1
|
Wright SW, Ekchariyawat P, Sengyee S, Phunpang R, Dulsuk A, Saiprom N, Thiansukhon E, Pattanapanyasat K, Korbsrisate S, West TE, Chantratita N. Dysfunctional host cellular immune responses are associated with mortality in melioidosis. Emerg Microbes Infect 2024; 13:2380822. [PMID: 39008280 PMCID: PMC11293272 DOI: 10.1080/22221751.2024.2380822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Melioidosis is a tropical infection caused by the intracellular pathogen Burkholderia pseudomallei, an underreported and emerging global threat. As melioidosis-associated mortality is frequently high despite antibiotics, novel management strategies are critically needed. Therefore, we sought to determine whether functional changes in the host innate and adaptive immune responses are induced during acute melioidosis and are associated with outcome. Using a unique whole blood stimulation assay developed for use in resource-limited settings, we examined induced cellular functional and phenotypic changes in a cohort of patients with bacteremic melioidosis prospectively enrolled within 24 h of positive blood culture and followed for 28 days. Compared to healthy controls, melioidosis survivors generated an IL-17 response mediated by Th17 cells and terminally-differentiated effector memory CD8+ T cells (P < .05, both), persisting to 28 days after enrolment. Furthermore, melioidosis survivors developed polyfunctional cytokine production in CD8+ T cells (P < .01). Conversely, a reduction in CCR6+ CD4+ T cells was associated with higher mortality, even after adjustments for severity of illness (P = 0.004). Acute melioidosis was also associated with a profound acute impairment in monocyte function as stimulated cytokine responses were reduced in classical, intermediate and non-classical monocytes. Impaired monocyte cytokine function improved by 28-days after enrolment. These data suggest that IL-17 mediated cellular responses may be contributors to host defense during acute melioidosis, and that innate immune function may be impaired. These insights could provide novel targets for the development of therapies and vaccine targets in this frequently lethal disease.
Collapse
Affiliation(s)
- Shelton W. Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Peeraya Ekchariyawat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kovit Pattanapanyasat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Szczesna M, Huang Y, Lacoursiere RE, Bonini F, Pol V, Koc F, Ward B, Geurink PP, Pruneda JN, Thurston TLM. Bacterial esterases reverse lipopolysaccharide ubiquitylation to block host immunity. Cell Host Microbe 2024; 32:913-924.e7. [PMID: 38870903 PMCID: PMC11271751 DOI: 10.1016/j.chom.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
Aspects of how Burkholderia escape the host's intrinsic immune response to replicate in the cell cytosol remain enigmatic. Here, we show that Burkholderia has evolved two mechanisms to block the activity of Ring finger protein 213 (RNF213)-mediated non-canonical ubiquitylation of bacterial lipopolysaccharide (LPS), thereby preventing the initiation of antibacterial autophagy. First, Burkholderia's polysaccharide capsule blocks RNF213 association with bacteria and second, the Burkholderia deubiquitylase (DUB), TssM, directly reverses the activity of RNF213 through a previously unrecognized esterase activity. Structural analysis provides insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from its isopeptidase function. Furthermore, a putative TssM homolog also displays esterase activity and removes ubiquitin from LPS, establishing this as a virulence mechanism. Of note, we also find that additional immune-evasion mechanisms exist, revealing that overcoming this arm of the host's immune response is critical to the pathogen.
Collapse
Affiliation(s)
- Magdalena Szczesna
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Yizhou Huang
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Rachel E Lacoursiere
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francesca Bonini
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Vito Pol
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Fulya Koc
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Beatrice Ward
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Paul P Geurink
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Teresa L M Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
3
|
Nan D, Rao C, Tang Z, Yang W, Wu P, Chen J, Xia Y, Yan J, Liu W, Zhang Z, Hu Z, Chen H, Liao Y, Mao X, Liu X, Zou Q, Li Q. Burkholderia pseudomallei BipD modulates host mitophagy to evade killing. Nat Commun 2024; 15:4740. [PMID: 38834545 PMCID: PMC11150414 DOI: 10.1038/s41467-024-48824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.
Collapse
Affiliation(s)
- Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenbo Yang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiangao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yupei Xia
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenzheng Liu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hai Chen
- Sanya People's Hospital, Sanya, China
| | - Yaling Liao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
4
|
Iwasaki J, Bzdyl NM, Lin-Sullivan DJM, Scheuplein NJ, Dueñas ME, de Jong E, Harmer NJ, Holzgrabe U, Sarkar-Tyson M. Inhibition of macrophage infectivity potentiator in Burkholderia pseudomallei suppresses pro-inflammatory responses in murine macrophages. Front Cell Infect Microbiol 2024; 14:1353682. [PMID: 38590438 PMCID: PMC10999550 DOI: 10.3389/fcimb.2024.1353682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response. Methods Murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection. Results Global transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1β levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release. Discussion These data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock.
Collapse
Affiliation(s)
- Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Nicole M. Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dion J. M. Lin-Sullivan
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | | | - Maria Emilia Dueñas
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Emma de Jong
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Nicholas J. Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Hermanns T, Uthoff M, Baumann U, Hofmann K. The structural basis for deubiquitination by the fingerless USP-type effector TssM. Life Sci Alliance 2024; 7:e202302422. [PMID: 38170641 PMCID: PMC10719079 DOI: 10.26508/lsa.202302422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Intracellular bacteria are threatened by ubiquitin-mediated autophagy, whenever the bacterial surface or enclosing membrane structures become targets of host ubiquitin ligases. As a countermeasure, many intracellular pathogens encode deubiquitinase (DUB) effectors to keep their surfaces free of ubiquitin. Most bacterial DUBs belong to the OTU or CE-clan families. The betaproteobacteria Burkholderia pseudomallei and Burkholderia mallei, causative agents of melioidosis and glanders, respectively, encode the TssM effector, the only known bacterial DUB belonging to the USP class. TssM is much shorter than typical eukaryotic USP enzymes and lacks the canonical ubiquitin-recognition region. By solving the crystal structures of isolated TssM and its complex with ubiquitin, we found that TssM lacks the entire "Fingers" subdomain of the USP fold. Instead, the TssM family has evolved the functionally analog "Littlefinger" loop, which is located towards the end of the USP domain and recognizes different ubiquitin interfaces than those used by USPs. The structures revealed the presence of an N-terminal immunoglobulin-fold domain, which is able to form a strand-exchange dimer and might mediate TssM localization to the bacterial surface.
Collapse
Affiliation(s)
- Thomas Hermanns
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
| | - Matthias Uthoff
- https://ror.org/00rcxh774 Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- https://ror.org/00rcxh774 Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Charron P, Gao R, Chmara J, Hoover E, Nadin-Davis S, Chauvin D, Hazelwood J, Makondo K, Duceppe MO, Kang M. Influence of genomic variations on glanders serodiagnostic antigens using integrative genomic and transcriptomic approaches. Front Vet Sci 2023; 10:1217135. [PMID: 38125681 PMCID: PMC10730941 DOI: 10.3389/fvets.2023.1217135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Glanders is a highly contagious and life-threatening zoonotic disease caused by Burkholderia mallei (B. mallei). Without an effective vaccine or treatment, early diagnosis has been regarded as the most effective method to prevent glanders transmission. Currently, the diagnosis of glanders is heavily reliant on serological tests. However, given that markedly different host immune responses can be elicited by genetically different strains of the same bacterial species, infection by B. mallei, whose genome is unstable and plastic, may result in various immune responses. This variability can make the serodiagnosis of glanders challenging. Therefore, there is a need for a comprehensive understanding and assessment of how B. mallei genomic variations impact the appropriateness of specific target antigens for glanders serodiagnosis. In this study, we investigated how genomic variations in the B. mallei genome affect gene content (gene presence/absence) and expression, with a special focus on antigens used or potentially used in serodiagnosis. In all the genome sequences of B. mallei isolates available in NCBI's RefSeq database (accessed in July 2023) and in-house sequenced samples, extensive small and large variations were observed when compared to the type strain ATCC 23344. Further pan-genome analysis of those assemblies revealed variations of gene content among all available genomes of B. mallei. Specifically, differences in gene content ranging from 31 to 715 genes with an average of 334 gene presence-absence variations were found in strains with complete or chromosome-level genome assemblies, using the ATCC 23344 strain as a reference. The affected genes included some encoded proteins used as serodiagnostic antigens, which were lost due mainly to structural variations. Additionally, a transcriptomic analysis was performed using the type strain ATCC 23344 and strain Zagreb which has been widely utilized to produce glanders antigens. In total, 388 significant differentially expressed genes were identified between these two strains, including genes related to bacterial pathogenesis and virulence, some of which were associated with genomic variations, particularly structural variations. To our knowledge, this is the first comprehensive study to uncover the impacts of genetic variations of B. mallei on its gene content and expression. These differences would have significant impacts on host innate and adaptive immunity, including antibody production, during infection. This study provides novel insights into B. mallei genetic variants, knowledge which will help to improve glanders serodiagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mingsong Kang
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
8
|
Wehrmann M, Vilchez D. The emerging role and therapeutic implications of bacterial and parasitic deubiquitinating enzymes. Front Immunol 2023; 14:1303072. [PMID: 38077335 PMCID: PMC10703165 DOI: 10.3389/fimmu.2023.1303072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are emerging as key factors for the infection of human cells by pathogens such as bacteria and parasites. In this review, we discuss the most recent studies on the role of deubiquitinase activity in exploiting and manipulating ubiquitin (Ub)-dependent host processes during infection. The studies discussed here highlight the importance of DUB host-pathogen research and underscore the therapeutic potential of inhibiting pathogen-specific DUB activity to prevent infectious diseases.
Collapse
Affiliation(s)
- Markus Wehrmann
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
10
|
Ghazali AK, Firdaus-Raih M, Uthaya Kumar A, Lee WK, Hoh CC, Nathan S. Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Microbiol Spectr 2023; 11:e0383522. [PMID: 36856434 PMCID: PMC10100664 DOI: 10.1128/spectrum.03835-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis.
Collapse
Affiliation(s)
- Ahmad-Kamal Ghazali
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Asqwin Uthaya Kumar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Li X, Zeng Y, Guo S, Chen C, Liu L, Xia Q. Glycometabolism change during Burkholderia pseudomallei infection in RAW264.7 cells by proteomic analysis. Sci Rep 2022; 12:12560. [PMID: 35869254 PMCID: PMC9307605 DOI: 10.1038/s41598-022-16716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractBurkholderia pseudomallei is a Gram-negative intracellular bacterium that causes melioidosis, a life-threatening disease. The interaction of B. pseudomallei with its host is complicated, and cellular response to B. pseudomallei infection is still largely unknown. In this study, we aimed to determine host-cell responses to B. pseudomallei at the proteomics level. We performed proteomic profiling of B. pseudomallei HNBP001-infected mouse macrophage RAW264.7 cells to characterize the cellular response dynamics during infection. Western blot analysis was utilized for the validation of changes in protein expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted using the clusterProfiler R package. Compared with the negative control (NC) group, 811 common proteins varied over time, with a cut-off level of two fold change and an adjusted P-value less than 0.05. The bioinformatics analysis revealed that the proteins significantly changed in the B. pseudomallei HNBP001 infection group (Bp group) were enriched in glycometabolism pathways, including glycolysis, fructose and mannose metabolism, pentose phosphate pathway, galactose metabolism, and carbon metabolism. Western blot analysis verified three selected proteins involved in glycometabolism pathways, namely PGM1, PKM, and PGK1 were increase over time post the infection. Furthermore, in vitro functional analysis revealed an increased glucose uptake and decreased ATP production and O-GlcNAcylation in the Bp group compared with control group, suggesting that B. pseudomallei HNBP001 infection induces changes in glycometabolism in RAW264.7 cells. These results indicate that glycometabolism pathways change in RAW264.7 cells post B. pseudomallei HNBP001 infection, providing important insights into the intimate interaction between B. pseudomallei and macrophages.
Collapse
|
12
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
13
|
Pudla M, Sanongkiet S, Ekchariyawat P, Luangjindarat C, Ponpuak M, Utaisincharoen P. TLR9 Negatively Regulates Intracellular Bacterial Killing by Pyroptosis in Burkholderia pseudomallei -Infected Mouse Macrophage Cell Line (Raw264.7). Microbiol Spectr 2022; 10:e0348822. [PMID: 36194127 PMCID: PMC9602866 DOI: 10.1128/spectrum.03488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 01/04/2023] Open
Abstract
Melioidosis is a serious infectious disease caused by Burkholderia pseudomallei. This bacterium is able to survive and multiply inside the immune cells such as macrophages. It is well established that Toll-like receptors (TLRs), particularly surface TLRs such as TLR2, TLR4, and TLR5, play an essential role in defending against this bacterial infection. However, the involvement of endosomal TLRs in the infection has not been elucidated. In this study, we demonstrated that the number of intracellular bacteria is reduced in TLR9-depleted RAW264.7 cells infected with B. pseudomallei, suggesting that TLR9 is involved in intracellular bacterial killing in macrophages. As several reports have previously demonstrated that pyroptosis is essential for restricting intracellular bacterial killing, particularly in B. pseudomallei infection, we also observed an increased release of cytosolic enzyme lactate dehydrogenase (LDH) in TLR9-depleted cells infected with B. pseudomallei, suggesting TLR9 involvement in pyroptosis in this context. Consistently, the increases in caspase-11 and gasdermind D (GSDMD) activations, which are responsible for the LDH release, were also detected. Moreover, we demonstrated that the increases in pyroptosis and bacterial killing in B. pseudomallei-infected TLR9-depleted cells were due to the augmentation of the IFN-β, one of the key cytokines known to regulate caspase-11. Altogether, this finding showed that TLR9 suppresses macrophage killing of B. pseudomallei by regulating pyroptosis. This information provides a novel mechanism of TLR9 in the regulation of intracellular bacterial killing by macrophages, which could potentially be leveraged for therapeutic intervention. IMPORTANCE Surface TLRs have been well established to play an essential role in Burkholderia pseudomallei infection. However, the role of endosomal TLRs has not been elucidated. In the present study, we demonstrated that TLR9 plays a crucial role by negatively regulating cytokine production, particularly IFN-β, a vital cytokine to control pyroptosis via caspase-11 activation. By depletion of TLR9, the percentage of pyroptosis was significantly increased, leading to suppression of intracellular survival in B. pseudomallei-infected macrophages. These findings provide a new role of TLR9 in macrophages.
Collapse
Affiliation(s)
- Matsayapan Pudla
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Sucharat Sanongkiet
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Peeraya Ekchariyawat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
14
|
Oslan SNH, Yusoff AH, Mazlan M, Lim SJ, Khoo JJ, Oslan SN, Ismail A. Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples. Microb Pathog 2022; 169:105637. [PMID: 35710088 DOI: 10.1016/j.micpath.2022.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.
Collapse
Affiliation(s)
- Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Abdul Hafidz Yusoff
- Gold Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia.
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), High Impact Research Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
15
|
Tang YL, Sim TS, Tan KS. Oral streptococci subvert the host innate immune response through hydrogen peroxide. Sci Rep 2022; 12:656. [PMID: 35027607 PMCID: PMC8758666 DOI: 10.1038/s41598-021-04562-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
In periodontal health, oral streptococci constitute up to 80% of the plaque biofilm. Yet, destructive inflammatory events of the periodontium are rare. This observation suggests that oral streptococci may possess mechanisms to co-exist with the host. However, the mechanisms employed by oral streptococci to modulate the innate immune response have not been well studied. One of the key virulence factors produced by oral streptococci is hydrogen peroxide (H2O2). In mammalian cells, H2O2 triggers the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key pathway mediating antioxidant defence. This study aimed to determine (1) if H2O2 producing oral streptococci activated the Nrf2 pathway in macrophages, and (2) if the activation of Nrf2 influenced the innate immune response. We found that oral streptococci downregulated the innate immune response in a H2O2 dependent manner through the activation of the Nrf2. The activation of the Nrf2 signalling pathway led to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFĸB), the key transcription factor regulating pro-inflammatory response. This study showed for the first time that oral streptococci are unlikely passive bystanders but could play an active role in the maintenance of periodontal health by preventing overt inflammation.
Collapse
Affiliation(s)
- Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Tiow Suan Sim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Sanchez-Villamil JI, Tapia D, Khakhum N, Widen SG, Torres AG. Dual RNA-seq reveals a type 6 secretion system-dependent blockage of TNF-α signaling and BicA as a Burkholderia pseudomallei virulence factor important during gastrointestinal infection. Gut Microbes 2022; 14:2111950. [PMID: 35984745 PMCID: PMC9397134 DOI: 10.1080/19490976.2022.2111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
Melioidosis is a disease caused by the Gram-negative bacillus Burkholderia pseudomallei (Bpm), commonly found in soil and water of endemic areas. Naturally acquired human melioidosis infections can result from either exposure through percutaneous inoculation, inhalation, or ingestion of soil-contaminated food or water. Our prior studies recognized Bpm as an effective enteric pathogen, capable of establishing acute or chronic gastrointestinal infections following oral inoculation. However, the specific mechanisms and virulence factors involved in the pathogenesis of Bpm during intestinal infection are unknown. In our current study, we standardized an in vitro intestinal infection model using primary intestinal epithelial cells (IECs) and demonstrated that Bpm requires a functional T6SS for full virulence. Further, we performed dual RNA-seq analysis on Bpm-infected IECs to evaluate differentially expressed host and bacterial genes in the presence or absence of a T6SS. Our results showed a dysregulation in the TNF-α signaling via NF-κB pathway in the absence of the T6SS, with some of the genes involved in inflammatory processes and cell death also affected. Analysis of the bacterial transcriptome identified virulence factors and regulatory proteins playing a role during infection, with association to the T6SS. By using a Bpm transposon mutant library and isogenic mutants, we showed that deletion of the bicA gene, encoding a putative T3SS/T6SS regulator, ablated intracellular survival and plaque formation by Bpm and impacted survival and virulence when using murine models of acute and chronic gastrointestinal infection. Overall, these results highlight the importance of the type 6 secretion system in the gastrointestinal pathogenesis of Bpm.
Collapse
Affiliation(s)
| | - Daniel Tapia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nittaya Khakhum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
17
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
18
|
Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J. Hijacking of the Host's Immune Surveillance Radars by Burkholderia pseudomallei. Front Immunol 2021; 12:718719. [PMID: 34456925 PMCID: PMC8384953 DOI: 10.3389/fimmu.2021.718719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei (B. pseudomallei) causes melioidosis, a potentially fatal disease for which no licensed vaccine is available thus far. The host-pathogen interactions in B. pseudomallei infection largely remain the tip of the iceberg. The pathological manifestations are protean ranging from acute to chronic involving one or more visceral organs leading to septic shock, especially in individuals with underlying conditions similar to COVID-19. Pathogenesis is attributed to the intracellular ability of the bacterium to ‘step into’ the host cell’s cytoplasm from the endocytotic vacuole, where it appears to polymerize actin filaments to spread across cells in the closer vicinity. B. pseudomallei effectively evades the host’s surveillance armory to remain latent for prolonged duration also causing relapses despite antimicrobial therapy. Therefore, eradication of intracellular B. pseudomallei is highly dependent on robust cellular immune responses. However, it remains ambiguous why certain individuals in endemic areas experience asymptomatic seroconversion, whereas others succumb to sepsis-associated sequelae. Here, we propose key insights on how the host’s surveillance radars get commandeered by B. pseudomallei.
Collapse
Affiliation(s)
- Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Lantong K, Songsri J, Wisessombat S, Mala W, Prommachote W, Senghoi W, Kotepui M, Kaewrakmuk J, Jiranantasak T, Tuanyok A, Klangbud WK. Use of Recombinant Escherichia coli Strains in Immunofluorescence Assays for Melioidosis Diagnosis. Pathogens 2021; 10:pathogens10050559. [PMID: 34066462 PMCID: PMC8148196 DOI: 10.3390/pathogens10050559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium and the causative agent of melioidosis in humans and animals in the tropics. The clinical manifestations of melioidosis are diverse, ranging from localized infections to whole-body sepsis. The effective serological method is crucial for the point-of-care diagnosis of melioidosis. The aim of this study was to develop indirect immunofluorescence assay (IFA)-based methods for detecting immunoglobulin G (IgG) antibodies in melioidosis patients. These methods use whole-cell antigens made from recombinant E. coli strains that express major B. pseudomallei antigens, including TssM, OmpH, AhpC, BimA, and Hcp1. A total of 271 serum samples from culture-confirmed melioidosis patients (n = 81), patients with other known infections (n = 70), and healthy donors (n = 120) were tested. Our study showed that the recombinant TssM strain had the highest performance, with 92.6% sensitivity, 100% specificity, 100% positive predictive value, 96.9% negative predictive value, 97.8% efficiency, 97.0% accuracy, and no cross-reactivity. The method agreement analysis based on k efficiency calculations showed that all five IFA methods perfectly agreed with the standard culturing method, while the traditional indirect hemagglutination (IHA) method moderately agreed with the culture. In summary, our investigations showed that the TssM-IFA method could be used for melioidosis diagnosis.
Collapse
Affiliation(s)
- Kanoknart Lantong
- Biomedical Sciences Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Jirarat Songsri
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Sueptrakool Wisessombat
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Wanida Mala
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Warinda Prommachote
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Wilaiwan Senghoi
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Jedsada Kaewrakmuk
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Treenate Jiranantasak
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.J.); (A.T.)
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.J.); (A.T.)
| | - Wiyada Kwanhian Klangbud
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
- Correspondence: ; Tel.: +66-75-67-2618
| |
Collapse
|
20
|
Prior JT, Davitt C, Kurtz J, Gellings P, McLachlan JB, Morici LA. Bacterial-Derived Outer Membrane Vesicles are Potent Adjuvants that Drive Humoral and Cellular Immune Responses. Pharmaceutics 2021; 13:pharmaceutics13020131. [PMID: 33498352 PMCID: PMC7909432 DOI: 10.3390/pharmaceutics13020131] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Discovery and development of novel adjuvants that can improve existing or next generation vaccine platforms have received considerable interest in recent years. In particular, adjuvants that can elicit both humoral and cellular immune responses would be particularly advantageous because the majority of licensed vaccines are formulated with aluminum hydroxide (alum) which predominantly promotes antibodies. We previously demonstrated that bacterial-derived outer membrane vesicles (OMV) possess inherent adjuvanticity and drive antigen-specific antibody and cellular immune responses to OMV components. Here, we investigated the ability of OMVs to stimulate innate and adaptive immunity and to function as a stand-alone adjuvant. We show that OMVs are more potent than heat-inactivated and live-attenuated bacteria in driving dendritic cell activation in vitro and in vivo. Mice immunized with OMVs admixed with heterologous peptides generated peptide-specific CD4 and CD8 T cells responses. Notably, OMV adjuvant induced much greater antibody and B cell responses to co-delivered ovalbumin compared to the responses elicited by the adjuvants alum and CpG DNA. Additionally, pre-existing antibodies raised against the OMVs did not impair OMV adjuvanticity upon repeat immunization. These results indicate that vaccines adjuvanted with OMVs elicit robust cellular and humoral immune responses, supporting further development of OMV adjuvant for use in next-generation vaccines.
Collapse
|
21
|
Welkos S, Blanco I, Okaro U, Chua J, DeShazer D. A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence 2020; 11:1041-1058. [PMID: 32835600 PMCID: PMC7549894 DOI: 10.1080/21505594.2020.1806675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Burkholderia pseudomallei: is the etiological agent of the disease melioidosis and is a Tier 1 select agent. It survives and replicates inside phagocytic cells by escaping from the endocytic vacuole, replicating in the cytosol, spreading to other cells via actin polymerization and promoting the fusion of infected and uninfected host cells to form multinucleated giant cells. In this study, we utilized a proteomics approach to identify bacterial proteins produced inside RAW264.7 murine macrophages and host proteins produced in response to B. pseudomallei infection. Cells infected with B. pseudomallei strain K96243 were lysed and the lysate proteins digested and analyzed using nanoflow reversed-phase liquid chromatography and tandem mass spectrometry. Approximately 160 bacterial proteins were identified in the infected macrophages, including BimA, TssA, TssB, Hcp1 and TssM. Several previously uncharacterized B. pseudomallei proteins were also identified, including BPSS1996 and BPSL2748. Mutations were constructed in the genes encoding these novel proteins and their relative virulence was assessed in BALB/c mice. The 50% lethal dose for the BPSS1996 mutant was approximately 55-fold higher than that of the wild type, suggesting that BPSS1996 is required for full virulence. Sera from B. pseudomallei-infected animals reacted with BPSS1996 and it was found to localize to the bacterial surface using indirect immunofluorescence. Finally, we identified 274 host proteins that were exclusively present or absent in infected RAW264.7 cells, including chemokines and cytokines involved in controlling the initial stages of infection.
Collapse
Affiliation(s)
- Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Irma Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Udoka Okaro
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
22
|
Pterostilbene complexed with cyclodextrin exerts antimicrobial and anti-inflammatory effects. Sci Rep 2020; 10:9072. [PMID: 32494020 PMCID: PMC7271226 DOI: 10.1038/s41598-020-66031-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Resveratrol (RES) is a natural polyphenol with potential as an adjunctive therapeutic modality for periodontitis. However, its inferior pharmacokinetics and toxicity concerns about its commonly used solvent dimethyl sulfoxide (DMSO) hinder translation to clinical applicability. Our study aimed to investigate the comparative antimicrobial properties of RES and its analogues (pterostilbene [PTS], oxyresveratrol [OXY] and piceatannol [PIC]), utilizing 2-hydroxypropyl-β-cyclodextrin (HPβCD) as a solubiliser, which has a well-documented safety profile and FDA approval. These properties were investigated against Fusobacterium nucleatum, a key periodontal pathogen. PTS demonstrated the most potent antibacterial effects in HPβCD, with MIC > 60-fold lower than that of RES, OXY and PIC. In addition, PTS inhibited F. nucleatum biofilm formation. PTS exerted antimicrobial effects by eliciting leakage of cellular contents, leading to loss of bacterial cell viability. PTS also conferred immunomodulatory effects on F. nucleatum-challenged macrophages via upregulation of antioxidant pathways and inhibition of NF-κB activation. Given the superior antimicrobial potency of PTS against F. nucleatum compared to RES and other analogues, and coupled with its immunomodulatory properties, PTS complexed with HPβCD holds promise as a candidate nutraceutical for the adjunctive treatment of periodontitis.
Collapse
|
23
|
Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. Modification of the host ubiquitome by bacterial enzymes. Microbiol Res 2020; 235:126429. [PMID: 32109687 PMCID: PMC7369425 DOI: 10.1016/j.micres.2020.126429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
Attachment of ubiquitin molecules to protein substrates is a reversible post-translational modification (PTM), which occurs ubiquitously in eukaryotic cells and controls most cellular processes. As a consequence, ubiquitination is an attractive target of pathogen-encoded virulence factors. Pathogenic bacteria have evolved multiple mechanisms to hijack the host's ubiquitin system to their advantage. In this review, we discuss the bacteria-encoded E3 ligases and deubiquitinases translocated to the host for an addition or removal of eukaryotic ubiquitin modification, effectively hijacking the host's ubiquitination processes. We review bacterial enzymes homologous to host proteins in sequence and functions, as well as enzymes with novel mechanisms in ubiquitination, which have significant structural differences in comparison to the mammalian E3 ligases. Finally, we will also discuss examples of molecular "counter-weapons" - eukaryotic proteins, which counteract pathogen-encoded E3 ligases. The many examples of the pathogen effector molecules that catalyze eukaryotic ubiquitin modification bring to light the intricate pathways involved in the pathogenesis of some of the most virulent bacterial infections with human pathogens. The role of these effector molecules remains an essential determinant of bacterial virulence in terms of infection, invasion, and replication. A comprehensive understanding of the mechanisms dictating the mimicry employed by bacterial pathogens is of vital importance in developing new strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Berglund
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Rafaela Gjondrekaj
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Ellen Verney
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA.
| |
Collapse
|
24
|
Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 2020; 47:1857-1866. [PMID: 31845741 DOI: 10.1042/bst20190526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Protein ubiquitination is a posttranslational modification that regulates many aspects of cellular life, including proteostasis, vesicular trafficking, DNA repair and NF-κB activation. By directly targeting intracellular bacteria or bacteria-containing vacuoles to the lysosome, ubiquitination is also an important component of cell-autonomous immunity. Not surprisingly, several pathogenic bacteria encode deubiquitinases (DUBs) and use them as secreted effectors that prevent ubiquitination of bacterial components. A systematic overview of known bacterial DUBs, including their cleavage specificities and biological roles, suggests multiple independent acquisition events from host-encoded DUBs and other proteases. The widely used classification of DUBs into seven well-defined families should only be applied to eukaryotic DUBs, since several bacterial DUBs do not follow this classification.
Collapse
|
25
|
Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019; 45:649-667. [PMID: 31686572 DOI: 10.1080/1040841x.2019.1680602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that can be found in drinking water, including mineral water. The combination of physiology and ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic resistance, harbouring virulence factors and often found in biofilm structures, can persist after water disinfection and reach the consumer. This literature review summarises and discusses the current knowledge about the occurrence and implications of Betaproteobacteria in drinking water. Although the sparse knowledge on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired mechanisms, and hold different virulence factors. The combination of these factors places DW Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved bacterial identification of clinical isolates associated with opportunistic infections and additional genomic and physiological studies may contribute to elucidate the potential impact of these bacteria.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
26
|
Solodushko V, Bitko V, Barrington R, Fouty B. A DNA Vaccine in Which the RSV-F Ectodomain Is Covalently Linked to the Burkholderia pseudomallei Antigens TssM and Hcp1 Augments the Humoral and Cytotoxic Response in Mice. Front Immunol 2019; 10:2411. [PMID: 31681300 PMCID: PMC6797551 DOI: 10.3389/fimmu.2019.02411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
DNA vaccines have great potential to control infectious disease, particularly those caused by intracellular organisms. They are inexpensive to produce and can be quickly modified to combat emerging infectious threats, but often fail to generate a strong immunologic response limiting enthusiasm for their use in humans and animals. To improve the immunogenic response, we developed a DNA vaccine in which the F protein ectodomain of Respiratory Syncytial Virus (RSV-F) was covalently linked to specific antigens of interest. The presence of the RSV-F ectodomain allowed secretion of the translated fusion product out of the originally transfected cells followed by its active binding to adjacent cells. This allowed the targeting of a greater number of cells than those originally transfected, enhancing both humoral and cytotoxic immune responses against the expressed antigen(s). We developed an engrafted mouse model that used antigen-expressing tumor cells to assess the in vivo cytotoxic immune response to specific antigens. We then used this model to demonstrate that a DNA vaccine in which the RSV-F ectodomain is fused to two antigens expressed by Burkholderia pseudomallei, the intracellular gram-negative organism that causes melioidosis, generated a stronger cytotoxic response than a DNA vaccine that lacked the RSV-F sequence while still generating a robust humoral response.
Collapse
Affiliation(s)
- Victor Solodushko
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, United States.,Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States
| | - Vira Bitko
- Emergent BioSolutions, Gaithersburg, MD, United States
| | - Robert Barrington
- Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States.,Department of Microbiology and Immunology, University of South Alabama School of Medicine, Mobile, AL, United States
| | - Brian Fouty
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, United States.,Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States.,Department of Internal Medicine, University of South Alabama School of Medicine, Mobile, AL, United States
| |
Collapse
|
27
|
Emerging insights into bacterial deubiquitinases. Curr Opin Microbiol 2019; 47:14-19. [DOI: 10.1016/j.mib.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023]
|
28
|
Inflammasomes, Autophagy, and Cell Death: The Trinity of Innate Host Defense against Intracellular Bacteria. Mediators Inflamm 2019; 2019:2471215. [PMID: 30728749 PMCID: PMC6341260 DOI: 10.1155/2019/2471215] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 01/17/2023] Open
Abstract
Inflammasome activation is an innate host defense mechanism initiated upon sensing pathogens or danger in the cytosol. Both autophagy and cell death are cell autonomous processes important in development, as well as in host defense against intracellular bacteria. Inflammasome, autophagy, and cell death pathways can be activated by pathogens, pathogen-associated molecular patterns (PAMPs), cell stress, and host-derived damage-associated molecular patterns (DAMPs). Phagocytosis and toll-like receptor (TLR) signaling induce reactive oxygen species (ROS), type I IFN, NFκB activation of proinflammatory cytokines, and the mitogen-activated protein kinase cascade. ROS and IFNγ are also prominent inducers of autophagy. Pathogens, PAMPs, and DAMPs activate TLRs and intracellular inflammasomes, inducing apoptotic and inflammatory caspases in a context-dependent manner to promote various forms of cell death to eliminate pathogens. Common downstream signaling molecules of inflammasomes, autophagy, and cell death pathways interact to initiate appropriate measures against pathogens and determine host survival as well as pathological consequences of infection. The integration of inflammasome activation, autophagy, and cell death is central to pathogen clearance. Various pathogens produce virulence factors to control inflammasomes, subvert autophagy, and modulate host cell death in order to evade host defense. This review highlights the interaction of inflammasomes, autophagy, and host cell death pathways in counteracting Burkholderia pseudomallei, the causative agent of melioidosis. Contrasting evasion strategies used by B. pseudomallei, Mycobacterium tuberculosis, and Legionella pneumophila to avoid and dampen these innate immune responses will be discussed.
Collapse
|
29
|
Quinn B, Rodman N, Jara E, Fernandez JS, Martinez J, Traglia GM, Montaña S, Cantera V, Place K, Bonomo RA, Iriarte A, Ramírez MS. Human serum albumin alters specific genes that can play a role in survival and persistence in Acinetobacter baumannii. Sci Rep 2018; 8:14741. [PMID: 30282985 PMCID: PMC6170387 DOI: 10.1038/s41598-018-33072-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/21/2018] [Indexed: 01/13/2023] Open
Abstract
In the past few decades Acinetobacter baumannii has emerged as a notorious nosocomial pathogen because of its ability to acquire genetic material and persist in extreme environments. Recently, human serum albumin (HSA) was shown to significantly increase natural transformation frequency in A. baumannii. This observation led us to perform transcriptomic analysis of strain A118 under HSA induction to identify genes that are altered by HSA. Our results revealed the statistically significant differential expression of 296 protein-coding genes, including those associated with motility, biofilm formation, metabolism, efflux pumps, capsule synthesis, and transcriptional regulation. Phenotypic analysis of these traits showed an increase in surface-associated motility, a decrease in biofilm formation, reduced activity of a citric acid cycle associated enzyme, and increased survival associated with zinc availability. Furthermore, the expression of genes known to play a role in pathogenicity and antibiotic resistance were altered. These genes included those associated with RND-type efflux pumps, the type VI secretion system, iron acquisition/metabolism, and ß-lactam resistance. Together, these results illustrate how human products, in particular HSA, may play a significant role in both survival and persistence of A. baumannii.
Collapse
Affiliation(s)
- Brettni Quinn
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Nyah Rodman
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Eugenio Jara
- Área Genética, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Jennifer S Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German M Traglia
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Sabrina Montaña
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos, Aires, Argentina
| | - Virginia Cantera
- Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Kori Place
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Robert A Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Andres Iriarte
- Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA.
| |
Collapse
|
30
|
Krakauer T. Living dangerously: Burkholderia pseudomallei modulates phagocyte cell death to survive. Med Hypotheses 2018; 121:64-69. [PMID: 30396496 DOI: 10.1016/j.mehy.2018.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. As a facultative intracellular pathogen, B. pseudomallei produces virulence factors to evade innate host response and survive within host cells. Neutrophils and macrophages are phagocytes that play critical roles in host defense against pathogens by their ability to detect and eliminate microbes. Host defense processes against B. pseudomallei including phagocytosis, oxidative burst, autophagy, apoptosis, and proinflammatory cytokine release are all initiated by these two phagocytes in the fight against this bacterium. In vitro studies with mouse macrophage cell lines revealed multiple evasion strategies used by B. pseudomallei to counteract these innate processes. B. pseudomallei invades and replicates in neutrophils but little is known regarding its evasion mechanisms. The bidirectional interaction of neutrophils and macrophages in controlling B. pseudomallei infection has also been overlooked. Here the hypothesis that B. pseudomallei hijacks neutrophils and uses them to transport and infect new phagocytes is proposed as an evasion strategy to survive and persist in host phagocytes. This two-pronged approach by B. pseudomallei to replicate in two different types of phagocytes and to modulate their cell death modes is effective in promoting persistence and survival of the bacterium.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, United States.
| |
Collapse
|
31
|
Losada L, Shea AA, DeShazer D. A MarR family transcriptional regulator and subinhibitory antibiotics regulate type VI secretion gene clusters in Burkholderia pseudomallei. MICROBIOLOGY-SGM 2018; 164:1196-1211. [PMID: 30052173 DOI: 10.1099/mic.0.000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Burkholderia pseudomallei, the aetiological agent of melioidosis, is an inhabitant of soil and water in many tropical and subtropical regions worldwide. It possesses six distinct type VI secretion systems (T6SS-1 to T6SS-6), but little is known about most of them, as they are poorly expressed in laboratory culture media. A genetic screen was devised to locate a putative repressor of the T6SS-2 gene cluster and a MarR family transcriptional regulator, termed TctR, was identified. The inactivation of tctR resulted in a 50-fold increase in the expression of an hcp2-lacZ transcriptional fusion, indicating that TctR is a negative regulator of the T6SS-2 gene cluster. Surprisingly, the tctR mutation resulted in a significant decrease in the expression of an hcp6-lacZ transcriptional fusion. B. pseudomallei K96243 and a tctR mutant were grown to logarithmic phase in rich culture medium and RNA was isolated and sequenced in order to identify other genes regulated by TctR. The results identified seven gene clusters that were repressed by TctR, including T6SS-2, and three gene clusters that were significantly activated. A small molecule library consisting of 1120 structurally defined compounds was screened to identify a putative ligand (or ligands) that might bind TctR and derepress transcription of the T6SS-2 gene cluster. Seven compounds, six fluoroquinolones and one quinolone, activated the expression of hcp2-lacZ. Subinhibitory ciprofloxacin also increased the expression of the T6SS-3, T6SS-4 and T6SS-6 gene clusters. This study highlights the complex layers of regulatory control that B. pseudomallei utilizes to ensure that T6SS expression only occurs under very defined environmental conditions.
Collapse
Affiliation(s)
- Liliana Losada
- 1J. Craig Venter Institute, Rockville, MD, USA.,†Present address: Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - April A Shea
- 2Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA.,‡Present address: National Strategic Research Institute, Annapolis Junction, MD, USA
| | - David DeShazer
- 3Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
32
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Development of Subunit Vaccines That Provide High-Level Protection and Sterilizing Immunity against Acute Inhalational Melioidosis. Infect Immun 2017; 86:IAI.00724-17. [PMID: 29109172 PMCID: PMC5736816 DOI: 10.1128/iai.00724-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, causes severe disease in humans and animals. Diagnosis and treatment of melioidosis can be challenging, and no licensed vaccines currently exist. Several studies have shown that this pathogen expresses a variety of structurally conserved protective antigens that include cell surface polysaccharides and cell-associated and cell-secreted proteins. Based on those findings, such antigens have become important components of the subunit vaccine candidates that we are currently developing. In the present study, the 6-deoxyheptan capsular polysaccharide (CPS) from B. pseudomallei was purified, chemically activated, and covalently linked to recombinant CRM197 diphtheria toxin mutant (CRM197) to produce CPS-CRM197. Additionally, tandem nickel-cobalt affinity chromatography was used to prepare highly purified recombinant B. pseudomallei Hcp1 and TssM proteins. Immunization of C57BL/6 mice with CPS-CRM197 produced high-titer IgG and opsonizing antibody responses against the CPS component of the glycoconjugate, while immunization with Hcp1 and TssM produced high-titer IgG and robust gamma interferon-secreting T cell responses against the proteins. Extending upon these studies, we found that when mice were vaccinated with a combination of CPS-CRM197 and Hcp1, 100% of the mice survived a lethal inhalational challenge with B. pseudomallei. Remarkably, 70% of the survivors had no culturable bacteria in their lungs, livers, or spleens, indicating that the vaccine formulation had generated sterilizing immune responses. Collectively, these studies help to better establish surrogates of antigen-induced immunity against B. pseudomallei as well as provide valuable insights toward the development of a safe, affordable, and effective melioidosis vaccine.
Collapse
|
34
|
Differential MicroRNA Analyses of Burkholderia pseudomallei- and Francisella tularensis-Exposed hPBMCs Reveal Potential Biomarkers. Int J Genomics 2017; 2017:6489383. [PMID: 28791299 PMCID: PMC5534298 DOI: 10.1155/2017/6489383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence that microRNAs (miRNAs) play important roles in the immune response against infectious agents suggests that miRNA might be exploitable as signatures of exposure to specific infectious agents. In order to identify potential early miRNA biomarkers of bacterial infections, human peripheral blood mononuclear cells (hPBMCs) were exposed to two select agents, Burkholderia pseudomallei K96243 and Francisella tularensis SHU S4, as well as to the nonpathogenic control Escherichia coli DH5α. RNA samples were harvested at three early time points, 30, 60, and 120 minutes postexposure, then sequenced. RNAseq analyses identified 87 miRNAs to be differentially expressed (DE) in a linear fashion. Of these, 31 miRNAs were tested using the miScript miRNA qPCR assay. Through RNAseq identification and qPCR validation, we identified differentially expressed miRNA species that may be involved in the early response to bacterial infections. Based upon its upregulation at early time points postexposure in two different individuals, hsa-mir-30c-5p is a miRNA species that could be studied further as a potential biomarker for exposure to these gram-negative intracellular pathogens. Gene ontology functional analyses demonstrated that programmed cell death is the first ranking biological process associated with miRNAs that are upregulated in F. tularensis-exposed hPBMCs.
Collapse
|
35
|
Abstract
Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.
Collapse
|
36
|
pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun 2016; 85:IAI.00586-16. [PMID: 27799332 DOI: 10.1128/iai.00586-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/23/2016] [Indexed: 01/14/2023] Open
Abstract
Burkholderia mallei and B. pseudomallei cause glanders and melioidosis, respectively, in humans and animals. A hallmark of pathogenesis is the formation of granulomas containing multinucleated giant cells (MNGCs) and cell death. These processes depend on type 6 secretion system 1 (T6SS-1), which is required for virulence in animals. We examined the cell biology of MNGC formation and cell death. We found that chloroquine diphosphate (CLQ), an antimalarial drug, inhibits Burkholderia growth, phagosomal escape, and subsequent MNGC formation. This depends on CLQ's ability to neutralize the acid pH because other alkalinizing compounds similarly inhibit escape and MNGC formation. CLQ inhibits bacterial virulence protein expression because T6SS-1 and some effectors of type 3 secretion system 3 (T3SS-3), which is also required for virulence, are expressed at acid pH. We show that acid pH upregulates the expression of Hcp1 of T6SS-1 and TssM, a protein coregulated with T6SS-1. Finally, we demonstrate that CLQ treatment of Burkholderia-infected Madagascar hissing cockroaches (HCs) increases their survival. This study highlights the multiple mechanisms by which CLQ inhibits growth and virulence and suggests that CLQ be further tested and considered, in conjunction with antibiotic use, for the treatment of diseases caused by Burkholderia.
Collapse
|
37
|
Memišević V, Kumar K, Zavaljevski N, DeShazer D, Wallqvist A, Reifman J. DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems. BMC Bioinformatics 2016; 17:387. [PMID: 27650316 PMCID: PMC5029111 DOI: 10.1186/s12859-016-1242-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Background Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively, diseases with high morbidity and mortality rates. B. mallei and B. pseudomallei are closely related genetically; B. mallei evolved from an ancestral strain of B. pseudomallei by genome reduction and adaptation to an obligate intracellular lifestyle. Although these two bacteria cause different diseases, they share multiple virulence factors, including bacterial secretion systems, which represent key components of bacterial pathogenicity. Despite recent progress, the secretion system proteins for B. mallei and B. pseudomallei, their pathogenic mechanisms of action, and host factors are not well characterized. Results We previously developed a manually curated database, DBSecSys, of bacterial secretion system proteins for B. mallei. Here, we report an expansion of the database with corresponding information about B. pseudomallei. DBSecSys 2.0 contains comprehensive literature-based and computationally derived information about B. mallei ATCC 23344 and literature-based and computationally derived information about B. pseudomallei K96243. The database contains updated information for 163 B. mallei proteins from the previous database and 61 additional B. mallei proteins, and new information for 281 B. pseudomallei proteins associated with 5 secretion systems, their 1,633 human- and murine-interacting targets, and 2,400 host-B. mallei interactions and 2,286 host-B. pseudomallei interactions. The database also includes information about 13 pathogenic mechanisms of action for B. mallei and B. pseudomallei secretion system proteins inferred from the available literature or computationally. Additionally, DBSecSys 2.0 provides details about 82 virulence attenuation experiments for 52 B. mallei secretion system proteins and 98 virulence attenuation experiments for 61 B. pseudomallei secretion system proteins. We updated the Web interface and data access layer to speed-up users’ search of detailed information for orthologous proteins related to secretion systems of the two pathogens. Conclusions The updates of DBSecSys 2.0 provide unique capabilities to access comprehensive information about secretion systems of B. mallei and B. pseudomallei. They enable studies and comparisons of corresponding proteins of these two closely related pathogens and their host-interacting partners. The database is available at http://dbsecsys.bhsai.org.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Kamal Kumar
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
38
|
Tchioffo MT, Abate L, Boissière A, Nsango SE, Gimonneau G, Berry A, Oswald E, Dubois D, Morlais I. An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut. INFECTION GENETICS AND EVOLUTION 2016; 43:22-30. [DOI: 10.1016/j.meegid.2016.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
39
|
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Cizmeci D, Dempster EL, Champion OL, Wagley S, Akman OE, Prior JL, Soyer OS, Mill J, Titball RW. Mapping epigenetic changes to the host cell genome induced by Burkholderia pseudomallei reveals pathogen-specific and pathogen-generic signatures of infection. Sci Rep 2016; 6:30861. [PMID: 27484700 PMCID: PMC4971488 DOI: 10.1038/srep30861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/07/2016] [Indexed: 01/26/2023] Open
Abstract
The potential for epigenetic changes in host cells following microbial infection has been widely suggested, but few examples have been reported. We assessed genome-wide patterns of DNA methylation in human macrophage-like U937 cells following infection with Burkholderia pseudomallei, an intracellular bacterial pathogen and the causative agent of human melioidosis. Our analyses revealed significant changes in host cell DNA methylation, at multiple CpG sites in the host cell genome, following infection. Infection induced differentially methylated probes (iDMPs) showing the greatest changes in DNA methylation were found to be in the vicinity of genes involved in inflammatory responses, intracellular signalling, apoptosis and pathogen-induced signalling. A comparison of our data with reported methylome changes in cells infected with M. tuberculosis revealed commonality of differentially methylated genes, including genes involved in T cell responses (BCL11B, FOXO1, KIF13B, PAWR, SOX4, SYK), actin cytoskeleton organisation (ACTR3, CDC42BPA, DTNBP1, FERMT2, PRKCZ, RAC1), and cytokine production (FOXP1, IRF8, MR1). Overall our findings show that pathogenic-specific and pathogen-common changes in the methylome occur following infection.
Collapse
Affiliation(s)
- Deniz Cizmeci
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma L. Dempster
- University of Exeter Medical School, Exeter University, Exeter, United Kingdom
| | - Olivia L. Champion
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sariqa Wagley
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ozgur E. Akman
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Joann L. Prior
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, Exeter University, Exeter, United Kingdom
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Richard W. Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
41
|
“Vietnamese time bomb” waiting to explode; Burkholderia pseudomallei, retributing the “rare” tag. An update. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2016. [DOI: 10.1016/j.injms.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines 2016; 15:1163-81. [PMID: 27010618 DOI: 10.1586/14760584.2016.1170598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- a Department of Pathology , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Eric R Lafontaine
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Robert J Hogan
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA.,c Department of Veterinary Biosciences and Diagnostic Imaging , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|
43
|
Bozue JA, Chaudhury S, Amemiya K, Chua J, Cote CK, Toothman RG, Dankmeyer JL, Klimko CP, Wilhelmsen CL, Raymond JW, Zavaljevski N, Reifman J, Wallqvist A. Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei That Provides Partial Protection against Inhalational Glanders in Mice. Front Cell Infect Microbiol 2016; 6:21. [PMID: 26955620 PMCID: PMC4767903 DOI: 10.3389/fcimb.2016.00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/01/2016] [Indexed: 01/29/2023] Open
Abstract
Burkholderia mallei (Bm) is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN), and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively) and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.
Collapse
Affiliation(s)
- Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Sidhartha Chaudhury
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Catherine L Wilhelmsen
- Pathology Division, United States Army of Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jolynn W Raymond
- Pathology Division, United States Army of Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Nela Zavaljevski
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Jaques Reifman
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Anders Wallqvist
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| |
Collapse
|
44
|
Willcocks SJ, Denman CC, Atkins HS, Wren BW. Intracellular replication of the well-armed pathogen Burkholderia pseudomallei. Curr Opin Microbiol 2016; 29:94-103. [DOI: 10.1016/j.mib.2015.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
|
45
|
Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2015; 29:81-93. [PMID: 26722980 DOI: 10.1016/j.mib.2015.11.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Secretion systems play a central role in infectious diseases by enabling pathogenic bacteria to deliver virulence factors into target cells. The type VI secretion system (T6SS) mediates bacterial antagonism in various environments including eukaryotic niches, such as the gut. This molecular machine injects lethal toxins directly in target bacterial cells. It provides an advantage to pathogens encountering the commensal flora of the host and indirectly contributes to colonization and persistence. Yet, the T6SS is not employed for the sole purpose of bacterial killing and several T6SS effectors are dedicated to the subversion of eukaryotic cells. As described for type III and type IV secretion systems, these effectors impede host cell functions and promote immune evasion, thereby enabling successful infection.
Collapse
Affiliation(s)
- Abderrahman Hachani
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom; Department of Pathogen Molecular Biology, Faculty of Infection and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom.
| |
Collapse
|
46
|
McGuire VA, Arthur JSC. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front Immunol 2015; 6:607. [PMID: 26648936 PMCID: PMC4664646 DOI: 10.3389/fimmu.2015.00607] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
47
|
Chiang CY, Ulrich RL, Ulrich MP, Eaton B, Ojeda JF, Lane DJ, Kota KP, Kenny TA, Ladner JT, Dickson SP, Kuehl K, Raychaudhuri R, Sun M, Bavari S, Wolcott MJ, Covell D, Panchal RG. Characterization of the murine macrophage response to infection with virulent and avirulent Burkholderia species. BMC Microbiol 2015; 15:259. [PMID: 26545875 PMCID: PMC4636792 DOI: 10.1186/s12866-015-0593-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Gram-negative facultative intracellular pathogens, which are the causative agents of melioidosis and glanders, respectively. Depending on the route of exposure, aerosol or transcutaneous, infection by Bp or Bm can result in an extensive range of disease - from acute to chronic, relapsing illness to fatal septicemia. Both diseases are associated with difficult diagnosis and high fatality rates. About ninety five percent of patients succumb to untreated septicemic infections and the fatality rate is 50 % even when standard antibiotic treatments are administered. RESULTS The goal of this study is to profile murine macrophage-mediated phenotypic and molecular responses that are characteristic to a collection of Bp, Bm, Burkholderia thailandensis (Bt) and Burkholderia oklahomensis (Bo) strains obtained from humans, animals, environment and geographically diverse locations. Burkholderia spp. (N = 21) were able to invade and replicate in macrophages, albeit to varying degrees. All Bp (N = 9) and four Bm strains were able to induce actin polymerization on the bacterial surface following infection. Several Bp and Bm strains showed reduced ability to induce multinucleated giant cell (MNGC) formation, while Bo and Bp 776 were unable to induce this phenotype. Measurement of host cytokine responses revealed a statistically significant Bm mediated IL-6 and IL-10 production compared to Bp strains. Hierarchical clustering of transcriptional data from 84 mouse cytokines, chemokines and their corresponding receptors identified 29 host genes as indicators of differential responses between the Burkholderia spp. Further validation confirmed Bm mediated Il-1b, Il-10, Tnfrsf1b and Il-36a mRNA expressions were significantly higher when compared to Bp and Bt. CONCLUSIONS These results characterize the phenotypic and immunological differences in the host innate response to pathogenic and avirulent Burkholderia strains and provide insight into the phenotypic alterations and molecular targets underlying host-Burkholderia interactions.
Collapse
Affiliation(s)
- Chih-Yuan Chiang
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Ricky L Ulrich
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida, Orlando, FL, USA.
| | | | - Brett Eaton
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Jenifer F Ojeda
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Douglas J Lane
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | | | - Tara A Kenny
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Jason T Ladner
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD, USA.
| | | | | | | | - Mei Sun
- Pathology Division, USAMRIID, Fort Detrick, MD, USA.
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Mark J Wolcott
- Diagnostic Systems Division, USAMRIID, Fort Detrick, MD, USA.
| | - David Covell
- Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, USA.
| | - Rekha G Panchal
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| |
Collapse
|
48
|
Wong J, Chen Y, Gan YH. Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe 2015; 18:38-48. [PMID: 26094804 DOI: 10.1016/j.chom.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/26/2015] [Accepted: 06/02/2015] [Indexed: 12/17/2022]
Abstract
Type VI secretion systems (T6SSs) are major virulence mechanisms in many Gram-negative bacteria, but the physiological signals that activate them are not well understood. The T6SS1 of Burkholderia pseudomallei is essential for pathogenesis in mammalian hosts and is only expressed when the bacterium is intracellular. We found that signals for T6SS1 activation reside in the host cytosol. Through site-directed mutagenesis and biochemical studies, we identified low molecular weight thiols, particularly glutathione, as the signal sensed by a periplasmic cysteine residue (C62) on the histidine kinase sensor VirA. Upon glutathione exposure, dimeric VirA is converted to monomers via reduction at C62. When glutathione in the host was depleted, T6SS1 expression was abrogated, and bacteria could no longer induce multinucleate giant cell formation, the hallmark of T6SS1 function. Therefore, intracellular bacteria exploit the abundance of glutathione in host cytosol as a signal for expression of virulence at the appropriate time and place.
Collapse
Affiliation(s)
- Jocelyn Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yahua Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
49
|
Steele S, Brunton J, Kawula T. The role of autophagy in intracellular pathogen nutrient acquisition. Front Cell Infect Microbiol 2015; 5:51. [PMID: 26106587 PMCID: PMC4460576 DOI: 10.3389/fcimb.2015.00051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023] Open
Abstract
Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates, and amino acids). It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral, and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells.
Collapse
Affiliation(s)
- Shaun Steele
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Jason Brunton
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Thomas Kawula
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
50
|
Vander Broek CW, Chalmers KJ, Stevens MP, Stevens JM. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants. Mol Cell Proteomics 2015; 14:905-16. [PMID: 25635268 PMCID: PMC4390269 DOI: 10.1074/mcp.m114.044875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.
Collapse
Affiliation(s)
- Charles W Vander Broek
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Kevin J Chalmers
- §Dundee Cell Products, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, Scotland, UK
| | - Mark P Stevens
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Joanne M Stevens
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.;
| |
Collapse
|