1
|
Moore TC, Pinkerton TS, Petro TM. IRF3 Promotes Production of IL-6 and Nitric Oxide but Represses CCL22 in RAW264.7 Macrophage Cells Exposed to Lipopolysaccharides in Culture. J Inflamm Res 2025; 18:1255-1265. [PMID: 39897523 PMCID: PMC11784258 DOI: 10.2147/jir.s496930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/18/2025] [Indexed: 02/04/2025] Open
Abstract
Introduction Macrophage responses to lipopolysaccharides (LPS) drive inflammatory diseases, such as periodontitis, with production of IL-6 and Nitric Oxide (NO). However, anti-inflammatory macrophages counter inflammation with the production of CCL22. Interferon regulatory factor 3 (IRF3) plays a significant role in expression of both IL-6 and NO during macrophage responses through Interferon-stimulated Response Elements (ISREs) of promoters. Methods To determine the role of IRF3 in LPS-induced pro- and anti-inflammatory macrophage responses, we used the macrophage cell line RAW264.7 modified with an ISRE promoter driving secreted luciferase (RAW264.7-Lucia) to assess IRF3 activity in response to Escherichia coli and Porphyromonas gingivalis LPS. For comparison, responses to poly I:C and IFN-gamma and responses from RAW264.7 cells deficient in IRF3 were also assessed. Results Herein, LPS of P. gingivalis, significantly enhanced production of IL-6 and NO that was induced by E. coli LPS but significantly decreased poly I:C-induced ISRE promoter activity. Moreover, IRF3 deficiency depressed the LPS-induced ISRE promoter activity and NO production but increased IL-6 and CCL22 in response to LPS. Restoration of IRF3 expression in IRF3KO RAW cells increased IL-6, restored NO, and decreased CCL22 production in response to LPS of E. coli. Discussion Therefore, IRF3 is critical to the expression of pro- and anti-inflammatory factors produced by macrophages responding to LPS and could be a target during periodontitis treatment.
Collapse
Affiliation(s)
- Tyler C Moore
- Department of Biology, College of Science and Technology, Bellevue University, Bellevue, NE, 68005, USA
| | - Terrence Scott Pinkerton
- Department of Biology, College of Science and Technology, Bellevue University, Bellevue, NE, 68005, USA
| | - Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| |
Collapse
|
2
|
Sun Y, Cao Z, Zhang P, Wei C, Li J, Wu Y, Zhou Y. IFN regulatory factor 3 of golden pompano and its NLS domain are involved in antibacterial innate immunity and regulate the expression of type I interferon (IFNa3). Front Immunol 2023; 14:1128196. [PMID: 36817435 PMCID: PMC9933344 DOI: 10.3389/fimmu.2023.1128196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The transcription factor interferon regulatory factor 3 (IRF3) plays an important role in host defence against viral infections. However, its role during bacterial infection in teleosts remains unclear. In the present study, we evaluated the antibacterial effects of Trachinotus ovatus IRF3 (TroIRF3) and how it regulates type I interferon (IFN). Methods Subcellular localisation experiments, overexpression, and quantitative real-time PCR (qRT-PCR) were performed to examine the nuclear localisation signal (NLS) of TroIRF3 and its role in the antibacterial regulatory function of TroIRF3. We assessed the binding activity of TroIRF3 to the IFNa3 promoter by luciferase reporter assay. Results and Discussion The results showed that TroIRF3 was constitutively expressed at high levels in the gill and liver. TroIRF3 was significantly upregulated and transferred from the cytoplasm to the nucleus after Vibrio harveyi infection. By overexpressing TroIRF3, the fish were able to inhibit the replication of V. harveyi, whereas knocking it down increased bacterial replication. Moreover, the overexpression of TroIRF3 increased type I interferon (IFNa3) production and the IFN signalling molecules. The NLS, which is from the 64-127 amino acids of TroIRF3, contains the basic amino acids KR74/75 and RK82/84. The results proved that NLS is required for the efficient nuclear import of TroIRF3 and that the NLS domain of TroIRF3 consists of the key amino acids KR74/75 and RK82/84. The findings also showed that NLS plays a key role in the antibacterial immunity and upregulation of TroIFNa3 induced by TroIRF3. Moreover, TroIRF3 induces TroIFNa3 promoter activity, whereas these effects are inhibited when the NLS domain is deficient. Overall, our results suggested that TroIRF3 is involved in the antibacterial immunity and regulation of type I IFN in T. ovatus and that the NLS of TroIRF3 is vital for IRF3-mediated antibacterial responses, which will aid in understanding the immune role of fish IRF3.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| |
Collapse
|
3
|
Zhang X, Chen L, Hu C, Fast D, Zhang L, Yang B, Kan J, Du J. Curcumin attenuates poly(I:C)-induced immune and inflammatory responses in mouse macrophages by inhibiting TLR3/TBK1/IFNB cascade. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
St Germain C, Zhao H, Sinha V, Sanz LA, Chédin F, Barlow J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2051-2073. [PMID: 35100392 PMCID: PMC8887484 DOI: 10.1093/nar/gkac035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Conflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription–replication interactions. Here, we report a novel method to identify genomic loci prone to transcription–replication interactions termed transcription–replication immunoprecipitation on nascent DNA sequencing, TRIPn-Seq. TRIPn-Seq employs the sequential immunoprecipitation of RNA polymerase 2 phosphorylated at serine 5 (RNAP2s5) followed by enrichment of nascent DNA previously labeled with bromodeoxyuridine. Using TRIPn-Seq, we mapped 1009 unique transcription–replication interactions (TRIs) in mouse primary B cells characterized by a bimodal pattern of RNAP2s5, bidirectional transcription, an enrichment of RNA:DNA hybrids, and a high probability of forming G-quadruplexes. TRIs are highly enriched at transcription start sites and map to early replicating regions. TRIs exhibit enhanced Replication Protein A association and TRI-associated genes exhibit higher replication fork termination than control transcription start sites, two marks of replication stress. TRIs colocalize with double-strand DNA breaks, are enriched for deletions, and accumulate mutations in tumors. We propose that replication stress at TRIs induces mutations potentially contributing to age-related disease, as well as tumor formation and development.
Collapse
Affiliation(s)
- Commodore P St Germain
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Vrishti Sinha
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jacqueline H Barlow
- To whom correspondence should be addressed. Tel: +1 530 752 9529; Fax: +1 530 752 9014;
| |
Collapse
|
5
|
Sun T, Wei C, Wang D, Wang X, Wang J, Hu Y, Mao X. The small RNA mascRNA differentially regulates TLR-induced proinflammatory and antiviral responses. JCI Insight 2021; 6:150833. [PMID: 34582376 PMCID: PMC8663567 DOI: 10.1172/jci.insight.150833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
MALAT1-associated small cytoplasmic RNA (mascRNA) is a highly conserved transfer RNA-like (tRNA-like) noncoding RNA whose function remains largely unknown. We show here that this small RNA molecule played a role in the stringent control of TLR-mediated innate immune responses. mascRNA inhibited activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling and the production of inflammatory cytokines in macrophages stimulated with LPS, a TLR4 ligand. Furthermore, exogenous mascRNA alleviated LPS-induced lung inflammation. However, mascRNA potentiated the phosphorylation of IRF3 and STAT1 and the transcription of IFN-related genes in response to the TLR3 ligand poly(I:C) both in vitro and in vivo. Mechanistically, mascRNA was found to enhance K48-linked ubiquitination and proteasomal degradation of TRAF6, thereby negatively regulating TLR-mediated MyD88-dependent proinflammatory signaling while positively regulating TRIF-dependent IFN signaling. Additionally, heterogeneous nuclear ribonucleoprotein H (hnRNP H) and hnRNP F were found to interact with mascRNA, promote its degradation, and contribute to the fine-tuning of TLR-triggered immune responses. Taken together, our data identify a dual role of mascRNA in both negative and positive regulation of innate immune responses.
Collapse
Affiliation(s)
- Tao Sun
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Chunxue Wei
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Daoyong Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Xuxu Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Jiao Wang
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Yuqing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Xiaohua Mao
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease.,Department of Biochemistry and Molecular Biology, School of Medicine.,and Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Xie Y, Wang L, Sun H, Shang Q, Wang Y, Zhang G, Yang W, Jiang S. A polysaccharide extracted from alfalfa activates splenic B cells by TLR4 and acts primarily via the MAPK/p38 pathway. Food Funct 2021; 11:9035-9047. [PMID: 33021613 DOI: 10.1039/d0fo01711f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alfalfa polysaccharide (APS) has been proposed to exhibit growth-promoting and immune-enhancing bodily functions in vivo. However, little is known about its downstream immunomodulatory and intrinsic molecular mechanisms. Herein, mouse splenic lymphocytes were isolated to characterize the immunomodulatory effects and molecular mechanisms of APS in vitro. The results demonstrated that APS selectively improved the cell viability and IgM production of B cells, but no effects on T cell viability or secretion of IL-2, IL-4 and IFN-γ were observed in vitro. The receptor blocking assay showed that TLR4 was the primary receptor involved in APS-mediated B cell activation, which was confirmed by the results obtained using C57BL/10ScNJ (TLR4 gene-deficient) mice. Moreover, APS activated the TLR4-MyD88 signaling pathway at the translational level by significantly increasing the protein expression of TLR4 and MyD88. Downstream pathway blocking assay demonstrated that both the MAPK and NF-κB pathways were involved in APS-induced B cell activation. Additionally, APS significantly enhanced the phosphorylation of p38, ERK, and JNK and activated the nuclear translocation of the NF-κB p65 subunit. Therefore, we concluded that APS specifically activates the immune functions of splenic B cells by TLR4, acting through the MAPK and NF-κB signaling pathways, and potently activates the p38 pathway.
Collapse
Affiliation(s)
- Yuhuai Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Hua Sun
- Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Qinghui Shang
- Department of Animal Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Yuxi Wang
- Lethbridge Research Centre, Agriculture and Agri-Food C, anadaLethbridge, Alberta T1J 4B1, Canada
| | - Guiguo Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
7
|
Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD, Lomonte P, Grassi C, Palamara AT, De Chiara G. Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends Microbiol 2020; 28:808-820. [PMID: 32386801 DOI: 10.1016/j.tim.2020.03.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) establishes latency preferentially in sensory neurons of peripheral ganglia. A variety of stresses can induce recurrent reactivations of the virus, which spreads and then actively replicates to the site of primary infection (usually the lips or eyes). Viral particles produced following reactivation can also reach the brain, causing a rare but severe form of diffuse acute infection, namely herpes simplex encephalitis. Most of the time, this infection is clinically asymptomatic. However, it was recently correlated with the production and accumulation of neuropathological biomarkers of Alzheimer's disease. In this review we discuss the different cellular and molecular mechanisms underlying the acute and long-term damage caused by HSV-1 infection in the brain.
Collapse
Affiliation(s)
- Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giorgia Napoletani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Olga Kolesova
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrick Lomonte
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), Lyon, France
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy.
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
8
|
Sin WX, Yeong JPS, Lim TJF, Su IH, Connolly JE, Chin KC. IRF-7 Mediates Type I IFN Responses in Endotoxin-Challenged Mice. Front Immunol 2020; 11:640. [PMID: 32373120 PMCID: PMC7176903 DOI: 10.3389/fimmu.2020.00640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
IRF-7 mediates robust production of type I IFN via MyD88 of the TLR9 pathway in plasmacytoid dendritic cells (pDCs). Previous in vitro studies using bone marrow-derived dendritic cells lacking either Irf7 or Irf3 have demonstrated that only IRF-3 is required for IFN-β production in the TLR4 pathway. Here, we show that IRF-7 is essential for both type I IFN induction and IL-1β responses via TLR4 in mice. Mice lacking Irf7 were defective in production of both IFN-β and IL-1β, an IFN-β-induced pro-inflammatory cytokine, after LPS challenge. IFN-β production in response to LPS was impaired in IRF-7-deficient macrophages, but not dendritic cells. Unlike pDCs, IRF-7 is activated by the TRIF-, but not MyD88-, dependent pathway via TBK-1 in macrophages after LPS stimulation. Like pDCs, resting macrophages constitutively expressed IRF-7 protein. This basal IRF-7 protein was completely abolished in either Ifnar1 -/- or Stat1 -/- macrophages, which corresponded with the loss of LPS-stimulated IFN-β induction in these macrophages. These findings demonstrate that macrophage IRF-7 is critical for LPS-induced type I IFN responses, which in turn facilitate IL-1β production in mice.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Joe Poh-Sheng Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Thomas Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Keh-Chuang Chin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Javaid N, Choi S. Toll-like Receptors from the Perspective of Cancer Treatment. Cancers (Basel) 2020; 12:E297. [PMID: 32012718 PMCID: PMC7072551 DOI: 10.3390/cancers12020297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.
Collapse
Affiliation(s)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
10
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Mitchell S, Mercado EL, Adelaja A, Ho JQ, Cheng QJ, Ghosh G, Hoffmann A. An NFκB Activity Calculator to Delineate Signaling Crosstalk: Type I and II Interferons Enhance NFκB via Distinct Mechanisms. Front Immunol 2019; 10:1425. [PMID: 31293585 PMCID: PMC6604663 DOI: 10.3389/fimmu.2019.01425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
Nuclear factor kappa B (NFκB) is a transcription factor that controls inflammation and cell survival. In clinical histology, elevated NFκB activity is a hallmark of poor prognosis in inflammatory disease and cancer, and may be the result of a combination of diverse micro-environmental constituents. While previous quantitative studies of NFκB focused on its signaling dynamics in single cells, we address here how multiple stimuli may combine to control tissue level NFκB activity. We present a novel, simplified model of NFκB (SiMoN) that functions as an NFκB activity calculator. We demonstrate its utility by exploring how type I and type II interferons modulate NFκB activity in macrophages. Whereas, type I IFNs potentiate NFκB activity by inhibiting translation of IκBα and by elevating viral RNA sensor (RIG-I) expression, type II IFN amplifies NFκB activity by increasing the degradation of free IκB through transcriptional induction of proteasomal cap components (PA28). Both cross-regulatory mechanisms amplify NFκB activation in response to weaker (viral) inducers, while responses to stronger (bacterial or cytokine) inducers remain largely unaffected. Our work demonstrates how the NFκB calculator can reveal distinct mechanisms of crosstalk on NFκB activity in interferon-containing microenvironments.
Collapse
Affiliation(s)
- Simon Mitchell
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Ellen L Mercado
- Signaling Systems Laboratory, San Diego Center for Systems Biology, La Jolla, CA, United States
| | - Adewunmi Adelaja
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Jessica Q Ho
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Quen J Cheng
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States.,Signaling Systems Laboratory, San Diego Center for Systems Biology, La Jolla, CA, United States
| |
Collapse
|
12
|
Li Y, Deng SL, Lian ZX, Yu K. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells 2019; 8:cells8060576. [PMID: 31212769 PMCID: PMC6627996 DOI: 10.3390/cells8060576] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023] Open
Abstract
Free radicals are important antimicrobial effectors that cause damage to DNA, membrane lipids, and proteins. Professional phagocytes produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute towards the destruction of pathogens. Toll-like receptors (TLRs) play a fundamental role in the innate immune response and respond to conserved microbial products and endogenous molecules resulting from cellular damage to elicit an effective defense against invading pathogens, tissue injury, or cancer. In recent years, several studies have focused on how the TLR-mediated activation of innate immune cells leads to the production of pro-inflammatory factors upon pathogen invasion. Here, we review recent findings that indicate that TLRs trigger a signaling cascade that induces the production of reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Yao Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Tchessalova D, Tronson NC. Memory deficits in males and females long after subchronic immune challenge. Neurobiol Learn Mem 2019; 158:60-72. [PMID: 30611884 PMCID: PMC6879099 DOI: 10.1016/j.nlm.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 01/18/2023]
Abstract
Memory impairments and cognitive decline persist long after recovery from major illness or injury, and correlate with increased risk of later dementia. Here we developed a subchronic peripheral immune challenge model to examine delayed and persistent memory impairments in females and in males. We show that intermittent injections of either lipopolysaccharides or Poly I:C cause memory decline in both sexes that are evident eight weeks after the immune challenge. Importantly, we observed sex-specific patterns of deficits. Females showed impairments in object recognition one week after challenge that persisted for at least eight weeks. In contrast, males had intact memory one week after the immune challenge but exhibited broad impairments in memory tasks including object recognition, and both context and tone fear conditioning several months later. The differential patterns of memory deficits in males and in females were observed without sustained microglial activation or changes in blood-brain barrier permeability. Together, these data suggest that transient neuroimmune activity results in differential vulnerabilities of females and males to memory decline after immune challenge. This model will be an important tool for determining the mechanisms in both sexes that contribute to memory impairments that develop over the weeks and months after recovery from illness. Future studies using this model will provide new insights into the role of chronic inflammation in the pathogenesis of long-lasting memory decline and dementias.
Collapse
Affiliation(s)
- Daria Tchessalova
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States; Department of Psychology, University of Michigan, Ann Arbor, United States.
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
14
|
Zhou S, Qi Q, Wang X, Zhang L, Xu L, Dong L, Zhu J, Li Y, Wang X, Xu Z, Liu F, Hu W, Zhou L, Chen X, Su C. SjHSP60 induces CD4 + CD25 + Foxp3 + Tregs via TLR4-Mal-drived production of TGF-β in macrophages. Immunol Cell Biol 2018; 96:958-968. [PMID: 29697865 DOI: 10.1111/imcb.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/25/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) play a pivotal role in limiting immunopathological damage to host organs after schistosome infection. Transforming growth factor-β (TGF-β) is an essential factor for the periphery conversion of CD4+ CD25- T cells into CD4+ CD25+ Foxp3+ Tregs by inducing the key transcription factor Foxp3. Antigen presenting cells (APCs), which highly express TGF-β, are involved in parasite antigen-induced Treg conversion in peripheral. However, the mechanisms underlying high TGF-β induction in APCs by parasite antigens remain to be clarified during schistosome infection. Here, we demonstrated that Schistosoma japonicum stress protein, heat shock protein 60 (SjHSP60), promoted TGF-β production in macrophages (Mφ). Furthermore, we showed that activation of TLR4-Mal (MyD88 adaptor-like protein) signaling by SjHSP60 is necessary for induction of TGF-β expression in Mφ, which subsequently promoted Treg induction. Our results not only demonstrate a novel mechanism of TGF-β production in Mφ for inducing Tregs in mice with schistosomiasis, but also allude to the possibility of targeting parasite stress protein for potential therapeutics.
Collapse
Affiliation(s)
- Sha Zhou
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Qi
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofan Wang
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lina Zhang
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liyang Dong
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuefeng Wang
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Liu
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Xiaojun Chen
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- State Key Lab of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Jian J, Wei W, Yin G, Hettinghouse A, Liu C, Shi Y. RNA-Seq analysis of interferon inducible p204-mediated network in anti-tumor immunity. Sci Rep 2018; 8:6495. [PMID: 29691417 PMCID: PMC5915582 DOI: 10.1038/s41598-018-24561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
p204, a murine member of the interferon-inducible p200 protein family, and its human analogue, IFI16, have been shown to function as tumor suppressors in vitro, but the molecular events involved, in particular in vivo, remain unclear. Herein we induced the Lewis Lung carcinoma (LLC) murine model of human lung cancer in p204 null mice (KO) and their control littermates (WT). We compared the transcriptome in spleen from WT and p204 KO mice using a high-throughput RNA-sequencing array. A total 30.02 Gb of clean data were obtained, and overall Q30% was greater than 90.54%. More than 75% of clean data from 12 transcriptome samples were mapped to exons. The results showed that only 11 genes exhibited altered expression in untreated p204 KO mice relative to untreated WT mice, while 393 altered genes were identified in tumor-bearing p204 KO mice when compared with tumor-bearing WT mice. Further differentially expressed gene cluster and gene ontology consortium classification revealed that numerous cytokines and their receptors, chemoattractant molecules, and adhesion molecules were significantly induced in p204 KO mice. This study provides novel insights to the p204 network in anti-tumor immune response and also presents a foundation for future work concerning p204-mediated gene expressions and pathways.
Collapse
Affiliation(s)
- Jinlong Jian
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.,Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Wei Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Guowei Yin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongxiang Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
16
|
Wu X, Roberto JB, Knupp A, Kenerson HL, Truong CD, Yuen SY, Brempelis KJ, Tuefferd M, Chen A, Horton H, Yeung RS, Crispe IN. Precision-cut human liver slice cultures as an immunological platform. J Immunol Methods 2018; 455:71-79. [PMID: 29408707 PMCID: PMC6689534 DOI: 10.1016/j.jim.2018.01.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 12/16/2022]
Abstract
The liver is the central metabolic organ in the human body, and also plays an essential role in innate and adaptive immunity. While mouse models offer significant insights into immune-inflammatory liver disease, human immunology differs in important respects. It is not easy to address those differences experimentally. Therefore, to improve the understanding of human liver immunobiology and pathology, we have established precision-cut human liver slices to study innate immunity in human tissue. Human liver slices collected from resected livers could be maintained in ex vivo culture over a two-week period. Although an acute inflammatory response accompanied by signs of tissue repair was observed in liver tissue following slicing, the expression of many immune genes stabilized after day 4 and remained stable until day 15. Remarkably, histological evidence of pre-existing liver diseases was preserved in the slices for up to 7 days. Following 7 days of culture, exposure of liver slices to the toll-like receptor (TLR) ligands, TLR3 ligand Poly-I:C and TLR4 ligand LPS, resulted in a robust activation of acute inflammation and cytokine genes. Moreover, Poly-I:C treatment induced a marked antiviral response including increases of interferons IFNB, IL-28B and a group of interferon-stimulated genes. Therefore, precision-cut liver slices emerge as a valuable tool to study human innate immunity.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Jessica B Roberto
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Allison Knupp
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Camtu D Truong
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sebastian Y Yuen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Marianne Tuefferd
- Infectious Diseases and Vaccines, Janssen Research and Development, B-2340 Beerse, Belgium
| | - Antony Chen
- Infectious Diseases and Vaccines, Janssen Research and Development, B-2340 Beerse, Belgium
| | - Helen Horton
- Infectious Diseases and Vaccines, Janssen Research and Development, B-2340 Beerse, Belgium
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Ian N Crispe
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Nhu QM, Cuesta N, Vogel SN. Transcriptional regulation of lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) expression in murine macrophages: role of interferon regulatory factors 1 (IRF-1) and 2 (IRF-2). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120050401] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of TLRs is most closely associated with induction of pro-inflammatory gene expression; however, expression of many other genes, including the TLR genes themselves, has also been shown to be modulated following TLR engagement. A large family of nuclear transcription factors, the interferon regulatory factors (IRFs), have been implicated in TLR signaling leading to pro-inflammatory gene expression. Given that IRF-1 and IRF-2 counter-regulate the transcriptional activity of many genes, we hypothesized that IRF-1 and IRF-2 might also regulate TLR gene expression following LPS stimulation of murine macrophages. mRNA derived from medium- or LPS-treated primary peritoneal macrophages was analyzed for TLR gene expression using quantitative real-time PCR. In wild-type macrophages, LPS up-regulated expression of TLRs 1—3 and 6—9 steady-state mRNA, while TLR4 mRNA was modestly downregulated. IRF-2—/ — macrophages responded to LPS with dysregulated expression of TLR3, TLR4, and TLR5 mRNA, whereas IRF-1 deficiency dampened LPS-induced mRNA expression for TLR3, TLR6, and TLR9. Functional studies revealed aberrant TLR3 signaling in IRF-2—/ — macrophages. Collectively, these findings reveal an additional level of complexity associated with TLR transcriptional regulation and suggest that the trans-acting factors, IRF-1 and IRF-2, contribute to the innate immune response to infections by regulating TLR gene expression.
Collapse
Affiliation(s)
- Quan M. Nhu
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - Natalia Cuesta
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
18
|
White JD, Eimerbrink MJ, Hayes HB, Hardy A, Van Enkevort EA, Peterman JL, Chumley MJ, Boehm GW. Hippocampal Aβ expression, but not phosphorylated tau, predicts cognitive deficits following repeated peripheral poly I:C administration. Behav Brain Res 2016; 313:219-225. [PMID: 27449203 DOI: 10.1016/j.bbr.2016.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is marked by the accumulation of the amyloid-beta (Aβ) peptide, and increases in phosphorylation of the microtubule associated protein, tau. Changes in these proteins are considered responsible, in part, for the progressive neuronal degeneration and cognitive deficits seen in AD. We examined the effect of repeated consecutive peripheral poly I:C injections on cognitive deficits, central Aβ, and phosphorylated tau accumulation, following three treatment durations: 7, 14, and 21 days. Forty-eight hours after the final injection, animals were trained in a contextual fear-conditioning paradigm, and tested 24h later. Immediately after testing, the hippocampus was collected to quantify Aβ and phosphorylated tau accumulation. Results showed that, although poly I:C-induced Aβ was significantly elevated at all time points examined, poly I:C only disrupted cognition after 14 and 21 days of administration. Moreover, elevations in phosphorylated tau were not seen until the 14-day time point. Interestingly, phosphorylated tau expression then declined at the 21-day time point. Finally, we demonstrated that Aβ levels are a stronger predictor of cognitive dysfunction, explaining 37% of the variance, whereas phosphorylated tau levels only accounted for 0.2%. Taken together, these results support the hypothesis that inflammation-induced elevation in Aβ disrupts cognition, independently of phosphorylated tau, and suggest that long-term administration of poly I:C may provide a model to investigate the contribution of long-term inflammation toward the development of Alzheimer's-like pathology.
Collapse
Affiliation(s)
- J D White
- Department of Psychology, Texas Christian University, United States
| | - M J Eimerbrink
- Department of Psychology, Texas Christian University, United States
| | - H B Hayes
- Department of Biology, Texas Christian University, United States
| | - A Hardy
- Department of Biology, Texas Christian University, United States
| | - E A Van Enkevort
- Department of Psychology, Texas Christian University, United States
| | - J L Peterman
- Department of Psychology, Texas Christian University, United States
| | - M J Chumley
- Department of Biology, Texas Christian University, United States
| | - G W Boehm
- Department of Psychology, Texas Christian University, United States.
| |
Collapse
|
19
|
Uchiyama S, Keller N, Schlaepfer E, Grube C, Schuepbach RA, Speck RF, Zinkernagel AS. Interferon α-Enhanced Clearance of Group A Streptococcus Despite Neutropenia. J Infect Dis 2016; 214:321-8. [PMID: 27338768 DOI: 10.1093/infdis/jiw157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. METHODS To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. RESULTS We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. CONCLUSIONS These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α.
Collapse
Affiliation(s)
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology
| | | | | | - Reto A Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Switzerland
| | | | | |
Collapse
|
20
|
Széles L, Meissner F, Dunand-Sauthier I, Thelemann C, Hersch M, Singovski S, Haller S, Gobet F, Fuertes Marraco SA, Mann M, Garcin D, Acha-Orbea H, Reith W. TLR3-Mediated CD8+ Dendritic Cell Activation Is Coupled with Establishment of a Cell-Intrinsic Antiviral State. THE JOURNAL OF IMMUNOLOGY 2015; 195:1025-33. [PMID: 26101320 DOI: 10.4049/jimmunol.1402033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/20/2015] [Indexed: 01/13/2023]
Abstract
Because of their unique capacity to cross-present Ags to CD8(+) T cells, mouse lymphoid tissue-resident CD8(+) dendritic cells (DCs) and their migratory counterparts are critical for priming antiviral T cell responses. High expression of the dsRNA sensor TLR3 is a distinctive feature of these cross-presenting DC subsets. TLR3 engagement in CD8(+) DCs promotes cross-presentation and the acquisition of effector functions required for driving antiviral T cell responses. In this study, we performed a comprehensive analysis of the TLR3-induced antiviral program and cell-autonomous immunity in CD8(+) DC lines and primary CD8(+) DCs. We found that TLR3-ligand polyinosinic-polycytidylic acid and human rhinovirus infection induced a potent antiviral protection against Sendai and vesicular stomatitis virus in a TLR3 and type I IFN receptor-dependent manner. Polyinosinic-polycytidylic acid-induced antiviral genes were identified by mass spectrometry-based proteomics and transcriptomics in the CD8(+) DC line. Nanostring nCounter experiments confirmed that these antiviral genes were induced by TLR3 engagement in primary CD8(+) DCs, and indicated that many are secondary TLR3-response genes requiring autocrine IFN-β stimulation. TLR3-activation thus establishes a type I IFN-dependent antiviral program in a DC subtype playing crucial roles in priming adaptive antiviral immune responses. This mechanism is likely to shield the priming of antiviral responses against inhibition or abrogation by the viral infection. It could be particularly relevant for viruses detected mainly by TLR3, which may not trigger type I IFN production by DCs that lack TLR3, such as plasmacytoid DCs or CD8(-) DCs.
Collapse
Affiliation(s)
- Lajos Széles
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Felix Meissner
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Isabelle Dunand-Sauthier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christoph Thelemann
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Micha Hersch
- Computational Biology Group, Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| | - Simon Singovski
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sergio Haller
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Florian Gobet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
21
|
Sun X, Shi L, Zhang H, Li R, Liang R, Liu Z. Effects of Toll-like receptor 3 on herpes simplex virus type-1-infected mouse neural stem cells. Can J Microbiol 2014; 61:201-8. [PMID: 25633775 DOI: 10.1139/cjm-2014-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we aimed to investigate the effect of herpes simplex virus type-1 (HSV-1) infection on the phosphorylation of interferon regulatory factor 3 (IRF3) and the expression of interferon-β (IFN-β), as well as to clarify the functions of toll-like receptor 3 (TLR3) in mouse neural stem cells (NSCs) infected with HSV-1. In HSV-1-infected cultured NSCs, immunofluorescence, reverse transcription - polymerase chain reaction, Western blot, and ELISA were performed to reveal the expression patterns of TLR3, IRF3, and IFN-β. Then, lentivirus-mediated RNA interference (RNAi) was used to block the expression of TLR3, and its effect on host resistance to HSV-1 infection was investigated. Under uninfected conditions, NSCs expressed TLR3 and phosphorylated IRF3, but after infection, the expression level of TLR3 was upregulated and the phosphorylation level of IRF3 in the nucleus was significantly enhanced, while IFN-β was also expressed. After TLR3 expression was blocked by lentivirus-mediated RNAi, IRF3 phosphorylation and IFN-β expression were downregulated. Therefore, HSV-1 upregulated the expression of TLR3 in NSCs and promoted nuclear translocation after IRF3 was phosphorylated to induce IFN-β expression. TLR3 exhibited an anti-HSV-1 infection capacity via innate immune functions.
Collapse
Affiliation(s)
- Xiuning Sun
- Department of Parasitology, Weifang Medical University, Shandong 261053, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
The retinal pigment epithelium (RPE) induces FasL and reduces iNOS and Cox2 in primary monocytes. Graefes Arch Clin Exp Ophthalmol 2014; 252:1747-54. [PMID: 25059476 DOI: 10.1007/s00417-014-2742-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Retinal pigment epithelium (RPE) cells may alter the phenotype of monocytes by soluble factors that may be influenced by stimulation of the RPE. Since RPE cells carry the toll-like receptor-3 (TLR3) that detects and reacts to viral infection through binding of dsRNA we investigated the effects of RPE cells with or without TLR3 stimulation on blood-derived monocytes with respect to regulation of pro-/anti-inflammatory cytokines, anti-angiogenic factors and migratory properties. METHODS Primary RPE cells were prepared from porcine eyes; monocytes were prepared from porcine blood. TLR3 activation was induced by polyinosinic:polycytidylic acid (Poly I:C). RPE cells were stimulated with Poly I:C in different concentrations for 24 hours and a cell culture supernatant was applied to the monocytes. Expression of CD14 and Fas ligand (FasL) was determined via flow cytometry. The expression of IL-6, IL-1ß, TNFα, Cox2, iNOS and IL-10 was determined via quantitative RT-PCR. Migration was determined using Boyden chamber experiments. RESULTS The supernatant of RPE cells, irrespective of TLR3 activation, induced FasL expression in the monocytes. Expression of iNOS and Cox2 was reduced by RPE cells and the reduction of Cox2 but not if iNOS was lost under TLR3 activation. No induction of IL-6, IL-1ß, IL-10 or TNFα by the RPE was seen. TLR3-activated RPE cells induced monocyte migration. CONCLUSION RPE cells induce an upregulation of FasL and a downregulation of iNOS and Cox2 without upregulating inflammatory cytokines, possibly inducing an anti-angiogenic phenotype in the monocytes. This phenotype is still upheld after challenging RPE cells with dsRNA, mimicking a viral infection.
Collapse
|
23
|
Liu J, Kolliopoulou A, Smagghe G, Swevers L. Modulation of the transcriptional response of innate immune and RNAi genes upon exposure to dsRNA and LPS in silkmoth-derived Bm5 cells overexpressing BmToll9-1 receptor. JOURNAL OF INSECT PHYSIOLOGY 2014; 66:10-19. [PMID: 24831177 DOI: 10.1016/j.jinsphys.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Injection or feeding of dsRNA is commonly used to induce specific gene silencing by RNAi in insects but very little research has been carried out to investigate non-specific effects on gene expression of dsRNA as pathogen-associated molecular pattern (PAMP). This study focuses on the potential role of the BmToll9-1 receptor to modulate the transcriptional response of innate immune and RNAi genes to dsRNA and lipopolysaccharide (LPS), which was used for comparison. To study this role, we took advantage of the silkmoth-derived Bm5 cell line, which does not express BmToll9-1 endogenously, and engineered a transformed cell line that permanently expresses BmToll9-1. Quantitative mRNA expression studies showed that BmToll9-1 can significantly alter the transcriptional response to dsRNA and LPS: (1) BmToll9-1 promotes the transcriptional response of Dicer2, encoding a key component of the RNAi machinery, and, to a lesser extent, that of transcription factors in the Jak-STAT and Toll pathways; and (2) BmToll9-1 represses the transcriptional induction of the IMD and Jak-STAT pathway genes, as well as the antimicrobial peptide (AMP) effector genes, by LPS. Thus, BmToll9-1 was identified as a modulator of innate immune and RNAi machinery gene expression that could be related to its preferential expression in the larval gut, the major barrier of pathogen entry. While BmToll9-1 was found to modulate RNAi-related gene expression, a reporter-based RNAi assay established no evidence for a direct interaction of BmToll9-1 with the intracellular RNAi machinery.
Collapse
Affiliation(s)
- Jisheng Liu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
24
|
Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway. Arch Virol 2014; 159:2937-48. [DOI: 10.1007/s00705-014-2148-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/06/2014] [Indexed: 11/25/2022]
|
25
|
Estrogen modulation of endosome-associated toll-like receptor 8: an IFNα-independent mechanism of sex-bias in systemic lupus erythematosus. Clin Immunol 2014; 151:66-77. [PMID: 24525049 DOI: 10.1016/j.clim.2014.01.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 02/07/2023]
Abstract
Females of child-bearing age are more resistant to infectious disease and have an increased risk of systemic lupus erythematosus (SLE). We hypothesized that estrogen-induced gene expression could establish an immunoactivated state which would render enhanced defense against infection, but may be deleterious in autoimmune development. Using peripheral blood mononuclear cells (PBMCs), we demonstrate enhanced responses with immunogen stimulation in the presence of 17β-estradiol (E2) and gene array analyses reveal toll-like receptor 8 (TLR8) as an E2-responsive candidate gene. TLR8 expression levels are up-regulated in SLE and PBMCs stimulated with TLR8 agonist display a female sex-biased, E2-sensitive response. Moreover, we identify a putative ERα-binding region near the TLR8 locus and blocking ERα expression significantly decreases E2-mediated TLR8 induction. Our findings characterize TLR8 as a novel estrogen target gene that can lower the inflammatory threshold and implicate an IFNα-independent inflammatory mechanism that could contribute to higher SLE incidence in women.
Collapse
|
26
|
Yang C, Li Q, Su J, Chen X, Wang Y, Peng L. Identification and functional characterizations of a novel TRIF gene from grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:222-229. [PMID: 23732407 DOI: 10.1016/j.dci.2013.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (TRIF) is an adapter in responding to activation of some toll-like receptors (TLRs), which provides early clearance of viral and bacterial pathogens. Here we identified and characterized a full-length genomic sequence of TRIF gene from grass carp Ctenopharyngodon idella (designated as CiTRIF). CiTRIF genomic sequence consists of 3534 base pairs (bp), containing 5' flank sequence (496 bp) and unique intron (815 bp). The full-length cDNA sequence is 2241 bp, including 5' untranslated region (UTR) of 352 bp, 3' UTR of 209 bp, and an open reading frame of 1680 bp encoding a polypeptide of 559 amino acids with an estimated molecular weight of 62.643 kDa and a predicted isoelectric point of 5.71. The deduced amino acid sequence just contains TIR domain, and is most similar to the zebrafish (Danio rerio) TRIF sequence with an identity of 64%. CiTRIF exhibits sequence divergence from its orthologs. Promoter region was predicted and promoter activity was verified. mRNA expression of CiTRIF gene is widespread in 15 tissues investigated, highly in foregut and skin physiological immune barrier. The transcripts of CiTRIF were significantly and rapidly induced in spleen and head kidney tissues at early stage post grass carp reovirus (GCRV) challenge. The modulations are significant but mild in CIK (C. idella kidney) cells post GCRV infection or poly(I:C) stimulation. The over-expression vector was constructed and transfected into CIK cell line to get stably expressing recombinant proteins. In CiTRIF transfected cells, mRNA expressions of CiTRIF, CiRIG-I, CiIRF7 and CiIFN-I were up-regulated. After GCRV infection, the transcripts of CiTRIF, CiRIG-I, CiIRF7 and CiIFN-I fell a little bit after a rapidly and strongly rise. In CiTRIF over-expression cells, virus load and titer were significantly lower than those in controls post GCRV challenge, and virus replication was inhibited obviously. The results indicate that the novel TRIF gene from grass carp plays important roles in modulating antiviral innate immune responses, and serve the further functional studies on TRIF gene in teleosts and immune evolution.
Collapse
Affiliation(s)
- Chunrong Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
27
|
Liu J, Smagghe G, Swevers L. Transcriptional response of BmToll9-1 and RNAi machinery genes to exogenous dsRNA in the midgut of Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:646-654. [PMID: 23602829 DOI: 10.1016/j.jinsphys.2013.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 05/28/2023]
Abstract
Injection of dsRNA is widely applied to silence endogenous genes and study gene function in insects. However, it is not yet clear to what extent it can also exert non-specific effects, for instance by interference with the innate immune response. In this study, we report on the transcriptional response of BmToll9-1 to lipopolysaccharide (LPS) and dsRNA in the silkmoth, Bombyx mori. BmToll9-1 encodes a Toll receptor highly expressed in midgut tissue and that shows limited similarity to the mammalian TLR3 endolysosome receptor for dsRNA; while Dcr2 and Ago2 encode two key components of the RNAi machinery. An expression pattern study of all 14 Toll receptors in B. mori showed that BmToll9-1 was expressed in different larval and pupal tissues with the highest expression level detected in the midgut, indicating a possible function in immunity against pathogens taken up by the food. In order to investigate the response of BmToll9-1, different ways to deliver dsRNA, specific for GFP (dsGFP), and LPS were applied in Bombyx 5th instar larvae. The feeding experiments suggested that dsGFP did not suppress the expression of BmToll9-1 significantly, while LPS could suppress the expression of BmToll9-1 after 3h of feeding. On the other hand, the injection experiments showed that dsGFP, as well as LPS, could significantly inhibit the expression of BmToll9-1 in 3h. Bacteria that constantly expressed dsGFP could also down-regulate the expression of BmToll9-1 to a greater extent than bacteria that do not express dsGFP. The failure of dsGFP by feeding to affect the expression of BmToll9-1 was correlated with the rapid degradation of dsGFP by dsRNase in the midgut juice. Expression of the RNAi machinery genes Dcr2 and Ago2, as well as dsRNase, was also affected by injection of dsRNA and not by feeding, but in these cases an induction was observed instead of a down-regulation. Because LPS is a well-known pathogen-associated molecular pattern (PAMP), it suggested that the decrease in BmToll9-1 expression is a consequence of the activation of the innate immune response by LPS. The similar response of BmToll9-1 between the two triggers, LPS and dsRNA, suggests that dsRNA can also act as a PAMP in the midgut of Bombyx. Furthermore, induction of the genes Dcr2, Ago2 and dsRNase may also constitute a defense mechanism against invading dsRNA.
Collapse
Affiliation(s)
- Jisheng Liu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
28
|
Wada K, Kobayashi T, Matsuwaki Y, Moriyama H, Kita H. Alternaria inhibits double-stranded RNA-induced cytokine production through Toll-like receptor 3. Int Arch Allergy Immunol 2013; 161 Suppl 2:75-83. [PMID: 23711857 DOI: 10.1159/000350365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fungi may be involved in asthma and chronic rhinosinusitis (CRS). Peripheral blood mononuclear cells from CRS patients produce interleukin (IL)-5, IL-13 and interferon (IFN)-γ in the presence of Alternaria. In addition, Alternaria produces potent Th2-like adjuvant effects in the airway. Therefore, we hypothesized that Alternaria may inhibit Th1-type defense mechanisms against virus infection. METHODS Dendritic cells (DCs) were generated from mouse bone marrow. The functional responses were assessed by expression of cell surface molecules by FACS (MHC class II, CD40, CD80, CD86 and OX40L). Production of IL-6, chemokine CXCL10 (IP-10), chemokine CXCL11 (I-TAC) and IFN-β was measured by ELISA. Toll-like receptor 3 (TLR3) mRNA and protein expression was detected by quantitative real-time PCR and Western blot. RESULTS Alternaria and polyinosinic-polycytidylic acid (poly I:C) enhanced cell surface expression of MHC class II, CD40, CD80, CD86 and OX40L, and IL-6 production in a concentration-dependent manner. However, Alternaria significantly inhibited production of IP-10, I-TAC and IFN-β, induced by viral double-stranded RNA (dsRNA) mimic poly I:C. TLR3 mRNA expression and protein production by poly I:C were significantly inhibited by Alternaria. These reactions are likely caused by heat-stable factor(s) in Alternaria extract with >100 kDa molecular mass. CONCLUSION These findings suggest that the fungus Alternaria may inhibit production of IFN-β and other cytokines by DCs by suppressing TLR3 expression. These results indicate that Alternaria may inhibit host innate immunity against virus infection.
Collapse
Affiliation(s)
- Kota Wada
- Department of Otorhinolaryngology, Toho University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
29
|
Klettner A, Koinzer S, Meyer T, Roider J. Toll-like receptor 3 activation in retinal pigment epithelium cells - Mitogen-activated protein kinase pathways of cell death and vascular endothelial growth factor secretion. Acta Ophthalmol 2013; 91:e211-8. [PMID: 23387336 DOI: 10.1111/aos.12031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Toll-like receptor 3 (TLR3) is a receptor of the innate immune system, recognizing double-stranded RNA. TLR3 can lead to cytokine release or apoptosis and has recently been associated with the development of geographical atrophy via cytotoxic effects on the retinal pigment epithelium (RPE). The current study was conducted to elucidate the underlying pathways of TLR3 effects in the RPE. METHODS TLR3 activation via polyinosinic acid/polycytidylic acid (Poly I:C) was investigated in primary porcine RPE cells, focussing on cell death and vascular endothelial growth factor (VEGF) secretion. Primary cells were stimulated with different concentrations of Poly I:C. Cell death was investigated in trypan blue exclusion assay and cell death detection ELISA. VEGF and IFN-ß secretion were also detected in ELISA. As Mitogen-activated protein kinases (MAPK) play an important part in TLR3-mediated signal transduction, we investigated the influence of JNK, ERK1/2 and p38 on cell death and VEGF secretion, using commercially available inhibitors. RESULTS Activation of TLR3 by Poly I:C induced concentration-dependent cell death, partly mediated by JNK. ERK1/2 was activated and exerted some protection. Furthermore, higher concentrations of Poly I:C increased VEGF secretion after 4 and 24 hr, which was independent of MAPK. CONCLUSION The induction of cell death in RPE cells by TLR3 activation confirms possible involvement of TLR3 activation in GA. As cell death is partly mediated by JNK, more studies should be conducted investigating the role of JNK in RPE cell death to evaluate whether its inhibition might be a new therapeutic opportunity for the treatment of geographical atrophy. Additionally, effects on VEGF secretion can be found.
Collapse
Affiliation(s)
- Alexa Klettner
- Department of Ophthalmology, University of Kiel, Kiel, Germany.
| | | | | | | |
Collapse
|
30
|
Fung KY, Mangan NE, Cumming H, Horvat JC, Mayall JR, Stifter S, De Weerd N, Roisman LC, Rossjohn J, Robertson S, Schjenken J, Parker B, Gargett C, Nguyen HPT, Carr DJ, Hansbro PM, Hertzog PJ. Interferon-ε protects the female reproductive tract from viral and bacterial infection. Science 2013; 339:1088-92. [PMID: 23449591 PMCID: PMC3617553 DOI: 10.1126/science.1233321] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-ε as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-ε was not induced by known PRR pathways; instead, IFN-ε was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-ε-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-ε is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.
Collapse
Affiliation(s)
- Ka Yee Fung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Helen Cumming
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Jay C Horvat
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jemma R Mayall
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Sebastian Stifter
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Nicole De Weerd
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Laila C Roisman
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sarah Robertson
- Robinson Institute and School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - John Schjenken
- Robinson Institute and School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - Belinda Parker
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Caroline Gargett
- Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Hong PT Nguyen
- Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Daniel J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Centre, Oklahoma City, OK, USA
| | - Philip M Hansbro
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Bratland E, Hellesen A, Husebye ES. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Mol Cell Endocrinol 2013; 365:75-83. [PMID: 22989785 DOI: 10.1016/j.mce.2012.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 12/01/2022]
Abstract
Addison's disease is a prototypic organ-specific autoimmune disease affecting the adrenal cortex. The CXC chemokine ligand 10 (CXCL10) is expressed early in viral infections, and is produced by primary adrenocortical cells stimulated by certain cytokines. CXCL10 is also elevated in the serum of Addison's disease patients. We therefore investigated if the viral RNA substitute polyinosine-polycytidylic acid (poly (I:C)) could influence the cytokine induced production of CXCL10 by adrenocortical cells. We found that poly (I:C) could induce CXCL10 in NCI-H295R adrenocortical carcinoma cells, either alone or synergistically along with cytokines interferon-γ and tumor necrosis factor-α. This effect was found to be mediated by toll-like receptor 3 and both nuclear factor κB (NFκB) and signal transducer and activator of transcription-1 (STAT1), but not type I interferons, seemed to be involved. We propose that the combination of environmental and endogenous factors presented here, could contribute to the multifactorial pathogenesis of autoimmune Addison's disease.
Collapse
Affiliation(s)
- Eirik Bratland
- Section for Endocrinology, Institute of Medicine, University of Bergen, N-5020 Bergen, Norway.
| | | | | |
Collapse
|
32
|
Phenylmethimazole blocks dsRNA-induced IRF3 nuclear translocation and homodimerization. Molecules 2012; 17:12365-77. [PMID: 23090018 PMCID: PMC6269055 DOI: 10.3390/molecules171012365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2022] Open
Abstract
Previous studies revealed that phenylmethimazole (C10) inhibits IRF3 signaling, preventing dsRNA-induction of type 1 interferon gene expression, production, and downstream signaling. In the present study, we investigated the molecular basis for C10 inhibition of dsRNA-stimulated IRF3 signaling. IRF-3 Trans-AM assays were used to measure C10 effects on dsRNA induction of IRF3 DNA binding. Green fluorescent protein-labeled IRF3 was used to measure C10 effects on dsRNA-induced IRF3 nuclear translocation. Native PAGE, SDS PAGE, and western blotting were used to identify effects of C10 on IRF3 homodimer formation and phosphorylation, respectively. There was a significant impairment of dsRNA-induced IRF3 DNA binding activity in human embryonic kidney and pancreatic cancer cells with C10 treatment. C10 also blocked dsRNA-induced IRF3 nuclear translocation and homodimer formation without blocking serine 396 phosphorylation of IRF3. Together, these results indicate that C10 interferes with IRF3 signaling by blocking dsRNA-induced IRF3 homodimer formation, a prerequisite for nuclear translocation and DNA binding activities.
Collapse
|
33
|
Boivin N, Menasria R, Piret J, Boivin G. Modulation of TLR9 response in a mouse model of herpes simplex virus encephalitis. Antiviral Res 2012; 96:414-21. [PMID: 23043942 DOI: 10.1016/j.antiviral.2012.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023]
Abstract
We evaluated the effects of agonists and antagonist of toll-like receptor (TLR) 9 in comparison with a TLR3 agonist in a mouse model of herpes simplex virus type 1 (HSV-1) encephalitis (HSE). BALB/c mice received a single intranasal dose of either a TLR3 agonist (polyinosinic:polycytidylic acid; PIC), TLR9 agonists (oligodeoxynucleotides (ODNs) 1585, 1826 or 2395) or a TLR9 antagonist (ODN 2088), 1 day before and, for selected groups, 3 days after infection with HSV-1. Mice that received the pre-treatment with vehicle, PIC, ODNs 1585, 1826, 2395 and 2088 before infection had survival rates of 25%, 65%, 55%, 40%, 55% and 30%, respectively (P<0.05 for PIC and ODNs 1585 and 2395 versus vehicle). Infected mice subsequently treated with vehicle, ODNs 2395 and 2088 had survival rates of 9%, 0% and 30%, respectively (P<0.05, ODN 2088 versus other groups). The pre-treatment of mice with ODN 2395 reduced both the viral load (P<0.05 at day 5) and the production of CCL2, IL-6 and CCL5 at days 3, 4 and 5 (P<0.05 for IL-6 at day 3 and P<0.05 for CCL2 and CCL5 at day 4). Treatment of infected mice with ODN 2088 reduced the production of the same cytokines (P=0.07 for CCL2 and P=0.09 for IL-6 at day 5). Pre-treatment of mice with TLR9 agonists before infection reduces brain viral load and cytokine levels resulting in increased HSE survival rates. On the other hand, TLR9 antagonists can be helpful to control the inflammatory response that could be detrimental after infection.
Collapse
Affiliation(s)
- Nicolas Boivin
- Research Center in Infectious Diseases, CHUQ-CHUL and Laval University, Quebec City, QC, Canada.
| | | | | | | |
Collapse
|
34
|
Enesa K, Ordureau A, Smith H, Barford D, Cheung PCF, Patterson-Kane J, Arthur JSC, Cohen P. Pellino1 is required for interferon production by viral double-stranded RNA. J Biol Chem 2012; 287:34825-35. [PMID: 22902624 PMCID: PMC3464584 DOI: 10.1074/jbc.m112.367557] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/13/2012] [Indexed: 12/24/2022] Open
Abstract
Viral double-stranded RNA, a ligand for Toll-like Receptor 3 (TLR3) and the cytoplasmic RNA receptors RIG1 and MDA5, activate a signaling network in which the IKK-related protein kinase TBK1 phosphorylates the transcription factor Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1. IRF3 then translocates to the nucleus where it stimulates transcription of the interferonβ (IFNβ) gene, but the function of Pellino1 in this pathway is unknown. Here, we report that myeloid cells and embryonic fibroblasts from knock-in mice expressing an E3 ligase-deficient mutant of Pellino1 produce reduced levels of IFNβ mRNA and secrete much less IFNβ in response to viral double-stranded RNA because the interaction of IRF3 with the IFNβ promoter is impaired. These results identify Pellino1 as a novel component of the signal transduction network by which viral double-stranded RNA stimulates IFNβ gene transcription.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Knock-In Techniques
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Mice
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/physiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Transduction/physiology
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Transcription, Genetic/physiology
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
| | | | | | - David Barford
- the Institute of Cancer Research, London SW36JB, United Kingdom
| | | | - Janet Patterson-Kane
- the Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G611QH, United Kingdom
| | | | - Philip Cohen
- From the MRC Protein Phosphorylation Unit and
- Scottish Institute for Cell Signaling, Sir James Black Centre, University of Dundee, DD15EH, United Kingdom
| |
Collapse
|
35
|
Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. J Neuroinflammation 2012; 9:130. [PMID: 22709825 PMCID: PMC3412752 DOI: 10.1186/1742-2094-9-130] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022] Open
Abstract
Background Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C. Methods Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry. Results Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and naltrexone blocked microglial activation and neurodegeneration. Conclusions Chronic ethanol potentiates poly I:C blood and brain proinflammatory responses. Poly I:C neuroinflammation persists after systemic responses subside. Increases in blood TNFα, IL-1β, IL-6, and MCP-1 parallel brain responses consistent with blood cytokines contributing to the magnitude of neuroinflammation. Ethanol potentiation of TLR3 agonist responses is consistent with priming microglia-monocytes and increased NOX, ROS, HMGB1-TLR3 and markers of neurodegeneration. These studies indicate that TLR3 agonists increase blood cytokines that contribute to neurodegeneration and that ethanol binge drinking potentiates these responses.
Collapse
|
36
|
Bobyn J, Mangano EN, Gandhi A, Nelson E, Moloney K, Clarke M, Hayley S. Viral-toxin interactions and Parkinson's disease: poly I:C priming enhanced the neurodegenerative effects of paraquat. J Neuroinflammation 2012; 9:86. [PMID: 22559812 PMCID: PMC3464726 DOI: 10.1186/1742-2094-9-86] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/20/2012] [Indexed: 12/21/2022] Open
Abstract
Background Parkinson’s disease (PD) has been linked with exposure to a variety of environmental and immunological insults (for example, infectious pathogens) in which inflammatory and oxidative processes seem to be involved. In particular, epidemiological studies have found that pesticide exposure and infections may be linked with the incidence of PD. The present study sought to determine whether exposure to a viral mimic prior to exposure to pesticides would exacerbate PD-like pathology. Methods Mice received a supra-nigral infusion of 5 μg of the double-stranded RNA viral analog, polyinosinic: polycytidylic acid (poly(I:C)), followed 2, 7 or 14 days later by administration of the pesticide, paraquat (nine 10 mg/kg injections over three weeks). Results As hypothesized, poly(I:C) pre-treatment enhanced dopamine (DA) neuron loss in the substantia nigra pars compacta elicited by subsequent paraquat treatment. The augmented neuronal loss was accompanied by robust signs of microglial activation, and by increased expression of the catalytic subunit (gp91) of the NADPH oxidase oxidative stress enzyme. However, the paraquat and poly(I:C) treatments did not appreciably affect home-cage activity, striatal DA terminals, or subventricular neurogenesis. Conclusions These findings suggest that viral agents can sensitize microglial-dependent inflammatory responses, thereby rendering nigral DA neurons vulnerable to further environmental toxin exposure.
Collapse
Affiliation(s)
- Jessica Bobyn
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhao BS, Huo HR, Ma YY, Liu HB, Li LF, Sui F, Li CH, Guo SY, Jiang TL. Effects of 3-Phenyl-Propenal on the Expression of Toll-Like Receptors and Downstream Signaling Components on Raw264.7 Murine Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 36:159-69. [PMID: 18306459 DOI: 10.1142/s0192415x08005679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
3-phenyl-propenal is one of the principle compounds isolated from Guizhi (Ramulus Cinnamomi), the principal drug in Guizhi-Tang (GZT), a famous traditional Chinese medical formula. The aim of the present study was to investigate the effects of 3-phenyl-propenal on the expression of toll-like receptor 3 (TLR3), TLR4 and the downstream signaling components on Raw264.7 murine microphages. Raw264.7 cells were cultured in RPMI-1640 medium containing LPS (lipopolysaccharide) or poly (I:C) in the presence or absence of 3-phenyl-propenal. After 24-hour incubation, the medium was collected and the amount of TNF-α and IFN-β was measured by ELISA. mRNA expression of TLR3, TLR4, myeloid differentiation factor (MyD88), TRAF-6 (tumor necrosis factor receptor-associated), TRAM (toll-like receptor-associated molecule) and TRIF (TIR domain-containing adaptor inducing IFN-β) were analyzed by real-time PCR with SYBR green dye. Protein expression of TLR3 and TLR4 was analyzed by Western blotting and that of MyD88 and TRAF-6 was analyzed by immunofluorescence assay. The results indicate that LPS increased the expression of TLR4, MyD88, TRAF-6, TRAM and TRIF, but had no influence on TLR3, while poly (I:C) up-regulated the expression of TLR3, MyD88, TRAM and TRIF. 3-phenyl-propenal significantly decreased the expression of LPS-induced TLR4, MyD88, TRAF-6, while possessing no effect on LPS-induced TRAM and TRIF expression in Raw264.7 cells. When cells were stimulated by poly (I:C), 3-phenyl-propenal significantly decreased TLR3 and MyD88 expression. In conclusion, 3-phenyl-propenal blocked the over-expression of TLR3, TLR4, their downstream signaling components MyD88 and TRAF-6, which indicate that it had an antagonistic effect on TLR3 and TLR4.
Collapse
Affiliation(s)
- Bao-Sheng Zhao
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue-Ying Ma
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hong-Bin Liu
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan-Fang Li
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng Sui
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cang-Hai Li
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shu-Ying Guo
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ting-Liang Jiang
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
38
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|
39
|
Avlas O, Fallach R, Shainberg A, Porat E, Hochhauser E. Toll-like receptor 4 stimulation initiates an inflammatory response that decreases cardiomyocyte contractility. Antioxid Redox Signal 2011; 15:1895-909. [PMID: 21126202 DOI: 10.1089/ars.2010.3728] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) have been identified as primary innate immune receptors for the recognition of pathogen-associated molecular patterns by immune cells, initiating a primary response toward invading pathogens and recruitment of the adaptive immune response. TLRs, especially Toll-like receptor 4 (TLR4), can also be stimulated by host-derived molecules and are expressed in the cardiovascular system, thus acting as a possible key link between cardiovascular diseases and the immune system. TLR4 is involved in the acute myocardial dysfunction caused by septic shock and myocardial ischemia. We used wild-type (WT) mice, TLR4-deficient (TLR4-knockout [ko]) mice, and chimeras that underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the heart (TLR4-ko/WT) and the immunohematopoietic system (WT/TLR4-ko). Following lipopolysaccharide (LPS) challenge (septic shock model) or coronary artery ligation, myocardial ischemia (MI) model, we found WT/TLR4-ko mice challenged with LPS or MI displayed reduced cardiac function, increased myocardial levels of interleukin-1β and tumor necrosis factor-α, and upregulation of mRNA encoding TLR4 prior to myocardial leukocyte infiltration. The cardiac function of TLR4-ko or WT/TLR4-ko mice was less affected by LPS and demonstrated reduced suppression by MI compared with WT. These results suggest that TLR4 expressed in the cardiomyocytes plays a key role in this acute phenomenon.
Collapse
Affiliation(s)
- Orna Avlas
- Gonda (Goldschmied) Medical Diagnostic Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
40
|
Li W, Jiang Y, Jin Q, Shi X, Jin J, Gao Y, Pan Y, Zhang H, Jiang J, Niu J. Expression and gene polymorphisms of interleukin 28B and hepatitis B virus infection in a Chinese Han population. Liver Int 2011; 31:1118-26. [PMID: 21745278 DOI: 10.1111/j.1478-3231.2011.02507.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Recent genome-wide association studies found that genetic polymorphisms near the IL28B gene is strongly associated with sustained viral response and spontaneous viral clearance in chronically infected hepatitis C patients. AIMS We aimed to evaluate the effects of IL28B variations on hepatitis B virus (HBV) infection in a Chinese Han population and to explore the association between IL28B polymorphisms and susceptibility to infection, viral clearance, disease progression, viral load and liver inflammation. METHODS We determined three IL28B single gene polymorphisms (rs12979860, rs12980275 and rs8099917) in 203 individuals with chronic HBV infection, 203 individuals with self-limited HBV infection and 203 individuals negative for all HBV seromarkers. Interleukin (IL)28B serum levels were evaluated in all subjects. Additionally, peripheral blood mononuclear cells from 42 chronically HBV-infected individuals were subjected to whole-genome expression studies. RESULTS The association among genotype, allele and haplotype frequencies of IL28B with alanine aminotransferase levels and HBV DNA was established. However, no significant differences were observed in genotype or allele frequencies among chronically HBV-infected, self-limited and healthy subjects. The serum IL28B level was lower in patients with chronic HBV infection than in the self-limited HBV-infected or healthy subjects. The serum IL28B level was correlated with the subject's genotype. Gene expression micro-array analysis showed enhanced IL28B expression in patients with low HBV viral load. CONCLUSIONS Variability at the IL28B locus is associated with HBV viral load and hepatic inflammation. Genetic variation of IL28B may prevent HBV progression by reducing viral load and liver inflammation, providing a valuable gene therapy tool.
Collapse
Affiliation(s)
- Wanyu Li
- Department of Hepatology, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
LI JIELIANG, HU SHUXIAN, ZHOU LIN, YE LI, WANG XU, HO JIE, HO WENZHE. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia 2011; 59:58-67. [PMID: 20878770 PMCID: PMC3082435 DOI: 10.1002/glia.21076] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 08/13/2010] [Indexed: 11/09/2022]
Abstract
Herpes simplex virus Type I (HSV-1) is a neurotropic virus that is capable of infecting not only neurons, but also microglia and astrocytes and can establish latent infection in the central nervous system (CNS). We investigated whether IFN lambda (IFN-λ), a newly identified member of IFN family, has the ability to inhibit HSV-1 infection of primary human astrocytes and neurons. Both astrocytes and neurons were found to be highly susceptible to HSV-1 infection. However, upon IFN-λ treatment, HSV-1 replication in both astrocytes and neurons was significantly suppressed, which was evidenced by the reduced expression of HSV-1 DNA and proteins. This IFN-λ-mediated action on HSV-1 could be partially neutralized by antibody to IFN-λ receptor. Investigation of the mechanisms showed that IFN-λ treatment of astrocytes and neurons resulted in the upregulation of endogenous IFN-α/β and several IFN-stimulated genes (ISGs). To block IFN-α/β receptor by a specific antibody could compromise the IFN-λ actions on HSV-1 inhibition and ISG induction. In addition, IFN-λ treatment induced the expression of IFN regulatory factors (IRFs) in astrocytes and neurons. Furthermore, IFN-λ treatment of astrocytes and neurons resulted in the suppression of suppressor of cytokine signaling 1 (SOCS-1), a key negative regulator of IFN pathway. These data suggest that IFN-λ possesses the anti-HSV-1 function by promoting Type I IFN-mediated innate antiviral immune response in the CNS cells.
Collapse
Affiliation(s)
- JIELIANG LI
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - SHUXIAN HU
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - LIN ZHOU
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - LI YE
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - XU WANG
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - JIE HO
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - WENZHE HO
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, 430071 P.R. China
| |
Collapse
|
42
|
Iyer SS, Ghaffari AA, Cheng G. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 185:6599-607. [PMID: 21041726 DOI: 10.4049/jimmunol.1002041] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IL-10 is a potent anti-inflammatory molecule that regulates excessive production of inflammatory cytokines during an infection or tissue damage. Dysregulation of IL-10 is associated with a number of autoimmune diseases, and so, understanding the mechanisms by which IL-10 gene expression is regulated remains an important area of study. Macrophages represent a major source of IL-10, which is generated in response to TLR signaling as a feedback mechanism to curtail inflammatory response. In this study, we identify a signaling pathway in murine bone marrow-derived macrophages in which activation of TLR4 by LPS induces the expression of IL-10 through the sequential induction of type I IFNs followed by induction and signaling through IL-27. We demonstrate that IL-27 signaling is required for robust IL-10 induction by LPS and type I IFNs. IL-27 leads directly to transcription of IL-10 through the activation of two required transcription factors, STAT1 and STAT3, which are recruited to the IL-10 promoter. Finally, through systematic functional promoter-reporter analysis, we identify three cis elements within the proximal IL-10 promoter that play an important role in regulating transcription of IL-10 in response to IL-27.
Collapse
|
43
|
Siednienko J, Halle A, Nagpal K, Golenbock DT, Miggin SM. TLR3-mediated IFN-β gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like. Eur J Immunol 2010; 40:3150-60. [PMID: 20957750 DOI: 10.1002/eji.201040547] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/11/2010] [Accepted: 08/19/2010] [Indexed: 12/30/2022]
Abstract
There is limited insight into the mechanisms involved in the counterregulation of TLR. Given the important role of TLR3/TIR domain-containing adaptor-inducing IFN-β (TRIF)-dependent signalling in innate immunity, novel insights into its modulation is of significance in the context of many physiological and pathological processes. Herein, we sought to perform analysis to definitively assign a mechanistic role for MyD88 adaptor-like (Mal), an activator of TLR2/4 signalling, in the negative regulation of TLR3/TRIF signalling. Biochemical and functional analysis demonstrates that Mal negatively regulates TLR3, but not TLR4, mediated IFN-β production. Co-immunoprecipitation experiments demonstrate that Mal associates with IRF7 (IRF, IFN regulatory factor), not IRF3, and Mal specifically blocks IRF7 activation. In doing so, Mal impedes TLR3 ligand-induced IFN-β induction. Interestingly, Mal does not affect the induction of IL-6 and TNF-α upon TLR3 ligand engagement. Together, these data show that the TLR adaptor Mal interacts with IRF7 and, in doing so, impairs IFN-β induction through the positive regulatory domains I-III enhancer element of the IFN-β gene following poly(I:C) stimulation. Our findings offer a new mechanistic insight into TLR3/TRIF signalling through a hitherto unknown mechanism whereby Mal inhibits poly(I:C)-induced IRF7 activation and concomitant IFN-β production. Thus, Mal is essential in restricting TLR3 signalling thereby protecting the host from unwanted immunopathologies associated with excessive IFN-β production.
Collapse
Affiliation(s)
- Jakub Siednienko
- Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Kildare, Ireland
| | | | | | | | | |
Collapse
|
44
|
Jones LA, Kreem S, Shweash M, Paul A, Alexander J, Roberts CW. Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. THE JOURNAL OF IMMUNOLOGY 2010; 185:4525-34. [PMID: 20844199 DOI: 10.4049/jimmunol.0901155] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of progesterone in modulating dendritic cell (DC) function following stimulation of different TLRs is relatively unknown. We compared the ability of progesterone to modulate murine bone marrow-derived DC cytokine production (IL-6 and IL-12) and costimulatory molecule expression (CD40, CD80, and CD86) induced by either TLR3 or TLR4 ligation and determined whether activity was via the progesterone receptor (PR) or glucocorticoid receptor (GR) by comparative studies with the PR-specific agonist norgestrel and the GR agonist dexamethasone. Progesterone was found to downregulate, albeit with different sensitivities, both TLR3- and TLR4-induced IL-6 production entirely via the GR, but IL-12p40 production via either the GR or PR. Of particular significance was that progesterone was able to significantly inhibit TLR3- but not TLR4-induced CD40 expression in bone marrow-derived DCs. Stimulation of the PR (with progesterone and norgestrel) by pretreatment of DCs was found to sustain IFN regulatory factor-3 phosphorylation following TLR3 ligation, but not TLR4 ligation. Overall, these studies demonstrate that progesterone can differentially regulate the signaling pathways employed by TLR3 and TLR4 agonists to affect costimulatory molecule expression and cytokine production.
Collapse
Affiliation(s)
- Leigh A Jones
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Li J, Jeong MY, Bae JH, Shin YH, Jin M, Hang SM, Lee JC, Lee SJ, Park K. Toll-like Receptor3-mediated Induction of Chemokines in Salivary Epithelial Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:235-40. [PMID: 20827338 DOI: 10.4196/kjpp.2010.14.4.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/16/2023]
Abstract
Toll-like receptors (TLRs) functionally expressed in salivary epithelial cells, but their roles remain elusive. Among TLRs family, TLR3 is activated by dsRNA, a byproduct of viral infection. The aim of this study was to investigate the role of TLR3 in the inflammatory immune responses using HSG cells. Reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR and ELISA were performed to identify expression of TLRs and TLR3-mediated chemokine inductions. The chemotaxis assay of activated T lymphocytes was also performed. Treatment of HSG cells with polyinosinic: polycytidylic acid (poly(I:C)) significantly increased interferon-γ-inducible protein 10 (IP-10), interferoninducible T-cell α chemoattractant (I-TAC), and regulated on activation, normal T-cells expressed and secreted (RANTES) gene expressions in a concentration-dependent manner. Anti-TLR3 antibody blocked the increases of IP-10 and I-TAC genes. Poly(I:C)-induced increases of IP-10 and I-TAC were also confirmed at protein levels from cell lysates, but their release into extracellular medium was detected only in IP-10. We found that the culture media from HSG cells stimulated with poly(I:C) significantly increases T lymphocyte migration. Our results suggest that TLR3 plays an important role in chemokine induction, particularly IP-10, in salivary epithelial cells.
Collapse
Affiliation(s)
- Jingchao Li
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Field R, Campion S, Warren C, Murray C, Cunningham C. Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun 2010; 24:996-1007. [PMID: 20399848 PMCID: PMC3334265 DOI: 10.1016/j.bbi.2010.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/12/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022] Open
Abstract
The role of inflammation in the progression of neurodegenerative disease remains unclear. We have shown that systemic bacterial insults accelerate disease progression in animals and in patients with Alzheimer's disease. Disease exacerbation is associated with exaggerated CNS inflammatory responses to systemic inflammation mediated by microglia that become 'primed' by the underlying neurodegeneration. The impact of systemic viral insults on existing neurodegenerative disease has not been investigated. Polyinosinic:polycytidylic acid (poly I:C) is a toll-like receptor-3 (TLR3) agonist and induces type I interferons, thus mimicking inflammatory responses to systemic viral infection. In the current study we hypothesized that systemic challenge with poly I:C, during chronic neurodegenerative disease, would amplify CNS inflammation and exacerbate disease. Using the ME7 model of prion disease and systemic challenge with poly I:C (12 mg/kg i.p.) we have shown an amplified expression of IFN-alpha and beta and of the pro-inflammatory genes IL-1beta and IL-6. Similarly amplified expression of specific IFN-dependent genes confirmed that type I IFNs were secreted and active in the brain and this appeared to have anti-inflammatory consequences. However, prion-diseased animals were susceptible to heightened acute sickness behaviour and acute neurological impairments in response to poly I:C and this treatment also accelerated disease progression in diseased animals without effect in normal animals. Increased apoptosis coupled with double-stranded RNA-dependent protein kinase (PKR) and Fas transcription suggested activation of interferon-dependent, pro-apoptotic pathways in the brain of ME7+poly I:C animals. That systemic poly I:C accelerates neurodegeneration has implications for the control of systemic viral infection during chronic neurodegeneration and indicates that type I interferon responses in the brain merit further study.
Collapse
Affiliation(s)
- Robert Field
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Suzanne Campion
- Weatherall Institute of Molecular Medicine, University of Oxford. Oxford, OX3 9DS, UK
| | - Colleen Warren
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland,Corresponding author. Address: School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Lloyd Building, TCD, Ireland. Fax: +353 1 896 3183.
| |
Collapse
|
47
|
Farina GA, York MR, Di Marzio M, Collins CA, Meller S, Homey B, Rifkin IR, Marshak-Rothstein A, Radstake TRDJ, Lafyatis R. Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J Invest Dermatol 2010; 130:2583-93. [PMID: 20613770 DOI: 10.1038/jid.2010.200] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune activation of fibrosis likely has a crucial role in the pathogenesis of systemic sclerosis (SSc). The aim of this study was to better understand the innate immune regulation and associated IFN- and transforming growth factor-β (TGFβ)-responsive gene expression in SSc skin and dermal fibroblasts, in particular the effect of different Toll-like receptor (TLR) ligands. To better understand the relationship between inflammation and fibrosis in vivo, we developed a murine model for chronic innate immune stimulation. We found that expression of both IFN- and TGFβ-responsive genes is increased in SSc skin and SSc fibroblasts when stimulated by TLR ligands. In contrast, cutaneous lupus skin showed much more highly upregulated IFN-responsive and much less highly upregulated TGFβ-responsive gene expression. Of the TLRs ligands tested, the TLR3 ligand, polyinosinic/polycytidylic acid (Poly(I:C)), most highly increased fibroblast expression of both IFN- and TGFβ-responsive genes as well as TLR3. Chronic subcutaneous immune stimulation by Poly(I:C) stimulated inflammation, and IFN- and TGFβ-responsive gene expression. However, in this model, type I IFNs had no apparent role in regulating TGFβ activity in the skin. These results suggest that TLR agonists may be important stimuli of dermal fibrosis, which is potentially mediated by TLR3 or other innate immune receptors.
Collapse
Affiliation(s)
- Giuseppina A Farina
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Torres D, Dieudonné A, Ryffel B, Vilain E, Si-Tahar M, Pichavant M, Lassalle P, Trottein F, Gosset P. Double-stranded RNA exacerbates pulmonary allergic reaction through TLR3: implication of airway epithelium and dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:451-9. [PMID: 20505141 DOI: 10.4049/jimmunol.0902833] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Respiratory viral infections have been implicated in exacerbations of allergic asthma, characterized by a Th2-biased immune response. Respiratory viruses target airway epithelial cells and dendritic cells (DCs). Their activation is, at least in part, mediated by the TLR3-dependent recognition of virus-derived dsRNA. To elucidate the role of epithelial cells and DCs and the implication of TLR3/Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) pathway, we developed a mouse model of lung allergic exacerbation. The effect of intranasal administration of dsRNA in OVA-sensitized wild-type mice and TRIF(-/-) mice was evaluated on airway hyperresponsiveness and pulmonary inflammation. Our data demonstrated that treatment with dsRNA significantly increased the airway hyperresponsiveness, the lung inflammation, and the OVA-specific Th2 response. This was associated with an infiltrate of eosinophils, myeloid DCs, and T lymphocytes. TRIF activation was required for the development of dsRNA-induced exacerbation of the allergic reaction. Intratracheal transfer of IL-4/dsRNA/OVA-pretreated DCs also triggered exacerbation of the allergic reaction, whereas cells primed with dsRNA/OVA had a more limited effect. dsRNA-induced production of CCL20 by airway epithelium was associated with DC recruitment. In vivo and in vitro treatment with dsRNA amplified airway epithelial production of the pro-Th2 chemokines CCL11 and CCL17, their secretion being enhanced by Th2 cytokines. In conclusion, dsRNA derived from respiratory viruses trigger exacerbation of the pulmonary allergic reaction through TLR3/TRIF-dependent pathway. Moreover, Th2 cytokines participate in this process by modulating the response of airway epithelium and DCs to dsRNA.
Collapse
Affiliation(s)
- David Torres
- Infection Pulmonaire et Immunité Innée, Institut National de la Santé et de la Recherche Médicale, Unité 1019, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Novel signaling interactions between proteinase-activated receptor 2 and Toll-like receptors in vitro and in vivo. Mucosal Immunol 2010; 3:29-39. [PMID: 19865078 PMCID: PMC2851245 DOI: 10.1038/mi.2009.120] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Toll-like receptors (TLRs) and proteinase-activated receptors (PARs) function as innate immune biosensors in mucosal epithelial cells (ECs). We previously reported the functional and physical interactions between TLR4 and PAR(2). We have extended these findings herein by showing the cooperation between PAR(2) and TLR2, TLR3, or TLR4 for activation of nuclear factor-kappaB-dependent signaling in mucosal EC lines. In contrast, activation of PAR(2) negatively regulated TLR3-dependent antiviral pathway, blunting the expression of TLR3/interferon regulatory factor-3 (IRF-3)-driven genes, as well as activation of IRF-3 and STAT1. Consistent with these in vitro observations, PAR(2)(-/-) and TLR4(-/-) mice, which were refractory to footpad edema induced by PAR(2) agonist peptide, were protected from mouse-adapted H1N1 influenza A virus-induced lethality when compared to wild-type (WT) mice. These data support and extend our recently described, novel model of PAR(2)-TLR4 "receptor cooperativity" and highlight the complexity of signaling integration between heterologous innate immune biosensors.
Collapse
|
50
|
Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. ACTA ACUST UNITED AC 2009; 206:2091-9. [PMID: 19720839 PMCID: PMC2757889 DOI: 10.1084/jem.20081761] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus–encoded small RNA (EBER) is nonpolyadenylated, noncoding RNA that forms stem-loop structure by intermolecular base-pairing, giving rise to double-stranded RNA (dsRNA)–like molecules, and exists abundantly in EBV-infected cells. Here, we report that EBER induces signaling from the Toll-like receptor 3 (TLR3), which is a sensor of viral double-stranded RNA (dsRNA) and induces type I IFN and proinflammatory cytokines. A substantial amount of EBER, which was sufficient to induce signaling from TLR3, was released from EBV-infected cells, and the majority of the released EBER existed as a complex with a cellular EBER-binding protein La, suggesting that EBER was released from the cells by active secretion of La. Sera from patients with infectious mononucleosis (IM), chronic active EBV infection (CAEBV), and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), whose general symptoms are caused by proinflammatory cytokines contained EBER, and addition of RNA purified from the sera into culture medium induced signaling from TLR3 in EBV-transformed lymphocytes and peripheral mononuclear cells. Furthermore, DCs treated with EBER showed mature phenotype and antigen presentation capacity. These findings suggest that EBER, which is released from EBV-infected cells, is responsible for immune activation by EBV, inducing type I IFN and proinflammatory cytokines. EBER-induced activation of innate immunity would account for immunopathologic diseases caused by active EBV infection.
Collapse
Affiliation(s)
- Dai Iwakiri
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|