenson DJ, Stephenson BD, Chalfant CE, Lei X, Lu B, Hammock BD, DiLorenzo TP, Ramanadham S. Differential lipid signaling from CD4 + and CD8 + T cells contributes to type 1 diabetes development. Front Immunol 2024; 15:1444639. [PMID: 39359722 PMCID: PMC11445035 DOI: 10.3389/fimmu.2024.1444639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction We reported that Ca2+-independent phospholipase A2β (iPLA2β)-derived lipids (iDLs) contribute to type 1 diabetes (T1D) onset. As CD4+ and CD8+ T cells are critical in promoting β-cell death, we tested the hypothesis that iDL signaling from these cells participates in T1D development. Methods CD4+ and CD8+ T cells from wild-type non-obese diabetic (NOD) and NOD.iPLA2β+/- (NOD.HET) mice were administered in different combinations to immunodeficient NOD.scid. Results In mice receiving only NOD T cells, T1D onset was rapid (5 weeks), incidence 100% by 20 weeks, and islets absent. In contrast, onset was delayed 1 week and incidence reduced 40%-50% in mice receiving combinations that included NOD.HET T cells. Consistently, islets from these non-diabetic mice were devoid of infiltrate and contained insulin-positive β-cells. Reduced iPLA2β led to decreased production of proinflammatory lipids from CD4+ T cells including prostaglandins and dihydroxyeicosatrienoic acids (DHETs), products of soluble epoxide hydrolase (sEH), and inhibition of their signaling decreased (by 82%) IFNγ+CD4+ cells abundance. However, only DHETs production was reduced from CD8+ T cells and was accompanied by decreases in sEH and granzyme B. Discussion These findings suggest that differential select iDL signaling in CD4+ and CD8+ T cells contributes to T1D development, and that therapeutics targeting such signaling might be considered to counter T1D.
Collapse
Affiliation(s)
- Tayleur D. White
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ying Gai-Tusing
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
| | - Benjamin D. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Charles E. Chalfant
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian Lu
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce D. Hammock
- Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
4
|
Han Y, Wang Y, Li S, Sato K, Yamagishi S. Exploration of the shared pathways and common biomarker in adamantinomatous craniopharyngioma and type 2 diabetes using integrated bioinformatics analysis. PLoS One 2024; 19:e0304404. [PMID: 38848397 PMCID: PMC11161051 DOI: 10.1371/journal.pone.0304404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Craniopharyngiomas are rare tumors of the central nervous system that typically present with symptoms such as headache and visual impairment, and those reflecting endocrine abnormalities, which seriously affect the quality of life of patients. Patients with craniopharyngiomas are at higher cardiometabolic risk, defined as conditions favoring the development of type 2 diabetes and cardiovascular disease. However, the underlying common pathogenic mechanisms of craniopharyngiomas and type 2 diabetes are not clear. Especially due to the difficulty of conducting in vitro or in vivo experiments on craniopharyngioma, we thought the common pathway analysis between craniopharyngioma and type 2 diabetes based on bioinformatics is a powerful and feasible method. In the present study, using public datasets (GSE94349, GSE68015, GSE38642 and GSE41762) obtained from the GEO database, the gene expression associated with adamantinomatous craniopharyngioma, a subtype of craniopharyngioma, and type 2 diabetes were analyzed using a bioinformatic approach. We found 11 hub genes using a protein-protein interaction network analysis. Of these, seven (DKK1, MMP12, KRT14, PLAU, WNT5B, IKBKB, and FGF19) were also identified by least absolute shrinkage and selection operator analysis. Finally, single-gene validation and receptor operating characteristic analysis revealed that four of these genes (MMP12, PLAU, KRT14, and DKK1) may be involved in the common pathogenetic mechanism of adamantinomatous craniopharyngioma and type 2 diabetes. In addition, we have characterized the differences in immune cell infiltration that characterize these two diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Yibo Han
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yong Wang
- Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuo Li
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Tikhonova IV, Dyukina AR, Grinevich AA, Shaykhutdinova ER, Safronova VG. Changed regulation of granulocyte NADPH oxidase activity in the mouse model of obesity-induced type 2 diabetes mellitus. Free Radic Biol Med 2024; 216:33-45. [PMID: 38479632 DOI: 10.1016/j.freeradbiomed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia.
| | - Alsu R Dyukina
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Prospect Nauki, 6, Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| |
Collapse
|
6
|
Moon SH, Dilthey BG, Guan S, Sims HF, Pittman SK, Keith AL, Jenkins CM, Weihl CC, Gross RW. Genetic deletion of skeletal muscle iPLA 2γ results in mitochondrial dysfunction, muscle atrophy and alterations in whole-body energy metabolism. iScience 2023; 26:106895. [PMID: 37275531 PMCID: PMC10239068 DOI: 10.1016/j.isci.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
Skeletal muscle is the major site of glucose utilization in mammals integrating serum glucose clearance with mitochondrial respiration. To mechanistically elucidate the roles of iPLA2γ in skeletal muscle mitochondria, we generated a skeletal muscle-specific calcium-independent phospholipase A2γ knockout (SKMiPLA2γKO) mouse. Genetic ablation of skeletal muscle iPLA2γ resulted in pronounced muscle weakness, muscle atrophy, and increased blood lactate resulting from defects in mitochondrial function impairing metabolic processing of pyruvate and resultant bioenergetic inefficiency. Mitochondria from SKMiPLA2γKO mice were dysmorphic displaying marked changes in size, shape, and interfibrillar juxtaposition. Mitochondrial respirometry demonstrated a marked impairment in respiratory efficiency with decreases in the mass and function of oxidative phosphorylation complexes and cytochrome c. Further, a pronounced decrease in mitochondrial membrane potential and remodeling of cardiolipin molecular species were prominent. Collectively, these alterations prevented body weight gain during high-fat feeding through enhanced glucose disposal without efficient capture of chemical energy thereby altering whole-body bioenergetics.
Collapse
Affiliation(s)
- Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Beverly Gibson Dilthey
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Harold F. Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sara K. Pittman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amy L. Keith
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher M. Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard W. Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Chemistry, Washington University, Saint Louis, MO 63130, USA
| |
Collapse
|
7
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
8
|
Panasenko OM, Ivanov VA, Mikhalchik EV, Gorudko IV, Grigorieva DV, Basyreva LY, Shmeleva EV, Gusev SA, Kostevich VA, Gorbunov NP, Sokolov AV. Methylglyoxal-Modified Human Serum Albumin Binds to Leukocyte Myeloperoxidase and Inhibits its Enzymatic Activity. Antioxidants (Basel) 2022; 11:2263. [PMID: 36421449 PMCID: PMC9686918 DOI: 10.3390/antiox11112263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023] Open
Abstract
Hyperglycemia in diabetes mellitus induces modification of proteins by glucose and its derivative methylglyoxal (MG). Neutrophils perform their bactericidal activity mainly via reactive halogen (RHS) and oxygen (ROS) species generation catalyzed by myeloperoxidase (MPO) stored in neutrophil azurophilic granules (AGs) and membrane NADPH oxidase, respectively. Herein, we study the binding of human serum albumin (HSA) modified with MG (HSA-MG) to MPO and its effects on MPO activity and release by neutrophils. Peroxidase activity of MPO was registered by oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and chlorinating activity by decolorization of Celestine blue B dye. Binding of HSA-MG to MPO was studied by affinity chromatography, disc-electrophoresis, ligand Western blotting and enzyme-linked solid phase immunoassay using monoclonal antibodies (mAbs) to MPO. ROS and RHS generation were detected by lucigenin (Luc) and luminol (Lum) chemiluminescence (CL), respectively. Neutrophil degranulation was assessed by flow cytometry using fluorescent labeled antibodies to the marker proteins CD63 from AGs and CD11b from peroxidase-negative granules (PNGs). NETosis was assayed by quantifying DNA network-like structures (NET-like structures) in blood smears stained by Romanowsky. HSA-MG bound to MPO, giving a stable complex (Kd = 1.5 nM) and competing with mAbs, and non-competitively inhibited peroxidase and chlorinating MPO activity and induced degranulation of PNGs but not of AGs. HSA-MG enhanced Luc-CL per se or following PMA, unlike Lum-CL, and did not affect spontaneous or PMA-stimulated NETosis. Thus, HSA modified under hyperglycemia-like conditions stimulated NADPH oxidase of neutrophils but dampened their functions dependent on activity of MPO, with no effect on its release via degranulation or NETosis. This phenomenon could underlie the downregulation of bactericidal activity of MPO and neutrophils, and hence of innate immunity, giving rise to wound healing impairment and susceptibility to infection in patients with hyperglycemia.
Collapse
Affiliation(s)
- Oleg M. Panasenko
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Medical Biophysics of the Institute for Translative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor A. Ivanov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Elena V. Mikhalchik
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Liliya Yu. Basyreva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Ekaterina V. Shmeleva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Sergey A. Gusev
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Valeria A. Kostevich
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Alexey V. Sokolov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
9
|
Tikhonova IV, Grinevich AA, Kosyakova NI, Safronova VG. The effect of high temperature on kinetics of reactive species generation in patients with type 2 diabetes. Free Radic Biol Med 2022; 192:235-245. [PMID: 36198342 DOI: 10.1016/j.freeradbiomed.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022]
Abstract
The excessive amount of reactive species under chronic inflammation, which are accompanied by an increase body temperature, lead to diabetic complications. Phagocyte NADPH oxidase is the key enzyme in these processes. The role of high temperature in its regulation in diabetes is not clear. The aim was to investigate the effect of high temperature on NADPH-oxidase-dependent generation of reactive species in diabetic patients. Chemiluminescent method was applied to assess respiratory burst kinetics initiated by opsonized zymosan in blood or phorbol ester in isolated granulocytes. Analyzing ROC curves, the main predictors and changes in stages of activation of NADPH oxidase were determined. Phosphoisoforms of p47phox and p67phox were quantified by immunoblotting. Response to opsonized zymosan was lower in all subjects at 40 °C vs 37 °C, its kinetic parameters (except Tmax) were higher in blood of patients vs controls. Response rate was the main significant predictor to distinguish groups of subjects at 40 °C indicating NADPH oxidase upregulation in diabetes. Ca2+-dependent generation of reactive species by cells increased in both groups at 40 °C vs 37 °C, kinetic parameters were higher in patients. Initial phospho-p47phox level was higher in patient cells vs ones in controls. It was increased by ionomycin, phorbol ester, or 40 °C in control cells and unchanged in patient ones. Phospho-p67phox level was unchangeable in intact cells of healthy donors and patients at both temperatures. Excessive amounts of reactive species in patient cells were the consequence of granulocyte priming due to p47phox phosphorylation. Thus, high temperature decreased phagocytosis- and enhanced Ca2+-dependent generation of reactive species making the differences between controls and patients less pronounced. The effect of temperature on the generation of reactive species in blood granulocytes is associated with activity of NADPH oxidase that can be a prospective therapeutic target for pathologies accompanied by inflammation including type 2 diabetes.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3 Pushchino, 142290, Russia.
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3 Pushchino, 142290, Russia
| | - Ninel I Kosyakova
- Hospital of Pushchino Scientific Centre of Russian Academy of Sciences, Institutskaya st., 1 Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3 Pushchino, 142290, Russia
| |
Collapse
|
10
|
Cao TBT, Moon JY, Yoo HJ, Ban GY, Kim SH, Park HS. Down-regulated surfactant protein B in obese asthmatics. Clin Exp Allergy 2022; 52:1321-1329. [PMID: 35294785 DOI: 10.1111/cea.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity is a common comorbid condition in adult asthmatics and known as a feature of asthma severity. However, the molecular mechanism under obesity-induced inflammation has not yet been fully understood. OBJECTIVE Considering the essential role of hydrophobic surfactant protein B (SP-B) in lung function, SP-B was targeted to examine its involvement in the development of obesity-induced airway inflammation in asthmatics. METHODS The aim was to examine an alteration in circulating SP-B according to obesity in adult asthmatics, 129 asthmatics were enrolled and classified into 3 groups (obese, overweight and normal-weight groups) according to body mass index (BMI). Circulating SP-B levels were determined by enzyme-linked immunosorbent assay. Four single nucleotide polymorphisms of SFTPB gene were genotyped. Serum ceramide levels were measured by liquid chromatography-tandem mass spectrometry. RESULTS Significantly lower serum SP-B levels were noted in the obese group than in the overweight or normal-weight group (p = .002). The serum SP-B level was significantly correlated with serum levels of C18:0 ceramide and transforming growth factor beta 1 as well as BMI (r = -0.200; r = -0.215; r = -0.332, p < .050 for all). An inverse correlation was noted between serum SP-B and fractional exhaled nitric oxide levels in female asthmatics (r = -0.287, p = .009). Genetic predisposition of the SFTPB gene at 9306 A>G to the obese and overweight groups was noted. CONCLUSION Obesity altered ceramide metabolism leading to pulmonary surfactant dysfunction and impaired resolution of airway inflammation, finally contributing to the phenotypes of obese asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun-Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
11
|
Mikhalchik EV, Ivanov VA, Borodina IV, Pobeguts OV, Smirnov IP, Gorudko IV, Grigorieva DV, Boychenko OP, Moskalets AP, Klinov DV, Panasenko OM, Filatova LY, Kirzhanova EA, Balabushevich NG. Neutrophil Activation by Mineral Microparticles Coated with Methylglyoxal-Glycated Albumin. Int J Mol Sci 2022; 23:ijms23147840. [PMID: 35887188 PMCID: PMC9321525 DOI: 10.3390/ijms23147840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Correspondence: ; Tel.: +7-499-2464352
| | - Victor A. Ivanov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Borodina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Igor P. Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Olga P. Boychenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Alexander P. Moskalets
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Luboff Y. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Ekaterina A. Kirzhanova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Nadezhda G. Balabushevich
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| |
Collapse
|
12
|
Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:652-666. [PMID: 34148367 PMCID: PMC9057880 DOI: 10.1089/ars.2021.0116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Neutrophil behavior and function are altered by hyperglycemia associated with diabetes. Aberrant activation by hyperglycemia causes neutrophils to respond with increased production of reactive oxidative species (ROS). Excess ROS, a signature of primed neutrophils, can intracellularly induce neutrophils to undergo NETosis, flooding surrounding tissues with ROS and damage-associated molecular patterns such as S100 calcium binding proteins (S100A8/A9). The cargo associated with NETosis also attracts more immune cells to the site and signals for increased immune cell production. This inflammatory response to diabetes can accelerate other associated conditions such as atherosclerosis and thrombosis, increasing the risk of cardiovascular disease. Recent Advances: As the prevalence of diabetes continues to grow, more attention has been focused on developing effective treatment options. Currently, glucose-lowering medications and insulin injections are the most widely utilized treatments. As the disease progresses, medications are usually stacked to maintain glucose at desired target levels, but this approach often fails and does not effectively reduce cardiovascular risk, even with the latest drugs. Critical Issues: Despite advances in treatment options, diabetes remains a progressive disease as glucose lowering alone has failed to abolish the associated cardiovascular complications. Future Directions: Significant interest is being generated in developing treatments that do not solely focus on glucose control but rather mitigate glucotoxicity. Several therapies have been proposed that target cellular dysfunction downstream of hyperglycemia, such as using antioxidants to scavenge ROS, inhibiting ROS production from NOX, and suppressing neutrophil release of S100A8/A9 proteins. Antioxid. Redox Signal. 36, 652-666.
Collapse
Affiliation(s)
- Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sreejit Gopalkrishna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Prabhakara R Nagareddy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
13
|
Ali T, Lei X, Barbour SE, Koizumi A, Chalfant CE, Ramanadham S. Alterations in β-Cell Sphingolipid Profile Associated with ER Stress and iPLA 2β: Another Contributor to β-Cell Apoptosis in Type 1 Diabetes. Molecules 2021; 26:molecules26216361. [PMID: 34770770 PMCID: PMC8587436 DOI: 10.3390/molecules26216361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student’s t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages—the initiators of autoimmune responses leading to T1D—is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.
Collapse
Affiliation(s)
- Tomader Ali
- Research Department, Imperial College London Diabetes Center, Abu Dhabi 51133, United Arab Emirates;
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Suzanne E. Barbour
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto Graduate School of Medicine, Kyoto 606-8501, Japan;
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: ; Tel.: +1-205-996-5973; Fax: +1-205-996-5220
| |
Collapse
|
14
|
Nichols BE, Hook JS, Weng K, Ahn C, Moreland JG. Novel neutrophil phenotypic signature in pediatric patients with type 1 diabetes and diabetic ketoacidosis. J Leukoc Biol 2021; 111:849-856. [PMID: 34342036 DOI: 10.1002/jlb.3a1220-826r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic inflammatory condition sometimes complicated by acute diabetic ketoacidosis (DKA). A subset of patients with T1D develop DKA independent of known risk factors. This study tested the hypothesis that circulating polymorphonuclear leukocytes (PMN) from children with T1D and DKA would exhibit a primed phenotype and that the signature would be unique in patients predisposed to have DKA. Using a prospective cohort study design, neutrophil phenotype was assessed in 30 patients with T1D seen in endocrinology clinic for routine care, 30 patients with acute DKA, and 36 healthy donors. Circulating PMN from patients with DKA display a primed phenotype with increased basal cell-surface CD11b, L-selectin shedding, and enhanced fMLF-elicited reactive oxygen species (ROS) production. Moreover, PMN from T1D patients both with and without DKA lack the capacity to be further primed by incubation with TNF-α, a classic priming stimulus. Primed PMN phenotypic signatures demonstrated are independent of hemoglobin A1c, the premier biological marker for DKA risk, and are consistent with a hyperinflammatory state. A single nucleotide polymorphism in TLR-1 (1805G>T), known to be associated with a hyperinflammatory PMN phenotype, correlated with DKA. This study elucidated a novel phenotypic signature in circulating PMN from children with T1D with and without DKA, and suggests the possibility of a previously unrecognized PMN phenotype with potential clinical implications. Immunophenotype and genotype may be applicable as biomarkers for DKA risk stratification in patients with T1D.
Collapse
Affiliation(s)
- Blake E Nichols
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kayson Weng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chul Ahn
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
The Impact of the Ca 2+-Independent Phospholipase A 2β (iPLA 2β) on Immune Cells. Biomolecules 2021; 11:biom11040577. [PMID: 33920898 PMCID: PMC8071342 DOI: 10.3390/biom11040577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The Ca2+-independent phospholipase A2β (iPLA2β) is a member of the PLA2 family that has been proposed to have roles in multiple biological processes including membrane remodeling, cell proliferation, bone formation, male fertility, cell death, and signaling. Such involvement has led to the identification of iPLA2β activation in several diseases such as cancer, cardiovascular abnormalities, glaucoma, periodontitis, neurological disorders, diabetes, and other metabolic disorders. More recently, there has been heightened interest in the role that iPLA2β plays in promoting inflammation. Recognizing the potential contribution of iPLA2β in the development of autoimmune diseases, we review this issue in the context of an iPLA2β link with macrophages and T-cells.
Collapse
|
17
|
Nelson AJ, Stephenson DJ, Bone RN, Cardona CL, Park MA, Tusing YG, Lei X, Kokotos G, Graves CL, Mathews CE, Kramer J, Hessner MJ, Chalfant CE, Ramanadham S. Lipid mediators and biomarkers associated with type 1 diabetes development. JCI Insight 2020; 5:138034. [PMID: 32814707 PMCID: PMC7455134 DOI: 10.1172/jci.insight.138034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes (T1D) is a consequence of autoimmune β cell destruction, but the role of lipids in this process is unknown. We previously reported that activation of Ca2+-independent phospholipase A2β (iPLA2β) modulates polarization of macrophages (MΦ). Hydrolysis of the sn-2 substituent of glycerophospholipids by iPLA2β can lead to the generation of oxidized lipids (eicosanoids), pro- and antiinflammatory, which can initiate and amplify immune responses triggering β cell death. As MΦ are early triggers of immune responses in islets, we examined the impact of iPLA2β-derived lipids (iDLs) in spontaneous-T1D prone nonobese diabetic mice (NOD), in the context of MΦ production and plasma abundances of eicosanoids and sphingolipids. We find that (a) MΦNOD exhibit a proinflammatory lipid landscape during the prediabetic phase; (b) early inhibition or genetic reduction of iPLA2β reduces production of select proinflammatory lipids, promotes antiinflammatory MΦ phenotype, and reduces T1D incidence; (c) such lipid changes are reflected in NOD plasma during the prediabetic phase and at T1D onset; and (d) importantly, similar lipid signatures are evidenced in plasma of human subjects at high risk for developing T1D. These findings suggest that iDLs contribute to T1D onset and identify select lipids that could be targeted for therapeutics and, in conjunction with autoantibodies, serve as early biomarkers of pre-T1D.
Collapse
Affiliation(s)
- Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA
| | - Robert N Bone
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher L Cardona
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA
| | - Margaret A Park
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Christina L Graves
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Joanna Kramer
- Max McGee Research Center for Juvenile Diabetes, Department of Pediatrics at Medical College of Wisconsin and Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Martin J Hessner
- Max McGee Research Center for Juvenile Diabetes, Department of Pediatrics at Medical College of Wisconsin and Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA.,Research Service, James A. Haley Veterans Hospital, Tampa, Florida, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| |
Collapse
|
18
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Nelson AJ, Stephenson DJ, Cardona CL, Lei X, Almutairi A, White TD, Tusing YG, Park MA, Barbour SE, Chalfant CE, Ramanadham S. Macrophage polarization is linked to Ca 2+-independent phospholipase A 2β-derived lipids and cross-cell signaling in mice. J Lipid Res 2019; 61:143-158. [PMID: 31818877 DOI: 10.1194/jlr.ra119000281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β-/-) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β-/- , and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.
Collapse
Affiliation(s)
- Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Christopher L Cardona
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Margaret A Park
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Suzanne E Barbour
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620.,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294 .,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
20
|
Proteomic analysis of peripheral blood polymorphonuclear cells (PBMCs) reveals alteration of neutrophil extracellular trap (NET) components in uncontrolled diabetes. Mol Cell Biochem 2019; 461:1-14. [PMID: 31273604 DOI: 10.1007/s11010-019-03583-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils have been thought to play a major role in inflammation and diabetic complications especially in poor glycemic control patients as demonstrated by their aberrant inflammatory markers. The aim of the present study was to compare neutrophil proteome profiles between diabetic patients with good glycemic control and those with poor glycemic control to see whether there might be any differences that could be related to the cause of complications which are found more commonly in the latter. Using 2-dimensional gel electrophoresis (2-DE) followed by quadrupole time of flight mass spectrometry (Q-TOF MS) and/or tandem mass spectrometry (MS/MS), we identified 35 differentially expressed proteins, some of which were protein components of neutrophil extracellular traps (NETs), in the poor glycemic control group compared to the good glycemic control group. The observed alterations of protein components of NETs included downregulation of myeloperoxidase, azurocidin (CAP37), and S100A9; and upregulation of the glycolytic enzymes transketolase and alpha-enolase. Manganese superoxide dismutase (MnSOD), functioning in cellular response and defense, was also found downregulated in the poor control group. Most of the glycolysis-related proteins were downregulated in the good control group but upregulated in the poor control group, including phosphoglycerate kinase 1 (PGK1) and L-lactate dehydrogenase B chain (LDHB). The findings of this study demonstrate the dysregulation of protein components of NETs in neutrophils in patients with poorly controlled diabetes. More specifically, these findings suggest association between NETs and inflammation in diabetes and provide further insights into the role of neutrophils in the complications of poorly controlled diabetes.
Collapse
|
21
|
Bansal S, Kare PK, Tripathi AK, Madhu SV. Advanced Glycation End Products: A Potential Contributor of Oxidative Stress for Cardio-Vascular Problems in Diabetes. OXIDATIVE STRESS IN HEART DISEASES 2019:437-459. [DOI: 10.1007/978-981-13-8273-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Neethi Raj P, Shaji BV, Haritha V, Anie Y. Neutrophil secretion modulates neutrophil and monocyte functions during hyperglucose and/or hyperinsulin conditions in vitro. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jocit.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
24
|
Inflammation and neutrophil immunosenescence in health and disease: Targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol 2018; 105:70-77. [DOI: 10.1016/j.exger.2017.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
|
25
|
Zhang JM, Wang XH, Hao LH, Wang H, Zhang XY, Muhammad I, Qi Y, Li GL, Sun XQ. Nrf2 is crucial for the down-regulation of Cyp7a1 induced by arachidonic acid in Hepg2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:21-26. [PMID: 28364638 DOI: 10.1016/j.etap.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
In former research, cyp7a1 expression was decreased but Nrf2 transcription and hepatic arachidonic acid (AA) concentration were increased in high-fat diet fed mice. This study aims to investigate the influence of AA in CYP7A1 expression and the role of Nrf2 in regulating CYP7A1 in the process. HepG2 cells were administered with different concentrations of AA. Nrf2 and CYP7A1 expressions were analyzed by real-time PCR and western blot. Nrf2 silenced and over-expressed cell models were constructed by Nrf2 siRNA and eukaryotic expression vector transient transfections and were used to investigate the role of Nrf2 in regulating CYP7A1 following AA administration. The results showed that Nrf2 was increased dose-dependently but CYP7A1 was decreased dose-dependently in cells treated with increasing concentrations of AA. The expression of CYP7A1 was increased by Nrf2 silence and was decreased by Nrf2 over-expression in HepG2 cells treated with different concentrations of AA. In conclusion, Nrf2 plays a significant role in the down-regulation of CYP7A1 induced by AA in HepG2 cells.
Collapse
Affiliation(s)
- Jin-Ming Zhang
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xing-He Wang
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Li-Hong Hao
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - He Wang
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiu-Ying Zhang
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ishfaq Muhammad
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yue Qi
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Guang-Liang Li
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiao-Qi Sun
- Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Szablewski L, Sulima A. The structural and functional changes of blood cells and molecular components in diabetes mellitus. Biol Chem 2017; 398:411-423. [DOI: 10.1515/hsz-2016-0196] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Abstract
It is known fact that diabetes mellitus (DM) affects blood cells. Changes in the erythrocyte membrane, disorder in hemoglobin oxygen-binding and modification in mechanical characteristics, are effects of hyperglycemia on red blood cells. Altered susceptibility infection of patients with diabetes has been ascribed to a depression in the function of polymorphonuclear leukocytes. Neutrophil function in patients with diabetes with good glucose control is slightly different than in healthy ones. DM causes significant changes in lymphocytes metabolism and their functions. Patients with diabetes, presenting with acute coronary syndrome, are at higher risk of cardiovascular complications and recurrent ischemic events in comparison to non-diabetic counterparts. Various mechanisms, including endothelial dysfunction, platelet hyperactivity, and abnormalities in coagulation and fibrynolysis have been implicated for this increased atherothrombotic risk. There are many other alterations of blood cells due to DM. In the present review we focused on modifications of blood cells due to DM. Then, as a second point, we explored how the changes affect functions of red blood cells, white blood cells and platelets.
Collapse
|
27
|
Fejfarová V, Jirkovská A, Dubský M, Game F, Vydláková J, Sekerková A, Franeková J, Kučerová M, Stříž I, Petkov V, Bém R, Wosková V, Němcová A, Skibová J. An Alteration of Lymphocytes Subpopulations and Immunoglobulins Levels in Patients with Diabetic Foot Ulcers Infected Particularly by Resistant Pathogens. J Diabetes Res 2016; 2016:2356870. [PMID: 28050566 PMCID: PMC5165150 DOI: 10.1155/2016/2356870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023] Open
Abstract
The aim of our study was to analyse immune abnormalities in patients with chronic infected diabetic foot ulcers (DFUs) especially those infected by resistant microorganisms. Methods. 68 patients treated in our foot clinic for infected chronic DFUs with 34 matched diabetic controls were studied. Patients with infected DFUs were subdivided into two subgroups according to the antibiotic sensitivity of causal pathogen: subgroup S infected by sensitive (n = 50) and subgroup R by resistant pathogens (n = 18). Selected immunological markers were compared between the study groups and subgroups. Results. Patients with infected chronic DFUs had, in comparison with diabetic controls, significantly reduced percentages (p < 0.01) and total numbers of lymphocytes (p < 0.001) involving B lymphocytes (p < 0.01), CD4+ (p < 0.01), and CD8+ T cells (p < 0.01) and their naive and memory effector cells. Higher levels of IgG (p < 0.05) including IgG1 (p < 0.001) and IgG3 (p < 0.05) were found in patients with DFUs compared to diabetic controls. Serum levels of immunoglobulin subclasses IgG2 and IgG3 correlated negatively with metabolic control (p < 0.05). A trend towards an increased frequency of IgG2 deficiency was found in patients with DFUs compared to diabetic controls (22% versus 15%; NS). Subgroup R revealed lower levels of immunoglobulins, especially of IgG4 (p < 0.01) in contrast to patients infected by sensitive bacteria. The innate immunity did not differ significantly between the study groups. Conclusion. Our study showed changes mainly in the adaptive immune system represented by low levels of lymphocyte subpopulations and their memory effector cells, and also changes in humoral immunity in patients with DFUs, even those infected by resistant pathogens, in comparison with diabetic controls.
Collapse
Affiliation(s)
- Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandra Jirkovská
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubský
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frances Game
- Diabetes Unit, Derby Hospitals NHS Foundation Trust, Derby, UK
| | - Jana Vydláková
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Sekerková
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Franeková
- Department of Clinical Biochemistry, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Kučerová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ilja Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimír Petkov
- Department of Clinical Microbiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Robert Bém
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andrea Němcová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jelena Skibová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
28
|
Okada S. The pathophysiological role of acute inflammation after spinal cord injury. Inflamm Regen 2016; 36:20. [PMID: 29259693 PMCID: PMC5725917 DOI: 10.1186/s41232-016-0026-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes irreparable severe motor and sensory dysfunction. Mechanical trauma rapidly leads to blood-spinal cord barrier disruption, neural cell death, axonal damage, and demyelination, followed by a cascade of secondary injury that expands the additional inflammatory reaction at the lesion site. Although the role of inflammation in this phase is complex, a number of studies have suggested that inflammatory responses spread the damage to the surrounding tissue, induce apoptotic cell death, and impair spontaneous regeneration and functional recovery. However, recent advances in experimental technology, such as the depletion antibodies for a specific fraction of inflammatory cells and the genetically engineered mice deficient only in specific cells, suggest the beneficial aspects of inflammatory cells, such as a neuroprotective effect, the removal of cellular debris, and the attenuation of the inflammatory reaction in general. In this review, I summarize our recent findings about the biological role of inflammatory cells, especially infiltrating neutrophils and activated microglia after SCI. A better understanding of the pathophysiological role of inflammation in the acute phase of SCI will aid in the development of therapeutic strategy to enhance the functional recovery after SCI.
Collapse
Affiliation(s)
- Seiji Okada
- Department of Advanced Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan.,Orthopaedics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Ashley JW, Hancock WD, Nelson AJ, Bone RN, Tse HM, Wohltmann M, Turk J, Ramanadham S. Polarization of Macrophages toward M2 Phenotype Is Favored by Reduction in iPLA2β (Group VIA Phospholipase A2). J Biol Chem 2016; 291:23268-23281. [PMID: 27650501 DOI: 10.1074/jbc.m116.754945] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
Macrophages are important in innate and adaptive immunity. Macrophage participation in inflammation or tissue repair is directed by various extracellular signals and mediated by multiple intracellular pathways. Activation of group VIA phospholipase A2 (iPLA2β) causes accumulation of arachidonic acid, lysophospholipids, and eicosanoids that can promote inflammation and pathologic states. We examined the role of iPLA2β in peritoneal macrophage immune function by comparing wild type (WT) and iPLA2β-/- mouse macrophages. Compared with WT, iPLA2β-/- macrophages exhibited reduced proinflammatory M1 markers when classically activated. In contrast, anti-inflammatory M2 markers were elevated under naïve conditions and induced to higher levels by alternative activation in iPLA2β-/- macrophages compared with WT. Induction of eicosanoid (12-lipoxygenase (12-LO) and cyclooxygenase 2 (COX2))- and reactive oxygen species (NADPH oxidase 4 (NOX4))-generating enzymes by classical activation pathways was also blunted in iPLA2β-/- macrophages compared with WT. The effects of inhibitors of iPLA2β, COX2, or 12-LO to reduce M1 polarization were greater than those to enhance M2 polarization. Certain lipids (lysophosphatidylcholine, lysophosphatidic acid, and prostaglandin E2) recapitulated M1 phenotype in iPLA2β-/- macrophages, but none tested promoted M2 phenotype. These findings suggest that (a) lipids generated by iPLA2β and subsequently oxidized by cyclooxygenase and 12-LO favor macrophage inflammatory M1 polarization, and (b) the absence of iPLA2β promotes macrophage M2 polarization. Reducing macrophage iPLA2β activity and thereby attenuating macrophage M1 polarization might cause a shift from an inflammatory to a recovery/repair milieu.
Collapse
Affiliation(s)
- Jason W Ashley
- From the Department of Biology, Eastern Washington University, Cheney, Washington 99004
| | - William D Hancock
- Department of Cell, Developmental, and Integrative Biology.,Comprehensive Diabetes Center, and
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology.,Comprehensive Diabetes Center, and
| | - Robert N Bone
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, and
| | - Hubert M Tse
- Comprehensive Diabetes Center, and.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Wohltmann
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, .,Comprehensive Diabetes Center, and
| |
Collapse
|
30
|
Computer-aided drug design guided by hydrogen/deuterium exchange mass spectrometry: A powerful combination for the development of potent and selective inhibitors of Group VIA calcium-independent phospholipase A 2. Bioorg Med Chem 2016; 24:4801-4811. [PMID: 27320659 DOI: 10.1016/j.bmc.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
Potent and selective inhibitors for phospholipases A2 (PLA2) are useful for studying their intracellular functions. PLA2 enzymes liberate arachidonic acid from phospholipids activating eicosanoid pathways that involve cyclooxygenase (COX) and lipoxygenase (LOX) leading to inflammation. Anti-inflammatory drugs target COX and LOX; thus, PLA2 can also be targeted to diminish inflammation at an earlier stage in the process. This paper describes the employment of enzymatic assays, hydrogen/deuterium exchange mass spectrometry (DXMS) and computational chemistry to develop PLA2 inhibitors. Beta-thioether trifluoromethylketones (TFKs) were screened against human GVIA calcium-independent, GIVA cytosolic and GV secreted PLA2s. These compounds exhibited inhibition toward Group VIA calcium-independent PLA2 (GVIA iPLA2), with the most potent and selective inhibitor 3 (OTFP) obtaining an XI(50) of 0.0002 mole fraction (IC50 of 110nM). DXMS binding experiments in the presence of OTFP revealed the peptide regions of GVIA iPLA2 that interact with the inhibitor. Molecular docking and dynamics simulations in the presence of a membrane were guided by the DXMS data in order to identify the binding mode of OTFP. Clustering analysis showed the binding mode of OTFP that occupied 70% of the binding modes occurring during the simulation. The resulted 3D complex was used for docking studies and a structure-activity relationship (SAR) was established. This paper describes a novel multidisciplinary approach in which a 3D complex of GVIA iPLA2 with an inhibitor is reported and validated by experimental data. The SAR showed that the sulfur atom is vital for the potency of beta-thioether analogues, while the hydrophobic chain is important for selectivity. This work constitutes the foundation for further design, synthesis and inhibition studies in order to develop new beta-thioether analogues that are potent and selective for GVIA iPLA2 exclusively.
Collapse
|
31
|
Mouchlis VD, Limnios D, Kokotou MG, Barbayianni E, Kokotos G, McCammon JA, Dennis EA. Development of Potent and Selective Inhibitors for Group VIA Calcium-Independent Phospholipase A2 Guided by Molecular Dynamics and Structure-Activity Relationships. J Med Chem 2016; 59:4403-14. [PMID: 27087127 DOI: 10.1021/acs.jmedchem.6b00377] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of inhibitors for phospholipase A2 (PLA2) is important in elucidating the enzymes implication in various biological pathways. PLA2 enzymes are an important pharmacological target implicated in various inflammatory diseases. Computational chemistry, organic synthesis, and in vitro assays were employed to develop potent and selective inhibitors for group VIA calcium-independent PLA2. A set of fluoroketone inhibitors was studied for their binding mode with two human cytosolic PLA2 enzymes: group IVA cPLA2 and group VIA iPLA2. New compounds were synthesized and assayed toward three major PLA2s. This study led to the development of four potent and selective thioether fluoroketone inhibitors as well as a thioether keto-1,2,4-oxadiazole inhibitor for GVIA iPLA2, which will serve as lead compounds for future development and studies. The keto-1,2,4-oxadiazole functionality with a thioether is a novel structure, and it will be used as a lead to develop inhibitors with higher potency and selectivity toward GVIA iPLA2.
Collapse
Affiliation(s)
- Varnavas D Mouchlis
- Department of Pharmacology and Department of Chemistry and Biochemistry, School of Medicine, University of California, San Diego , La Jolla, California 92093-0601, United States
| | - Dimitris Limnios
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771, Greece
| | - Efrosini Barbayianni
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771, Greece
| | - J Andrew McCammon
- Department of Pharmacology and Department of Chemistry and Biochemistry, School of Medicine, University of California, San Diego , La Jolla, California 92093-0601, United States
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, School of Medicine, University of California, San Diego , La Jolla, California 92093-0601, United States
| |
Collapse
|
32
|
Kurzątkowska K, Jankowska A, Wysłouch-Cieszyńska A, Zhukova L, Puchalska M, Dehaen W, Radecka H, Radecki J. Voltammetric detection of the S100B protein using His-tagged RAGE domain immobilized onto a gold electrode modified with a dipyrromethene–Cu(II) complex and different diluents. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Membrane and inhibitor interactions of intracellular phospholipases A2. Adv Biol Regul 2015; 61:17-24. [PMID: 26774606 DOI: 10.1016/j.jbior.2015.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023]
Abstract
Studying phospholipases A2 (PLA2s) is a challenging task since they act on membrane-like aggregated substrates and not on monomeric phospholipids. Multidisciplinary approaches that include hydrogen/deuterium exchange mass spectrometry (DXMS) and computational techniques have been employed with great success in order to address important questions about the mode of interactions of PLA2 enzymes with membranes, phospholipid substrates and inhibitors. Understanding the interactions of PLA2s is crucial since these enzymes are the upstream regulators of the eicosanoid pathway liberating free arachidonic acid (AA) and other polyunsaturated fatty acids (PUFA). The liberation of AA by PLA2 enzymes sets off a cascade of molecular events that involves downstream regulators such as cyclooxygenase (COX) and lipoxygenase (LOX) metabolites leading to inflammation. Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) work by inhibiting COX, while Zileuton inhibits LOX and both rely on PLA2 enzymes to provide them with AA. That means PLA2 enzymes can potentially also be targeted to diminish inflammation at an earlier point in the process. In this review we describe extensive efforts reported in the past to define the interactions of PLA2 enzymes with membranes, substrate phospholipids and inhibitors using DXMS, molecular docking, and molecular dynamics (MD) simulations.
Collapse
|
34
|
Abstract
BACKGROUND The role of calcium-independent phospholipase A2 (iPLA2), a component of the three major PLA2 families, in acute/chronic inflammatory processes remains elusive. Previous investigations have documented iPLA2-mediated respiratory burst of neutrophils (PMNs); however, the causative isoform of iPLA2 is unidentified. We also demonstrated that the iPLA2γ-specific inhibitor attenuates trauma/hemorrhagic shock-induced lung injury. Therefore, iPLA2γ may be implicated in acute inflammation. In addition, arachidonic acid (AA), which is primarily produced by cytosolic PLA2 (cPLA2), is known to display PMN cytotoxicity, although the relationship between AA and the cytotoxic function is still being debated on. We therefore hypothesized that iPLA2γ regulates PMN cytotoxicity via AA-independent signaling pathways. The study aim was to distinguish the role of intracellular phospholipases A2, iPLA2, and cPLA2, in human PMN cytotoxicity and explore the possibility of the presence of signaling molecule(s) other than AA. METHODS Isolated human PMNs were incubated with the PLA2 inhibitor selective for iPLA2β, iPLA2γ, or cPLA2 and then activated with formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol 12-myristate 13-acetate (PMA). Superoxide production was assayed according to the superoxide dismutase-inhibitable cytochrome c reduction method, and the degree of elastase release was measured using a p-nitroanilide-conjugated elastase-specific substrate. In addition, chemotaxis toward platelet activating factor/fMLP was determined with a modified Boyden chamber system. RESULTS The iPLA2γ-specific inhibitor reduced the fMLP/PMA-stimulated superoxide generation by 90% and 30%, respectively; in addition, the inhibitor completely blocked the fMLP/PMA-activated elastase release. However, the cPLA2-specific inhibitor did not abrogate these effects to any degree at all concentrations. Likewise, the inhibitor for iPLA2γ, but not iPLA2β or cPLA2, completely inhibited the platelet activating factor/fMLP-induced chemotaxis. CONCLUSION iPLA2 is involved in extracellular reactive oxygen species production, elastase release, and chemotaxis in response to well-defined stimuli. In addition, the ineffectiveness of the cPLA2 inhibitor suggests that AA may not be relevant to these cytotoxic functions.
Collapse
|
35
|
Menegazzo L, Ciciliot S, Poncina N, Mazzucato M, Persano M, Bonora B, Albiero M, Vigili de Kreutzenberg S, Avogaro A, Fadini GP. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol 2015; 52:497-503. [PMID: 25387570 DOI: 10.1007/s00592-014-0676-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/24/2014] [Indexed: 12/28/2022]
Abstract
AIMS The role of neutrophils in diabetes and its complications is unclear. Upon challenge with microbes and inflammatory triggers, neutrophils release enzymes and nuclear material, forming neutrophils extracellular traps (NETs) and thereby dying by NETosis. We herein tested NET formation and NETosis products in high glucose and in the setting of type 2 diabetes (T2D). METHODS NETosis was assessed in vitro in cells exposed to 0, 5, 25 mM glucose and 25 mM mannitol, DMSO and PMA using immunofluorescence staining for elastase, DNA and chromatin. Single-cell morphometric analysis was used to detect enter of elastase in the nucleus and extrusion of nuclear material. Release of NETs was quantified by staining with Hoechst 33342. In 38 T2D and 38 age- and sex-matched non-diabetic individuals, we determined plasma elastase, mono- and oligonucleosomes and double-strand (ds) DNA, as circulating NETosis products. RESULTS NETosis was accurately reproduced in vitro: high (25 mM) glucose increased NETosis rate and release of NETs compared with 5 mM glucose and 25 mM mannitol. T2D patients showed increased plasma elastase, mono- and oligonucleosomes and dsDNA compared with non-diabetic control individuals. A positive correlation was found between HbA1c and mono- and oligonucleosomes, whereas dsDNA was correlated with the presence of nephropathy and cardiovascular disease. Serum IL-6 concentrations were higher in T2D compared with CTRL and correlated with serum dsDNA levels. CONCLUSIONS High glucose and hyperglycemia increase release of NETs and circulating markers of NETosis, respectively. This finding provides a link among neutrophils, inflammation and tissue damage in diabetes.
Collapse
Affiliation(s)
- Lisa Menegazzo
- Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bone RN, Gai Y, Magrioti V, Kokotou MG, Ali T, Lei X, Tse HM, Kokotos G, Ramanadham S. Inhibition of Ca2+-independent phospholipase A2β (iPLA2β) ameliorates islet infiltration and incidence of diabetes in NOD mice. Diabetes 2015; 64:541-54. [PMID: 25213337 PMCID: PMC4303959 DOI: 10.2337/db14-0097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
Autoimmune β-cell death leads to type 1 diabetes, and with findings that Ca(2+)-independent phospholipase A2β (iPLA2β) activation contributes to β-cell death, we assessed the effects of iPLA2β inhibition on diabetes development. Administration of FKGK18, a reversible iPLA2β inhibitor, to NOD female mice significantly reduced diabetes incidence in association with 1) reduced insulitis, reflected by reductions in CD4(+) T cells and B cells; 2) improved glucose homeostasis; 3) higher circulating insulin; and 4) β-cell preservation. Furthermore, FKGK18 inhibited production of tumor necrosis factor-α (TNF-α) from CD4(+) T cells and antibodies from B cells, suggesting modulation of immune cell responses by iPLA2β-derived products. Consistent with this, 1) adoptive transfer of diabetes by CD4(+) T cells to immunodeficient and diabetes-resistant NOD.scid mice was mitigated by FKGK18 pretreatment and 2) TNF-α production from CD4(+) T cells was reduced by inhibitors of cyclooxygenase and 12-lipoxygenase, which metabolize arachidonic acid to generate bioactive inflammatory eicosanoids. However, adoptive transfer of diabetes was not prevented when mice were administered FKGK18-pretreated T cells or when FKGK18 administration was initiated with T-cell transfer. The present observations suggest that iPLA2β-derived lipid signals modulate immune cell responses, raising the possibility that early inhibition of iPLA2β may be beneficial in ameliorating autoimmune destruction of β-cells and mitigating type 1 diabetes development.
Collapse
Affiliation(s)
- Robert N Bone
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Ying Gai
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Tomader Ali
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Xiaoyong Lei
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Sasanka Ramanadham
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
37
|
Unubol M, Yavasoglu I, Kacar F, Guney E, Omurlu IK, Ture M, Kadikoylu G, Bolaman Z. Relationship between glycemic control and histochemical myeloperoxidase activity in neutrophils in patients with type 2 diabetes. Diabetol Metab Syndr 2015; 7:119. [PMID: 26719776 PMCID: PMC4696277 DOI: 10.1186/s13098-015-0115-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/19/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myeloperoxidase (MPO) is a lysosomal hemoprotein found in the azurophilic granules in neutrophils. Myeloperoxidase plays an important role in oxygen-dependent killing of bacteria, fungi, virus and malignant cells. Diabetes mellitus (DM) is listed among conditions that may lead to secondary MPO deficiency in neutrophils but inconsistent results concerning MPO activity in diabetic patients have been reported in the literature. In this study, we aimed to evaluate the relationship between glycemic control in patients with type 2 DM and MPO activity in neutrophils from a histochemical perspective. METHODS The study included 40 patients with type 2 DM with poor glycemic control, 30 patients with type 2 DM with good glycemic control and 31 healthy controls. Peripheral blood smears were analyzed for each patient included in the study. Myeloperoxidase dye was used for staining. Myeloperoxidase ratios in neutrophil were evaluated for proportions of staining with MPO in 100 neutrophils in each smear. SPSS 16.0 version was used for statistical analyses. RESULTS Myeloperoxidase ratios in neutrophils were 70 (58.5-80) in type 2 DM patients with poor glycemic control compared to 80 (73.75-90) in those with good glycemic control and 88 (78-92) in healthy controls. The DM group with poor glycemic control was statistically significantly different from the other groups (p < 0.001). CONCLUSIONS Poor glycemic control in diabetic patients results in decreased MPO activity in neutrophils histochemically.
Collapse
Affiliation(s)
- Mustafa Unubol
- />Department of Endocrinology, Faculty of Medicine, Adnan Menderes University, 09100 Aydın, Turkey
| | - Irfan Yavasoglu
- />Department of Hematology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Firuzan Kacar
- />Department of Pathology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Engin Guney
- />Department of Endocrinology, Faculty of Medicine, Adnan Menderes University, 09100 Aydın, Turkey
| | - Imran Kurt Omurlu
- />Department of Biostatistics, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Mevlut Ture
- />Department of Biostatistics, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Gurhan Kadikoylu
- />Department of Hematology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Zahit Bolaman
- />Department of Hematology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
38
|
Yang M, Liu J, Xu J, Sun T, Sheng L, Chen Z, Wang F, Huang X, Wu Y, Mao J, Zhang R. Elevated Systemic Neutrophil Count Is Associated with Diabetic Macroalbuminuria among Elderly Chinese. Int J Endocrinol 2015; 2015:348757. [PMID: 26843862 PMCID: PMC4710918 DOI: 10.1155/2015/348757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/19/2015] [Accepted: 11/08/2015] [Indexed: 11/17/2022] Open
Abstract
Background. This study investigated an association between systemic absolute neutrophil count (ANC) and albuminuria in elderly Chinese people. Methods. A cross-sectional study was conducted on 2265 participants attending a routine medical examination in Minhang District as part of a Platform of Chronic Disease program. Their drug history, waist circumference, height, blood pressure, fasting blood glucose, ANC, and urine albumin levels were recorded. This study conformed to the requirements of the STROBE statement. Results. Of the 2265 subjects, 1254 (55.4%) were diabetic and 641 (28.3%) had albuminuria. The mean ANC of patients with diabetes comorbid with macroalbuminuria was significantly higher than that of both the nondiabetic patients and patients with diabetes with lower levels of albuminuria; the latter 2 groups had statistically similar ANC. ANC significantly and positively correlated with levels of urine albumin. Based on multivariate analysis, with each 10(9)/L increase in ANC, the increase in rates of macroalbuminuria was significant but not in rates of albuminuria positivity. Based on areas under the receiver operating characteristic curve, ANC was the strongest factor predicting macroalbuminuria. Conclusions. Elevated ANC was associated with macroalbuminuria in diabetes, indicating that neutrophil-mediated inflammation may be involved in the exacerbation of albuminuria.
Collapse
Affiliation(s)
- Min Yang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
- *Jun Liu:
| | - Jiong Xu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Tiange Sun
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Li Sheng
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zaoping Chen
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Fang Wang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Yueyue Wu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jianfeng Mao
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
39
|
Wu GR, Cheserek M, Shi YH, Shen LY, Yu J, Le GW. Elevated plasma dityrosine in patients with hyperlipidemia compared to healthy individuals. ANNALS OF NUTRITION AND METABOLISM 2014; 66:44-50. [PMID: 25531053 DOI: 10.1159/000365731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dityrosine, the modification of tyrosine residues, may contribute to metabolic disorders. This study was undertaken to investigate plasma dityrosine concentrations in patients with hyperlipidemia and to examine the correlation between dityrosine and lipid profiles. METHODS Fluorescence spectrophotometry was used to measure dityrosine in the plasma of healthy subjects (n = 203) and dyslipidemic subjects, which included patients with mild hyperlipidemia (n = 246) and hyperlipidemia (n = 179). Advanced oxidation protein products (AOPP) and malondialdehyde (MDA) were also assayed in all subjects. RESULTS Dityrosine levels were higher by 9.3 and 22.9% in mildly hyperlipidemic and hyperlipidemic patients, respectively, compared to controls after adjustment for age, gender, and BMI. AOPP and MDA levels showed similar trends. The levels of dityrosine related positively (p < 0.05) to total cholesterol (r = 0.362), triglycerides (r = 0.449), and low-density lipoprotein cholesterol (r = 0.359). Moreover, plasma dityrosine (r = 0.408), AOPP (r = 0.488), and MDA (r = 0.181) levels were elevated with an increase in the atherosclerosis index in the subjects. CONCLUSIONS These findings suggest that dityrosine formation may be an early event in the pathological process of hyperlipidemia. Dityrosine as a biomarker detected by fluorescence spectrophotometry might be a useful tool to evaluate the plasma redox state in hyperlipidemia.
Collapse
Affiliation(s)
- Gui-Rong Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | | | | | | |
Collapse
|
40
|
Kobayakawa K, Kumamaru H, Saiwai H, Kubota K, Ohkawa Y, Kishimoto J, Yokota K, Ideta R, Shiba K, Tozaki-Saitoh H, Inoue K, Iwamoto Y, Okada S. Acute hyperglycemia impairs functional improvement after spinal cord injury in mice and humans. Sci Transl Med 2014; 6:256ra137. [DOI: 10.1126/scitranslmed.3009430] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Ayilavarapu S, Kantarci A, Hasturk H, Van Dyke TE. IPLA2 mRNA expression by human neutrophils in type 2 diabetes and chronic periodontitis. JOURNAL OF THE INTERNATIONAL ACADEMY OF PERIODONTOLOGY 2014; 16:121-126. [PMID: 25654966 PMCID: PMC4793369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Type 2 diabetes mellitus (T2D) is becoming increasingly prevalent worldwide and complications of T2D cause significant systemic and dental morbidity in the susceptible individual. Although T2D has been linked as a significant risk factor for chronic periodontitis (CP), molecular mechanisms explaining the pathogenesis and inflammatory impact of CP in T2D are lacking. iPLA2 is the calcium-independent form of phospholipase A2. In previous studies, we demonstrated that iPLA2 enzyme activity is altered in T2D. The purpose of this study was to elucidate the level of the iPLA2 abnormality in T2D by measuring messenger RNA levels in T2D-associated CP. A total of 53 healthy and T2D subjects with CP were recruited for this study. The clinical periodontal exam included probing pocket depth, clinical attachment levels and bleeding on probing. Peripheral venous blood was collected and neutrophils were isolated. Real time polymerase chain reaction was used to quantify iPLA2 mRNA in neutrophils from healthy controls and people with diabetes. Results revealed that the prevalence of moderate to severe CP was increased in people with T2D. The iPLA, mRNA levels in diabetics with different severity of CP were not significantly different compared to healthy controls; 1.07 vs 0.97 (mild CP), 1.07 vs 0.85 (moderate CP) and 1.07 vs 1.05 (severe CP). Collectively, the data suggest that levels of iPLA2 mRNA in T2D are not different than in health and are not directly influenced by periodontal disease status. The impact of inflammation on iPLA2 regulation is at the level of activation of the enzyme rather than expression at the mRNA level.
Collapse
Affiliation(s)
- Srinivas Ayilavarapu
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA 02142
| | - Hatice Hasturk
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA 02142
| | - Thomas E. Van Dyke
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA 02142
| |
Collapse
|
42
|
Lei X, Bone RN, Ali T, Zhang S, Bohrer A, Tse HM, Bidasee KR, Ramanadham S. Evidence of contribution of iPLA2β-mediated events during islet β-cell apoptosis due to proinflammatory cytokines suggests a role for iPLA2β in T1D development. Endocrinology 2014; 155:3352-64. [PMID: 25004092 PMCID: PMC4138580 DOI: 10.1210/en.2013-2134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of islet β-cells, but the underlying mechanisms that contribute to this process are incompletely understood, especially the role of lipid signals generated by β-cells. Proinflammatory cytokines induce ER stress in β-cells and we previously found that the Ca(2+)-independent phospholipase A2β (iPLA2β) participates in ER stress-induced β-cell apoptosis. In view of reports of elevated iPLA2β in T1D, we examined if iPLA2β participates in cytokine-mediated islet β-cell apoptosis. We find that the proinflammatory cytokine combination IL-1β+IFNγ, induces: a) ER stress, mSREBP-1, and iPLA2β, b) lysophosphatidylcholine (LPC) generation, c) neutral sphingomyelinase-2 (NSMase2), d) ceramide accumulation, e) mitochondrial membrane decompensation, f) caspase-3 activation, and g) β-cell apoptosis. The presence of a sterol regulatory element in the iPLA2β gene raises the possibility that activation of SREBP-1 after proinflammatory cytokine exposure contributes to iPLA2β induction. The IL-1β+IFNγ-induced outcomes (b-g) are all inhibited by iPLA2β inactivation, suggesting that iPLA2β-derived lipid signals contribute to consequential islet β-cell death. Consistent with this possibility, ER stress and β-cell apoptosis induced by proinflammatory cytokines are exacerbated in islets from RIP-iPLA2β-Tg mice and blunted in islets from iPLA2β-KO mice. These observations suggest that iPLA2β-mediated events participate in amplifying β-cell apoptosis due to proinflammatory cytokines and also that iPLA2β activation may have a reciprocal impact on ER stress development. They raise the possibility that iPLA2β inhibition, leading to ameliorations in ER stress, apoptosis, and immune responses resulting from LPC-stimulated immune cell chemotaxis, may be beneficial in preserving β-cell mass and delaying/preventing T1D evolution.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Departments of Cell, Developmental, and Integrative Biology (X.L., T.A., S.R.), Pathology (R.N.B.), Microbiology (H.M.T.), and Comprehensive Diabetes Center (X.L., R.N.B., T.A., H.M.T., S.R.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Department of Medicine (S.Z., A.B.), Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, Missouri 63110; and Department of Pharmacology and Experimental Neuroscience (K.R.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tan C, Day R, Bao S, Turk J, Zhao QD. Group VIA phospholipase A2 mediates enhanced macrophage migration in diabetes mellitus by increasing expression of nicotinamide adenine dinucleotide phosphate oxidase 4. Arterioscler Thromb Vasc Biol 2014; 34:768-78. [PMID: 24482376 DOI: 10.1161/atvbaha.113.302847] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We previously demonstrated that nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) mediates increased monocyte priming and chemotaxis under conditions of diabetic metabolic stress, and emerging data indicate that group VIA phospholipase A2 (iPLA2β) also participates in regulating monocyte chemotaxis. Here, we examined relationships between iPLA2β expression and Nox4 action in mouse peritoneal macrophages subjected to diabetic metabolic stress. APPROACH AND RESULTS Increased iPLA2β expression and activity were observed in macrophages from low-density lipoprotein receptor knockout mice that were fed a high-fat diet, and this was associated with time-dependent increases in atherosclerotic lesion size and macrophage content. Incubating macrophages with 30 mmol/L D-glucose, 100 μg/mL low-density lipoprotein, or both (D-glucose+low-density lipoprotein) induced a robust increase in iPLA2β expression and activity and in cell migration in response to monocyte chemoattractant protein-1. The increases in iPLA2β activity and cell migration were prevented by a bromoenol lactone iPLA2β suicide inhibitor or an iPLA2β antisense oligonucleotide. Incubating macrophages under conditions that mimic diabetic metabolic stress ex vivo resulted in increased Nox4 expression and activity and hydrogen peroxide generation compared with controls. Bromoenol lactone prevented those effects without affecting Nox2 expression. Nox4 inhibition eliminated diabetic metabolic stress-induced acceleration of macrophage migration. Lysophosphatidic acid restored Nox4 expression, hydrogen peroxide generation, and migration to bromoenol lactone-treated cells, and a lysophosphatidic acid receptor antagonist abrogated iPLA2β-mediated increases in Nox4 expression. CONCLUSIONS Taken together, these observations identify iPLA2β and lysophosphatidic acid derived from its action as critical in regulating macrophage Nox4 activity and migration in the diabetic state in vivo and under similar conditions ex vivo.
Collapse
Affiliation(s)
- Chunyan Tan
- From the Department of Medicine, University of Texas Health Science Center, San Antonio (C.T., R.D., Q.D.Z.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (S.B., J.T.)
| | | | | | | | | |
Collapse
|
44
|
Sergeant S, McPhail LC. Measurement of phospholipid metabolism in intact neutrophils. Methods Mol Biol 2014; 1124:89-105. [PMID: 24504948 DOI: 10.1007/978-1-62703-845-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phospholipid-metabolizing enzymes are important participants in neutrophil signal transduction pathways. The methods discussed herein describe assays for assessing the activities of phospholipase A2 (PLA2), phospholipase C (PLC), phospholipase D (PLD), and phosphoinositide 3-OH-kinase in intact neutrophils. PLA2 activity is measured as the release of radiolabeled arachidonic acid. PLC activity is measured as the accumulation of inositol 1,4,5-trisphosphate (IP3), a water-soluble product, using a commercially available radioreceptor assay kit. PLD activity is measured as the appearance of its radiolabeled products, phosphatidic acid and phosphatidylethanol. PI3-K activity is measured as the appearance of its radiolabeled product, phosphatidylinositol-3,4,5-trisphosphate.
Collapse
Affiliation(s)
- Susan Sergeant
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
45
|
Guedes-Martins L, Matos L, Soares A, Silva E, Almeida H. AGEs, contributors to placental bed vascular changes leading to preeclampsia. Free Radic Res 2013; 47 Suppl 1:70-80. [PMID: 23796030 DOI: 10.3109/10715762.2013.815347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycation of proteins or other biomolecules and their further long-term degradation result in the formation of advanced glycation end products, AGEs. AGEs and other ligands interact with their receptors, RAGEs, localized to a variety of tissues, but mainly in endothelium and vascular wall cells. This interaction triggers diverse signaling pathways that converge on the activation of NF-κB and the initiation of a local inflammatory reaction that, when prolonged, results in dysfunctional features. Preeclampsia is a serious vascular disorder centred at the placenta-uterine interface, the placental bed, but the condition extends to the mother's circulation. RAGEs have notorious expression in the placental bed tissues along pregnancy but, in addition, RAGEs and their ligands are expressed in the fetal membranes and are found in the amniotic fluid and the mother's serum. Disorders complicating pregnancies and having an important vascular involvement, as preeclampsia and diabetes mellitus, have additional enhanced AGE/RAGE expression variation. This indicates that for their assessment, the assay of RAGEs or their ligands may become useful diagnostic or prognostic procedures.
Collapse
Affiliation(s)
- L Guedes-Martins
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
46
|
Ali T, Kokotos G, Magrioti V, Bone RN, Mobley JA, Hancock W, Ramanadham S. Characterization of FKGK18 as inhibitor of group VIA Ca2+-independent phospholipase A2 (iPLA2β): candidate drug for preventing beta-cell apoptosis and diabetes. PLoS One 2013; 8:e71748. [PMID: 23977134 PMCID: PMC3748103 DOI: 10.1371/journal.pone.0071748] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/30/2013] [Indexed: 01/27/2023] Open
Abstract
Ongoing studies suggest an important role for iPLA2β in a multitude of biological processes and it has been implicated in neurodegenerative, skeletal and vascular smooth muscle disorders, bone formation, and cardiac arrhythmias. Thus, identifying an iPLA2βinhibitor that can be reliably and safely used in vivo is warranted. Currently, the mechanism-based inhibitor bromoenol lactone (BEL) is the most widely used to discern the role of iPLA2β in biological processes. While BEL is recognized as a more potent inhibitor of iPLA2 than of cPLA2 or sPLA2, leading to its designation as a "specific" inhibitor of iPLA2, it has been shown to also inhibit non-PLA2 enzymes. A potential complication of its use is that while the S and R enantiomers of BEL exhibit preference for cytosol-associated iPLA2β and membrane-associated iPLA2γ, respectively, the selectivity is only 10-fold for both. In addition, BEL is unstable in solution, promotes irreversible inhibition, and may be cytotoxic, making BEL not amenable for in vivo use. Recently, a fluoroketone (FK)-based compound (FKGK18) was described as a potent inhibitor of iPLA2β. Here we characterized its inhibitory profile in beta-cells and find that FKGK18: (a) inhibits iPLA2β with a greater potency (100-fold) than iPLA2γ, (b) inhibition of iPLA2β is reversible, (c) is an ineffective inhibitor of α-chymotrypsin, and (d) inhibits previously described outcomes of iPLA2β activation including (i) glucose-stimulated insulin secretion, (ii) arachidonic acid hydrolysis; as reflected by PGE2 release from human islets, (iii) ER stress-induced neutral sphingomyelinase 2 expression, and (iv) ER stress-induced beta-cell apoptosis. These findings suggest that FKGK18 is similar to BEL in its ability to inhibit iPLA2β. Because, in contrast to BEL, it is reversible and not a non-specific inhibitor of proteases, it is suggested that FKGK18 is more ideal for ex vivo and in vivo assessments of iPLA2β role in biological functions.
Collapse
Affiliation(s)
- Tomader Ali
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | | | | | | |
Collapse
|
47
|
Yun HM, Jin P, Han JY, Lee MS, Han SB, Oh KW, Hong SH, Jung EY, Hong JT. Acceleration of the development of Alzheimer's disease in amyloid beta-infused peroxiredoxin 6 overexpression transgenic mice. Mol Neurobiol 2013; 48:941-51. [PMID: 23771816 DOI: 10.1007/s12035-013-8479-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
The amyloid beta (Aβ) peptide in the brains of patients with Alzheimer's disease (AD) is cytotoxic to neurons and has a central role in the pathogenesis of the disease. Peroxiredoxin 6 (Prdx6) is an antioxidant protein and could act as a cytoprotective protein. However, the role of Prdx6 in neurodegenerative disease has not been studied. Thus, the roles and action mechanisms in the development of AD were examined. Aβ1-42-induced memory impairment in Prdx6 transgenic mice was worse than C57BL/6 mice, and the expression of amyloid precursor protein cleavage, C99, β-site APP-cleaving enzyme 1, inducible nitric oxide synthase, and cyclooxygenase-2 was greatly increased. In addition, the astrocytes and microglia cells of Aβ-infused Prdx6 transgenic mice were more activated, and Aβ also significantly increased lipid peroxidation and protein carbonyl levels, but decreased glutathione levels. Furthermore, we found that translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus was increased in Aβ-infused Prdx6 transgenic mice. These results suggest that the overexpression of Prdx6 could accelerate the development of AD through increased amyloidogenesis through independent PLA2 activation and Nrf2 transcription.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Catalfamo DL, Britten TM, Storch DI, Calderon NL, Sorenson HL, Wallet SM. Hyperglycemia induced and intrinsic alterations in type 2 diabetes-derived osteoclast function. Oral Dis 2013; 19:303-12. [PMID: 24079914 PMCID: PMC3800028 DOI: 10.1111/odi.12002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/09/2012] [Accepted: 07/15/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Periodontal disease-associated alveolar bone loss is a comorbidity of type-2-diabetes, where the roles of osteoclasts are poorly understood. OBJECTIVE To evaluate osteoclast differentiation and function in the context of type-2-diabetes. MATERIALS AND METHODS Bone marrow-derived osteoclasts from db/db mice, a model of type-2-diabetes, as well as human osteoclasts derived from peripheral blood of individuals with type-2-diabetes were evaluated for differentiation, resorption, and soluble mediator expression. RESULTS While db/db mice were hyperglycemic at time of cell harvest, human participants were glycemically controlled. Although db/db cultures resulted in a higher number of larger osteoclasts, individual cell receptor activator of nuclear factor kappaB ligand (RANKL)-mediated bone resorption was similar to that observed in diabetes-free osteoclasts. Osteoclasts derived from individuals with type-2-diabetes differentiated similarly to controls with again no difference in bone resorbing capacity. Murine and human type-2-diabetes cultures both displayed inhibition of lipopolysaccharide (LPS)-induced deactivation and increased pro-osteoclastogenic mediator expression. CONCLUSIONS Hyperglycemia plays a role in aberrant osteoclast differentiation leading to an increased capacity for bone resorption. Osteoclasts derived from murine models of and individuals with type-2-diabetes are unable to be inhibited by LPS, again leading to increased capacity for bone resorption. Here, environmental and intrinsic mechanisms associated with the increased alveolar bone loss observed in periodontal patients with type-2-diabetes are described.
Collapse
Affiliation(s)
- Dana L. Catalfamo
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL
| | - Todd M. Britten
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Douglas I. Storch
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Nadia L. Calderon
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Heather L. Sorenson
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Shannon M. Wallet
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL
| |
Collapse
|
49
|
Tan XE, Neoh HM, Hussin S, Zin NM. Clonal distribution and possible microevolution of methicillin-resistant Staphylococcus aureus strains in a teaching hospital in Malaysia. Asian Pac J Trop Biomed 2013; 3:224-8. [PMID: 23620843 PMCID: PMC3631755 DOI: 10.1016/s2221-1691(13)60055-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/27/2013] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To genotypically characterize methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from medical and surgical wards in Universiti Kebangsaan Malaysia Medical Centre (UKMMC) in 2009. METHODS MRSA strains were collected and molecularly typed by pulsed-field gel electrophoresis (PFGE). RESULTS PFGE typing on 180 MRSA isolated in UKMMC identified 5 pulsotypes (A-E) and 6 singletons, where pulsotypes B and C were suspected to be divergent clones originating from a single ancestor. This study also showed that most MRSA strains were isolated from swab (119 isolates), followed by blood (22 isolates), tracheal aspirate (11 isolates) and sputum (10 isolates). On the other hand, urine and bone isolates were less, which were 4 and 1 isolates, respectively. The distribution of different pulsotypes of MRSA among wards suggested that MRSA was communicated in surgical and medical wards in UKMMC, with pulsotype B MRSA as the dominant strain. Besides, it was found that most deceased patients were infected by pulsotype B MRSA, however, no particular pulsotype could be associated with patient age, underlying disease, or ward of admittance. CONCLUSIONS Five pulsotypes of MRSA and 6 singletons were identified, with pulsotype B MRSA as the endemic strains circulating in these wards, which is useful in establishment of preventive measures against MRSA transmission.
Collapse
Affiliation(s)
- Xin Ee Tan
- Department of Biomedical Science, Faculty of Allied Health Sciences, Malaysia
| | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Malaysia
| | - Salasawati Hussin
- Department of Medical Microbiology and Immunology, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur,Malaysia
| | - Noraziah Mohamad Zin
- Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Lei X, Bone RN, Ali T, Wohltmann M, Gai Y, Goodwin KJ, Bohrer AE, Turk J, Ramanadham S. Genetic modulation of islet β-cell iPLA₂β expression provides evidence for its impact on β-cell apoptosis and autophagy. Islets 2013; 5:29-44. [PMID: 23411472 PMCID: PMC3662380 DOI: 10.4161/isl.23758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
β-cell apoptosis is a significant contributor to β-cell dysfunction in diabetes and ER stress is among the factors that contributes to β-cell death. We previously identified that the Ca²⁺-independent phospholipase A₂β (iPLA₂β), which in islets is localized in β-cells, participates in ER stress-induced β-cell apoptosis. Here, direct assessment of iPLA₂β role was made using β-cell-specific iPLA₂β overexpressing (RIP-iPLA₂β-Tg) and globally iPLA₂β-deficient (iPLA₂β-KO) mice. Islets from Tg, but not KO, express higher islet iPLA₂β and neutral sphingomyelinase, decrease in sphingomyelins, and increase in ceramides, relative to WT group. ER stress induces iPLA₂β, ER stress factors, loss of mitochondrial membrane potential (∆Ψ), caspase-3 activation, and β-cell apoptosis in the WT and these are all amplified in the Tg group. Surprisingly, β-cells apoptosis while reduced in the KO is higher than in the WT group. This, however, was not accompanied by greater caspase-3 activation but with larger loss of ∆Ψ, suggesting that iPLA₂β deficiency impacts mitochondrial membrane integrity and causes apoptosis by a caspase-independent manner. Further, autophagy, as reflected by LC3-II accumulation, is increased in Tg and decreased in KO, relative to WT. Our findings suggest that (1) iPLA₂β impacts upstream (UPR) and downstream (ceramide generation and mitochondrial) pathways in β-cells and (2) both over- or under-expression of iPLA₂β is deleterious to the β-cells. Further, we present for the first time evidence for potential regulation of autophagy by iPLA₂β in islet β-cells. These findings support the hypothesis that iPLA₂β induction under stress, as in diabetes, is a key component to amplifying β-cell death processes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Robert N. Bone
- Department of Pathology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Tomader Ali
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Mary Wohltmann
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - Ying Gai
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Karen J. Goodwin
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Alan E. Bohrer
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - John Turk
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
- Correspondence to: Sasanka Ramanadham,
| |
Collapse
|