1
|
Tuffs SW, Dufresne K, Rishi A, Walton NR, McCormick JK. Novel insights into the immune response to bacterial T cell superantigens. Nat Rev Immunol 2024; 24:417-434. [PMID: 38225276 DOI: 10.1038/s41577-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR-peptide-MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Nicholas R Walton
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Schlievert PM. Staphylococcal Enterotoxin B and C Mutants and Vaccine Toxoids. Microbiol Spectr 2023; 11:e0444622. [PMID: 36815779 PMCID: PMC10101070 DOI: 10.1128/spectrum.04446-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Three mutants individually of both staphylococcal enterotoxins B and C were prepared by site-specific mutagenesis of enterotoxin amino acids that contact host T lymphocyte immune cell receptor sites (N23A, Q210A, and N23A/Q210A); these amino acids are shared between the two enterotoxins, and mutations reduce the interaction with the variable part of the β-chain of the T lymphocyte receptor. The mutant proteins, as expressed in Staphylococcus aureus RN4220, lacked biological toxicity as measured by the loss of (i) stimulation of rabbit splenocyte proliferation, (ii) pyrogenicity, and (iii) the ability to enhance the lethality of endotoxin shock, compared to wild-type enterotoxins. In addition, the mutants were able to vaccinate rabbits against pyrogenicity, the enhancement of endotoxin shock, and lethality in a pneumonia model when animals were challenged with methicillin-resistant S. aureus. Three vaccine injections (one primary and two boosters) protected rabbits for at least 3.5 months postvaccination when challenged with wild-type enterotoxins (last time point tested). These mutant proteins have the potential to function as toxoid vaccines against these two causes of nonmenstrual toxic shock syndrome (TSS). IMPORTANCE Toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins B and C cause the majority of cases of staphylococcal toxic shock syndrome. Previously, vaccine toxoids of TSST-1 have been prepared. In this study, vaccine toxoids of enterotoxins B and C were prepared. The toxoids lost biological toxicity but were able to vaccinate rabbits against lethal TSS.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
4
|
Abstract
Streptococcus pyogenes (group A Streptococcus) is a globally disseminated and human-adapted bacterial pathogen that causes a wide range of infections, including scarlet fever. Scarlet fever is a toxin-mediated disease characterized by the formation of an erythematous, sandpaper-like rash that typically occurs in children aged 5 to 15. This infectious disease is caused by toxins called superantigens, a family of highly potent immunomodulators. Although scarlet fever had largely declined in both prevalence and severity since the late 19th century, outbreaks have now reemerged in multiple geographical regions over the past decade. Here, we review recent findings that address the role of superantigens in promoting a fitness advantage for S. pyogenes within human populations and discuss how superantigens may be suitable targets for vaccination strategies.
Collapse
Affiliation(s)
- Jacklyn R. Hurst
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (MJW); (JKM)
| | - John K. McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail: (MJW); (JKM)
| |
Collapse
|
5
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
6
|
Pandey M, Calcutt A, Ozberk V, Chen Z, Croxen M, Powell J, Langshaw E, Mills JL, Jen FEC, McCluskey J, Robson J, Tyrrell GJ, Good MF. Antibodies to the conserved region of the M protein and a streptococcal superantigen cooperatively resolve toxic shock-like syndrome in HLA-humanized mice. SCIENCE ADVANCES 2019; 5:eaax3013. [PMID: 31517054 PMCID: PMC6726444 DOI: 10.1126/sciadv.aax3013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/07/2019] [Indexed: 05/04/2023]
Abstract
Invasive streptococcal disease (ISD) and toxic shock syndrome (STSS) result in over 160,000 deaths each year. We modelled these in HLA-transgenic mice infected with a clinically lethal isolate expressing Streptococcal pyrogenic exotoxin (Spe) C and demonstrate that both SpeC and streptococcal M protein, acting cooperatively, are required for disease. Vaccination with a conserved M protein peptide, J8, protects against STSS by causing a dramatic reduction in bacterial burden associated with the absence of SpeC and inflammatory cytokines in the blood. Furthermore, passive immunotherapy with antibodies to J8 quickly resolves established disease by clearing the infection and ablating the inflammatory activity of the M protein, which is further enhanced by addition of SpeC antibodies. Analysis of 77 recent isolates of Streptococcus pyogenes causing ISD, demonstrated that anti-J8 antibodies theoretically recognize at least 73, providing strong support for using antibodies to J8, with or without antibodies to SpeC, as a therapeutic approach.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Australia
- Corresponding author. (M.F.G.); (M.P.)
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Matthew Croxen
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta and ProvLab, Edmonton, Canada
| | - Jessica Powell
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Emma Langshaw
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Jenny Robson
- Sullivan and Nicolaides Pathology, Brisbane, Australia
| | - Gregory J. Tyrrell
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta and ProvLab, Edmonton, Canada
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, Australia
- Corresponding author. (M.F.G.); (M.P.)
| |
Collapse
|
7
|
Abstract
ABSTRACT
Streptococcus pyogenes
(i.e., the group A
Streptococcus
) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of
S. pyogenes
is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in
S. pyogenes
disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A
Streptococcus
, as well as their roles in the pathogenesis of human disease.
Collapse
|
8
|
Ozberk V, Pandey M, Good MF. Contribution of cryptic epitopes in designing a group A streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2034-2052. [PMID: 29873591 PMCID: PMC6150013 DOI: 10.1080/21645515.2018.1462427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A successful vaccine needs to target multiple strains of an organism. Streptococcus pyogenes is an organism that utilizes antigenic strain variation as a successful defence mechanism to circumvent the host immune response. Despite numerous efforts, there is currently no vaccine available for this organism. Here we review and discuss the significant obstacles to vaccine development, with a focus on how cryptic epitopes may provide a strategy to circumvent the obstacles of antigenic variation.
Collapse
Affiliation(s)
- Victoria Ozberk
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Manisha Pandey
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Michael F Good
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| |
Collapse
|
9
|
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29530660 DOI: 10.1016/j.meegid.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease.
Collapse
|
10
|
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 2017; 114:10226-10231. [PMID: 28794279 DOI: 10.1073/pnas.1700858114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection.
Collapse
|
11
|
Gandhi GD, Krishnamoorthy N, Motal UMA, Yacoub M. Towards developing a vaccine for rheumatic heart disease. Glob Cardiol Sci Pract 2017; 2017:e201704. [PMID: 28971103 PMCID: PMC5621712 DOI: 10.21542/gcsp.2017.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rheumatic heart disease (RHD) is the most serious manifestations of rheumatic fever, which is caused by group A Streptococcus (GAS or Streptococcus pyogenes) infection. RHD is an auto immune sequelae of GAS pharyngitis, rather than the direct bacterial infection of the heart, which leads to chronic heart valve damage. Although antibiotics like penicillin are effective against GAS infection, improper medical care such as poor patient compliance, overcrowding, poverty, and repeated exposure to GAS, leads to acute rheumatic fever and RHD. Thus, efforts have been put forth towards developing a vaccine. However, a potential global vaccine is yet to be identified due to the widespread diversity of S. pyogenes strains and cross reactivity of streptococcal proteins with host tissues. In this review, we discuss the available vaccine targets of S. pyogenes and the significance of in silico approaches in designing a vaccine for RHD.
Collapse
Affiliation(s)
- Geethanjali Devadoss Gandhi
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Navaneethakrishnan Krishnamoorthy
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ussama M Abdel Motal
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar
| | - Magdi Yacoub
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Ray D, Saha S, Sinha S, Pal NK, Bhattacharya B. Molecular characterization and evaluation of the emerging antibiotic-resistant Streptococcus pyogenes from eastern India. BMC Infect Dis 2016; 16:753. [PMID: 27955635 PMCID: PMC5153692 DOI: 10.1186/s12879-016-2079-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Background Group A Streptococcus strains causing wide variety of diseases, recently became noticeable in eastern India, are not amenable to standard treatment protocol thus enhancing the possibility of disease morbidity by becoming antibiotic resistance. Methods The association of Lancefield group A Streptococcal variation with degree of vir architectural diversity was evaluated using emm typing and restriction fragment length polymorphism analyses. The antibiotic sensitivity patterns were examined by modified Kirby-Bauer method of disk diffusion. Percentage calculations, 95% confidence interval and one-way ANOVA were used to assess differences in proportions. Results Our observations revealed 20 different emm types and 13 different HaeIII vir typing patterns. A 1.2 kb fragment was found in all HaeIII typing pattern. Fragments of 1.2 kb and 550 bp were conserved in majority of the isolates. HinfI digestion was found proficient in differentiating the strains of same vir typing patterns. Strong predominance of speC (85%) and speF (80%) genes have been observed encoding exotoxins production. 4 isolates were found to be erythromycin resistant and were of genotype emm49. High degree of tetracycline resistance was shown by 53.57% isolates which belonged to 12 different emm genotypes. Conclusions These findings suggested that in addition to emm typing, sequential application of HaeIII and HinfI restriction enzymes in vir typing analysis is an effective tool for group A streptococcal molecular characterization associated with antibiotic resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-2079-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dipanwita Ray
- Biochemistry Research Wing, Department of Biochemistry, Dr. B C Roy Post Graduate Institute of Basic Medical Education and Research (IPGME&R), 244B, A J C Bose Road, Kolkata, 700020, India.
| | - Somnath Saha
- Nil Ratan Sarkar Medical College and Hospital, Kolkata, India
| | - Sukanta Sinha
- The West Bengal University of Health Sciences, Kolkata, India
| | | | - Basudev Bhattacharya
- Biochemistry Research Wing, Department of Biochemistry, Dr. B C Roy Post Graduate Institute of Basic Medical Education and Research (IPGME&R), 244B, A J C Bose Road, Kolkata, 700020, India. .,Health and Family Welfare Department, Directorate of Medical Education, Government of Tripura, 799001, Agartala, Tripura, India.
| |
Collapse
|
13
|
Status of research and development of vaccines for Streptococcus pyogenes. Vaccine 2016; 34:2953-2958. [DOI: 10.1016/j.vaccine.2016.03.073] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022]
|
14
|
Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes. Methods Mol Biol 2015. [PMID: 26676036 DOI: 10.1007/978-1-4939-3344-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination.
Collapse
|
15
|
Abstract
Necrotizing fasciitis (NF) is a rare complication of varicella zoster (chicken pox) infection. Its diagnosis can be delayed or missed, which increases mortality and morbidity, because it initially presents similarly to cellulitis. We present the case of a 5-year-old boy who presented with a swollen leg, the difficulties in the diagnosis of NF, and a review of the literature. Necrotizing fasciitis complicating varicella zoster in children is associated with 3.4% mortality, although this rises to 13.6% in streptococcal toxic shock syndrome. Seventy-one percent of cases are confirmed as being caused by group A β-hemolytic Streptococcus. The association of NF with chicken pox is discussed along with the difficulties in diagnosis and treatment options. Necrotizing fasciitis is a surgical emergency and should be considered by all emergency department acute care practitioners in cases of varicella in which fever is enduring and swelling or pain is disproportionate. Because of the difficulty in diagnosis, senior opinion should be sought early.
Collapse
|
16
|
Kasper KJ, Zeppa JJ, Wakabayashi AT, Xu SX, Mazzuca DM, Welch I, Baroja ML, Kotb M, Cairns E, Cleary PP, Haeryfar SMM, McCormick JK. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner. PLoS Pathog 2014; 10:e1004155. [PMID: 24875883 PMCID: PMC4038607 DOI: 10.1371/journal.ppat.1004155] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/17/2014] [Indexed: 11/19/2022] Open
Abstract
Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.
Collapse
Affiliation(s)
- Katherine J. Kasper
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joseph J. Zeppa
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Adrienne T. Wakabayashi
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Stacey X. Xu
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Delfina M. Mazzuca
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Ian Welch
- Department of Animal Care and Veterinary Services, Western University, London, Ontario, Canada
| | - Miren L. Baroja
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Malak Kotb
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ewa Cairns
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - P. Patrick Cleary
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Patterson KG, Dixon Pittaro JL, Bastedo PS, Hess DA, Haeryfar SMM, McCormick JK. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen. PLoS One 2014; 9:e95200. [PMID: 24736661 PMCID: PMC3988171 DOI: 10.1371/journal.pone.0095200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/25/2014] [Indexed: 01/21/2023] Open
Abstract
Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Humans
- Immunotherapy/methods
- Mice
- Models, Molecular
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Streptococcus/immunology
- Superantigens/genetics
- Superantigens/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Kelcey G. Patterson
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | | | - Peter S. Bastedo
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Western University, London Ontario, Canada
- Vascular Biology Research Group, Robarts Research Institute, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Dale JB, Fischetti VA, Carapetis JR, Steer AC, Sow S, Kumar R, Mayosi BM, Rubin FA, Mulholland K, Hombach JM, Schödel F, Henao-Restrepo AM. Group A streptococcal vaccines: Paving a path for accelerated development. Vaccine 2013; 31 Suppl 2:B216-22. [DOI: 10.1016/j.vaccine.2012.09.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
|
19
|
Kotloff KL. Streptococcus group A vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
21
|
Spaulding AR, Lin YC, Merriman JA, Brosnahan AJ, Peterson ML, Schlievert PM. Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses. Vaccine 2012; 30:5099-109. [PMID: 22691432 DOI: 10.1016/j.vaccine.2012.05.067] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus causes significant illnesses throughout the world, including toxic shock syndrome (TSS), pneumonia, and infective endocarditis. Major contributors to S. aureus illnesses are secreted virulence factors it produces, including superantigens and cytolysins. This study investigates the use of superantigens and cytolysins as staphylococcal vaccine candidates. Importantly, 20% of humans and 50% of rabbits in our TSS model cannot generate antibody responses to native superantigens. We generated three TSST-1 mutants; G31S/S32P, H135A, and Q136A. All rabbits administered these TSST-1 toxoids generated strong antibody responses (titers>10,000) that neutralized native TSST-1 in TSS models, both in vitro and in vivo. These TSST-1 mutants lacked detectable residual toxicity. Additionally, the TSST-1 mutants exhibited intrinsic adjuvant activity, increasing antibody responses to a second staphylococcal antigen (β-toxin). This effect may be due to TSST-1 mutants binding to the immune co-stimulatory molecule CD40. The superantigens TSST-1 and SEC and the cytolysin α-toxin are known to contribute to staphylococcal pneumonia. Immunization of rabbits against these secreted toxins provided complete protection from highly lethal challenge with a USA200 S. aureus strain producing all three exotoxins; USA200 strains are common causes of staphylococcal infections. The same three exotoxins plus the cytolysins β-toxin and γ-toxin contribute to infective endocarditis and sepsis caused by USA200 strains. Immunization against these five exotoxins protected rabbits from infective endocarditis and lethal sepsis. These data suggest that immunization against toxoid proteins of S. aureus exotoxins protects from serious illnesses, and concurrently superantigen toxoid mutants provide endogenous adjuvant activity.
Collapse
Affiliation(s)
- Adam R Spaulding
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
22
|
A single, engineered protein therapeutic agent neutralizes exotoxins from both Staphylococcus aureus and Streptococcus pyogenes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1781-9. [PMID: 20861327 DOI: 10.1128/cvi.00277-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus and Streptococcus pyogenes secrete exotoxins that act as superantigens, proteins that cause hyperimmune reactions by binding the variable domain of the T-cell receptor beta chain (Vβ), leading to stimulation of a large fraction of the T-cell repertoire. To develop potential neutralizing agents, we engineered Vβ mutants with high affinity for the superantigens staphylococcal enterotoxin B (SEB), SEC3, and streptococcal pyrogenic exotoxin A (SpeA). Unexpectedly, the high-affinity Vβ mutants generated against SEB cross-reacted with SpeA to a greater extent than they did with SEC3, despite greater sequence similarity between SEB and SEC3. Likewise, the Vβ mutants generated against SpeA cross-reacted with SEB to a greater extent than with SEC3. The structural basis of the high affinity and cross-reactivity was examined by single-site mutational analyses. The cross-reactivity seems to involve only one or two toxin residues. Soluble forms of the cross-reactive Vβ regions neutralized both SEB and SpeA in vivo, suggesting structure-based strategies for generating high-affinity neutralizing agents that can cross-react with multiple exotoxins.
Collapse
|
23
|
Kotloff KL. Streptococcus group A vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
Liu M, Zhu H, Zhang J, Lei B. Active and passive immunizations with the streptococcal esterase Sse protect mice against subcutaneous infection with group A streptococci. Infect Immun 2007; 75:3651-7. [PMID: 17502395 PMCID: PMC1932925 DOI: 10.1128/iai.00038-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human pathogen group A Streptococcus (GAS) produces many secreted proteins that play important roles in GAS pathogenesis, including hydrolases that degrade proteins and nucleic acids. This study targets another kind of hydrolase, carboxylic esterase, with the objectives of identifying GAS esterase and determining whether it is a protective antigen. The putative esterase gene SPy1718 was cloned, and the recombinant protein (Sse) was prepared. Sse was detected in GAS culture supernatant, and patients with streptococcal pharyngitis seroconverted to Sse, indicating that Sse was produced in vivo and in vitro. Sse hydrolyzes p-nitrophenyl butyrate, and the residue (178)Ser is critical for this esterase activity. There are two Sse variant complexes according to the available genome databases, consistent with the previous finding of two antigenic Sse variants. Complex I includes serotypes M1, M2, M3, M5, M6, M12, and M18, whereas M4, M28, and M49 belong to complex II. Sse variants share >98% identity in amino acid sequence within each complex but have about 37% variation between the two groups. Active immunization with M1 Sse significantly protects mice against lethal subcutaneous infection with virulent M1 and M3 strains and inhibits GAS invasion of mouse skin tissue. Passive immunization with anti-Sse antiserum also significantly protects mice against subcutaneous GAS infection, indicating that the protection is mediated by Sse-specific antibodies. The results suggest that Sse plays an important role in tissue invasion and is an antigen protective in subcutaneous infection against GAS strains of more than one serotype.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
25
|
Rahman AKMNU, Herfst CA, Moza B, Shames SR, Chau LA, Bueno C, Madrenas J, Sundberg EJ, McCormick JK. Molecular Basis of TCR Selectivity, Cross-Reactivity, and Allelic Discrimination by a Bacterial Superantigen: Integrative Functional and Energetic Mapping of the SpeC-Vβ2.1 Molecular Interface. THE JOURNAL OF IMMUNOLOGY 2006; 177:8595-603. [PMID: 17142758 DOI: 10.4049/jimmunol.177.12.8595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Superantigens activate large fractions of T cells through unconventional interactions with both TCR beta-chain V domains (Vbetas) and MHC class II molecules. The bacterial superantigen streptococcal pyrogenic exotoxin C (SpeC) primarily stimulates human Vbeta2(+) T cells. Herein, we have analyzed the SpeC-Vbeta2.1 interaction by mutating all SpeC residues that make contact with Vbeta2.1 and have determined the energetic and functional consequences of these mutations. Our comprehensive approach, including mutagenesis, functional readouts from both bulk T cell populations, and an engineered Vbeta2.1(+) Jurkat T cell, as well as surface plasmon resonance binding analysis, has defined the SpeC "functional epitope" for TCR engagement. Although only two SpeC residues (Tyr(15) and Arg(181)) are critical for activation of virtually all human CD3(+) T cells, a larger cluster of four hot spot residues are required for interaction with Vbeta2.1. Three of these residues (Tyr(15), Phe(75), and Arg(181)) concentrate their binding energy on the CDR2 loop residue Ser(52a), a noncanonical residue insertion found only in Vbeta2 and Vbeta4 chains. Plasticity of this loop is important for recognition by SpeC. Although SpeC interacts with the Vbeta2.1 hypervariable CDR3 loop, our data indicate these contacts have little to no influence on the functional interaction with Vbeta2.1. These studies also provide a molecular basis for selectivity and cross-reactivity of SpeC-TCR recognition and reveal a degree of fine specificity in these interactions, whereby certain SpeC mutants are capable of distinguishing between different alleles of the same Vbeta domain subfamily.
Collapse
|
26
|
Abstract
Necrotising fasciitis is a rare but life-threatening infectious disease emergency. Delays in diagnosis and treatment are common, and mortality rates often exceed 30%. Successful management of this disease requires high clinical suspicion and aggressive action. The mainstays of therapy include early and wide surgical debridement, antibiotics and supportive care, with prompt surgical intervention. Adjunctive modalities, such as protein synthesis inhibitors, hyperbaric oxygen and intravenous immunoglobulin, may have a role, but their effectiveness remains unproven. New rapid diagnostic tools are emerging that promise to revolutionize early detection of necrotising fasciitis. Research into the molecular microbiology, especially regarding group A streptococcus, are providing novel insights into the pathogenesis of necrotising soft tissue infections and identifying future targets for rationally designed interventions.
Collapse
|
27
|
Young MH, Aronoff DM, Engleberg NC. Necrotizing fasciitis: pathogenesis and treatment. Expert Rev Anti Infect Ther 2006; 3:279-94. [PMID: 15918785 DOI: 10.1586/14787210.3.2.279] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Necrotizing fasciitis is a rapidly progressive, life-threatening infection and a true infectious disease emergency. Despite much clinical experience, the management of this disease remains suboptimal, with mortality rates remaining approximately 30%. Necrotizing fasciitis rarely presents with obvious signs and symptoms and delays in diagnosis enhance mortality. Therefore, successful patient care depends on the physician's acumen and index of suspicion. Prompt surgical debridement, intravenous antibiotics, fluid and electrolyte management, and analgesia are mainstays of therapy. Adjunctive clindamycin, hyperbaric oxygen therapy and intravenous immunoglobulin are frequently employed in the treatment of necrotizing fasciitis, but their efficacy has not been rigorously established. Improved understanding of the pathogenesis of necrotizing fasciitis has revealed new targets for rationally designed therapies to improve morbidity and mortality.
Collapse
Affiliation(s)
- Michael H Young
- Ann Arbor Veterans Affairs Hospital, Division of Infectious Diseases, Department of Internal Medicine, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
28
|
|
29
|
&NA;. Early identification and treatment fundamental for good outcome in children with toxic shock syndrome. DRUGS & THERAPY PERSPECTIVES 2005. [DOI: 10.2165/00042310-200521120-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Abstract
Toxic shock syndrome (TSS) is an acute, toxin-mediated illness, like endotoxic shock, and is characterized by fever, rash, hypotension, multiorgan involvement, and desquamation. TSS reflects the most severe form of the disease caused by Staphylococcus aureus and Streptococcus pyogenes. A case definition for staphylococcal TSS was well established in the early 1980s and helped in defining the epidemiology. Since the late 1980s, a resurgence of highly invasive streptococcal infections, including a toxic shock-like syndrome, was noted worldwide and a consensus case definition for streptococcal TSS was subsequently proposed in 1993. Both TSS and the toxic shock-like syndrome occur at a lower incidence in children than in adults. Changes in the manufacturing and use of tampons led to a decline in staphylococcal TSS over the past decade, while the incidence of nonmenstrual staphylococcal TSS increased. Nonmenstrual TSS and menstrual TSS are now reported with almost equal frequency. The incidence of streptococcal TSS remains constant after its resurgence, but varies with geographic location. Streptococcal TSS occurs most commonly following varicella or during the use of NSAIDs. Sites of infection in streptococcal TSS are much deeper than in staphylococcal TSS, such as infection caused by blunt trauma, and necrotizing fasciitis. Bacteremia is more common in streptococcal TSS than in staphylococcal TSS. Mortality associated with streptococcal TSS is 5-10% in children, much lower than in adults (30-80%), and is 3-5% for staphylococcal TSS in children.TSS is thought to be a superantigen-mediated disease. Toxins produced by staphylococci and streptococci act as superantigens that can activate the immune system by bypassing the usual antigen-mediated immune-response sequence. The host-pathogen interaction, virulence factors, and the absence or presence of host immunity determines the epidemiology, clinical syndrome, and outcome. Early recognition of this disease is important, because the clinical course is fulminant and the outcome depends on the prompt institution of therapy. Management of a child with TSS includes hemodynamic stabilization and appropriate antimicrobial therapy to eradicate the bacteria. Supportive therapy, aggressive fluid resuscitation, and vasopressors remain the main elements. An adjuvant therapeutic strategy may include agents that can block superantigens, such as intravenous immunoglobulin that contains superantigen neutralizing antibodies.
Collapse
Affiliation(s)
- Yu-Yu Chuang
- Department of Pediatrics, St. Mary's Hospital, LoTung, Taiwan.
| | | | | |
Collapse
|
31
|
De Marzí MC, Fernández MM, Sundberg EJ, Molinero L, Zwirner NW, Llera AS, Mariuzza RA, Malchiodi EL. Cloning, expression and interaction of human T-cell receptors with the bacterial superantigen SSA. ACTA ACUST UNITED AC 2004; 271:4075-83. [PMID: 15479236 DOI: 10.1111/j.1432-1033.2004.04345.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superantigens (SAgs) are a class of disease-causing and immunostimulatory proteins of bacterial or viral origin that activate a large number of T-cells through interaction with the Vbeta domain of T-cell receptors (TCRs). In this study, recombinant TCR beta chains were constructed with human variable domains Vbeta5.2, Vbeta1 and Vbeta2.1, expressed as inclusion bodies, refolded and purified. The Streptococcus pyogenes SAg SSA-1 was cloned and expressed as a soluble periplasmic protein. SSA-1 was obtained both as a monomer and a dimer that has an intermolecular disulfide bond. We analyzed the biological activity of the recombinant SAgs by proliferation assays. The results suggest that SSA dimerization occludes the TCR interaction site. Naturally occurring SSA dimerization was also observed in supernatants of S. pyogenes isolates. An SSA mutant [SSA(C26S)] was produced to eliminate the Cys responsible for dimerization. Affinity assays using a resonant biosensor showed that both the mutant and monomeric wild type SSA have affinity for human Vbeta5.2 and Vbeta1 with Kd of 9-11 microm with a fast kass and a moderately fast kdiss. In spite of the reported stimulation of Vbeta2.1 bearing T-cells by SSA, we observed no measurable interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Cloning, Molecular
- Dimerization
- Dose-Response Relationship, Immunologic
- Electrophoresis, Polyacrylamide Gel
- Gene Expression
- Humans
- Immunoblotting
- Lymphocyte Activation
- Mice
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Streptococcus pyogenes/immunology
- Superantigens/chemistry
- Superantigens/immunology
- Superantigens/metabolism
- Superantigens/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mauricio C De Marzí
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Courtney HS, Hasty DL, Dale JB. Serum opacity factor (SOF) of Streptococcus pyogenes evokes antibodies that opsonize homologous and heterologous SOF-positive serotypes of group A streptococci. Infect Immun 2003; 71:5097-103. [PMID: 12933852 PMCID: PMC187301 DOI: 10.1128/iai.71.9.5097-5103.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum opacity factor (SOF) is a protein expressed by Streptococcus pyogenes that opacifies mammalian serum. SOF is also a virulence factor of S. pyogenes, but it has not been previously shown to elicit a protective immune response. Herein, we report that SOF evokes bactericidal antibodies against S. pyogenes in humans, rabbits, and mice. Rabbit antiserum against purified recombinant SOF2 opsonized SOF-positive M type 2, 4, and 28 S. pyogenes in human blood but had no effect on SOF-negative M type 5 S. pyogenes. Furthermore, affinity-purified human antibodies against SOF2 also opsonized SOF-positive streptococci. A combination of antisera against M2 and SOF2 proteins was dramatically more effective in killing streptococci than either antiserum alone, indicating that antibodies against SOF2 enhance the opsonic efficiency of M protein antibodies. Mice tolerated an intravenous injection of 100 microg of SOF without overt signs of toxicity, and immunization with SOF protected mice against challenge infections with M type 2 S. pyogenes. These data indicate that SOF evokes opsonic antibodies that may protect against infections by SOF-positive serotypes of group A streptococci and suggest that different serotypes of SOF have common epitopes that may be useful vaccine candidates to protect against group A streptococcal infections.
Collapse
Affiliation(s)
- Harry S Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee, Memphis, Tennessee 38104, USA.
| | | | | |
Collapse
|
33
|
Tripp TJ, McCormick JK, Webb JM, Schlievert PM. The zinc-dependent major histocompatibility complex class II binding site of streptococcal pyrogenic exotoxin C is critical for maximal superantigen function and toxic activity. Infect Immun 2003; 71:1548-50. [PMID: 12595474 PMCID: PMC148863 DOI: 10.1128/iai.71.3.1548-1550.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cocrystal structure of streptococcal pyrogenic exotoxin C (SPE C) with HLA-DR2a (DRA*0101,DRB5*0101) revealed a zinc-dependent interaction site through residues 167, 201, and 203 on SPE C and residue 81 on the beta-chain of HLA-DR2a (DRA*0101,DRB5*0101). Mutation of these SPE C residues resulted in dramatically reduced biological activities. Thus, the zinc-dependent major histocompatibility complex II binding site is critical for maximal biological function of SPE C.
Collapse
Affiliation(s)
- Timothy J Tripp
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
34
|
Smoot LM, McCormick JK, Smoot JC, Hoe NP, Strickland I, Cole RL, Barbian KD, Earhart CA, Ohlendorf DH, Veasy LG, Hill HR, Leung DYM, Schlievert PM, Musser JM. Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect Immun 2002; 70:7095-104. [PMID: 12438391 PMCID: PMC133074 DOI: 10.1128/iai.70.12.7095-7104.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Revised: 08/08/2002] [Accepted: 08/29/2002] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of acute rheumatic fever (ARF) is poorly understood. We identified two contiguous bacteriophage genes, designated speL and speM, encoding novel inferred superantigens in the genome sequence of an ARF strain of serotype M18 group A streptococcus (GAS). speL and speM were located at the same genomic site in 33 serotype M18 isolates, and no nucleotide sequence diversity was observed in the 33 strains analyzed. Furthermore, the genes were absent in 13 non-M18 strains tested. These data indicate a recent acquisition event by a distinct clone of serotype M18 GAS. speL and speM were transcribed in vitro and upregulated in the exponential phase of growth. Purified SpeL and SpeM were pyrogenic and mitogenic for rabbit splenocytes and human peripheral blood mononuclear cells in picogram amounts. SpeL preferentially expanded human T cells expressing T-cell receptors Vbeta1, Vbeta5.1, and Vbeta23, and SpeM had specificity for Vbeta1 and Vbeta23 subsets, indicating that both proteins had superantigen activity. SpeL was lethal in two animal models of streptococcal toxic shock, and SpeM was lethal in one model. Serologic studies indicated that ARF patients were exposed to serotype M18 GAS, SpeL, and SpeM. The data demonstrate that SpeL and SpeM are pyrogenic toxin superantigens and suggest that they may participate in the host-pathogen interactions in some ARF patients.
Collapse
Affiliation(s)
- Laura M Smoot
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
O'Brien KL, Beall B, Barrett NL, Cieslak PR, Reingold A, Farley MM, Danila R, Zell ER, Facklam R, Schwartz B, Schuchat A. Epidemiology of invasive group a streptococcus disease in the United States, 1995-1999. Clin Infect Dis 2002; 35:268-76. [PMID: 12115092 DOI: 10.1086/341409] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2002] [Revised: 03/15/2002] [Indexed: 11/04/2022] Open
Abstract
Severe invasive group A streptococcal (GAS) disease is believed to have reemerged during the past 10-20 years. We conducted active, laboratory, population-based surveillance in 5 US states (total population, 13,214,992). From 1 July 1995 through 31 December 1999, we identified 2002 episodes of invasive GAS (3.5 cases per 100,000 persons). Rates varied by age (higher among those <2 or >/=65 years old), surveillance area, and race (higher among black individuals) but did not increase during the study period. The 5 most common emm types (1, 28, 12, 3, and 11) accounted for 49.2% of isolates; newly characterized emm types accounted for 8.9% of isolates. Older age; presence of streptococcal toxic shock syndrome, meningitis, or pneumonia; and infection with emm1 or emm3 were all independent predictors of death. We estimate that 9600-9700 cases of invasive GAS disease occur in the United States each year, resulting in 1100-1300 deaths.
Collapse
Affiliation(s)
- Katherine L O'Brien
- Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Beres SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, Liu MY, Smoot JC, Porcella SF, Parkins LD, Campbell DS, Smith TM, McCormick JK, Leung DYM, Schlievert PM, Musser JM. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 2002; 99:10078-83. [PMID: 12122206 PMCID: PMC126627 DOI: 10.1073/pnas.152298499] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Accepted: 05/17/2002] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares approximately 1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A(2) (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.
Collapse
Affiliation(s)
- Stephen B Beres
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sundberg EJ, Li H, Llera AS, McCormick JK, Tormo J, Schlievert PM, Karjalainen K, Mariuzza RA. Structures of two streptococcal superantigens bound to TCR beta chains reveal diversity in the architecture of T cell signaling complexes. Structure 2002; 10:687-99. [PMID: 12015151 DOI: 10.1016/s0969-2126(02)00759-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Superantigens (SAGs) crosslink MHC class II and TCR molecules, resulting in an overstimulation of T cells associated with human disease. SAGs interact with several different surfaces on MHC molecules, necessitating the formation of multiple distinct MHC-SAG-TCR ternary signaling complexes. Variability in SAG-TCR binding modes could also contribute to the structural heterogeneity of SAG-dependent signaling complexes. We report crystal structures of the streptococcal SAGs SpeA and SpeC in complex with their corresponding TCR beta chain ligands that reveal distinct TCR binding modes. The SpeC-TCR beta chain complex structure, coupled with the recently determined SpeC-HLA-DR2a complex structure, provides a model for a novel T cell signaling complex that precludes direct TCR-MHC interactions. Thus, highly efficient T cell activation may be achieved through structurally diverse strategies of TCR ligation.
Collapse
Affiliation(s)
- Eric J Sundberg
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol 2002; 55:77-104. [PMID: 11544350 DOI: 10.1146/annurev.micro.55.1.77] [Citation(s) in RCA: 480] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxic shock syndrome (TSS) is an acute onset illness characterized by fever, rash formation, and hypotension that can lead to multiple organ failure and lethal shock, as well as desquamation in patients that recover. The disease is caused by bacterial superantigens (SAGs) secreted from Staphylococcus aureus and group A streptococci. SAGs bypass normal antigen presentation by binding to class II major histocompatibility complex molecules on antigen-presenting cells and to specific variable regions on the beta-chain of the T-cell antigen receptor. Through this interaction, SAGs activate T cells at orders of magnitude above antigen-specific activation, resulting in massive cytokine release that is believed to be responsible for the most severe features of TSS. This review focuses on clinical and epidemiological aspects of TSS, as well as important developments in the genetics, biochemistry, immunology, and structural biology of SAGs. From the evolutionary relationships between these important toxins, we propose that there are five distinct groups of SAGs.
Collapse
Affiliation(s)
- J K McCormick
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
39
|
Kazmi SU, Kansal R, Aziz RK, Hooshdaran M, Norrby-Teglund A, Low DE, Halim AB, Kotb M. Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group a streptococcal isolates in vivo. Infect Immun 2001; 69:4988-95. [PMID: 11447177 PMCID: PMC98591 DOI: 10.1128/iai.69.8.4988-4995.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptococcal pyrogenic exotoxins (Spes) play a central role in the pathogenesis of invasive group A streptococcal (GAS) infections. The majority of recent invasive GAS infections have been caused by an M1T1 strain that harbors the genes for several streptococcal superantigens, including speA, speB, speF, speG, and smeZ. However, considerable variation in the expression of Spe proteins among clonal M1 isolates has been found, and many of the speA-positive M1 strains do not produce detectable amounts of SpeA in vitro. This study was designed to test the hypothesis that speA gene expression can be induced in vivo. A mouse infection chamber model that allows sequential sampling of GAS isolates at various time points postinfection was developed and used to monitor the kinetics of Spe production in vivo. Micropore Teflon diffusion chambers were implanted subcutaneously in BALB/c mice, and after 3 weeks the pores became sealed with connective tissue and sterile fluid containing a white blood cell infiltrate accumulated inside the infection chambers. Representative clonal M1T1 isolates expressing no detectable SpeA were inoculated into the implanted chambers, and the expression of SpeA in the aspirated aliquots of the chamber fluid was analyzed on successive days postinfection. Expression of SpeA was detected in the chamber fluid as early as days 3 to 5 postinfection in most animals, with a significant increase in expression by day 7 in all infected mice. Isolates recovered from the chamber and grown in vitro continued to produce SpeA even after 21 passages in vitro, suggesting stable switch on of the speA gene. A temporal relation between the upregulation of SpeA expression and the downregulation of SpeB expression was observed in vivo. These data suggest that in vivo host and/or environmental signals induced speA gene expression and suppressed speB gene expression. This underscores the role of the host-pathogen interaction in regulating the expression of streptococcal virulence factors in vivo. The model described here should facilitate such studies.
Collapse
Affiliation(s)
- S U Kazmi
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Reid SD, Green NM, Buss JK, Lei B, Musser JM. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription. Proc Natl Acad Sci U S A 2001; 98:7552-7. [PMID: 11416223 PMCID: PMC34706 DOI: 10.1073/pnas.121188598] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.
Collapse
Affiliation(s)
- S D Reid
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
41
|
McCormick JK, Pragman AA, Stolpa JC, Leung DY, Schlievert PM. Functional characterization of streptococcal pyrogenic exotoxin J, a novel superantigen. Infect Immun 2001; 69:1381-8. [PMID: 11179302 PMCID: PMC98031 DOI: 10.1128/iai.69.3.1381-1388.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a highly lethal, acute-onset illness that is a subset of invasive streptococcal disease. The majority of clinical STSS cases have been associated with the pyrogenic toxin superantigens (PTSAgs) streptococcal pyrogenic exotoxin A or C (SPE A or C), although cases have been reported that are not associated with either of these exotoxins. Recent genome sequencing projects have revealed a number of open reading frames that potentially encode proteins with similarity to SPEs A and C and to other PTSAgs. Here, we describe the cloning, expression, purification, and functional characterization of a novel exotoxin termed streptococcal pyrogenic exotoxin J (SPE J). Purified recombinant SPE J (rSPE J) expressed from Escherichia coli stimulated the expansion of both rabbit splenocytes and human peripheral blood lymphocytes, preferentially expanded human T cells displaying Vbeta2, -3, -12, -14, and -17 on their T-cell receptors, and was active at concentrations as low as 5 x 10(-6) microg/ml. Furthermore, rSPE J induced fevers in rabbits and was lethal in two models of STSS. Biochemically, SPE J had a predicted molecular weight of 24,444 and an isoelectric point of 7.7 and lacked the ability to form the cystine loop structure characteristic of many PTSAgs. SPE J shared 19.6, 47.1, 38.8, 18.1, 19.6, and 24.4% identity with SPEs A, C, G, and H, streptococcal superantigen, and streptococcal mitogenic exotoxin Z-2, respectively, and was immunologically cross-reactive with SPE C. The characterization of a seventh functional streptococcal PTSAg raises important questions relating to the evolution of the streptococcal superantigens.
Collapse
Affiliation(s)
- J K McCormick
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
42
|
Li Y, Li H, Dimasi N, McCormick JK, Martin R, Schuck P, Schlievert PM, Mariuzza RA. Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity 2001; 14:93-104. [PMID: 11163233 DOI: 10.1016/s1074-7613(01)00092-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MHC class II molecules possess two binding sites for bacterial superantigens (SAGs): a low-affinity site on the alpha chain and a high-affinity, zinc-dependent site on the beta chain. Only the former has been defined crystallographically. We report the structure of streptococcal pyrogenic exotoxin C (SPE-C) complexed with HLA-DR2a (DRA*0101, DRB5*0101) bearing a self-peptide from myelin basic protein (MBP). SPE-C binds the beta chain through a zinc bridge that links the SAG and class II molecules. Surprisingly, SPE-C also makes extensive contacts with the MBP peptide, such that peptide accounts for one third of the surface area of the MHC molecule buried in the complex, similar to TCR-peptide/MHC complexes. Thus, SPE-C may optimize T cell responses by mimicking the peptide dependence of conventional antigen presentation and recognition.
Collapse
Affiliation(s)
- Y Li
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The production of superantigenic exotoxins by Gram positive bacteria underlies the pathology of toxic shock syndrome. Future treatment strategies for superantigen-mediated diseases are likely to be directed at blocking the three-way interaction between superantigen, T cell receptor and major histocompatibility class II molecule, which inititates an excessive and disordered inflammatory response. In this article, we review the first published data to address one such strategy in the context of other recognised and experimental treatments.
Collapse
Affiliation(s)
- Martin Llewelyn
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Jonathan Cohen
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| |
Collapse
|