1
|
Diamantopoulos N, Li J, Bouchard A, Joumier L, Mohammaei S, Panneton V, Chang J, Malleshaiah M, Suh WK. ICOS-expressing Regulatory T Cells Influence the Composition of Antitumor CTL Populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:753-762. [PMID: 38995175 DOI: 10.4049/jimmunol.2300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
The role of ICOS in antitumor T cell responses and overall tumor progression has been controversial. In this study, we compared tumor progression in mice lacking ICOS selectively in regulatory T (Treg) cells or in all T cells. Using an experimental melanoma lung metastasis model, we found that Treg cell-specific ICOS knockout reduces the overall tumor burden compared with Cre control mice, with increased CD4+-to-Treg cell and CD8+-to-Treg cell ratios in the tumor. In contrast, there was no difference in the tumor burden in mice lacking ICOS in all of the T cell compartments. This suggests a dual role of ICOS costimulation in promoting protumor and antitumor T cell responses. Consistent with reduced tumor burden, we found that Treg cell-specific deletion of ICOS leads to an increase of CD8+ CTLs that express high levels of granzyme B and perforin. Moreover, single-cell transcriptome analysis revealed an increase of Ly108+Eomeshi CD8+ T cells at the cost of the Ly108+T-bethi subset in Treg cell-specific knockout mice. These results suggest that ICOS-expressing Treg cells suppress the CTL maturation process at the level of Eomes upregulation, a critical step known to drive perforin expression and cytotoxicity. Collectively, our data imply that cancer immunotherapies using ICOS agonist Abs may work better in Treg cell-low tumors or when they are combined with regimens that deplete tumor-infiltrating Treg cells.
Collapse
Affiliation(s)
- Nikoletta Diamantopoulos
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Antoine Bouchard
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | - Loick Joumier
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Saba Mohammaei
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | - Mohan Malleshaiah
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Shimojo H, Masaki T, Kageyama R. The Neurog2-Tbr2 axis forms a continuous transition to the neurogenic gene expression state in neural stem cells. Dev Cell 2024; 59:1913-1923.e6. [PMID: 38772376 DOI: 10.1016/j.devcel.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024]
Abstract
Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs. Thus, the transition from Hes1 oscillation to suppression is involved in the differentiation of NSCs to IPCs. Here, we found that Neurog2 oscillations induce the accumulation of Tbr2, which suppresses Hes1 expression, generating an IPC-like gene expression state in NSCs. In the absence of Tbr2, Hes1 expression is up-regulated, decreasing the formation of IPCs. These results indicate that the Neurog2-Tbr2 axis forms a continuous transcriptional trajectory to an IPC-like neurogenic state in NSCs, which then differentiate into IPCs via cell division.
Collapse
Affiliation(s)
- Hiromi Shimojo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Taimu Masaki
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Gu J, Yu Z, Tang X, Chen W, Deng X, Zhu X. Cryoablation combined with dual immune checkpoint blockade enhances antitumor efficacy in hepatocellular carcinoma model mice. Int J Hyperthermia 2024; 41:2373319. [PMID: 38955354 DOI: 10.1080/02656736.2024.2373319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Cryoablation (Cryo) is a minimally invasive treatment for tumors. Cryo can activate the body's immune response, although it is typically weak. The immune response induced by Cryo in hepatocellular carcinoma (HCC) is poorly understood. PD-1 and CTLA-4 monoclonal antibodies are immune checkpoint inhibitors used in immunotherapy for tumors. The combined use of these antibodies with Cryo may enhance the immune effect. METHODS A Balb/c mouse model of HCC was established and treated with Cryo, immune checkpoint blockade (ICB), or Cryo + ICB (combination therapy). The growth trend of right untreated tumors and survival time of mice were determined. The expression of apoptosis-related proteins was detected by Western blot (WB) assay. The percentages of immune cells and immunosuppressive cells were analyzed by flow cytometry. The numbers of infiltrating T lymphocytes were checked by immunohistochemistry, and the levels of T-cell-associated cytokines were detected by Quantitative real-time Polymerase Chain Reaction (qRT-PCR) assays and Enzyme-Linked Immunosorbent Assays (ELISA) assays. RESULTS Cryo + ICB inhibited the growth of right untreated tumors, promoted tumor cell apoptosis, and prolonged the survival time of mice. Local T-cell infiltration in right tumor tissues increased after the combination therapy, while the number of immunosuppressive cells was significantly reduced. In addition, the combination therapy may induce the production of multiple Th1-type cytokines but reduce the production of Th2-type cytokines. CONCLUSIONS Cryo can activate CD8+ and CD4+ T-cell immune responses. Cryo + ICB can relieve the immunosuppressive tumor microenvironment and shift the Th1/Th2 balance toward Th1 dominance, further enhancing the Cryo-induced T-cell immune response and resulting in a stronger antitumor immune response.
Collapse
Affiliation(s)
- Jun Gu
- Center for Medical Ultrasound, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Zepeng Yu
- Center for Medical Ultrasound, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Xiangxiang Tang
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Wenying Chen
- Center for Medical Ultrasound, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Xuedong Deng
- Center for Medical Ultrasound, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Xiaoli Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Ding Y, Lavaert M, Grassmann S, Band VI, Chi L, Das A, Das S, Harly C, Shissler SC, Malin J, Peng D, Zhao Y, Zhu J, Belkaid Y, Sun JC, Bhandoola A. Distinct developmental pathways generate functionally distinct populations of natural killer cells. Nat Immunol 2024; 25:1183-1192. [PMID: 38872000 DOI: 10.1038/s41590-024-01865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marieke Lavaert
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor I Band
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sumit Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christelle Harly
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, France
- LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Susannah C Shissler
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Malin
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dingkang Peng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yongge Zhao
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Wang L, Mishra S, Fan KKH, Quon S, Li G, Yu B, Liao W, Liu Y, Zhang X, Qiu Y, Li Y, Goldrath AW, Ma C, Zhang N. T-bet deficiency and Hic1 induction override TGF-β-dependency in the formation of CD103 + intestine-resident memory CD8 + T cells. Cell Rep 2024; 43:114258. [PMID: 38781073 PMCID: PMC11240284 DOI: 10.1016/j.celrep.2024.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Transforming growth factor β (TGF-β) represents a well-established signal required for tissue-resident memory T cell (TRM) formation at intestinal surfaces, regulating the expression of a large collection of genes coordinately promoting intestinal TRM differentiation. The functional contribution from each TGF-β-controlled transcription factor is not entirely known. Here, we find that TGF-β-induced T-bet downregulation and Hic1 induction represent two critical events during intestinal TRM differentiation. Importantly, T-bet deficiency significantly rescues intestinal TRM formation in the absence of the TGF-β receptor. Hic1 induction further strengthens TRM maturation in the absence of TGF-β and T-bet. Our results reveal that provision of certain TGF-β-induced molecular events can partially replace TGF-β signaling to promote the establishment of intestinal TRMs, which allows the functional dissection of TGF-β-induced transcriptional targets and molecular mechanisms for TRM differentiation.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kenneth Ka-Ho Fan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sara Quon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Guo Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Liao
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yue Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Eddens T, Parks OB, Zhang Y, Manni ML, Casanova JL, Ogishi M, Williams JV. PD-1 signaling in neonates restrains CD8 + T cell function and protects against respiratory viral immunopathology. Mucosal Immunol 2024; 17:476-490. [PMID: 38176655 PMCID: PMC11180597 DOI: 10.1016/j.mucimm.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-inflammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1-/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-specific CD8+ T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8+ T cells had reduced interferon-gamma (IFN-γ), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1-/- neonatal CD8+ T cells had markedly increased production of IFN-γ and granzyme B compared with B6 neonates. Pdcd1-/- neonates had increased acute pathology with HMPV or influenza. Pdcd1-/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8+ T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8+ T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8+ T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.
Collapse
Affiliation(s)
- Taylor Eddens
- Division of Allergy and Immunology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; University of Pittsburgh School of Medicine, Department of Pediatrics, Pittsburgh, Pennsylvania, USA
| | - Olivia B Parks
- University of Pittsburgh Medical Scientist Training Program, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, Pennsylvania, USA
| | - Michelle L Manni
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA; Howard Hughes Medical Institute, New York, New York, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - John V Williams
- University of Pittsburgh School of Medicine, Department of Pediatrics, Pittsburgh, Pennsylvania, USA; Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
7
|
Joulia E, Michieletto MF, Agesta A, Peillex C, Girault V, Le Dorze AL, Peroceschi R, Bucciarelli F, Szelechowski M, Chaubet A, Hakim N, Marrocco R, Lhuillier E, Lebeurrier M, Argüello RJ, Saoudi A, El Costa H, Adoue V, Walzer T, Sarry JE, Dejean AS. Eomes-dependent mitochondrial regulation promotes survival of pathogenic CD4+ T cells during inflammation. J Exp Med 2024; 221:e20230449. [PMID: 38189779 PMCID: PMC10772920 DOI: 10.1084/jem.20230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.
Collapse
Affiliation(s)
- Emeline Joulia
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Michaël F. Michieletto
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arantxa Agesta
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Cindy Peillex
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Virginie Girault
- Suivi Immunologique des Thérapeutiques Innovantes, Pôle de Biologie, Pontchaillou University Hospital, Rennes, France
- UMR1236, University of Rennes, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Bretagne, Rennes, France
| | - Anne-Louise Le Dorze
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Romain Peroceschi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Florence Bucciarelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Marion Szelechowski
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Adeline Chaubet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rémi Marrocco
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Emeline Lhuillier
- GeT-Santé, Plateforme Génome et Transcriptome, GenoToul, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Manuel Lebeurrier
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rafael J. Argüello
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Abdelhadi Saoudi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Hicham El Costa
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Veronique Adoue
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Anne S. Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| |
Collapse
|
8
|
Torcellan T, Friedrich C, Doucet-Ladevèze R, Ossner T, Solé VV, Riedmann S, Ugur M, Imdahl F, Rosshart SP, Arnold SJ, Gomez de Agüero M, Gagliani N, Flavell RA, Backes S, Kastenmüller W, Gasteiger G. Circulating NK cells establish tissue residency upon acute infection of skin and mediate accelerated effector responses to secondary infection. Immunity 2024; 57:124-140.e7. [PMID: 38157853 PMCID: PMC10783803 DOI: 10.1016/j.immuni.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.
Collapse
Affiliation(s)
- Tommaso Torcellan
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rémi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Ossner
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Virgínia Visaconill Solé
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sofie Riedmann
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Anandakumar H, Rauch A, Wimmer MI, Yarritu A, Koch G, McParland V, Bartolomaeus H, Wilck N. Segmental patterning of microbiota and immune cells in the murine intestinal tract. Gut Microbes 2024; 16:2398126. [PMID: 39254265 PMCID: PMC11404582 DOI: 10.1080/19490976.2024.2398126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
The intestine exhibits distinct characteristics along its length, with a substantial immune cell reservoir and diverse microbiota crucial for maintaining health. This study investigates how anatomical location and regional microbiota influence intestinal immune cell abundance. Using conventionally colonized and germ-free mice, segment-specific immune cell composition and microbial communities were assessed. Metagenomic sequencing analyzed microbiome variations, while flow cytometry and immunofluorescence examined immune cell composition. Microbiome composition varied significantly along the intestine, with diversity and abundance increasing from upper to lower segments. Immune cells showed distinct segment-specific patterning influenced by microbial colonization and localization. T cell subsets displayed varied dependence on microbiome presence and anatomical location. This study highlights locoregional differences in intestinal immune cell and microbiome composition, identifying immune subsets susceptible to microbiota presence. The findings provide context for understanding immune cell alterations in disease models.
Collapse
Affiliation(s)
- Harithaa Anandakumar
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Moritz I Wimmer
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Gudrun Koch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
10
|
Hoeijmakers LL, Reijers ILM, Blank CU. Biomarker-Driven Personalization of Neoadjuvant Immunotherapy in Melanoma. Cancer Discov 2023; 13:2319-2338. [PMID: 37668337 DOI: 10.1158/2159-8290.cd-23-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The introduction of immunotherapy has ushered in a new era of anticancer therapy for many cancer types including melanoma. Given the increasing development of novel compounds and combinations and the investigation in earlier disease stages, the need grows for biomarker-based treatment personalization. Stage III melanoma is one of the front-runners in the neoadjuvant immunotherapy field, facilitating quick biomarker identification by its immunogenic capacity, homogeneous patient population, and reliable efficacy readout. In this review, we discuss potential biomarkers for response prediction to neoadjuvant immunotherapy, and how the neoadjuvant melanoma platform could pave the way for biomarker identification in other tumor types. SIGNIFICANCE In accordance with the increasing rate of therapy development, the need for biomarker-driven personalized treatments grows. The current landscape of neoadjuvant treatment and biomarker development in stage III melanoma can function as a poster child for these personalized treatments in other tumors, assisting in the development of new biomarker-based neoadjuvant trials. This will contribute to personalized benefit-risk predictions to identify the most beneficial treatment for each patient.
Collapse
Affiliation(s)
- Lotte L Hoeijmakers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| |
Collapse
|
11
|
Iskusnykh IY, Fattakhov N, Li Y, Bihannic L, Kirchner MK, Steshina EY, Northcott PA, Chizhikov VV. Lmx1a is a master regulator of the cortical hem. eLife 2023; 12:e84095. [PMID: 37725078 PMCID: PMC10508884 DOI: 10.7554/elife.84095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Development of the nervous system depends on signaling centers - specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal-Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Laure Bihannic
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Matthew K Kirchner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Ekaterina Y Steshina
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
12
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
13
|
Gil N, Perry RBT, Mukamel Z, Tuck A, Bühler M, Ulitsky I. Complex regulation of Eomes levels mediated through distinct functional features of the Meteor long non-coding RNA locus. Cell Rep 2023; 42:112569. [PMID: 37256750 PMCID: PMC10320833 DOI: 10.1016/j.celrep.2023.112569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are implicated in a plethora of cellular processes, but an in-depth understanding of their functional features or their mechanisms of action is currently lacking. Here we study Meteor, a lncRNA transcribed near the gene encoding EOMES, a pleiotropic transcription factor implicated in various processes throughout development and in adult tissues. Using a wide array of perturbation techniques, we show that transcription elongation through the Meteor locus is required for Eomes activation in mouse embryonic stem cells, with Meteor repression linked to a change in the subpopulation primed to differentiate to the mesoderm lineage. We further demonstrate that a distinct functional feature of the locus-namely, the underlying DNA element-is required for suppressing Eomes expression following neuronal differentiation. Our results demonstrate the complex regulation that can be conferred by a single locus and emphasize the importance of careful selection of perturbation techniques when studying lncRNA loci.
Collapse
Affiliation(s)
- Noa Gil
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Mukamel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alex Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Cheng Y, Ling F, Li J, Chen Y, Xu M, Li S, Zhu L. An updated review of gastrointestinal toxicity induced by PD-1 inhibitors: from mechanisms to management. Front Immunol 2023; 14:1190850. [PMID: 37404814 PMCID: PMC10315615 DOI: 10.3389/fimmu.2023.1190850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
PD-1 inhibitors, as one of commonly used immune checkpoint inhibitors, enable T-cell activation and prevent immune escape by blocking the PD-1/PD-L1 signaling pathway. They have transformed the treatment landscape for cancer in recent years, due to the advantages of significantly prolonging patients' survival and improving their life quality. However, the ensuing unpredictable immune-related adverse effects (irAEs) plague clinicians, such as colitis and even potentially fatal events like intestinal perforation and obstruction. Therefore, understanding the clinical manifestations and grading criteria, underlying mechanisms, available diverse therapies, accessible biomarkers, and basis for risk stratification is of great importance for the management. Current evidence suggests that irAEs may be a marker of clinical benefit to immunotherapy in patients, so whether to discontinue PD-1 inhibitors after the onset of irAEs and rechallenge after remission of irAEs requires further evaluation of potential risk-reward ratios as well as more data from large-scale prospective studies to fully validate. At the end, the rare gastrointestinal toxicity events caused by PD-1 inhibitors are also sorted out. This review provides a summary of available data on the gastrointestinal toxicity profile caused by PD-1 inhibitors, with the aim of raising clinicians' awareness in daily practice, so that patients can safely benefit from therapy.
Collapse
|
15
|
Kumar A, Ramani V, Bharti V, de Lima Bellan D, Saleh N, Uzhachenko R, Shen C, Arteaga C, Richmond A, Reddy SM, Vilgelm A. Dendritic cell therapy augments antitumor immunity triggered by CDK4/6 inhibition and immune checkpoint blockade by unleashing systemic CD4 T-cell responses. J Immunother Cancer 2023; 11:e006019. [PMID: 37230537 PMCID: PMC10231009 DOI: 10.1136/jitc-2022-006019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy are a mainstay treatment for hormone receptor-positive breast cancer. While their principal mechanism is inhibition of cancer cell proliferation, preclinical and clinical evidence suggests that CDK4/6i can also promote antitumor T-cell responses. However, this pro-immunogenic property is yet to be successfully harnessed in the clinic, as combining CDK4/6i with immune checkpoint blockade (ICB) has not shown a definitive benefit in patients. METHOD We performed an in-depth analysis of the changes in the tumor immune microenvironment and systemic immune modulation associated with CDK4/6i treatment in muring breast cancer models and in patients with breast cancer using high dimensional flow cytometry and RNA sequencing. Gain and loss of function in vivo experiments employing cell transfer and depletion antibody were performed to uncover immune cell populations critical for CDK4/6i-mediated stimulation of antitumor immunity. RESULTS We found that loss of dendritic cells (DCs) within the tumor microenvironment resulting from CDK4/6 inhibition in bone marrow progenitors is a major factor limiting antitumor immunity after CDK4/6i and ICB. Consequently, restoration of DC compartment by adoptively transferring ex vivo differentiated DCs to mice treated with CDK4/6i and ICB therapy enabled robust tumor inhibition. Mechanistically, the addition of DCs promoted the induction of tumor-localized and systemic CD4 T-cell responses in mice receiving CDK4/6i-ICB-DC combination therapy, as characterized by enrichment of programmed cell death protein-1-negative T helper (Th)1 and Th2 cells with an activated phenotype. CD4 T-cell depletion abrogated the antitumor benefit of CDK4/6i-ICB-DC combination, with outgrowing tumors displaying an increased proportion of terminally exhausted CD8 T cells. CONCLUSIONS Our findings suggest that CDK4/6i-mediated DC suppression limits CD4 T-cell responses essential for the sustained activity of CD8 T cells and tumor inhibition. Furthermore, they imply that restoring DC-CD4 T-cell crosstalk via DC transfer enables effective breast cancer immunity in response to CDK4/6i and ICB treatment.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Vijay Ramani
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vijaya Bharti
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Nabil Saleh
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roman Uzhachenko
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Carlos Arteaga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Sangeetha M Reddy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anna Vilgelm
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, OSUCCC-James, Columbus, OH, USA
| |
Collapse
|
16
|
Pritchard GH, Phan AT, Christian DA, Blain TJ, Fang Q, Johnson J, Roy NH, Shallberg L, Kedl RM, Hunter CA. Early T-bet promotes LFA1 upregulation required for CD8+ effector and memory T cell development. J Exp Med 2023; 220:e20191287. [PMID: 36445307 PMCID: PMC9712775 DOI: 10.1084/jem.20191287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The T-box transcription factor T-bet is regarded as a "master regulator" of CD4+ Th1 differentiation and IFN-γ production. However, in multiple models of infection, T-bet appears less critical for CD8+ T cell expansion and effector function. Here, we show that following vaccination with a replication-deficient strain of Toxoplasma gondii, CD8+ T cell expression of T-bet is required for optimal expansion of parasite-specific effector CD8+ T cells. Analysis of the early events associated with T cell activation reveals that the α chain of LFA1, CD11a, is a target of T-bet, and T-bet is necessary for CD8+ T cell upregulation of this integrin, which influences the initial priming of CD8+ effector T cells. We propose that the early expression of T-bet represents a T cell-intrinsic factor that optimizes T-DC interactions necessary to generate effector responses.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anthony T. Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Trevor J. Blain
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Johnson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | - Lindsey Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross M. Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Huseni MA, Wang L, Klementowicz JE, Yuen K, Breart B, Orr C, Liu LF, Li Y, Gupta V, Li C, Rishipathak D, Peng J, Şenbabaoǧlu Y, Modrusan Z, Keerthivasan S, Madireddi S, Chen YJ, Fraser EJ, Leng N, Hamidi H, Koeppen H, Ziai J, Hashimoto K, Fassò M, Williams P, McDermott DF, Rosenberg JE, Powles T, Emens LA, Hegde PS, Mellman I, Turley SJ, Wilson MS, Mariathasan S, Molinero L, Merchant M, West NR. CD8 + T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep Med 2023; 4:100878. [PMID: 36599350 PMCID: PMC9873827 DOI: 10.1016/j.xcrm.2022.100878] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Although immune checkpoint inhibitors (ICIs) are established as effective cancer therapies, overcoming therapeutic resistance remains a critical challenge. Here we identify interleukin 6 (IL-6) as a correlate of poor response to atezolizumab (anti-PD-L1) in large clinical trials of advanced kidney, breast, and bladder cancers. In pre-clinical models, combined blockade of PD-L1 and the IL-6 receptor (IL6R) causes synergistic regression of large established tumors and substantially improves anti-tumor CD8+ cytotoxic T lymphocyte (CTL) responses compared with anti-PD-L1 alone. Circulating CTLs from cancer patients with high plasma IL-6 display a repressed functional profile based on single-cell RNA sequencing, and IL-6-STAT3 signaling inhibits classical cytotoxic differentiation of CTLs in vitro. In tumor-bearing mice, CTL-specific IL6R deficiency is sufficient to improve anti-PD-L1 activity. Thus, based on both clinical and experimental evidence, agents targeting IL-6 signaling are plausible partners for combination with ICIs in cancer patients.
Collapse
Affiliation(s)
| | - Lifen Wang
- Genentech, South San Francisco, CA 94080, USA
| | | | - Kobe Yuen
- Genentech, South San Francisco, CA 94080, USA
| | | | | | - Li-Fen Liu
- Genentech, South San Francisco, CA 94080, USA
| | - Yijin Li
- Genentech, South San Francisco, CA 94080, USA
| | | | - Congfen Li
- Genentech, South San Francisco, CA 94080, USA
| | | | - Jing Peng
- Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | - Ning Leng
- Genentech, South San Francisco, CA 94080, USA
| | | | | | - James Ziai
- Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Powles
- Barts Experimental Cancer Medicine Centre, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Leisha A Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - Ira Mellman
- Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Harris R, Mammadli M, Hiner S, Suo L, Yang Q, Sen JM, Karimi M. TCF-1 regulates NKG2D expression on CD8 T cells during anti-tumor responses. Cancer Immunol Immunother 2022; 72:1581-1601. [PMID: 36562825 DOI: 10.1007/s00262-022-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy relies on improving T cell effector functions against malignancies, but despite the identification of several key transcription factors (TFs), the biological functions of these TFs are not entirely understood. We developed and utilized a novel, clinically relevant murine model to dissect the functional properties of crucial T cell transcription factors during anti-tumor responses. Our data showed that the loss of TCF-1 in CD8 T cells also leads to loss of key stimulatory molecules such as CD28. Our data showed that TCF-1 suppresses surface NKG2D expression on naïve and activated CD8 T cells via key transcriptional factors Eomes and T-bet. Using both in vitro and in vivo models, we uncovered how TCF-1 regulates critical molecules responsible for peripheral CD8 T cell effector functions. Finally, our unique genetic and molecular approaches suggested that TCF-1 also differentially regulates essential kinases. These kinases, including LCK, LAT, ITK, PLC-γ1, P65, ERKI/II, and JAK/STATs, are required for peripheral CD8 T cell persistent function during alloimmunity. Overall, our molecular and bioinformatics data demonstrate the mechanism by which TCF-1 modulated several critical aspects of T cell function during CD8 T cell response to cancer. Summary Figure: TCF-1 is required for persistent function of CD8 T cells but dispensable for anti-tumor response. Here, we have utilized a novel mouse model that lacks TCF-1 specifically on CD8 T cells for an allogeneic transplant model. We uncovered a molecular mechanism of how TCF-1 regulates key signaling pathways at both transcriptomic and protein levels. These key molecules included LCK, LAT, ITK, PLC-γ1, p65, ERK I/II, and JAK/STAT signaling. Next, we showed that the lack of TCF-1 impacted phenotype, proinflammatory cytokine production, chemokine expression, and T cell activation. We provided clinical evidence for how these changes impact GVHD target organs (skin, small intestine, and liver). Finally, we provided evidence that TCF-1 regulates NKG2D expression on mouse naïve and activated CD8 T cells. We have shown that CD8 T cells from TCF-1 cKO mice mediate cytolytic functions via NKG2D.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Shannon Hiner
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Qi Yang
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School Rutgers Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jyoti Misra Sen
- National Institute On Aging-National Institutes of Health, BRC Building, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA.,Center On Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA.
| |
Collapse
|
19
|
Lv J, Qin L, Zhao R, Wu D, Wu Z, Zheng D, Li S, Luo M, Wu Q, Long Y, Tang Z, Tang YL, Luo X, Yao Y, Yang LH, Li P. Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels. Mol Ther Oncolytics 2022; 28:46-58. [PMID: 36654786 PMCID: PMC9827364 DOI: 10.1016/j.omto.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor cells and the immunosuppressive tumor microenvironment suppress the antitumor activity of T cells through immune checkpoints, including the PD-L1/PD-1 axis. Cytokine-inducible SH2-containing protein (CISH), a member of the suppressor of cytokine signaling (SOCS) family, inhibits JAK-STAT and T cell receptor (TCR) signaling in T and natural killer (NK) cells. However, its role in the regulation of immune checkpoints in T cells remains unclear. In this study, we ablated CISH in T cells with CRISPR-Cas9 and found that the sensitivity of T cells to TCR and cytokine stimulation was increased. In addition, chimeric antigen receptor T cells with CISH deficiency exhibited longer survival and higher cytokine secretion and antitumor activity. Notably, PD-1 expression was decreased in activated CISH-deficient T cells in vitro and in vivo. The level of FBXO38, a ubiquitination-regulating protein that reduces PD-1 expression, was elevated in activated T cells after CISH ablation. Hence, this study reveals a mechanism by which CISH promotes PD-1 expression by suppressing the expression of FBXO38 and proposes a new strategy for augmenting the therapeutic effect of CAR-T cells by inhibiting CISH.
Collapse
Affiliation(s)
- Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruocong Zhao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiping Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Siyu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou 510700, China
| | - Yan-Lai Tang
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuequn Luo
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Li-Hua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China,Corresponding author Li-Hua Yang, Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China.
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China,Corresponding author Peng Li, China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
20
|
Seyran M, Melanie S, Philip S, Amiq G, Fabian B. Allies or enemies? The effect of regulatory T cells and related T lymphocytes on the profibrotic environment in bleomycin-injured lung mouse models. Clin Exp Med 2022:10.1007/s10238-022-00945-7. [PMID: 36403186 PMCID: PMC10390389 DOI: 10.1007/s10238-022-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
AbstractIdiopathic pulmonary fibrosis (IPF) is characterized by permanent scarring of lung tissue and declining lung function, and is an incurable disease with increase in prevalence over the past decade. The current consensus is that aberrant wound healing following repeated injuries to the pulmonary epithelium is the most probable cause of IPF, with various immune inflammatory pathways having been reported to impact disease pathogenesis. While the role of immune cells, specifically T lymphocytes and regulatory T cells (Treg), in IPF pathogenesis has been reported and discussed recently, the pathogenic or beneficial roles of these cells in inducing or preventing lung fibrosis is still debated. This lack of understanding could be due in part to the difficulty in obtaining diseased human lung tissue for research purposes. For this reason, many animal models have been developed over the years to attempt to mimic the main clinical hallmarks of IPF: among these, inducing lung injury in rodents with the anti-cancer agent bleomycin has now become the most commonly studied animal model of IPF. Pulmonary fibrosis is the major side effect when bleomycin is administered for cancer treatment in human patients, and a similar effect can be observed after intra-tracheal administration of bleomycin to rodents. Despite many pathophysiological pathways of lung fibrosis having been investigated in bleomycin-injured animal models, one central facet still remains controversial, namely the involvement of specific T lymphocyte subsets, and in particular Treg, in disease pathogenesis. This review aims to summarize the major findings and conclusions regarding the involvement of immune cells and their receptors in the pathogenesis of IPF, and to elaborate on important parallels between animal models and the human disease. A more detailed understanding of the role of Treg and other immune cell subsets in lung injury and fibrosis derived from animal models is a critical basis for translating this knowledge to the development of new immune-based therapies for the treatment of human IPF.
Collapse
|
21
|
Shi Z, Du Q, Wang X, Wang J, Chen H, Lang Y, Kong L, Luo W, Yang M, Zhou H. Granzyme B in circulating CD8+ T cells as a biomarker of immunotherapy effectiveness and disability in neuromyelitis optica spectrum disorders. Front Immunol 2022; 13:1027158. [PMID: 36439094 PMCID: PMC9682179 DOI: 10.3389/fimmu.2022.1027158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/21/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Neuromyelitis optica spectrum disorders (NMOSD) are chronical inflammatory demyelinating diseases of the central nervous system (CNS) and the underlying mechanism remains unclear. Several recent studies have demonstrated that T cells play a pivotal role in the pathogenesis of NMOSD.In this study, we investigated CD8+ T cell phenotypes and levels of the cytotoxic protein granzyme B (GzmB), as well as their potential clinical application in NMOSD. METHODS In this study, 90 peripheral blood samples were collected from 59 NMOSD patients with seropositive anti-aquaporin-4 (AQP4) antibodies and 31 sex- and age-matched healthy donors (HDs). Flow cytometry was used to detect circulating levels of GzmB and CD8+ T cell subpopulations, including naïve (TN, CCD7+CD45RA+), central memory (TCM, CCD7+CD45RA-), effector memory (TEM, CCD7-CD45RA-), terminal differentiation effector memory cells (TEMRA, CCD7-CD45RA+) in both groups. The associations between GzmB levels in CD8+T cells and clinical characteristics of NMOSD were evaluated. RESULTS NMOSD patients exhibited significantly decreased proportions of CD8+TN cells and increased proportions of highly differentiated CD8+T cells (TEMRA) compared with HDs. In addition, levels of GzmB in CD8+ T cells were markedly higher in NMOSD patients than in HDs. Moreover, we observed that high proportions of GzmB-expressing CD8+ T cells were more common in patients with a poor response to immunotherapies, and showed a good potential to distinguish poor responders from responders (ACU=0.89). Clinical correlation analysis indicated that high levels of GzmB in CD8+ T cells were not only related to severe disability but also significantly associated with increased serum levels of neurofilament light (NFL) and glial fibrillary acidic protein (GFAP). Multivariate linear regression analyses further suggested that GzmB expression in CD8+ T cells was predominantly associated with disability and immunotherapy effectiveness in NMOSD, independent of the sex, age, and disease phase. Transcription factor T-bet in CD8+ T cells were also significantly elevated in NMOSD and were associated with increasing number of circulating CD8+TEMRA cells and GzmB-expressing CD8+T cells. CONCLUSIONS Our study support the involvement of GzmB-expressing CD8+ T cells in the inflammatory response in patients with NMOSD and provide a potential biomarker for disease immunotherapy effectiveness and disability progression.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianchen Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanling Lang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyao Kong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqin Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Mu Yang
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
23
|
Li P, Chen X, Ping Y, Qin G, Huang L, Zhao Q, Zhang Z, Chen H, Wang L, Yang S, Zhang Y. Clinical Correlation of Function and TCR vβ Diversity of MAGE-C2–Specific CD8+ T Cell Response in Esophageal Cancer. THE JOURNAL OF IMMUNOLOGY 2022; 209:1039-1047. [DOI: 10.4049/jimmunol.2101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/08/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Melanoma-associated Ag (MAGE)-C2, an immunogenic cancer germline (testis) Ag, is highly expressed by various tumor cells, thymic medullary epithelial cells, and germ cells. In this study, we aimed to explore the immunologic properties of MAGE-C2–specific CD8+ T cells and the relationship of its TCR β-chain V region (TCR vβ) subfamily distribution to prognosis of patients with esophageal cancer. PBMCs and tumor-infiltrating lymphocytes expanded by CD3/CD28 Dynabeads and MAGE-C2 peptides in vitro resulted in the induction of lysosome-associated membrane protein-1 (LAMP-1 or CD107a) on the cell surface and the production of IFN-γ by MAGE-C2–specific CD8+ T cells. We found differential TCR vβ subfamily distribution among flow-sorted CD107a+IFN-γ+ and CD107a−IFN-γ− CD8+ T cells. The proportion of CD107a+ and/or IFN-γ+ tetramer+ CD8+ T cells was lower in patients with lymph node metastasis, late tumor stage, and poorly differentiated state (p < 0.05). T-box transcription factor was positively correlated with CD107a and IFN-γ. Kaplan–Meier analysis showed that patients whose MAGE-C2–specific CD8+ T cells expressed high CD107a and/or IFN-γ had a longer survival time when compared with patients whose MAGE-C2–specific CD8+ T cells expressed low levels of CD107a and/or IFN-γ. Moreover, analysis of TCR vβ subfamily distribution revealed that a higher frequency of TCR vβ16 in MAGE-C2–specific CD8+ T cells was positively correlated with a better prognosis. These results suggest that the presence of functional MAGE-C2–specific CD8+ T cells had an independent prognostic impact on the survival of patients with esophageal cancer.
Collapse
Affiliation(s)
- Pupu Li
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Huang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanan Chen
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shengli Yang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- †School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- ‡Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; and
- §State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Silveira CRF, Corveloni AC, Caruso SR, Macêdo NA, Brussolo NM, Haddad F, Fernandes TR, de Andrade PV, Orellana MD, Guerino-Cunha RL. Cytokines as an important player in the context of CAR-T cell therapy for cancer: Their role in tumor immunomodulation, manufacture, and clinical implications. Front Immunol 2022; 13:947648. [PMID: 36172343 PMCID: PMC9512053 DOI: 10.3389/fimmu.2022.947648] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
CAR-T cell therapies have been recognized as one of the most advanced and efficient strategies to treat patients with hematologic malignancies. However, similar results have not been observed for the treatment of solid tumors. One of the explanations is the fact that tumors have extremely hostile microenvironments for the infiltration and effector activity of T-cells, mainly due to the presence of highly suppressive cytokines, hypoxia, and reactive oxygen species. Taking advantage of cytokines functionally, new fourth-generation CAR constructs have been developed to target tumor cells and additionally release cytokines that can contribute to the cytotoxicity of T-cells. The manufacturing process, including the use of cytokines in the expansion and differentiation of T cells, is also discussed. Finally, the clinical aspects and the influence of cytokines on the clinical condition of patients, such as cytokine release syndrome, who receive treatment with CAR-T cells are addressed. Therefore, this review aims to highlight how important cytokines are as one of the major players of cell therapy.
Collapse
Affiliation(s)
| | | | - Sâmia Rigotto Caruso
- Cell Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | - Nathália Araújo Macêdo
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Felipe Haddad
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Pamela Viani de Andrade
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Renato Luiz Guerino-Cunha
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
- Department of Medical Images, Hematology and Clinical Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Renato Luiz Guerino-Cunha,
| |
Collapse
|
25
|
Sparano C, Solís-Sayago D, Vijaykumar A, Rickenbach C, Vermeer M, Ingelfinger F, Litscher G, Fonseca A, Mussak C, Mayoux M, Friedrich C, Nombela-Arrieta C, Gasteiger G, Becher B, Tugues S. Embryonic and neonatal waves generate distinct populations of hepatic ILC1s. Sci Immunol 2022; 7:eabo6641. [PMID: 36054340 DOI: 10.1126/sciimmunol.abo6641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Group 1 innate lymphoid cells (ILCs) comprising circulating natural killer (cNK) cells and tissue-resident ILC1s are critical for host defense against pathogens and tumors. Despite a growing understanding of their role in homeostasis and disease, the ontogeny of group 1 ILCs remains largely unknown. Here, we used fate mapping and single-cell transcriptomics to comprehensively investigate the origin and turnover of murine group 1 ILCs. Whereas cNK cells are continuously replaced throughout life, we uncovered tissue-dependent development and turnover of ILC1s. A first wave of ILC1s emerges during embryogenesis in the liver and transiently colonizes fetal tissues. After birth, a second wave quickly replaces ILC1s in most tissues apart from the liver, where they layer with embryonic ILC1s, persist until adulthood, and undergo a specific developmental program. Whereas embryonically derived ILC1s give rise to a cytotoxic subset, the neonatal wave establishes the full spectrum of ILC1s. Our findings uncover key ontogenic features of murine group 1 ILCs and their association with cellular identities and functions.
Collapse
Affiliation(s)
- Colin Sparano
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Darío Solís-Sayago
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anjali Vijaykumar
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gioana Litscher
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - André Fonseca
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Mussak
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Maud Mayoux
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Burkhard Becher
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Murayama K, Ikegami I, Kamekura R, Sakamoto H, Yanagi M, Kamiya S, Sato T, Sato A, Shigehara K, Yamamoto M, Takahashi H, Takano KI, Ichimiya S. CD4+CD8+ T follicular helper cells regulate humoral immunity in chronic inflammatory lesions. Front Immunol 2022; 13:941385. [PMID: 36091071 PMCID: PMC9452889 DOI: 10.3389/fimmu.2022.941385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
T follicular helper (Tfh) cells drive humoral immunity by facilitating B cell responses at the initial and recall phases. Recent studies have indicated the possible involvement of Tfh cells in the process of chronic inflammation. However, the functional role of Tfh cells in persistent immune settings remains unclear. Here, we report that CD4+CD8+ (double-positive, DP; CD3+CD4+CD8+CXCR5hiPD-1hi) Tfh cells, a subset of germinal-center-type Tfh cells, were abundantly present in the fibroinflammatory lesions of patients with immunoglobulin G4-related disease (IgG4-RD). Transcriptome analyses showed that these DP-Tfh cells in the lesions of IgG4-RD preferentially expressed signature genes characteristic of cytotoxic CD8+ T cells, such as Eomes, CRTAM, GPR56, and granzymes, in addition to CD70. Scatter diagram analyses to examine the relationships between tissue-resident lymphocytes and various clinical parameters revealed that the levels of DP-Tfh cells were inversely correlated to the levels of serum IgG4 and local IgG4-expressing (IgG4+) memory B cells (CD19+CD27+IgD-) in patients with IgG4-RD. Cell culture experiments using autologous tonsillar lymphocytes further suggested that DP-Tfh cells possess a poor B-cell helper function and instead regulate memory B cells. Since CD4+ (single positive, SP; CD3+CD4+CD8-CXCR5hiPD-1hi) Tfh cells differentiated into DP-Tfh cells under stimulation with IL-2 and IL-7 as assessed by in vitro experiments, these data imply that SP-Tfh cells are a possible origin of DP-Tfh cells under persistent inflammation. These findings highlight the potential feedback loop mechanism of Tfh cells in immune tolerance under chronic inflammatory conditions. Further studies on DP-Tfh cells may facilitate control of unresolved humoral responses in IgG4-RD pathological inflammation.
Collapse
Affiliation(s)
- Kosuke Murayama
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Sakamoto
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motohisa Yamamoto
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroki Takahashi
- Department of Clinical Immunology and Rheumatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ken-ichi Takano
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- *Correspondence: Shingo Ichimiya,
| |
Collapse
|
27
|
Wang M, Wei Y, Li Y, Li H, Jin J, Lu Y, Li Q. Targeting breast cancer with a combination of DNT and LAG3 checkpoint blockage and its mechanism. Immun Inflamm Dis 2022; 10:e626. [PMID: 35894707 PMCID: PMC9274802 DOI: 10.1002/iid3.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION The characteristics of the tumor immune microenvironment (TIME) are closely related to immunotherapy. Breast cancer can benefit from immunotherapy, and its TIME is still unclear. METHODS We utilized mass cytometry to explore the immune cell heterogeneity in breast cancer. Double-negative T cells (DNTs) from healthy volunteers (HBs) were enriched in vitro. Flow cytometry was used to detect the cell surface receptors of cancer cells and DNT cells. The correlation between immune checkpoints and the abundance of immune cells or prognosis of breast cancer was analyzed by the TCGA database. The messenger RNA (mRNA) expression of functional genes was performed by quantitative real-time PCR. RESULTS We found that the frequencies of Granzyme B (GZMB)+ CD8+ T and GZMB+ DNT cells in cancer tissues (CA) of breast cancer were lower than those in blood samples of patients (PB), and the frequencies of programmed cell death protein 1 (PD1)+ CD8+ T and PD1+ DNT cells in CA were higher than those in PB. DNTs from HBs had a cytotoxic effect on MDA-MB-231. LAG3Ab could upregulate the mRNA expression of interferon gamma and perforin by increasing T-BET transcription to enhance the cytotoxicity of DNT cells in vitro. CONCLUSION Our study revealed the suppressive status of TIME in breast cancer and supported DNT cells had the potential to be applied as a novel adoptive cell therapy for TNBC either alone or combined with LAG3Ab.
Collapse
Affiliation(s)
- Miao Wang
- Department of OncologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yuhan Wei
- Department of OncologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yingrui Li
- Department of OncologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiangtao Jin
- Department of Intervention TherapyZezhou People's HospitalJinchengChina
| | - Yuting Lu
- Department of OncologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Qin Li
- Department of OncologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
28
|
Yu L, Guan Y, Li L, Lu N, Zhang C. The transcription factor Eomes promotes expression of inhibitory receptors on hepatic CD8
+
T cells during HBV persistence. FEBS J 2022; 289:3241-3261. [DOI: 10.1111/febs.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Linyan Yu
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
- Jining NO. 1 People’s Hospital China
| | - Lei Li
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Nan Lu
- Institute of Diagnostics School of Medicine Cheeloo College of Medicine Shandong University Jinan China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
29
|
Li S, Zou D, Chen W, Cheng Y, Britz GW, Weng YL, Liu Z. Ablation of BATF Alleviates Transplant Rejection via Abrogating the Effector Differentiation and Memory Responses of CD8 + T Cells. Front Immunol 2022; 13:882721. [PMID: 35514970 PMCID: PMC9062028 DOI: 10.3389/fimmu.2022.882721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023] Open
Abstract
Allogeneic CD8+ T cells are prominently involved in allograft rejection, but how their effector differentiation and function are regulated at a transcriptional level is not fully understood. Herein, we identified the basic leucine zipper ATF-like transcription factor (BATF) as a key transcription factor that drives the effector program of allogeneic CD8+ T cells. We found that BATF is highly expressed in graft-infiltrating CD8+ T cells, and its ablation in CD8+ T cells significantly prolonged skin allograft survival in a fully MHC-mismatched transplantation model. To investigate how BATF dictates allogeneic CD8+ T cell response, BATF-/- and wild-type (WT) CD8+ T cells were mixed in a 1:1 ratio and adoptively transferred into B6.Rag1-/- mice 1 day prior to skin transplantation. Compared with WT CD8+ T cells at the peak of rejection response, BATF-/- CD8+ T cells displayed a dysfunctional phenotype, evident by their failure to differentiate into CD127-KLRG1+ terminal effectors, impaired proliferative capacity and production of pro-inflammatory cytokines/cytotoxic molecules, and diminished capacity to infiltrate allografts. In association with the failure of effector differentiation, BATF-/- CD8+ T cells largely retained TCF1 expression and expressed significantly low levels of T-bet, TOX, and Ki67. At the memory phase, BATF-deficient CD8+ T cells displayed impaired effector differentiation upon allogeneic antigen re-stimulation. Therefore, BATF is a critical transcriptional determinant that governs the terminal differentiation and memory responses of allogeneic CD8+ T cells in the transplantation setting. Targeting BATF in CD8+ T cells may be an attractive therapeutic approach to promote transplant acceptance.
Collapse
Affiliation(s)
- Shuang Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Yating Cheng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Gavin W. Britz
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States,*Correspondence: Zhaoqian Liu, ;Yi-Lan Weng,
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Clinical Pharmacology, Central South University, Changsha, China,*Correspondence: Zhaoqian Liu, ;Yi-Lan Weng,
| |
Collapse
|
30
|
Iwamoto A, Tsukamoto H, Nakayama H, Oshiumi H. E3 Ubiquitin Ligase Riplet Is Expressed in T Cells and Suppresses T Cell-Mediated Antitumor Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2067-2076. [PMID: 35365564 DOI: 10.4049/jimmunol.2100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
The E3 ubiquitin ligase Riplet mediates retinoic acid-inducible gene-I polyubiquitination and is essential for viral-induced expression of type I IFNs in dendritic cells and macrophages. The function of Riplet in innate immunity has been well demonstrated; however, its role in adaptive immunity during the antitumor immune response is unclear. In this study, we examined the role of Riplet in the T cell-mediated antitumor immune response. Riplet was expressed in T cells and upregulated in CD8+ T cells in response to TCR-mediated stimulation. Furthermore, PR domain containing 1, eomesodermin, and killer cell lectin-like receptor G1 expression was increased in effector CD8+ T cells by Riplet knockout in vitro, which suggests that Riplet is involved in the effector function of CD8+ T cells. Our results indicated that Riplet deficiency augmented the antitumor response of MO4 (OVA-expressing melanoma)-bearing mice treated with OVA peptide-pulsed dendritic cells. Moreover, both CD4+ and CD8+ T cells played important roles in Riplet-mediated augmentation of the antitumor immune response. In tumor-draining lymph nodes, the Th1 response was promoted, and the induction of OVA-specific CD8+ T cells and IFN-γ production were enhanced by Riplet deficiency. Furthermore, the IFN-γ response and OVA-specific cytotoxicity of CD8+ T cells in tumor tissue were augmented by Riplet deficiency. The expression of Cxcl9fluorescence-minus-one and Cxcl10 mRNA was also enhanced in the tumor microenvironment by Riplet knockout, consistent with the augmented recruitment of CTLs. Overall, we clarified a function of Riplet in T cells, which is to suppress the antitumor immune response through modulating Th1 and CTLs.
Collapse
Affiliation(s)
- Asuka Iwamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Hirotake Tsukamoto
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Kyoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan;
| |
Collapse
|
31
|
Dhume K, Finn CM, Devarajan P, Singh A, Tejero JD, Prokop E, Strutt TM, Sell S, Swain SL, McKinstry KK. Bona Fide Th17 Cells without Th1 Functional Plasticity Protect against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1998-2007. [PMID: 35338093 PMCID: PMC9012674 DOI: 10.4049/jimmunol.2100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/04/2022] [Indexed: 01/24/2023]
Abstract
Optimal transcriptional programming needed for CD4 T cells to protect against influenza A virus (IAV) is unclear. Most IAV-primed CD4 T cells fit Th1 criteria. However, cells deficient for the Th1 "master regulator," T-bet, although marked by reduced Th1 identity, retain robust protective capacity. In this study, we show that T-bet's paralog, Eomesodermin (Eomes), is largely redundant in the presence of T-bet but is essential for the residual Th1 attributes of T-bet-deficient cells. Cells lacking both T-bet and Eomes instead develop concurrent Th17 and Th2 responses driven by specific inflammatory signals in the infected lung. Furthermore, the transfer of T-bet- and Eomes-deficient Th17, but not Th2, effector cells protects mice from lethal IAV infection. Importantly, these polyfunctional Th17 effectors do not display functional plasticity in vivo promoting gain of Th1 attributes seen in wild-type Th17 cells, which has clouded evaluation of the protective nature of Th17 programming in many studies. Finally, we show that primary and heterosubtypic IAV challenge is efficiently cleared in T-bet- and Eomes double-deficient mice without enhanced morbidity despite a strongly Th17-biased inflammatory response. Our studies thus demonstrate unexpectedly potent antiviral capacity of unadulterated Th17 responses against IAV, with important implications for vaccine design.
Collapse
Affiliation(s)
- Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Caroline M Finn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | | | - Ayushi Singh
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Joanne D Tejero
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Emily Prokop
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Tara M Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Stewart Sell
- Palisades Pathology Laboratory, Williamsburg, VA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA; and
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL;
| |
Collapse
|
32
|
Steffen J, Ehrentraut S, Bank U, Biswas A, Figueiredo CA, Hölsken O, Düsedau HP, Dovhan V, Knop L, Thode J, Romero-Suárez S, Duarte CI, Gigley J, Romagnani C, Diefenbach A, Klose CSN, Schüler T, Dunay IR. Type 1 innate lymphoid cells regulate the onset of Toxoplasma gondii-induced neuroinflammation. Cell Rep 2022; 38:110564. [PMID: 35354032 DOI: 10.1016/j.celrep.2022.110564] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 12/31/2022] Open
Abstract
Cerebral infections are restrained by a complex interplay of tissue-resident and recruited peripheral immune cells. Whether innate lymphoid cells (ILCs) are involved in the orchestration of the neuroinflammatory dynamics is not fully understood. Here, we demonstrate that ILCs accumulate in the cerebral parenchyma, the choroid plexus, and the meninges in the onset of cerebral Toxoplasma gondii infection. Antibody-mediated depletion of conventional natural killer (cNK) cells and ILC1s in the early stage of infection results in diminished cytokine and chemokine expression and increased cerebral parasite burden. Using cNK- and ILC1-deficient murine models, we demonstrate that exclusively the lack of ILC1s affects cerebral immune responses. In summary, our results provide evidence that ILC1s are an early source of IFN-γ and TNF in response to cerebral T. gondii infection, thereby inducing host defense factors and initiating the development of a neuroinflammatory response.
Collapse
Affiliation(s)
- Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Stefanie Ehrentraut
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Caio Andreeta Figueiredo
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Oliver Hölsken
- Mucosal and Developmental Immunology, German Rheuma Research Center Berlin (DRFZ), Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases, and Immunology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Vladyslava Dovhan
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Jacqueline Thode
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Silvina Romero-Suárez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany; Medical Department I, Charité - Universitätsmedizin, Berlin, Germany
| | - Andreas Diefenbach
- Mucosal and Developmental Immunology, German Rheuma Research Center Berlin (DRFZ), Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases, and Immunology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph S N Klose
- Neuro-immune Interactions, Institute of Microbiology, Infectious Diseases, and Immunology, Charité - Universitätsmedizin, Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
33
|
Abed S, Reilly A, Arnold SJ, Feldheim DA. Adult Expression of Tbr2 Is Required for the Maintenance but Not Survival of Intrinsically Photosensitive Retinal Ganglion Cells. Front Cell Neurosci 2022; 16:826590. [PMID: 35401124 PMCID: PMC8983909 DOI: 10.3389/fncel.2022.826590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). ipRGCs regulate subconscious non-image-forming behaviors such as circadian rhythms, pupil dilation, and light-mediated mood. Previously, we and others showed that the transcription factor Tbr2 (EOMES) is required during retinal development for the formation of ipRGCs. Tbr2 is also expressed in the adult retina leading to the hypothesis that it plays a role in adult ipRGC function. To test this, we removed Tbr2 in adult mice. We found that this results in the loss of melanopsin expression in ipRGCs but does not lead to cell death or morphological changes to their dendritic or axonal termination patterns. Additionally, we found ectopic expression of Tbr2 in conventional RGCs does not induce melanopsin expression but can increase melanopsin expression in existing ipRGCs. An interesting feature of ipRGCs is their superior survival relative to conventional RGCs after an optic nerve injury. We find that loss of Tbr2 decreases the survival rate of ipRGCs after optic nerve damage suggesting that Tbr2 plays a role in ipRGC survival after injury. Lastly, we show that the GABAergic amacrine cell marker Meis2, is expressed in the majority of Tbr2-expressing displaced amacrine cells as well as in a subset of Tbr2-expressing RGCs. These findings demonstrate that Tbr2 is necessary but not sufficient for melanopsin expression, that Tbr2 is involved in ipRGC survival after optic nerve injury, and identify a marker for Tbr2-expressing displaced amacrine cells.
Collapse
Affiliation(s)
- Sadaf Abed
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreea Reilly
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sebastian J. Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
- *Correspondence: David A. Feldheim,
| |
Collapse
|
34
|
Kaseb AO, Hasanov E, Cao HST, Xiao L, Vauthey JN, Lee SS, Yavuz BG, Mohamed YI, Qayyum A, Jindal S, Duan F, Basu S, Yadav SS, Nicholas C, Sun JJ, Singh Raghav KP, Rashid A, Carter K, Chun YS, Tzeng CWD, Sakamuri D, Xu L, Sun R, Cristini V, Beretta L, Yao JC, Wolff RA, Allison JP, Sharma P. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2022; 7:208-218. [PMID: 35065057 PMCID: PMC8840977 DOI: 10.1016/s2468-1253(21)00427-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatocellular carcinoma has high recurrence rates after surgery; however, there are no approved standard-of-care neoadjuvant or adjuvant therapies. Immunotherapy has been shown to improve survival in advanced hepatocellular carcinoma; we therefore aimed to evaluate the safety and tolerability of perioperative immunotherapy in resectable hepatocellular carcinoma. METHODS In this single-centre, randomised, open-label, phase 2 trial, patients with resectable hepatocellular carcinoma were randomly assigned (1:1) to receive 240 mg of nivolumab intravenously every 2 weeks (for up to three doses before surgery at 6 weeks) followed in the adjuvant phase by 480 mg of nivolumab intravenously every 4 weeks for 2 years, or 240 mg of nivolumab intravenously every 2 weeks (for up to three doses before surgery) plus one dose of 1 mg/kg of ipilimumab intravenously concurrently with the first preoperative dose of nivolumab, followed in the adjuvant phase by 480 mg of nivolumab intravenously every 4 weeks for up to 2 years plus 1 mg/kg of ipilimumab intravenously every 6 weeks for up to four cycles. Patients were randomly assigned to the treatment groups by use of block randomisation with a random block size. The primary endpoint was the safety and tolerability of nivolumab with or without ipilimumab. Secondary endpoints were the proportion of patients with an overall response, time to progression, and progression-free survival. This trial is registered with ClinicalTrials.gov (NCT03222076) and is completed. FINDINGS Between Oct 30, 2017, and Dec 3, 2019, 30 patients were enrolled and 27 were randomly assigned: 13 to nivolumab and 14 to nivolumab plus ipilimumab. Grade 3-4 adverse events were higher with nivolumab plus ipilimumab (six [43%] of 14 patients) than with nivolumab alone (three [23%] of 13). The most common treatment-related adverse events of any grade were increased alanine aminotransferase (three [23%] of 13 patients on nivolumab vs seven [50%] of 14 patients on nivolumab plus ipilimumab) and increased aspartate aminotransferase (three [23%] vs seven [50%]). No patients in either group had their surgery delayed due to grade 3 or worse adverse events. Seven of 27 patients had surgical cancellations, but none was due to treatment-related adverse events. Estimated median progression-free survival was 9·4 months (95% CI 1·47-not estimable [NE]) with nivolumab and 19·53 months (2·33-NE) with nivolumab plus ipilimumab (hazard ratio [HR] 0·99, 95% CI 0·31-2·54); median time to progression was 9·4 months (95% CI 1·47-NE) in the nivolumab group and 19·53 months (2·33-NE) in the nivolumab plus ipilimumab group (HR 0·89, 95% CI 0·31-2·54). In an exploratory analysis, three (23%) of 13 patients had an overall response with nivolumab monotherapy, versus none with nivolumab plus ipilimumab. Three (33%) of nine patients had a major pathological response (ie, ≥70% necrosis in the resected tumour area) with nivolumab monotherapy compared with three (27%) of 11 with nivolumab plus ipilimumab. INTERPRETATION Perioperative nivolumab alone and nivolumab plus ipilimumab appears to be safe and feasible in patients with resectable hepatocellular carcinoma. Our findings support further studies of immunotherapy in the perioperative setting in hepatocellular carcinoma. FUNDING Bristol Myers Squibb and the US National Institutes of Health.
Collapse
Affiliation(s)
- Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Elshad Hasanov
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hop Sanderson Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betul Gok Yavuz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yehia I Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aliya Qayyum
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Jindal
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Duan
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shalini S Yadav
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney Nicholas
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Jing Sun
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal Pratap Singh Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asif Rashid
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristen Carter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Shin Chun
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Wei David Tzeng
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Divya Sakamuri
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Patrick Allison
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Gu JT, Claudio N, Betts C, Sivagnanam S, Geltzeiler M, Pucci F. Characterization of the tumor immune microenvironment of sinonasal squamous-cell carcinoma. Int Forum Allergy Rhinol 2022; 12:39-50. [PMID: 34510766 PMCID: PMC8716469 DOI: 10.1002/alr.22867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Treatment and prognosis of sinonasal squamous-cell carcinoma (SNSCC) have not significantly improved despite improvements in radical therapy. Characterization of the tumor immune microenvironment (TiME) may identify patient subgroups associated with disease recurrence, and provide new biomarkers for improved patient stratification and treatment. METHODS The TiME was quantitatively evaluated by multiplex immunohistochemistry (mIHC) in archived tissue sections from 38 patients with SNSCC, and were assessed for differences between recurrent (n = 20) and nonrecurrent (n = 18) groups. Hierarchical clustering analyses were performed to identify phenotypic TiME subgroups within the cohort and were used to compare survival outcomes. RESULTS Our mIHC analysis revealed increased T-cell populations and decreased myeloid-cell populations in SNSCC patients without recurrent disease, as compared with patients with recurrent disease. Within T-cell subsets, there was a significantly higher percentage of granzyme B+ , T-bet+ , Eomes+ T cells, as well as higher proliferation of CD8+ T cells within the nonrecurrent group relative to the recurrent group. Furthermore, immune-cell complexity profiles of SNSCC revealed hyper- and hypo-T-cell-inflamed, myeloid-inflamed, B-cell-inflamed, and broadly hypoinflamed subtypes not previously identified by gene expression analyses. Our study revealed that presence of either hyper- or hypo-T-cell-inflamed TiME subtypes were associated with increased survival outcomes as compared with broadly hypoinflamed TiME subtypes (p = 0.035 and 0.0376, respectively). CONCLUSIONS The TiME of SNSCC reveals distinct subtypes, which may correlate with recurrence and survival outcomes.
Collapse
Affiliation(s)
- Jeffrey T. Gu
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon,Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon
| | - Natalie Claudio
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon,Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon
| | - Courtney Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Shamilene Sivagnanam
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Mathew Geltzeiler
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon,Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon
| | - Ferdinando Pucci
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon,Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
36
|
Liu B, Xiao X, Lin Z, Lou Y, Zhao L. PDGFRB is a potential prognostic biomarker and correlated with immune infiltrates in gastric cancer. Cancer Biomark 2021; 34:251-264. [PMID: 34958001 DOI: 10.3233/cbm-210335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is a common cancer with high mortality and morbidity rates worldwide. Although medical and surgical treatments have improved, the mechanisms of the progression of GC remain unclear. Platelet-derived growth factor receptor-β (PDGFRB) plays a pivotal role in angiogenesis and tumor cell proliferation and has been suggested as a prognostic marker of cancer. This study aimed to explore the relationship of PDGFRB expression with clinicopathologic characteristics, immune cell infiltration status, and prognosis in GC. In this study, we visualized the expression and prognostic values of PDGFRB in GC using the Oncomine, UALCAN, GEPIA, and Kaplan-Meier Plotter databases. And then we explored the potential relationships between PDGFRB expression and the levels of immune cell infiltration using the TIMER, GEPIA databases and CIBERSORT algorithm. Furthermore, LinkedOmics analysis was performed to explore the functions for PDGFRB. The results showed close correlations between PDGFRB and immune cell infiltration especially M2 Macrophage infiltration in GC. High PDGFRB expression was related to poor outcomes in GC. High PDGFRB expression can negatively affect GC prognosis by promoting angiogenesis and modulating the tumor immune microenvironment. These results strongly suggest that PDGFRB can be used as a prognostic biomarker of GC and provide novel insights into possible immunotherapeutic targets.
Collapse
Affiliation(s)
- Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology; Key Laboratory of Laboratory Medicine, Ministry of Education, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziqin Lin
- Wenzhou Key Laboratory of Sanitary Microbiology; Key Laboratory of Laboratory Medicine, Ministry of Education, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology; Key Laboratory of Laboratory Medicine, Ministry of Education, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingling Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology; Key Laboratory of Laboratory Medicine, Ministry of Education, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
37
|
Sandstedt J, Vukusic K, Rekabdar E, Dellgren G, Jeppsson A, Mattsson Hultén L, Rotter Sopasakis V. Markedly reduced myocardial expression of γ-protocadherins and long non-coding RNAs in patients with heart disease. Int J Cardiol 2021; 344:149-159. [PMID: 34592247 DOI: 10.1016/j.ijcard.2021.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Adverse cardiac remodeling and tissue damage following heart disease is strongly associated with chronic low grade inflammation. The mechanisms underlying persisting inflammatory signals are not fully understood, but may involve defective and/or non-responsive transcriptional and post-transcriptional regulatory mechanisms. In the current study, we aimed to identify novel mediators and pathways involved in processes associated with inflammation in the development and maintenance of cardiac disease. METHODS AND RESULTS We performed RNA sequencing analysis of cardiac tissue from patients undergoing coronary artery bypass grafting (CABG) or aortic valve replacement (AVR) and compared with control tissue from multi-organ donors. Our results confirmed previous findings of a marked upregulated inflammatory state, but more importantly, we found pronounced reduction of non-protein coding genes, particularly long non-coding RNAs (lncRNA), including several lncRNAs known to be associated with inflammation and/or cardiovascular disease. In addition, Gene Set Enrichment Analysis revealed markedly downregulated microRNA pathways, resulting in aberrant expression of other genes, particularly γ-protocadherins. CONCLUSIONS Our data suggest that aberrant expression of non-coding gene regulators comprise crucial keys in the progression of heart disease, and may be pivotal for chronic low grade inflammation associated with cardiac dysfunction. By unmasking atypical γ-protocadherin expression as a prospective genetic biomarker of myocardial dysfunction, our study provides new insight into the complex molecular framework of heart disease. Creating new approaches to modify non-coding gene regulators, such as those identified in the current study, may define novel strategies to shift γ-protocadherin expression, thereby normalizing part of the molecular architecture associated with heart disease.
Collapse
Affiliation(s)
- Joakim Sandstedt
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Kristina Vukusic
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Elham Rekabdar
- Genomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Victoria Rotter Sopasakis
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
38
|
Proliferating CD8+ T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma. Cells 2021; 10:cells10123378. [PMID: 34943886 PMCID: PMC8699921 DOI: 10.3390/cells10123378] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background: tumor-infiltrating lymphocytes are prognostic in many human cancers. However, the prognostic value of lymphocytes infiltrating glioblastoma (GBM), and roles in tumor control or progression are unclear. We hypothesized that B and T cell density, and markers of their activity, proliferation, differentiation, or function, would have favorable prognostic significance for patients with GBM. Methods: initial resection specimens from 77 patients with IDH1/2 wild type GBM who received standard-of-care treatment were evaluated with multiplex immunofluorescence histology (mIFH), for the distribution, density, differentiation, and proliferation of T cells and B cells, as well as for the presence of tertiary lymphoid structures (TLS), and IFNγ expression. Immune infiltrates were evaluated for associations with overall survival (OS) by univariate and multivariate Cox proportional hazards modeling. Results: in univariate analyses, improved OS was associated with high densities of proliferating (Ki67+) CD8+ cells (HR 0.36, p = 0.001) and CD20+ cells (HR 0.51, p = 0.008), as well as CD8+Tbet+ cells (HR 0.46, p = 0.004), and RORγt+ cells (HR 0.56, p = 0.04). Conversely, IFNγ intensity was associated with diminished OS (HR 0.59, p = 0.036). In multivariable analyses, adjusting for clinical variables, including age, resection extent, Karnofsky Performance Status (KPS), and MGMT methylation status, improved OS was associated with high densities of proliferating (Ki67+) CD8+ cells (HR 0.15, p < 0.001), and higher ratios of CD8+ cells to CD4+ cells (HR 0.31, p = 0.005). Diminished OS was associated with increases in patient age (HR 1.21, p = 0.005) and higher mean intensities of IFNγ (HR 2.13, p = 0.027). Conclusions: intratumoral densities of proliferating CD8 T cells and higher CD8/CD4 ratios are independent predictors of OS in patients with GBM. Paradoxically, higher mean intensities of IFNγ in the tumors were associated with shorter OS. These findings suggest that survival may be enhanced by increasing proliferation of tumor-reactive CD8+ T cells and that approaches may be needed to promote CD8+ T cell dominance in GBM, and to interfere with the immunoregulatory effects of IFNγ in the tumor microenvironment.
Collapse
|
39
|
Wiede F, Lu KH, Du X, Zeissig MN, Xu R, Goh PK, Xirouchaki CE, Hogarth SJ, Greatorex S, Sek K, Daly RJ, Beavis PA, Darcy PK, Tonks NK, Tiganis T. PTP1B is an intracellular checkpoint that limits T cell and CAR T cell anti-tumor immunity. Cancer Discov 2021; 12:752-773. [PMID: 34794959 DOI: 10.1158/2159-8290.cd-21-0694] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapies aimed at alleviating the inhibitory constraints on Tcells have revolutionised cancer management. To date, these have focused on the blockade of cell surface checkpoints such as PD-1. Herein we identify protein-tyrosine-phosphatase-1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that the increased PTP1B limits T cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT-5 signaling and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacological inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively-transferred chimeric-antigen-receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer.
Collapse
Affiliation(s)
- Florian Wiede
- Biochemistry and Molecular Biology, Monash University
| | - Kun-Hui Lu
- Cancer Research, Peter MacCallum Cancer Centre
| | - Xin Du
- Peter MacCallum Cancer Centre
| | | | | | - Pei Kee Goh
- Biochemistry and Molecular Biology, Monash University
| | | | | | | | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Research Centre
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Research Centre
| | | | | | - Tony Tiganis
- Biochemistry and Molecular Biology, Monash University
| |
Collapse
|
40
|
Lee EHC, Wong DCP, Ding JL. NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Front Immunol 2021; 12:734551. [PMID: 34594338 PMCID: PMC8476995 DOI: 10.3389/fimmu.2021.734551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells which play a key role in shaping the immune response against cancer. Initially hailed for their potential to recognise and eliminate tumour cells, their application has been greatly hindered by the immunosuppressive tumour microenvironment (TME) which suppresses NK functions (e.g., cytotoxicity). This dysfunctional state that is accompanied by phenotypic changes such as upregulation of inhibitory receptors and downregulation of activating receptors, forms the basis of what many researchers have referred to as ‘exhausted’ NK cells. However, there is no consensus on whether these phenotypes are sufficient to define an exhausted state of the NK cell. While recent advances in checkpoint inhibition appear to show promise in early-stage pre-clinical studies, much remains to be fully explored and understood in the context of the TME. The TME is where the NK cells are subjected to interaction with various cell types and soluble factors, which could exert an inhibitory effect on NK cytotoxicity. In this review, we provide an overview of the general markers of NK cell exhaustion viz, the surface activating and inhibitory receptors. We also highlight the potential role of T-box transcription factors in characterising such a dysfunctional state and discuss the often-overlooked mechanism of cell cytoskeletal dynamics in regulating NK cell function. These aspects may further contribute to NK exhaustion or NK revival in cancer and may open new avenues to explore cancer treatment strategies.
Collapse
Affiliation(s)
- E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Sima LE, Chen S, Cardenas H, Zhao G, Wang Y, Ivan C, Huang H, Zhang B, Matei D. Loss of host tissue transglutaminase boosts antitumor T cell immunity by altering STAT1/STAT3 phosphorylation in ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-002682. [PMID: 34593619 PMCID: PMC8487211 DOI: 10.1136/jitc-2021-002682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue transglutaminase (TG2), an enzyme overexpressed in cancer cells, promotes metastasis and resistance to chemotherapy. Its distinct effects in cancer versus the host compartments have not been elucidated. METHODS Here, by using a TG2-/- syngeneic ovarian cancer mouse model, we assessed the effects of TG2 deficiency in the host tissues on antitumor immunity and tumor progression. Multicolor flow cytometry was used to phenotype immune cell populations in the peritoneal environment. Cancer cells recovered from malignant ascites were characterized by RNA sequencing, proliferation, and apoptosis assays. RESULTS We observed that host TG2 loss delayed tumor growth and ascites accumulation and caused increased infiltration of CD8+ T cells and decreased numbers of myeloid cells in the peritoneal fluid. Tumor antigen-specific CD8+ T cell cytotoxic responses were enhanced in ascites from TG2-/- versus TG2+/+ mice and CD8+ T cell depletion caused accelerated ascites accumulation in TG2-/- mice. CD8+ T cells from tumor-bearing TG2-/- mice displayed an effector T cell phenotype, differentiated toward effector memory (Tem). Mechanistically, absence of TG2 augmented signals promoting T cell activation, such as increased cytokine-induced STAT1 and attenuated STAT3 phosphorylation in T cells. Additionally, immune-suppressive myeloid cell populations were reduced in the peritoneal milieu of TG2-/- tumor-bearing mice. In response to the more robust immune response caused by loss of TG2, cancer cells growing intraperitoneally exhibited an interferon-γ(IFN-γ) responsive gene signature and underwent apoptosis. In human specimens, stromal, not tumor, TG2 expression correlated indirectly with numbers of tumor-infiltrating lymphocytes. CONCLUSIONS Collectively, our data demonstrate decreased tumor burden, increased activation and effector function of T cells, and loss of immunosuppressive signals in the tumor microenvironment of TG2-/- mice. We propose that TG2 acts as an attenuator of antitumor T cell immunity and is a new immunomodulatory target.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Siqi Chen
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Huang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
42
|
Han J, Ke C, Jiang B, Zhou H, Xu H, Xie X. Down-regulation of PR/SET domain 10 underlies natural killer cell dysfunction in hepatocellular carcinoma. Clin Exp Immunol 2021; 206:366-377. [PMID: 34562314 DOI: 10.1111/cei.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the world's leading cause of tumor-related mortalities. Natural killer (NK) cells play a critical role at the first immunological defense line against HCC initiation and progression. NK cell dysfunction is therefore an important mechanism for immune evasion of HCC cells. In the present study using a murine HCC model, we revealed the down-regulation of PR/SET Domain 10 (PRDM10) in hepatic NK cells that were phenotypically and functionally exhausted. PRDM10 silencing diminished the expression of natural killer group 2 member D (NKG2D) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), augmented T cell immunoglobulin and ITIM domain (TIGIT) expression, and decreased the expression of interferon (IFN)-γ, perforin and granzyme B in normal hepatic NK cells in vitro. Consistently, PRDM10-deficient NK cells exhibited impaired cytotoxicity on target cells. In contrast, PRDM10 over-expression promoted NKG2D and Fas ligand (FasL) expression, reduced CD96 expression and enhanced transcripts of IFN-γ, perforin and granzyme B in NK cells in vivo. Moreover, PRDM10 silencing and PRDM10 over-expression down-regulated and up-regulated Eomesodermin (Eomes) expression, respectively. In summary, this study reveals PRDM10 down-regulation as a novel mechanism underlying NK cell dysfunction and identifies PRDM10 as a supporting factor of NK cell function.
Collapse
Affiliation(s)
- Jiantao Han
- The Department of Hepatobiliary and Pancreatic Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hanbin Xu
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xingwang Xie
- The Department of Hepatobiliary and Pancreatic Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
43
|
Zhang J, Le Gras S, Pouxvielh K, Faure F, Fallone L, Kern N, Moreews M, Mathieu AL, Schneider R, Marliac Q, Jung M, Berton A, Hayek S, Vidalain PO, Marçais A, Dodard G, Dejean A, Brossay L, Ghavi-Helm Y, Walzer T. Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nat Commun 2021; 12:5446. [PMID: 34521844 PMCID: PMC8440589 DOI: 10.1038/s41467-021-25758-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Cycle/immunology
- Cell Differentiation
- Cell Lineage/drug effects
- Cell Lineage/genetics
- Cell Lineage/immunology
- Epigenesis, Genetic/immunology
- Interleukin-12/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic
- Protein Binding
- Spleen/cytology
- Spleen/immunology
- T-Box Domain Proteins/deficiency
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- Transcription, Genetic
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
Collapse
Affiliation(s)
- Jiang Zhang
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Stéphanie Le Gras
- IGBMC, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Kevin Pouxvielh
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabrice Faure
- Institut NeuroMyoGène, INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard, Lyon 1, Lyon, France
| | - Lucie Fallone
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Nicolas Kern
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Marion Moreews
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Raphaël Schneider
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Quentin Marliac
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathieu Jung
- IGBMC, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Aurore Berton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Simon Hayek
- Equipe Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR 8601, 75006, Paris, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR 8601, 75006, Paris, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Garvin Dodard
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA
| | - Anne Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
44
|
Effector differentiation downstream of lineage commitment in ILC1s is driven by Hobit across tissues. Nat Immunol 2021; 22:1256-1267. [PMID: 34462601 PMCID: PMC7611762 DOI: 10.1038/s41590-021-01013-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022]
Abstract
Innate lymphoid cells (ILCs) participate in tissue homeostasis, inflammation and early immunity against infection. It is unclear how ILCs acquire effector function, and whether these mechanisms differ between organs. Through multiplexed single-cell mRNA-sequencing we identified cKit+CD127hiTCF-1hi early differentiation stages of T-bet+ ILC1. These cells were present across different organs and had the potential to mature towards CD127intTCF-1int and CD127−TCF-1− ILC1. Paralleling a gradual loss of TCF-1, differentiating ILC1 forfeited their expansion potential while increasing expression of effector molecules, reminiscent of T cell differentiation in secondary lymphoid organs. The transcription factor Hobit was induced in TCF-1hi ILC1s and was required for their effector differentiation. These findings reveal sequential mechanisms of ILC1 lineage commitment and effector differentiation that are conserved across tissues. Our analyses suggest that ILC1 emerge as TCF-1hi cells in the periphery and acquire a spectrum of organ-specific effector phenotypes through a uniform Hobit-dependent differentiation pathway driven by local cues.
Collapse
|
45
|
Mishra S, Liao W, Liu Y, Yang M, Ma C, Wu H, Zhao M, Zhang X, Qiu Y, Lu Q, Zhang N. TGF-β and Eomes control the homeostasis of CD8+ regulatory T cells. J Exp Med 2021; 218:152129. [PMID: 32991667 PMCID: PMC7527976 DOI: 10.1084/jem.20200030] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
In addition to Foxp3+ CD4+ regulatory T cells (CD4+ T reg cells), Foxp3- CD8+ regulatory T cells (CD8+ T reg cells) are critical to maintain immune tolerance. However, the molecular programs that specifically control CD8+ but not CD4+ T reg cells are largely unknown. Here, we demonstrate that simultaneous disruption of both TGF-β receptor and transcription factor Eomesodermin (Eomes) in T cells results in lethal autoimmunity due to a specific defect in CD8+ but not CD4+ T reg cells. Further, TGF-β signal maintains the regulatory identity, while Eomes controls the follicular location of CD8+ T reg cells. Both TGF-β signal and Eomes coordinate to promote the homeostasis of CD8+ T reg cells. Together, we have identified a unique molecular program designed for CD8+ T reg cells.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Wei Liao
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX.,Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
46
|
Farsakoglu Y, McDonald B, Kaech SM. Motility Matters: How CD8 + T-Cell Trafficking Influences Effector and Memory Cell Differentiation. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038075. [PMID: 34001529 PMCID: PMC8327832 DOI: 10.1101/cshperspect.a038075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunological memory is a hallmark of adaptive immunity that confers long-lasting protection from reinfections. Memory CD8+ T cells provide protection by actively scanning for their cognate antigen and migrating into inflamed tissues. Trafficking patterns of CD8+ T cells are also a major determinant of cell fate outcomes during differentiation into effector and memory cell states. CD8+ T-cell trafficking must therefore be dynamically and tightly regulated to ensure that CD8+ T cells arrive at the correct locations and differentiate to acquire appropriate effector functions. This review aims to discuss the importance of CD8+ T-cell trafficking patterns in regulating effector and memory differentiation, maintenance, and reactivation.
Collapse
Affiliation(s)
- Yagmur Farsakoglu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
47
|
The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers (Basel) 2021; 13:cancers13133281. [PMID: 34209038 PMCID: PMC8268428 DOI: 10.3390/cancers13133281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Interleukin-33 (IL-33) is often released from damaged cells, acting as a danger signal. IL-33 exerts its function by interacting with its receptor suppression of tumorigenicity 2 (ST2) that is constitutively expressed on most immune cells. Therefore, IL-33/ST2 signaling can modulate immune responses to participate actively in a variety of pathological conditions, such as cancer. Like a two-faced Janus, which faces opposite directions, IL-33/ST2 signaling may play contradictory roles on its impact on cancer progression through both immune and nonimmune cellular components. Accumulating evidence demonstrates both pro- and anti-tumorigenic properties of IL-33, depending on the complex nature of different tumor immune microenvironments. We summarize and discuss the most recent studies on the contradictory effects of IL-33 on cancer progression and treatment, with a goal to better understanding the various ways for IL-33 as a therapeutic target. Abstract Interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays a critical role in maintaining tissue homeostasis as well as pathological conditions, such as allergy, infectious disease, and cancer, by promoting type 1 and 2 immune responses. Through its specific receptor ST2, IL-33 exerts multifaceted functions through the activation of diverse intracellular signaling pathways. ST2 is expressed in different types of immune cells, including Th2 cells, Th1 cells, CD8+ T cells, regulatory T cells (Treg), cytotoxic NK cells, group 2 innate lymphoid cells (ILC2s), and myeloid cells. During cancer initiation and progression, the aberrant regulation of the IL-33/ST2 axis in the tumor microenvironment (TME) extrinsically and intrinsically mediates immune editing via modulation of both innate and adaptive immune cell components. The summarized results in this review suggest that IL-33 exerts dual-functioning, pro- as well as anti-tumorigenic effects depending on the tumor type, expression levels, cellular context, and cytokine milieu. A better understanding of the distinct roles of IL-33 in epithelial, stromal, and immune cell compartments will benefit the development of a targeting strategy for this IL-33/ST2 axis for cancer immunotherapy.
Collapse
|
48
|
Waller RG, Klein RJ, Vijai J, McKay JD, Clay-Gilmour A, Wei X, Madsen MJ, Sborov DW, Curtin K, Slager SL, Offit K, Vachon CM, Lipkin SM, Dumontet C, Camp NJ. Sequencing at lymphoid neoplasm susceptibility loci maps six myeloma risk genes. Hum Mol Genet 2021; 30:1142-1153. [PMID: 33751038 PMCID: PMC8188404 DOI: 10.1093/hmg/ddab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Inherited genetic risk factors play a role in multiple myeloma (MM), yet considerable missing heritability exists. Rare risk variants at genome-wide association study (GWAS) loci are a new avenue to explore. Pleiotropy between lymphoid neoplasms (LNs) has been suggested in family history and genetic studies, but no studies have interrogated sequencing for pleiotropic genes or rare risk variants. Sequencing genetically enriched cases can help discover rarer variants. We analyzed exome sequencing in familial or early-onset MM cases to identify rare, functionally relevant variants near GWAS loci for a range of LNs. A total of 149 distinct and significant LN GWAS loci have been published. We identified six recurrent, rare, potentially deleterious variants within 5 kb of significant GWAS single nucleotide polymorphisms in 75 MM cases. Mutations were observed in BTNL2, EOMES, TNFRSF13B, IRF8, ACOXL and TSPAN32. All six genes replicated in an independent set of 255 early-onset MM or familial MM or precursor cases. Expansion of our analyses to the full length of these six genes resulted in a list of 39 rare and deleterious variants, seven of which segregated in MM families. Three genes also had significant rare variant burden in 733 sporadic MM cases compared with 935 control individuals: IRF8 (P = 1.0 × 10-6), EOMES (P = 6.0 × 10-6) and BTNL2 (P = 2.1 × 10-3). Together, our results implicate six genes in MM risk, provide support for genetic pleiotropy between LN subtypes and demonstrate the utility of sequencing genetically enriched cases to identify functionally relevant variants near GWAS loci.
Collapse
MESH Headings
- Acyl-CoA Oxidase/genetics
- Butyrophilins/genetics
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Hodgkin Disease/genetics
- Hodgkin Disease/pathology
- Humans
- Interferon Regulatory Factors/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Polymorphism, Single Nucleotide/genetics
- Risk Factors
- T-Box Domain Proteins/genetics
- Tetraspanins/genetics
- Transmembrane Activator and CAML Interactor Protein/genetics
- Exome Sequencing
Collapse
Affiliation(s)
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute for Data Science and Genomic Technology, New York, NY 10029-5674, USA
| | - Joseph Vijai
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - James D McKay
- Genetic Cancer Susceptibility, International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Alyssa Clay-Gilmour
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaomu Wei
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Madsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas W Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Curtin
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Susan L Slager
- Department of Health Sciences, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth Offit
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Celine M Vachon
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles Dumontet
- INSERM 1052, CNRS 5286, University of Lyon, 69361 Lyon Cedex 07, France
| | - Nicola J Camp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
49
|
Weulersse M, Asrir A, Pichler AC, Lemaitre L, Braun M, Carrié N, Joubert MV, Le Moine M, Do Souto L, Gaud G, Das I, Brauns E, Scarlata CM, Morandi E, Sundarrajan A, Cuisinier M, Buisson L, Maheo S, Kassem S, Agesta A, Pérès M, Verhoeyen E, Martinez A, Mazieres J, Dupré L, Gossye T, Pancaldi V, Guillerey C, Ayyoub M, Dejean AS, Saoudi A, Goriely S, Avet-Loiseau H, Bald T, Smyth MJ, Martinet L. Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8 + T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity 2021; 53:824-839.e10. [PMID: 33053331 DOI: 10.1016/j.immuni.2020.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Marianne Weulersse
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Assia Asrir
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Matthias Braun
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Marie Le Moine
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Laura Do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Guillaume Gaud
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Indrajit Das
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Elisa Brauns
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Clara M Scarlata
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Elena Morandi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | | | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Laure Buisson
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sahar Kassem
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Arantxa Agesta
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Michaël Pérès
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, Nice, France; Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Julien Mazieres
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Loïc Dupré
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Thomas Gossye
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Vera Pancaldi
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Barcelona Supercomputing Center, Barcelona, Spain
| | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Anne S Dejean
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Stanislas Goriely
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France.
| |
Collapse
|
50
|
González-Stegmaier R, Peña A, Villarroel-Espíndola F, Aguila P, Oliver C, MacLeod-Carey D, Rozas-Serri M, Enriquez R, Figueroa J. Full recombinant flagellin B from Vibrio anguillarum (rFLA) and its recombinant D1 domain (rND1) promote a pro-inflammatory state and improve vaccination against P. salmonis in Atlantic salmon (S. salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103988. [PMID: 33359361 DOI: 10.1016/j.dci.2020.103988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Flagellin is the major component of the flagellum, and a ligand for Toll-like receptor 5. As reported, recombinant flagellin (rFLA) from Vibrio anguillarum and its D1 domain (rND1) are able to promote in vitro an upregulation of pro-inflammatory genes in gilthead seabream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss) macrophages. This study evaluated the in vitro and in vivo stimulatory/adjuvant effect for rFLA and rND1 during P. salmonis vaccination in Atlantic salmon (Salmo salar). We demonstrated that rFLA and rND1 are molecules able to generate an acute upregulation of pro-inflammatory cytokines (IL-1β, IL-8, IL-12β), allowing the expression of genes associated with T-cell activation (IL-2, CD4, CD8β), and differentiation (IFNγ, IL-4/13, T-bet, Eomes, GATA3), in a differential manner, tissue/time dependent way. Altogether, our results suggest that rFLA and rND1 are valid candidates to be used as an immuno-stimulant or adjuvants with existing vaccines in farmed salmon.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile.
| | - Andrea Peña
- Laboratorio Pathovet Ltda, Puerto Montt, Chile
| | - Franz Villarroel-Espíndola
- Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile
| | - Patricia Aguila
- Escuela de Tecnología Médica, Universidad Austral de Chile, Sede Puerto Montt, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Departamento de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Desmond MacLeod-Carey
- Universidad Autónoma de Chile, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Polymers and Macromolecules Center, El Llano Subercaseaux, 2801, Santiago, Chile
| | | | - Ricardo Enriquez
- Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|