1
|
Powell TJ, Tang J, Mitchell R, DeRome ME, Jacobs A, Palath N, Cardenas E, Yorke M, Boyd JG, Kaba SA, Nardin E. Immunogenicity, Efficacy, and Safety of a Novel Synthetic Microparticle Pre-Erythrocytic Malaria Vaccine in Multiple Host Species. Vaccines (Basel) 2023; 11:1789. [PMID: 38140193 PMCID: PMC10748200 DOI: 10.3390/vaccines11121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
We previously reported a protective antibody response in mice immunized with synthetic microparticle vaccines made using layer-by-layer fabrication (LbL-MP) and containing the conserved T1BT* epitopes from the P. falciparum circumsporozoite protein. To further optimize the vaccine candidate, a benchtop tangential flow filtration method (LbL-by-TFF) was developed and utilized to produce vaccine candidates that differed in the status of base layer crosslinking, inclusion of a TLR2 ligand in the antigenic peptide, and substitution of serine or alanine for an unpaired cysteine residue in the T* epitope. Studies in mice revealed consistent superiority of the Pam3Cys-modified candidates and a modest benefit of base layer crosslinking, as evidenced by higher and more persistent antibody titers (up to 18 months post-immunization), a qualitative improvement of T-cell responses toward a Th1 phenotype, and greater protection from live parasite challenges compared to the unmodified prototype candidate. Immunogenicity was also tested in a non-human primate model, the rhesus macaque. Base layer-crosslinked LbL-MP loaded with T1BT* peptide with or without covalently linked Pam3Cys elicited T1B-specific antibody responses and T1BT*-specific T-cell responses dominated by IFNγ secretion with lower levels of IL-5 secretion. The Pam3Cys-modified construct was more potent, generating antibody responses that neutralized wild-type P. falciparum in an in vitro hepatocyte invasion assay. IgG purified from individual macaques immunized with Pam3Cys.T1BT* LbL-MP protected naïve mice from challenges with transgenic P. berghei sporozoites that expressed the full-length PfCS protein, with 50-88% of passively immunized mice parasite-free for ≥15 days. Substitution of serine for an unpaired cysteine in the T* region of the T1BT* subunit did not adversely impact immune potency in the mouse while simplifying the manufacture of the antigenic peptide. In a Good Laboratory Practices compliant rabbit toxicology study, the base layer-crosslinked, Pam3Cys-modified, serine-substituted candidate was shown to be safe and immunogenic, eliciting parasite-neutralizing antibody responses and establishing the dose/route/regimen for a clinical evaluation of this novel synthetic microparticle pre-erythrocytic malaria vaccine candidate.
Collapse
Affiliation(s)
- Thomas J. Powell
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Jie Tang
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Robert Mitchell
- Department of Microbiology, School of Medicine, New York University, New York, NY 10010, USA; (R.M.); (E.N.)
| | - Mary E. DeRome
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
- Multiple Myeloma Research Foundation, 383 Main Avenue, 5th Floor, Norwalk, CT 06851, USA
| | - Andrea Jacobs
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Naveen Palath
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
- Pfizer, Inc., Andover, MA 01810, USA
| | - Edwin Cardenas
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Michelle Yorke
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - James G. Boyd
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Stephen A. Kaba
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
- GreenLight Biosciences, Inc., Lexington, MA 02421, USA
| | - Elizabeth Nardin
- Department of Microbiology, School of Medicine, New York University, New York, NY 10010, USA; (R.M.); (E.N.)
| |
Collapse
|
2
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Belmonte M, Ganeshan H, Huang J, Belmonte A, Inoue S, Velasco R, Acheampong N, Ofori EA, Akyea-Mensah K, Frimpong A, Ennuson NA, Frempong AF, Kyei-Baafour E, Amoah LE, Edgel K, Peters B, Villasante E, Kusi KA, Sedegah M. Immunodominant T cell peptides from four candidate malarial antigens as biomarkers of protective immunity against malaria. Vaccine 2023; 41:1265-1273. [PMID: 36642628 DOI: 10.1016/j.vaccine.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
A malaria vaccine with high efficacy and capable of inducing sterile immunity against malaria within genetically diverse populations is urgently needed to complement ongoing disease control and elimination efforts. Parasite-specific IFN-γ and granzyme B-secreting CD8 + T cells have been identified as key mediators of protection and the rapid identification of malaria antigen targets that elicit these responses will fast-track the development of simpler, cost-effective interventions. This study extends our previous work which used peripheral blood mononuclear cells (PBMCs) from adults with life-long exposure to malaria parasites to identify immunodominant antigen-specific peptide pools composed of overlapping 15mer sequences spanning full length proteins of four malarial antigens. Our current study aimed to identify CD8 + T cell epitopes within these previously identified positive peptide pools. Cryopreserved PBMCs from 109 HLA-typed subjects were stimulated with predicted 9-11mer CD8 + T cell epitopes from P. falciparum circumsporozoite protein (CSP), apical membrane antigen 1 (AMA1), thrombospondin related anonymous protein (TRAP) and cell traversal for ookinetes and sporozoites (CelTOS) in FluoroSpot assays. A total of 135 epitopes out of 297 tested peptides from the four antigens were experimentally identified as positive for IFN-γ and/or granzyme B production in 65 of the 109 subjects. Forty-three of 135 epitopes (32 %) were promiscuous for HLA binding, with 31 of these promiscuous epitopes (72 %) being presented by HLA alleles that fall within at least two different HLA supertypes. Furthermore, about 52 % of identified epitopes were conserved when the respective sequences were aligned with those from 16 highly diverse P. falciparum parasite strains. In summary, we have identified a number of conserved epitopes, immune responses to which could be effective against multiple P. falciparum parasite strains in genetically diverse populations.
Collapse
Affiliation(s)
- Maria Belmonte
- Malaria Department, Naval Medical Research Center, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Harini Ganeshan
- Malaria Department, Naval Medical Research Center, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, MD, USA; GDIT, MD 20817, USA
| | - Sandra Inoue
- Malaria Department, Naval Medical Research Center, MD, USA; GDIT, MD 20817, USA
| | - Rachel Velasco
- Malaria Department, Naval Medical Research Center, MD, USA; GDIT, MD 20817, USA
| | - Neda Acheampong
- Malaria Department, Naval Medical Research Center, MD, USA; GDIT, MD 20817, USA
| | - Ebenezer Addo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Akyea-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nana Aba Ennuson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Abena Fremaah Frempong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kimberly Edgel
- Malaria Department, Naval Medical Research Center, MD, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, MD, USA
| |
Collapse
|
4
|
Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials 2021; 280:121303. [PMID: 34871877 DOI: 10.1016/j.biomaterials.2021.121303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Dendrimers are well-defined, highly branched, multivalent and monodisperse molecules which host a range of attractive, yet functional, chemical and biological characteristics. A dendrimers accessible surface groups enable coupling to different functional moieties (e.g., antibodies, peptides, proteins, etc), which is further assisted by the dendrimers tailored size and surface charge. This adaptability allows for the preparation of molecularly precise vaccines with highly specific and predictable properties, and in conjunction with a dendrimers immune stimulating (adjuvanting) property, makes dendrimers attractive substrates for biomedical applications, including vaccines. This review highlights the structural and synthetic evolution of dendrimers throughout history, detailing the dendrimers role as both an adjuvant and carrier system for vaccine antigens, in addition to reviewing the development of commercially available vaccines for use in humans.
Collapse
Affiliation(s)
- Silvia Chowdhury
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Epitope-coated polymer particles elicit neutralising antibodies against Plasmodium falciparum sporozoites. NPJ Vaccines 2021; 6:141. [PMID: 34845267 PMCID: PMC8630014 DOI: 10.1038/s41541-021-00408-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
The current Malaria RTS,S vaccine is based on virus-like particles (VLPs) comprising the NANP repetitive epitopes from the cicumsporozoite protein (CSP) of Plasmodium falciparum. This vaccine has limited efficacy, only preventing severe disease in about 30% of vaccinated individuals. A more efficacious vaccine is urgently needed to combat malaria. Here we developed a particulate malaria vaccine based on the same CSP epitopes but using biopolymer particles (BPs) as an antigen carrier system. Specific B- and T-cell epitope-coated BPs were assembled in vivo inside an engineered endotoxin-free mutant of Escherichia coli. A high-yield production process leading to ~27% BP vaccine weight over biomass was established. The epitope-coated BPs were purified and their composition, i.e., the polymer core and epitope identity, was confirmed. Epitope-coated BPs were used alongside soluble peptide epitopes and empty BPs to vaccinate sheep. Epitope-coated BPs showed enhanced immunogenicity by inducing anti-NANP antibody titre of EC50 > 150,000 that were at least 20 times higher than induced by the soluble peptides. We concluded that the additional T-cell epitope was not required as it did not enhance immunogenicity when compared with the B-cell epitope-coated BPs. Antibodies specifically bound to the surface of Plasmodium falciparum sporozoites and efficiently inhibited sporozoite motility and traversal of human hepatocytes. This study demonstrated the utility of biologically self-assembled epitope-coated BPs as an epitope carrier for inclusion in next-generation malaria vaccines.
Collapse
|
6
|
Juanes-Velasco P, Landeira-Viñuela A, Acebes-Fernandez V, Hernández ÁP, Garcia-Vaquero ML, Arias-Hidalgo C, Bareke H, Montalvillo E, Gongora R, Fuentes M. Deciphering Human Leukocyte Antigen Susceptibility Maps From Immunopeptidomics Characterization in Oncology and Infections. Front Cell Infect Microbiol 2021; 11:642583. [PMID: 34123866 PMCID: PMC8195621 DOI: 10.3389/fcimb.2021.642583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen [HLA] A, B, and C) may affect susceptibility to many diseases such as cancer, auto-immune or infectious diseases. Individual genetic variation may help to explain different immune responses to microorganisms across a population. HLA typing can be fast and inexpensive; however, deciphering peptides loaded on MHC-I and II which are presented to T cells, require the design and development of high-sensitivity methodological approaches and subsequently databases. Hence, these novel strategies and databases could help in the generation of vaccines using these potential immunogenic peptides and in identifying high-risk HLA types to be prioritized for vaccination programs. Herein, the recent developments and approaches, in this field, focusing on the identification of immunogenic peptides have been reviewed and the next steps to promote their translation into biomedical and clinical practice are discussed.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Vanessa Acebes-Fernandez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Ángela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Marina L. Garcia-Vaquero
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Halin Bareke
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Enrique Montalvillo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
7
|
Atcheson E, Hill AVS, Reyes-Sandoval A. A VLP for validation of the Plasmodium falciparum circumsporozoite protein junctional epitope for vaccine development. NPJ Vaccines 2021; 6:46. [PMID: 33795695 PMCID: PMC8016880 DOI: 10.1038/s41541-021-00302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/12/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria continues to be a pressing global health issue, causing nearly half a million deaths per year. An effective malaria vaccine could radically improve our ability to control and eliminate this pathogen. The most advanced malaria vaccine, RTS,S, confers only 30% protective efficacy under field conditions, and hence the search continues for improved vaccines. New antigens and formulations are always first developed at a pre-clinical level. This paper describes the development of a platform to supplement existing tools of pre-clinical malaria vaccine development, by displaying linear peptides on a virus-like particle (VLP). Peptides from PfCSP, particularly from outside the normal target of neutralizing antibodies, the central NANP repeat region, are screened for evidence of protective efficacy. One peptide, recently identified as a target of potent neutralizing antibodies and lying at the junction between the N-terminal domain and the central repeat region of PfCSP, is found to confer protective efficacy against malaria sporozoite challenge in mice when presented on the Qβ VLP. The platform is also used to explore the effects of increasing numbers of NANP unit repeats, and including a universal CD4+ T-cell epitope from tetanus toxin, on immunogenicity and protective efficacy. The VLP-peptide platform is shown to be of use in screening malaria peptides for protective efficacy and answering basic vaccinology questions in a pre-clinical setting.
Collapse
Affiliation(s)
| | | | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Oxford, UK. .,Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro s/n. Unidad Adolfo López Mateos, Mexico City, Mexico.
| |
Collapse
|
8
|
Galanis KA, Nastou KC, Papandreou NC, Petichakis GN, Pigis DG, Iconomidou VA. Linear B-Cell Epitope Prediction for In Silico Vaccine Design: A Performance Review of Methods Available via Command-Line Interface. Int J Mol Sci 2021; 22:3210. [PMID: 33809918 PMCID: PMC8004178 DOI: 10.3390/ijms22063210] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Linear B-cell epitope prediction research has received a steadily growing interest ever since the first method was developed in 1981. B-cell epitope identification with the help of an accurate prediction method can lead to an overall faster and cheaper vaccine design process, a crucial necessity in the COVID-19 era. Consequently, several B-cell epitope prediction methods have been developed over the past few decades, but without significant success. In this study, we review the current performance and methodology of some of the most widely used linear B-cell epitope predictors which are available via a command-line interface, namely, BcePred, BepiPred, ABCpred, COBEpro, SVMTriP, LBtope, and LBEEP. Additionally, we attempted to remedy performance issues of the individual methods by developing a consensus classifier, which combines the separate predictions of these methods into a single output, accelerating the epitope-based vaccine design. While the method comparison was performed with some necessary caveats and individual methods might perform much better for specialized datasets, we hope that this update in performance can aid researchers towards the choice of a predictor, for the development of biomedical applications such as designed vaccines, diagnostic kits, immunotherapeutics, immunodiagnostic tests, antibody production, and disease diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.A.G.); (K.C.N.); (N.C.P.); (G.N.P.); (D.G.P.)
| |
Collapse
|
9
|
Identification of a neutralizing epitope within minor repeat region of Plasmodium falciparum CS protein. NPJ Vaccines 2021; 6:10. [PMID: 33462218 PMCID: PMC7813878 DOI: 10.1038/s41541-020-00272-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/14/2020] [Indexed: 11/08/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality worldwide with 219 million infections and 435,000 deaths predominantly in Africa. The infective Plasmodium sporozoite is the target of a potent humoral immune response that can protect murine, simian and human hosts against challenge by malaria-infected mosquitoes. Early murine studies demonstrated that sporozoites or subunit vaccines based on the sporozoite major surface antigen, the circumsporozoite (CS) protein, elicit antibodies that primarily target the central repeat region of the CS protein. In the current murine studies, using monoclonal antibodies and polyclonal sera obtained following immunization with P. falciparum sporozoites or synthetic repeat peptides, we demonstrate differences in the ability of these antibodies to recognize the major and minor repeats contained in the central repeat region. The biological relevance of these differences in fine specificity was explored using a transgenic P. berghei rodent parasite expressing the P. falciparum CS repeat region. In these in vitro and in vivo studies, we demonstrate that the minor repeat region, comprised of three copies of alternating NANP and NVDP tetramer repeats, contains an epitope recognized by sporozoite-neutralizing antibodies. In contrast, murine monoclonal antibodies specific for the major CS repeats (NANP)n could be isolated from peptide-immunized mice that had limited or no sporozoite-neutralizing activity. These studies highlight the importance of assessing the fine specificity and functions of antirepeat antibodies elicited by P. falciparum CS-based vaccines and suggest that the design of immunogens to increase antibody responses to minor CS repeats may enhance vaccine efficacy.
Collapse
|
10
|
Chaudhury S, Macgill RS, Early AM, Bolton JS, King CR, Locke E, Pierson T, Wirth DF, Neafsey DE, Bergmann-leitner ES. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine.. [DOI: 10.1101/2020.11.15.20232033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractThe circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites and a prime vaccine target. Responses induced by the CSP-based RTS,S vaccine towards the polymorphic C-terminal region of P.falciparum-CSP raise concerns that vaccines using single alleles may have lower efficacy against genotypic variants. We characterized the extent of C-terminal cross-reactivity of antibodies induced by RTS,S (based on the 3D7 allele) with variants representing seven circulating field isolates through a novel HTS-multiplex assay for screening closely related peptides. Reactivity to variants showed approximately 30-fold reduction in recognition relative to 3D7. The degree of reduced cross-reactivity,ranging from 21 to 69-fold, directly correlated with the number of polymorphisms between variants and 3D7. Surprisingly, protection assessed by challenge with 3D7 parasites was strongly associated with higher C-terminal antibody breadth suggesting that C-terminal specific avidity or fine-specificity may play a role in RTS,S/AS01B-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
11
|
Rakib A, Sami SA, Islam MA, Ahmed S, Faiz FB, Khanam BH, Marma KKS, Rahman M, Uddin MMN, Nainu F, Emran TB, Simal-Gandara J. Epitope-Based Immunoinformatics Approach on Nucleocapsid Protein of Severe Acute Respiratory Syndrome-Coronavirus-2. Molecules 2020; 25:E5088. [PMID: 33147821 PMCID: PMC7663370 DOI: 10.3390/molecules25215088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
With an increasing fatality rate, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has emerged as a promising threat to human health worldwide. Recently, the World Health Organization (WHO) has announced the infectious disease caused by SARS-CoV-2, which is known as coronavirus disease-2019 (COVID-2019), as a global pandemic. Additionally, the positive cases are still following an upward trend worldwide and as a corollary, there is a need for a potential vaccine to impede the progression of the disease. Lately, it has been documented that the nucleocapsid (N) protein of SARS-CoV-2 is responsible for viral replication and interferes with host immune responses. We comparatively analyzed the sequences of N protein of SARS-CoV-2 for the identification of core attributes and analyzed the ancestry through phylogenetic analysis. Subsequently, we predicted the most immunogenic epitope for the T-cell and B-cell. Importantly, our investigation mainly focused on major histocompatibility complex (MHC) class I potential peptides and NTASWFTAL interacted with most human leukocyte antigen (HLA) that are encoded by MHC class I molecules. Further, molecular docking analysis unveiled that NTASWFTAL possessed a greater affinity towards HLA and also available in a greater range of the population. Our study provides a consolidated base for vaccine design and we hope that this computational analysis will pave the way for designing novel vaccine candidates.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Md. Ashiqul Islam
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
- Department of Pharmacy, Mawlana Bhashani Science & Technology University, Santosh, Tangail 1902, Bangladesh
| | - Shahriar Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Farhana Binta Faiz
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Bibi Humayra Khanam
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Kay Kay Shain Marma
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Maksuda Rahman
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Mir Muhammad Nasir Uddin
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.); (M.A.I.); (S.A.); (F.B.F.); (B.H.K.); (K.K.S.M.); (M.R.); (M.M.N.U.)
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan 90245, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
12
|
Rakib A, Sami SA, Mimi NJ, Chowdhury MM, Eva TA, Nainu F, Paul A, Shahriar A, Tareq AM, Emon NU, Chakraborty S, Shil S, Mily SJ, Ben Hadda T, Almalki FA, Emran TB. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput Biol Med 2020; 124:103967. [PMID: 32828069 PMCID: PMC7423576 DOI: 10.1016/j.compbiomed.2020.103967] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
AIMS With a large number of fatalities, coronavirus disease-2019 (COVID-19) has greatly affected human health worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19. The World Health Organization has declared a global pandemic of this contagious disease. Researchers across the world are collaborating in a quest for remedies to combat this deadly virus. It has recently been demonstrated that the spike glycoprotein (SGP) of SARS-CoV-2 is the mediator by which the virus enters host cells. MAIN METHODS Our group comprehensibly analyzed the SGP of SARS-CoV-2 through multiple sequence analysis and a phylogenetic analysis. We predicted the strongest immunogenic epitopes of the SGP for both B cells and T cells. KEY FINDINGS We focused on predicting peptides that would bind major histocompatibility complex class I. Two optimal epitopes were identified, WTAGAAAYY and GAAAYYVGY. They interact with the HLA-B*15:01 allele, which was further validated by molecular docking simulation. This study also found that the selected epitopes are able to be recognized in a large percentage of the world's population. Furthermore, we predicted CD4+ T-cell epitopes and B-cell epitopes. SIGNIFICANCE Our study provides a strong basis for designing vaccine candidates against SARS-CoV-2. However, laboratory work is required to validate our theoretical results, which would lay the foundation for the appropriate vaccine manufacturing and testing processes.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Computational Biology
- Coronavirus Infections/epidemiology
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Drug Design
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- HLA-B15 Antigen/chemistry
- HLA-B15 Antigen/metabolism
- HLA-DRB1 Chains/chemistry
- HLA-DRB1 Chains/metabolism
- Humans
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nusrat Jahan Mimi
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan, 90245, Indonesia
| | - Arkajyoti Paul
- Drug Discovery, GUSTO A Research Group, Chittagong, 4203, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Sajal Chakraborty
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sagar Shil
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sabrina Jahan Mily
- Department of Gynaecology and Obstetrics, Banshkhali Upazila Health Complex, Jaldi Union, Chittagong, 4390, Bangladesh
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed the First, BP 524, 60000, Oujda, Morocco; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia.
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
13
|
Ghafouri F, Cohan RA, Noorbakhsh F, Samimi H, Haghpanah V. An in-silico approach to develop of a multi-epitope vaccine candidate against SARS-CoV-2 envelope (E) protein. RESEARCH SQUARE 2020. [PMID: 32702713 PMCID: PMC7336711 DOI: 10.21203/rs.3.rs-30374/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since the first appearance of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) in China on December 2019, the world has now witnessed the emergence of the SARS- CoV-2 outbreak. Therefore, due to the high transmissibility rate of virus, there is an urgent need to design and develop vaccines against SARS-CoV-2 to prevent more cases affected by the virus. In this study, a computational approach is proposed for vaccine design against the envelope (E) protein of SARS-CoV-2, which contains a conserved sequence feature. First, we sought to gain potential B-cell and T-cell epitopes for vaccine designing against SARS-CoV-2. Second, we attempted to develop a multi-epitope vaccine. Immune targeting of such epitopes could theoretically provide defense against SARS-CoV-2. Finally, we evaluated the affinity of the vaccine to major histocompatibility complex (MHC) molecules to stimulate the immune system response to this vaccine. We also identified a collection of B-cell and T-cell epitopes derived from E proteins that correspond identically to SARS-CoV-2 E proteins. The in-silico design of our potential vaccine against E protein of SARS-CoV-2 demonstrated a high affinity to MHC molecules, and it can be a candidate to make a protection against this pandemic event.
Collapse
|
14
|
Chen A, Karanastasis A, Casey KR, Necelis M, Carone BR, Caputo GA, Palermo EF. Cationic Molecular Umbrellas as Antibacterial Agents with Remarkable Cell-Type Selectivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21270-21282. [PMID: 31917544 DOI: 10.1021/acsami.9b19076] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We synthesized a combinatorial library of dendrons that display a cluster of cationic charges juxtaposed with a hydrophobic alkyl chain, using the so-called "molecular umbrella" design approach. Systematically tuning the generation number and alkyl chain length enabled a detailed study of the structure-activity relationships in terms of both hydrophobic content and number of cationic charges. These discrete, unimolecular compounds display rapid and broad-spectrum bactericidal activity comparable to the activity of antibacterial peptides. Micellization was examined by pyrene emission and dynamic light scattering, which revealed that monomeric, individually solvated dendrons are present in aqueous media. The antibacterial mechanism of action is putatively driven by the membrane-disrupting nature of these cationic surfactants, which we confirmed by enzymatic assays on E. coli cells. The hemolytic activity of these dendritic macromolecules is sensitively dependent on the dendron generation and the alkyl chain length. Via structural optimization of these two key design features, we identified a leading candidate with potent broad-spectrum antibacterial activity (4-8 μg/mL) combined with outstanding hemocompatibility (up to 5000 μg/mL). This selected compound is >1000-fold more active against bacteria as compared to red blood cells, which represents one of the highest selectivity index values ever reported for a membrane-disrupting antibacterial agent. Thus, the leading candidate from this initial library screen holds great potential for future applications as a nontoxic, degradable disinfectant.
Collapse
Affiliation(s)
- Ao Chen
- Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12054, United States
| | - Apostolos Karanastasis
- Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12054, United States
| | | | | | | | | | - Edmund F Palermo
- Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12054, United States
| |
Collapse
|
15
|
Zawawi A, Forman R, Smith H, Mair I, Jibril M, Albaqshi MH, Brass A, Derrick JP, Else KJ. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathog 2020; 16:e1008243. [PMID: 32203551 PMCID: PMC7117776 DOI: 10.1371/journal.ppat.1008243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022] Open
Abstract
Trichuris trichiura is a parasite that infects 500 million people worldwide, leading to colitis, growth retardation and Trichuris dysentery syndrome. There are no licensed vaccines available to prevent Trichuris infection and current treatments are of limited efficacy. Trichuris infections are linked to poverty, reducing children's educational performance and the economic productivity of adults. We employed a systematic, multi-stage process to identify a candidate vaccine against trichuriasis based on the incorporation of selected T-cell epitopes into virus-like particles. We conducted a systematic review to identify the most appropriate in silico prediction tools to predict histocompatibility complex class II (MHC-II) molecule T-cell epitopes. These tools were used to identify candidate MHC-II epitopes from predicted ORFs in the Trichuris genome, selected using inclusion and exclusion criteria. Selected epitopes were incorporated into Hepatitis B core antigen virus-like particles (VLPs). Bone marrow-derived dendritic cells and bone marrow-derived macrophages responded in vitro to VLPs irrespective of whether the VLP also included T-cell epitopes. The VLPs were internalized and co-localized in the antigen presenting cell lysosomes. Upon challenge infection, mice vaccinated with the VLPs+T-cell epitopes showed a significantly reduced worm burden, and mounted Trichuris-specific IgM and IgG2c antibody responses. The protection of mice by VLPs+T-cell epitopes was characterised by the production of mesenteric lymph node (MLN)-derived Th2 cytokines and goblet cell hyperplasia. Collectively our data establishes that a combination of in silico genome-based CD4+ T-cell epitope prediction, combined with VLP delivery, offers a promising pipeline for the development of an effective, safe and affordable helminth vaccine.
Collapse
Affiliation(s)
- Ayat Zawawi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Murtala Jibril
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Munirah H. Albaqshi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew Brass
- Faculty of Biology, Medicine and Health, Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jeremy P. Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
16
|
Optimization of a Plasmodium falciparum circumsporozoite protein repeat vaccine using the tobacco mosaic virus platform. Proc Natl Acad Sci U S A 2020; 117:3114-3122. [PMID: 31988134 PMCID: PMC7022184 DOI: 10.1073/pnas.1911792117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RTS,S/AS01 is a circumsporozoite protein (CSP)-based malaria vaccine that confers partial protection against malaria in endemic areas. Recent reports have elucidated structures of monoclonal antibodies that bind to the central (NPNA) repeat region of CSP and that inhibit parasite invasion. Antigen configuration and copy number of CSP repeats displayed on a tobacco mosaic virus (TMV) particle platform were studied. A TMV vaccine containing CSP repeats displayed as a loop induced 10× better antibody titer than a nearly full-length CSP in mice. In rhesus model, this translated to a 5× improvement in titer. Rhesus antibodies potently inhibited parasite invasion up to 11 mo after vaccination. An optimized epitope-focused, repeat-only CSP vaccine may be sufficient or better than the existing CSP vaccines. Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.
Collapse
|
17
|
Zeng W, Horrocks KJ, Tan ACL, Wong CY, Chua BY, Jackson DC. Modular platforms for the assembly of self-adjuvanting lipopeptide-based vaccines for use in an out-bred population. Vaccine 2020; 38:597-607. [PMID: 31740096 DOI: 10.1016/j.vaccine.2019.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 01/08/2023]
Abstract
To facilitate the preparation of synthetic epitope-based self-adjuvanting vaccines capable of eliciting antibody responses in an out-bred population, we have developed two modular approaches. In the first, the Toll-like receptor 2 agonist Pam2Cys and the target antibody epitope are assembled as a module which is then coupled to a carrier protein as a source of antigens to stimulate T cell help. A vaccine candidate made in this way was shown to induce a specific immune response in four different strains of mice without the need for extraneous adjuvant. In the second approach, three vaccine components in the form of a target antibody epitope, a T helper cell epitope and Pam2Cys, were prepared separately each carrying different chemical functional groups. By using pH-mediated chemo-selective ligations, the vaccine was assembled in a one-pot procedure. Using this approach, a number of vaccine constructs including a lipopeptide-protein conjugate were made and also shown to elicit immune responses in different strains of mice. These two modular approaches thus constitute a powerful platform for the assembly of self-adjuvanting lipopeptide-based vaccines that can potentially be used to induce robust antibody responses in an outbred population. Finally, our study of the impact of chemical linkages on immunogenicity of a lipopeptide vaccine shows that a stable covalent bond between Pam2Cys and a B cell epitope, rather than between Pam2Cys and T helper cell epitope is critical for the induction of antibody responses and biological efficacy, indicating that Pam2Cys functions not only as an adjuvant but also participates in processing and presentation of the immunogen.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | - Kylie J Horrocks
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Amabel C L Tan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
18
|
Tenma A, Nakagami H, Tomioka H, Sakaguchi M, Ide R, Koriyama H, Hayashi H, Shimamura M, Rakugi H, Morishita R. AJP001, a novel helper T-cell epitope, induces a humoral immune response with activation of innate immunity when included in a peptide vaccine. FASEB Bioadv 2019; 1:760-772. [PMID: 32123820 PMCID: PMC6996369 DOI: 10.1096/fba.2019-00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/17/2019] [Accepted: 10/30/2019] [Indexed: 11/11/2022] Open
Abstract
Vaccine design requires well-tailored formulations including a T-cell epitope and adjuvants. We identified a novel cationic peptide, AJP001, which possesses a strong affinity for murine MHC class II alleles (H2-IEd and H2-IAd) and low affinity for H2-IAb. We designed an AJP001 and epitope peptide-conjugated vaccine, AJP001-angiotensin (Ang) II, which was intracutaneously administered to mice three times at 2-week intervals. Indeed, the AJP001-Ang II vaccine induced antibody production against Ang II in BALB/cA mice but not in C57BL/6 mice. To estimate the T-cell-dependent immunogenicity of the AJP001 conjugate vaccine in human cells, naïve human peripheral blood mononuclear cells (PBMCs) were exposed to AJP001-Ang II, and T-cell proliferation was evaluated by analyzing cell division using flow cytometric measurement of carboxyfluorescein succinimidyl ester (CFSE) dye dilution. To activate the immune response, the innate immune system must be activated by adjuvant treatment. Interestingly, treatment with AJP001 induced IL-1β and IL-18 secretion via NLRP3 inflammasome activation and induced TNF-α and IL-6 production through an NF-κB-dependent pathway in human and mouse macrophages. These results suggest that AJP001 behaves as a T-cell epitope in mice and humans and is a useful tool for the formulation of peptide vaccines without the addition of adjuvants.
Collapse
Affiliation(s)
- Akiko Tenma
- Department of Health Development and MedicineOsaka University Graduate School of MedicineOsakaJapan
- FunPep CoOsakaJapan
| | - Hironori Nakagami
- Department of Health Development and MedicineOsaka University Graduate School of MedicineOsakaJapan
| | | | | | | | - Hiroshi Koriyama
- Department of Health Development and MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Hayashi
- Department of Health Development and MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Munehisa Shimamura
- Department of Health Development and MedicineOsaka University Graduate School of MedicineOsakaJapan
- Department of NeurologyOsaka University Graduate School of MedicineOsakaJapan
| | - Hiromi Rakugi
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Ryuichi Morishita
- Department of Clinical Gene TherapyOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
19
|
Xu X, Liang J, Zhang Z, Jiang T, Yu R. Blockade of Human α7 Nicotinic Acetylcholine Receptor by α-Conotoxin ImI Dendrimer: Insight from Computational Simulations. Mar Drugs 2019; 17:md17050303. [PMID: 31126085 PMCID: PMC6563025 DOI: 10.3390/md17050303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are involved in fast synaptic transmission and mediated physiological activities in the nervous system. α-Conotoxin ImI exhibits subtype-specific blockade towards homomeric α7 and α9 receptors. In this study, we established a method to build a 2×ImI-dendrimer/h (human) α7 nAChR model, and based on this model, we systematically investigated the molecular interactions between the 2×ImI-dendrimer and hα7 nAChR. Our results suggest that the 2×ImI-dendrimer possessed much stronger potency towards hα7 nAChR than the α-ImI monomer and demonstrated that the linker between α-ImI contributed to the potency of the 2×ImI-dendrimer by forming a stable hydrogen-bond network with hα7 nAChR. Overall, this study provides novel insights into the binding mechanism of α-ImI dendrimer to hα7 nAChR, and the methodology reported here opens an avenue for the design of more selective dendrimers with potential usage as drug/gene carriers, macromolecular drugs, and molecular probes.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Zheyu Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
20
|
Purcell AW, Ramarathinam SH, Ternette N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nat Protoc 2019; 14:1687-1707. [PMID: 31092913 DOI: 10.1038/s41596-019-0133-y] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
Peptide antigens bound to molecules encoded by the major histocompatibility complex (MHC) and presented on the cell surface form the targets of T lymphocytes. This critical arm of the adaptive immune system facilitates the eradication of pathogen-infected and cancerous cells, as well as the production of antibodies. Methods to identify these peptide antigens are critical to the development of new vaccines, for which the goal is the generation of effective adaptive immune responses and long-lasting immune memory. Here, we describe a robust protocol for the identification of MHC-bound peptides from cell lines and tissues, using nano-ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (nUPLC-MS/MS) and recent improvements in methods for isolation and characterization of these peptides. The protocol starts with the immunoaffinity capture of naturally processed MHC-peptide complexes. The peptides dissociate from the class I human leukocyte antigens (HLAs) upon acid denaturation. This peptide cargo is then extracted and separated into fractions by HPLC, and the peptides in these fractions are identified using nUPLC-MS/MS. With this protocol, several thousand peptides can be identified from a wide variety of cell types, including cancerous and infected cells and those from tissues, with a turnaround time of 2-3 d.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicola Ternette
- The Jenner Institute, Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Abstract
The Lpp lipoprotein of Escherichia coli is the first identified protein with a covalently linked lipid. It is chemically bound by its C-terminus to murein (peptidoglycan) and inserts by the lipid at the N-terminus into the outer membrane. As the most abundant protein in E. coli (106 molecules per cell) it plays an important role for the integrity of the cell envelope. Lpp represents the type protein of a large variety of lipoproteins found in Gram-negative and Gram-positive bacteria and in archaea that have in common the lipid structure for anchoring the proteins to membranes but otherwise strongly vary in sequence, structure, and function. Predicted lipoproteins in known prokaryotic genomes comprise 2.7% of all proteins. Lipoproteins are modified by a unique phospholipid pathway and transferred from the cytoplasmic membrane into the outer membrane by a special system. They are involved in protein incorporation into the outer membrane, protein secretion across the cytoplasmic membrane, periplasm and outer membrane, signal transduction, conjugation, cell wall metabolism, antibiotic resistance, biofilm formation, and adhesion to host tissues. They are only found in bacteria and function as signal molecules for the innate immune system of vertebrates, where they cause inflammation and elicit innate and adaptive immune response through Toll-like receptors. This review discusses various aspects of Lpp and other lipoproteins of Gram-negative and Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany.
| | - Klaus Hantke
- IMIT, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
22
|
Abstract
Human lymphatic filariasis, the parasitic disease caused by the filarial nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori, is ranked as the second most complex clinical condition leading to permanent and long-term disability. The multiple antigen peptide (MAP) approach is an effective method to chemically synthesize and deliver multiple T and B cell epitopes as the constituents of a single immunogen. Here, we report on the design, chemical synthesis, and immunoprophylaxis of three epitopes that have been identified from promising vaccine candidates reported in our previous studies, constructed as MAP on an inert lysine core for human lymphatic filariasis in Jird model. Two epitopes from Thioredoxin and one epitope from Transglutaminase were constructed as MAP in an inert lysine core. The immunoprophylaxis of the synthetic vaccine construct studied in Jird models showed protective antibody (1 in 64,000 titer) and cellular immune response. Thioredoxin-Transglutaminase MAP (TT MAP) conferred a significantly high protection of 63.04% compared to control (8.5%). Multi-antigen peptide vaccine is one best approach to provide immunity against multiple antigens delivered by the complex filarial parasite.
Collapse
|
23
|
Yee PTI, Poh CL. T Cell Immunity To Enterovirus 71 Infection In Humans And Implications For Vaccine Development. Int J Med Sci 2018; 15:1143-1152. [PMID: 30123051 PMCID: PMC6097258 DOI: 10.7150/ijms.26450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/05/2018] [Indexed: 01/23/2023] Open
Abstract
Enterovirus 71 (EV-A71) is one of the major pathogens causing hand, foot and mouth disease (HFMD). Some strains can lead to neurological disease and fatality in children. Up to date, there is no FDA-approved vaccine to prevent severe HFMD and mortality. Although the inactivated vaccine has advanced to production in China, lack of long-term protection and the requirement of multiple boosters have necessitated the development of other types of vaccines. Recent studies indicate that cellular and not humoral immunity determines the clinical outcome of EV-A71 infections. High levels of cytokines such as IL-1β, IL-6, IL-10 and IFN-γ tend to correlate with clinical severity in patients with pulmonary edema and encephalitis. The live attenuated vaccine may serve as the preferred choice as it can induce excellent humoral and cellular immunity as well as live-long immunity. Expression of certain HLA alleles such as TNF-α promoter type II (-308 allele), HLA-A33 and HLA-DR17 responses have been linked to severe HFMD. However, the high variability of MHC genes could restrict T cell recognition and be a major obstacle in the design of peptide vaccines. Hence, the development of a T cell universal vaccine (incorporating both CD4+ and CD8+ T cell epitopes) that induces broad, multifunctional and cross-reactive CD8+ T cell responses maybe desirable.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| |
Collapse
|
24
|
Novel lipopeptides of ESAT-6 induce strong protective immunity against Mycobacterium tuberculosis: Routes of immunization and TLR agonists critically impact vaccine's efficacy. Vaccine 2016; 34:5677-5688. [PMID: 27693020 DOI: 10.1016/j.vaccine.2016.08.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the bacterial cause of tuberculosis, is a leading infectious agent worldwide. The development of a new vaccine against Mtb is essential to control global spread of tuberculosis, since the current vaccine BCG is not very effective and antibiotic resistance is a serious, burgeoning problem. ESAT-6 is a secreted protein of Mtb, which is absent in BCG but has been implicated in inducing protective immunity against Mtb. Peptide based subunit vaccines are attractive due to their safety and high specificity in eliciting immune responses, but small synthetic peptides are usually not very immunogenic. We have designed a novel subunit vaccine for Mtb by using simple lipid (palmitic acid) modified derivatives of peptides from ESAT-6 protein corresponding to dominant human T cell epitopes and examined their ability to stimulate protective immunity against Mtb by intranasal and subcutaneous immunization in mice. We also investigated how individual TLR agonists as adjuvants (PolyI:C, MPL and GDQ) contribute to enhancing the induced immune responses and resulting protective efficacy of our vaccine. We observed that single C-terminal palmitoyl-lysine modified lipopeptides derived from ESAT-6 induce significant cellular immune responses on their own upon mucosal and subcutaneous immunizations. Intriguingly, a combination of immunogenic lipopeptides of ESAT-6 antigen exhibited local (pulmonary) and systemic immune responses along with efficient protective efficacy when administered intranasally or subcutaneously. Surprisingly, combination of ESAT-6 derived lipopeptides with a TLR-4 agonist (MPL) enhanced protection, whereas TLR-3 (Poly I:C) and TLR-7/8 agonists (gardiquimod, GDQ) led to reduced protection associated with specific local and systemic immune modulation. Our studies demonstrate the potential of ESAT-6 derived lipopeptides as a promising vaccine candidate against Mtb, and emphasize that selection of adjuvant is critical for the success of vaccines. These findings demonstrate the promise of synthetic lipopeptides as the basis of a subunit vaccine for TB.
Collapse
|
25
|
Christiana I, Aparnaa R, Rohit R, Rao DN, Kaliraj P. Effect of muramyl dipeptide and alum adjuvants on immunization with Filarial multi antigen peptide vaccine in mice model. Helminthologia 2016. [DOI: 10.1515/helmin-2016-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Summary
Filarial thioredoxin and transglutaminase are enzymes that are secreted throughout the lifecycle of the parasites which are mandatory for the survival of the parasite. They are reported to be promising vaccine candidates, yet the limitation factors of these proteins to be developed as vaccines is their homology they share with the host proteins. Hence immunodominant epitopes from these proteins were constructed as peptides and immunised in mice model with Muramyl dipeptide (MDP) as adjuvant. Immunodominant epitopic portions from Filarial thioredoxin and transglutaminase which are non-homologous with host proteins were constructed as Multi Antigen Peptide (MAP) and assembled in an inert lysine core. The synthesised MAP was immunised with MDP as adjuvant in Balb/c mice model, humoral and cellular immune response were studied. Antibody titre levels for TT MAP with MDP was in par with alum as adjuvant in mice models. T cell responses of TT MAP with MDP showed a balanced TH1/TH2 response. The TH1 cytokines namely IL-2 and IFN-ɤ were also higher in TT MAP immunised groups with MDP as adjuvant whereas alum immunised groups was TH2 biased. TT MAP admixed with MDP as adjuvant proves to be safe in mice model. Further vaccination studies are underway in permissive animal models to determine the role of TT MAP with MDP as adjuvant in protective immunity against W. bancrofti and B. malayi infections.
Collapse
Affiliation(s)
- I. Christiana
- Centre for Biotechnology, Anna University, Chennai-600 025, TamilNadu, India
| | - R. Aparnaa
- Centre for Biotechnology, Anna University, Chennai-600 025, TamilNadu, India
| | - R. Rohit
- Centre for Biotechnology, Anna University, Chennai-600 025, TamilNadu, India
| | - D. Nageswara Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - P. Kaliraj
- Centre for Biotechnology, Anna University, Chennai-600 025, TamilNadu, India
| |
Collapse
|
26
|
Wan J, Alewood PF. Peptide-Decorated Dendrimers and Their Bioapplications. Angew Chem Int Ed Engl 2016; 55:5124-34. [PMID: 26990715 DOI: 10.1002/anie.201508428] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/01/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Jingjing Wan
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| | - Paul F. Alewood
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| |
Collapse
|
27
|
Epitope mapping of Brugia malayi ALT-2 and the development of a multi-epitope vaccine for lymphatic filariasis. J Helminthol 2016; 91:43-54. [PMID: 26892175 DOI: 10.1017/s0022149x16000055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human lymphatic filariasis is a neglected tropical disease, causing permanent and long-term disability with severe immunopathology. Abundant larval transcript (ALT) plays a crucial role in parasite establishment in the host, due to its multi-faceted ability in host immune regulation. Although ALT protein is a key filarial target, its exact function is yet to be explored. Here, we report epitope mapping and a structural model of Brugia malayi ALT-2, leading to development of a multi-epitope vaccine. Structural analysis revealed that ALT represents unique parasitic defence proteins belonging to a toxin family that carries a 'knottin' fold. ALT-2 has been a favourite vaccine antigen and was protective in filarial models. Due to the immunological significance of ALT-2, we mapped B-cell epitopes systematically and identified two epitope clusters, 1-30 and 89-128. To explore the prophylactic potential of epitope clusters, a recombinant multi-epitopic gene comprising the epitopic domains was engineered and the protective efficacy of recombinant ALT epitope protein (AEP) was tested in the permissive model, Mastomys coucha. AEP elicited potent antibody responses with predominant IgG1 isotype and conferred significantly high protection (74.59%) compared to ALT-2 (61.95%). This proved that these epitopic domains are responsible for the protective efficacy of ALT-2 and engineering protective epitopes as a multi-epitope protein may be a novel vaccine strategy for complex parasitic infections.
Collapse
|
28
|
Ranjbar MM, Gupta SK, Ghorban K, Nabian S, Sazmand A, Taheri M, Esfandyari S, Taheri M. Designing and Modeling of Complex DNA Vaccine Based on Tropomyosin Protein of Boophilus Genus Tick. Appl Biochem Biotechnol 2014; 175:323-39. [DOI: 10.1007/s12010-014-1245-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/10/2014] [Indexed: 12/13/2022]
|
29
|
|
30
|
Parra-López CA, Bernal-Estévez D, Vargas LE, Pulido-Calixto C, Salazar LM, Calvo-Calle JM, Stern LJ. An unstable Th epitope of P. falciparum fosters central memory T cells and anti-CS antibody responses. PLoS One 2014; 9:e100639. [PMID: 24983460 PMCID: PMC4077652 DOI: 10.1371/journal.pone.0100639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Malaria is transmitted by Plasmodium-infected anopheles mosquitoes. Widespread resistance of mosquitoes to insecticides and resistance of parasites to drugs highlight the urgent need for malaria vaccines. The most advanced malaria vaccines target sporozoites, the infective form of the parasite. A major target of the antibody response to sporozoites are the repeat epitopes of the circumsporozoite (CS) protein, which span almost one half of the protein. Antibodies to these repeats can neutralize sporozoite infectivity. Generation of protective antibody responses to the CS protein (anti-CS Ab) requires help by CD4 T cells. A CD4 T cell epitope from the CS protein designated T* was previously identified by screening T cells from volunteers immunized with irradiated P. falciparum sporozoites. The T* sequence spans twenty amino acids that contains multiple T cell epitopes restricted by various HLA alleles. Subunit malaria vaccines including T* are highly immunogenic in rodents, non-human primates and humans. In this study we characterized a highly conserved HLA-DRβ1*04:01 (DR4) restricted T cell epitope (QNT-5) located at the C-terminus of T*. We found that a peptide containing QNT-5 was able to elicit long-term anti-CS Ab responses and prime CD4 T cells in HLA-DR4 transgenic mice despite forming relatively unstable MHC-peptide complexes highly susceptible to HLA-DM editing. We attempted to improve the immunogenicity of QNT-5 by replacing the P1 anchor position with an optimal tyrosine residue. The modified peptide QNT-Y formed stable MHC-peptide complexes highly resistant to HLA-DM editing. Contrary to expectations, a linear peptide containing QNT-Y elicited almost 10-fold lower long-term antibody and IFN-γ responses compared to the linear peptide containing the wild type QNT-5 sequence. Some possibilities regarding why QNT-5 is more effective than QNT-Y in inducing long-term T cell and anti-CS Ab when used as vaccine are discussed.
Collapse
Affiliation(s)
- Carlos A. Parra-López
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Graduate School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (CAP-L); (LJS)
| | - David Bernal-Estévez
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Graduate School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
- Fundación Salud de los Andes, Research Group of Immunology and Clinical Oncology - GIIOC, Bogotá, Colombia
| | - Luis Eduardo Vargas
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carolina Pulido-Calixto
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luz Mary Salazar
- Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - J. Mauricio Calvo-Calle
- University of Massachusetts Medical School, Department of Pathology and Biochemistry and the Department of Molecular Pharmacology, Worcester, Massachusetts, United States of America
| | - Lawrence J. Stern
- University of Massachusetts Medical School, Department of Pathology and Biochemistry and the Department of Molecular Pharmacology, Worcester, Massachusetts, United States of America
- * E-mail: (CAP-L); (LJS)
| |
Collapse
|
31
|
Topchiy E, Lehmann T. Chelation of Ca²⁺ ions by a peptide from the repeat region of the Plasmodium falciparum circumsporozoite protein. Malar J 2014; 13:195. [PMID: 24884685 PMCID: PMC4057913 DOI: 10.1186/1475-2875-13-195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elegant efforts towards the determination of the structural tendencies of peptides derived from the Plasmodium falciparum circumsporozoite protein allowed the proposal of a left-handed helical conformation for this protein. The use of circular dichroism and Fourier-transformed infrared spectroscopy applied to various peptides derived from this protein, indicated that they bind Ca²⁺ ions in helical environments. The essential role of calcium in cell function and biological mechanisms is well known. It influences the development of several stages of the P. falciparum parasite. However, there is very little knowledge regarding calcium coordination to circumsporozoite proteins. In the present investigation the chelation of Ca²⁺ by the (NANPNVDP)₃NANP peptide, which contains the first seven 4-amino-acid blocks of the repeat region of the P. falciparum circumsporozoite protein, is tested with the use of circular dichroism and nuclear magnetic resonance spectroscopies. Spectroscopy-based solution conformations of the Ca-bound peptide are also determined. METHODS NMR spectroscopy and circular dichroism were used to test Ca²⁺ coordination by the peptide (NANPNVDP)3NANP. Solution conformations for the Ca-bound peptide were determined through molecular dynamics calculations. RESULTS The NMR spectra collected for (NANPNVDP)₃NANP indicate that the signals generated by some of the amino acids located at its C-terminal end are shifted from their original positions upon Ca²⁺ addition. The solution conformations determined for the Ca-bound peptide indicate that the metal ion can be either six- or seven-coordinate. CONCLUSIONS The investigation described herein strongly supports the coordination of Ca²⁺ ions to some of the amino acids located at the C-terminus of the peptide (NANPNVDP)₃NANP. The solution conformations determined for the Ca-bound congener of this peptide display many structural features associated to Ca-binding proteins.
Collapse
Affiliation(s)
- Elena Topchiy
- Department of Chemistry, University of Wyoming Laramie, Laramie, WY 82071, USA
| | - Teresa Lehmann
- Department of Chemistry, University of Wyoming Laramie, Laramie, WY 82071, USA
| |
Collapse
|
32
|
Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands. Vaccines (Basel) 2014; 2:323-53. [PMID: 26344622 PMCID: PMC4494261 DOI: 10.3390/vaccines2020323] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/07/2023] Open
Abstract
Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen depot at the immunization site) to specific activation of immune cells leading to improved host innate and adaptive responses. Although the detailed molecular mechanism of action of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided new critical information on immunostimulatory effect of numerous bacterial components that engage TLRs. These ligands have been shown to improve both the quality and the quantity of host adaptive immune responses when used in vaccine formulations targeted to infectious diseases and cancer that require both humoral and cell-mediated immunity. The potential of such TLR adjuvants in improving the design and the outcomes of several vaccines is continuously evolving, as new agonists are discovered and tested in experimental and clinical models of vaccination. In this review, a summary of the recent progress in development of TLR adjuvants is presented.
Collapse
|
33
|
Decostaire IE, Lelièvre D, Aucagne V, Delmas AF. Solid phase oxime ligations for the iterative synthesis of polypeptide conjugates. Org Biomol Chem 2014; 12:5536-43. [DOI: 10.1039/c4ob00760c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All on-resin! An efficient C-to-N iterative strategy for solid phase chemical ligations (SPCL).
Collapse
Affiliation(s)
| | - Dominique Lelièvre
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans cedex 2, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans cedex 2, France
| | - Agnès F. Delmas
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans cedex 2, France
| |
Collapse
|
34
|
Collier MA, Gallovic MD, Peine KJ, Duong AD, Bachelder EM, Gunn JS, Schlesinger LS, Ainslie KM. Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Rev Anti Infect Ther 2013; 11:1225-35. [PMID: 24134600 DOI: 10.1586/14787210.2013.845524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intracellular pathogens present a major health risk because of their innate ability to evade clearance. Their location within host cells and ability to react to the host environment by mutation or transcriptional changes often enables survival mechanisms to resist standard therapies. Host-directed drugs do not target the pathogen, minimizing the potential development of drug resistance; however, they can be difficult to deliver efficiently to intracellular sites. Vehicle delivery of host-mediated response drugs not only improves drug distribution and toxicity profiles, but can reduce the total amount of drug necessary to clear infection. In this article, we will review some host-directed drugs and current drug delivery techniques that can be used to efficiently clear intracellular infections.
Collapse
Affiliation(s)
- Michael A Collier
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
El-Mahdi O, Melnyk O. α-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. Bioconjug Chem 2013; 24:735-65. [PMID: 23578008 DOI: 10.1021/bc300516f] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the 1990s, α-oxo aldehyde or glyoxylic acid chemistry has inspired a vast array of synthetic tools for tailoring peptide or protein structures, for developing peptides endowed with novel physicochemical properties or biological functions, for assembling a large diversity of bioconjugates or hybrid materials, or for designing peptide-based micro or nanosystems. This past decade, important developments have enriched the α-oxo aldehyde synthetic tool box in peptide bioconjugation chemistry and explored novel applications. The aim of this review is to give a large overview of this creative field.
Collapse
Affiliation(s)
- Ouafâa El-Mahdi
- Université Sidi Mohamed Ben Abdellah, Faculté Polydisciplinaire de Taza, Morocco
| | | |
Collapse
|
36
|
Powell TJ, Tang J, Derome ME, Mitchell RA, Jacobs A, Deng Y, Palath N, Cardenas E, Boyd JG, Nardin E. Plasmodium falciparum synthetic LbL microparticle vaccine elicits protective neutralizing antibody and parasite-specific cellular immune responses. Vaccine 2013; 31:1898-904. [PMID: 23481177 DOI: 10.1016/j.vaccine.2013.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 01/31/2023]
Abstract
Epitopes of the circumsporozoite (CS) protein of Plasmodium falciparum, the most pathogenic species of the malaria parasite, have been shown to elicit protective immunity in experimental animals and human volunteers. The mechanisms of immunity include parasite-neutralizing antibodies that can inhibit parasite motility in the skin at the site of infection and in the bloodstream during transit to the hepatocyte host cell and also block interaction with host cell receptors on hepatocytes. In addition, specific CD4+ and CD8+ cellular mechanisms target the intracellular hepatic forms, thus preventing release of erythrocytic stage parasites from the infected hepatocyte and the ensuing blood stage cycle responsible for clinical disease. An innovative method for producing particle vaccines, layer-by-layer (LbL) fabrication of polypeptide films on solid CaCO3 cores, was used to produce synthetic malaria vaccines containing a tri-epitope CS peptide T1BT comprising the antibody epitope of the CS repeat region (B) and two T-cell epitopes, the highly conserved T1 epitope and the universal epitope T. Mice immunized with microparticles loaded with T1BT peptide developed parasite-neutralizing antibodies and malaria-specific T-cell responses including cytotoxic effector T-cells. Protection from liver stage infection following challenge with live sporozoites from infected mosquitoes correlated with neutralizing antibody levels. Although some immunized mice with low or undetectable neutralizing antibodies were also protected, depletion of T-cells prior to challenge resulted in the majority of mice remaining resistant to challenge. In addition, mice immunized with microparticles bearing only T-cell epitopes were not protected, demonstrating that cellular immunity alone was not sufficient for protective immunity. Although the microparticles without adjuvant were immunogenic and protective, a simple modification with the lipopeptide TLR2 agonist Pam3Cys increased the potency and efficacy of the LbL vaccine candidate. This study demonstrates the potential of LbL particles as promising malaria vaccine candidates using the T1BT epitopes from the P. falciparum CS protein.
Collapse
Affiliation(s)
- Thomas J Powell
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Plasmodium falciparum variability and immune evasion proceed from antigenicity of consensus sequences from DBL6ε; generalization to all DBL from VAR2CSA. PLoS One 2013; 8:e54882. [PMID: 23372786 PMCID: PMC3555990 DOI: 10.1371/journal.pone.0054882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
We studied all consensus sequences within the four least ‘variable blocks’ (VB) present in the DBL6ε domain of VAR2CSA, the protein involved in the adhesion of infected red blood cells by Plasmodium falciparum that causes the Pregnancy-Associated Malaria (PAM). Characterising consensus sequences with respect to recognition of antibodies and percentage of responders among pregnant women living in areas where P. falciparum is endemic allows the identification of the most antigenic sequences within each VB. When combining these consensus sequences among four serotypes from VB1 or VB5, the most often recognized ones are expected to induce pan-reactive antibodies recognizing VAR2CSA from all plasmodial strains. These sequences are of main interest in the design of an immunogenic molecule. Using a similar approach than for DBL6ε, we studied the five other DBL and the CIDRpam from VAR2CSA, and again identified VB segments with highly conserved consensus sequences. In addition, we identified consensus sequences in other var genes expressed by non-PAM parasites. This finding paves the way for vaccine design against other pathologies caused by P. falciparum.
Collapse
|
38
|
Liu H, Huang L, Luo J, Chen W, Zhang Z, Liao X, Dai M, Shu Y, Cao K. Prediction and identification of B cell epitopes derived from EWS/FLI-l fusion protein of Ewing's sarcoma. Med Oncol 2012; 29:3421-3430. [PMID: 22562156 DOI: 10.1007/s12032-012-0243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
To predict B cell epitope of Ewing's sarcoma EWS/FLI-l fusion protein and to analyze its antigenicity and immunogenicity. Comprehensive algorithms were applied to predict the possible B cell epitopes of EWS/FLI-l fusion protein. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) analysis were performed to identify the synthesized epitope peptides, ELISA assays and Western blot to detect the antigenicity, and the immunogenicity of epitope peptides. Three B cell epitopes were screened out, and HPLC and MS analysis confirmed all three synthesized epitope peptides were demandable. ELISA assays verified all three epitope peptides could prime intense antigen-antibody reaction and induce ideal antibody titers after immunization to the New Zealand white rabbit. However, Western blot confirmed that antiserum of one of these epitope peptides could not recognize EWS/FLI-1 protein. Two B cell epitopes, PQDGNKPTETSQPQ and DPDEVARRWGQRKS, derived from EWS/FLI-l protein, are identified to have potential antigenicity and immunogenicity.
Collapse
MESH Headings
- Algorithms
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
- Blotting, Western
- Cancer Vaccines/immunology
- Chromatography, High Pressure Liquid
- Enzyme-Linked Immunosorbent Assay
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Humans
- Mass Spectrometry
- Molecular Sequence Data
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/immunology
- Protein Structure, Secondary
- Proto-Oncogene Protein c-fli-1/chemistry
- Proto-Oncogene Protein c-fli-1/immunology
- RNA-Binding Protein EWS/chemistry
- RNA-Binding Protein EWS/immunology
- Rabbits
- Sarcoma, Ewing/immunology
Collapse
Affiliation(s)
- Huiwen Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gupta K, Singh S, Gupta K, Khan N, Sehgal D, Haridas V, Roy RP. A Bioorthogonal Chemoenzymatic Strategy for Defined Protein Dendrimer Assembly. Chembiochem 2012; 13:2489-94. [DOI: 10.1002/cbic.201200559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 01/05/2023]
|
40
|
Rudra JS, Mishra S, Chong AS, Mitchell RA, Nardin EH, Nussenzweig V, Collier JH. Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 2012; 33:6476-84. [PMID: 22695068 DOI: 10.1016/j.biomaterials.2012.05.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/17/2012] [Indexed: 12/23/2022]
Abstract
Biomaterials that modulate innate and adaptive immune responses are receiving increasing interest as adjuvants for eliciting protective immunity against a variety of diseases. Previous results have indicated that self-assembling β-sheet peptides, when fused with short peptide epitopes, can act as effective adjuvants and elicit robust and long-lived antibody responses. Here we investigated the mechanism of immunogenicity and the quality of antibody responses raised by a peptide epitope from Plasmodium falciparum circumsporozoite (CS) protein, (NANP)(3),conjugated to the self-assembling peptide domain Q11. The mechanism of adjuvant action was investigated in knockout mice with impaired MyD88, NALP3, TLR-2, or TLR-5 function, and the quality of antibodies raised against (NANP)(3)-Q11 was assessed using a transgenic sporozoite neutralizing (TSN) assay for malaria infection. (NANP)(3)-Q11 self-assembled into nanofibers, and antibody responses lasted up to 40 weeks in C57BL/6 mice. The antibody responses were T cell- and MyD88-dependent. Sera from mice primed with either irradiated sporozoites or a synthetic peptide, (T1BT*)(4)-P3C, and boosted with (NANP)(3)-Q11 showed significant increases in antibody titers and significant inhibition of sporozoite infection in TSN assays. In addition, two different epitopes could be self-assembled together without compromising the strength or duration of the antibody responses raised against either of them, making these materials promising platforms for self-adjuvanting multi-antigenic immunotherapies.
Collapse
Affiliation(s)
- Jai S Rudra
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Storti-Melo LM, da Costa DR, Souza-Neiras WC, Cassiano GC, Couto VSCD, Póvoa MM, Soares IDS, de Carvalho LH, Arevalo-Herrera M, Herrera S, Rossit ARB, Cordeiro JA, de Mattos LC, Machado RLD. Influence of HLA-DRB-1 alleles on the production of antibody against CSP, MSP-1, AMA-1, and DBP in Brazilian individuals naturally infected with Plasmodium vivax. Acta Trop 2012; 121:152-5. [PMID: 22107686 DOI: 10.1016/j.actatropica.2011.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/19/2011] [Accepted: 10/12/2011] [Indexed: 11/16/2022]
Abstract
We evaluated the influence of allelic frequency of the human leukocyte antigen (HLA) -DRB1 on the acquisition of antibody response against malaria sporozoite and merozoite peptides in patients with Plasmodium vivax malaria acquired in endemic areas of Brazil. IgG antibodies were detected by enzyme-linked immunosorbent assay against four peptides of circumsporozoite protein (CSP) (amino, carboxyl, and VK210 and VK247 repeats) and peptides of merozoite surface protein 1 (MSP-1), apical membrane antigen 1 (AMA-1), and Duffy-binding protein (DBP). We found an association between HLA-DR3 and HLA-DR5 alleles and lack of antibody response to CSP amino terminal, as well as an association between HLA-DR3 and the highest antibody response to MSP1 (Pv200L). In conclusion, we suggest a potential regulatory role of the HLA-DRB1 alleles in the production of antibodies to a conserved region of P. vivax CSP and MSP1 in Brazilian population exposed to malaria.
Collapse
Affiliation(s)
- Luciane Moreno Storti-Melo
- Departamento de Biociências, Campus Universitário Prof. Alberto Carvalho, Universidade Federal de Sergipe, Itabaiana, SE, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Corradin G, Céspedes N, Verdini A, Kajava AV, Arévalo-Herrera M, Herrera S. Malaria vaccine development using synthetic peptides as a technical platform. Adv Immunol 2012; 114:107-49. [PMID: 22449780 DOI: 10.1016/b978-0-12-396548-6.00005-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.
Collapse
|
43
|
Gálvez P, Ruiz A, Clares B. El futuro de la medicina clínica hacia nuevas terapias: terapia celular, génica y nanomedicina. Med Clin (Barc) 2011; 137:645-9. [DOI: 10.1016/j.medcli.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/03/2010] [Accepted: 12/14/2010] [Indexed: 01/06/2023]
|
44
|
Xia M, Tan M, Wei C, Zhong W, Wang L, McNeal M, Jiang X. A candidate dual vaccine against influenza and noroviruses. Vaccine 2011; 29:7670-7. [PMID: 21839795 PMCID: PMC3190067 DOI: 10.1016/j.vaccine.2011.07.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/22/2011] [Accepted: 07/31/2011] [Indexed: 02/07/2023]
Abstract
The extracellular domain of the matrix protein 2 (M2e) of influenza viruses is highly conserved among all influenza A subtypes, making it a suitable target for a universal influenza vaccine. In this study, we demonstrated an enhanced immune response and protection of a chimeric M2e vaccine against influenza A viruses using our newly developed vaccine platform, the norovirus P particle, to present the M2e peptide. The 23-amino acid peptide was inserted into one of the surface loops of the P protein, resulting in 24 copies of M2e presented on each P particle. Significantly (P<0.001) increased antibody responses to M2e were observed in mice immunized with the P particle-M2e chimera compared with those immunized with the free M2e peptides. Mice immunized with the P particle-M2e vaccine were fully protected (100% survived) against lethal challenge of a mouse adapted human influenza virus PR8 (H1N1), while only low survival rates (<12.5%) were found in mice immunized with the free M2e peptides or wild type P particle. In addition, the mouse sera collected after immunization with the P particle-M2e vaccine were able to block the binding of norovirus virus-like particle and P particle to histo-blood group antigen receptors. These results suggest that the P particle-M2e chimera can be used as dual vaccine against both noroviruses and influenza viruses.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Corresponding authors: Xi Jiang, Ph. D., Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA, Tel: 513-636-0119, Fax: 513-636-7655, . Ming Tan, Ph. D., Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA, Tel: 513-636-0510, Fax: 513-636-7655,
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Corresponding authors: Xi Jiang, Ph. D., Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA, Tel: 513-636-0119, Fax: 513-636-7655, . Ming Tan, Ph. D., Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA, Tel: 513-636-0510, Fax: 513-636-7655,
| |
Collapse
|
45
|
Sedegah M, Tamminga C, McGrath S, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Manohar N, Richie NO, Wood C, Long CA, Regis D, Williams FT, Shi M, Chuang I, Spring M, Epstein JE, Mendoza-Silveiras J, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Soisson L, Diggs C, Carucci D, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults. PLoS One 2011; 6:e24586. [PMID: 22003383 PMCID: PMC3189181 DOI: 10.1371/journal.pone.0024586] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 08/15/2011] [Indexed: 11/24/2022] Open
Abstract
Background Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. Methodology/Principal Findings The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7–10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. Significance As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-γ responses. Trial Registration ClinicalTrials.govNCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dodoo D, Hollingdale MR, Anum D, Koram KA, Gyan B, Akanmori BD, Ocran J, Adu-Amankwah S, Geneshan H, Abot E, Legano J, Banania G, Sayo R, Brambilla D, Kumar S, Doolan DL, Rogers WO, Epstein J, Richie TL, Sedegah M. Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 2011; 10:168. [PMID: 21689436 PMCID: PMC3132199 DOI: 10.1186/1475-2875-10-168] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays. METHODS In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant Plasmodium falciparum CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by ex vivo IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart. RESULTS In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of ex vivo ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants. CONCLUSIONS All participants were positive for at least one malaria protein by ELISA, with results dependent on the criteria for positivity. Likewise, ELISpot responses varied among participants, but were relatively reproducible by the three methods tested, especially the least stringent, when assays were repeated. However, results often differed between samples taken two weeks apart, indicating significant biological variability over short intervals.
Collapse
Affiliation(s)
- Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine 2011; 29:3341-55. [PMID: 20713100 PMCID: PMC3000864 DOI: 10.1016/j.vaccine.2010.08.002] [Citation(s) in RCA: 378] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/27/2010] [Accepted: 08/01/2010] [Indexed: 12/29/2022]
Abstract
This work describes the nature and strength of the immune response induced by various Toll-like receptor ligands and their ability to act as vaccine adjuvants. It reviews the various ligands capable of triggering individual TLRs, and then focuses on the efficacy and safety of those agents for which clinical results are available.
Collapse
Affiliation(s)
- Folkert Steinhagen
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States
| | | | | | | |
Collapse
|
48
|
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev 2011; 111:3459-507. [DOI: 10.1021/cr100223m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad Nacional de Colombia
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| |
Collapse
|
49
|
Soliman GM, Sharma A, Maysinger D, Kakkar A. Dendrimers and miktoarm polymers based multivalent nanocarriers for efficient and targeted drug delivery. Chem Commun (Camb) 2011; 47:9572-87. [DOI: 10.1039/c1cc11981h] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Martinez P, Lopez C, Saravia C, Vanegas M, Patarroyo MA. Evaluation of the antigenicity of universal epitopes from PvDBPII in individuals exposed to Plasmodium vivax malaria. Microbes Infect 2010; 12:1188-97. [DOI: 10.1016/j.micinf.2010.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|