1
|
Le NBT, Tu ATT, Zhao D, Yoshikawa C, Kawakami K, Kaizuka Y, Yamazaki T. Influence of the Charge Ratio of Guanine-Quadruplex Structure-Based CpG Oligodeoxynucleotides and Cationic DOTAP Liposomes on Cytokine Induction Profiles. Biomolecules 2023; 13:1639. [PMID: 38002321 PMCID: PMC10669863 DOI: 10.3390/biom13111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Cationic liposomes, specifically 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposomes, serve as successful carriers for guanine-quadruplex (G4) structure-based cytosine-guanine oligodeoxynucleotides (CpG ODNs). The combined benefits of CpG ODNs forming a G4 structure and a non-viral vector carrier endow the ensuing complex with promising adjuvant properties. Although G4-CpG ODN-DOTAP complexes show a higher immunostimulatory effect than naked G4-CpG ODNs, the effects of the complex composition, especially charge ratios, on the production of the pro-inflammatory cytokines interleukin (IL)-6 and interferon (IFN)-α remain unclear. Here, we examined whether charge ratios drive the bifurcation of cytokine inductions in human peripheral blood mononuclear cells. Linear CpG ODN-DOTAP liposome complexes formed micrometer-sized positively charged agglomerates; G4-CpG ODN-DOTAP liposome complexes with low charge ratios (0.5 and 1.5) formed ~250 nm-sized negatively charged complexes. Notably, low-charge-ratio (0.5 and 1.5) complexes induced significantly higher IL-6 and IFN-α levels simultaneously than high-charge-ratio (2 and 2.5) complexes. Moreover, confocal microscopy indicated a positive correlation between the cellular uptake of the complex and amount of cytokine induced. The observed effects of charge ratios on complex size, surface charge, and affinity for factors that modify cellular-uptake, intracellular-activity, and cytokine-production efficiency highlight the importance of a rational complex design for delivering and controlling G4-CpG ODN activity.
Collapse
Affiliation(s)
- Nguyen Bui Thao Le
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Anh Thi Tram Tu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, VNUHCM-University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Linh Trung, Thu Duc, Ho Chi Minh City 70000, Vietnam
| | - Dandan Zhao
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Chiaki Yoshikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Yoshihisa Kaizuka
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| |
Collapse
|
2
|
Santos GDM, Saldanha A, Orsi FA. Should we be targeting type 1 interferons in antiphospholipid syndrome? Clin Immunol 2023; 255:109754. [PMID: 37678720 DOI: 10.1016/j.clim.2023.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Systemic autoimmune diseases are characterized by increased production of type I interferon (IFN-1) and upregulation of IFN-1-inducible genes, suggesting an important role of the IFN-1 pathway in their pathogenesis. Recent studies have demonstrated increased IFN-1 expression in both primary and secondary antiphospholipid syndrome (APS), along with increased toll-like receptor type 9 activity and plasmacytoid dendritic cell function. The increasing knowledge of the association between IFN-1 and APS pathology may provide a rationale for conducting clinical trials to assess the efficacy of IFN-1-targeting drugs in reducing APS-related complications. In this narrative review, we summarize the current knowledge on the role of IFN-1 in APS pathogenesis, explore its clinical implications, and examine the existing evidence regarding therapeutic options that have been investigated to date.
Collapse
Affiliation(s)
- Gabrielle de Mello Santos
- Hospital das Clinicas of University of São Paulo Medical School (HCFMUSP), Brazil; HEMORIO - State Institute of Hematology "Arthur de Siqueira Cavalcanti", Brazil
| | - Artur Saldanha
- Hospital das Clinicas of University of São Paulo Medical School (HCFMUSP), Brazil; HEMOAL - Hematology and Hemotherapy Center of Alagoas, Brazil
| | - Fernanda Andrade Orsi
- Hospital das Clinicas of University of São Paulo Medical School (HCFMUSP), Brazil; Department of Pathology, Faculty of Medical Sciences of the University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
3
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
4
|
Complexing CpG adjuvants with cationic liposomes enhances vaccine-induced formation of liver T RM cells. Vaccine 2023; 41:1094-1107. [PMID: 36609029 DOI: 10.1016/j.vaccine.2022.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Tissue resident memory T cells (TRM cells) can provide effective tissue surveillance and can respond rapidly to infection. Vaccination strategies aimed at generating TRM cells have shown promise against a range of pathogens. We have previously shown that the choice of adjuvant critically influences CD8+ TRM cell formation in the liver. However, the range of adjuvants tested was limited. Here, we assessed the ability of a broad range of adjuvants stimulating membrane (TLR4), endosomal (TLR3, TLR7 and TLR9) and cytosolic (cGAS, RIG-I) pathogen recognition receptors for their capacity to induce CD8+ TRM formation in a subunit vaccination model. We show that CpG oligodeoxynucleotides (ODN) remain the most efficient inducers of liver TRM cells among all adjuvants tested. Moreover, their combination with the cationic liposome DOTAP further enhances the potency, particularly of the class B ODN CpG 1668 and the human TLR9 ligand CpG 2006 (CpG 7909). This study informs the design of efficient liver TRM-based vaccines for their potential translation.
Collapse
|
5
|
Wiest MJ, Gu C, Ham H, Gorvel L, Keddis MT, Griffing LW, Joo H, Gorvel JP, Billadeau DD, Oh S. Disruption of endosomal trafficking with EGA alters TLR9 cytokine response in human plasmacytoid dendritic cells. Front Immunol 2023; 14:1144127. [PMID: 37020542 PMCID: PMC10067882 DOI: 10.3389/fimmu.2023.1144127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) exhibit bifurcated cytokine responses to TLR9 agonists, an IRF7-mediated type 1 IFN response or a pro-inflammatory cytokine response via the activation of NF-κB. This bifurcated response has been hypothesized to result from either distinct signaling endosomes or endo-lysosomal trafficking delay of TLR9 agonists allowing for autocrine signaling to affect outcomes. Utilizing the late endosome trafficking inhibitor, EGA, we assessed the bifurcated cytokine responses of pDCs to TLR9 stimulation. EGA treatment of pDCs diminished both IFNα and pro-inflammatory cytokine expression induced by CpG DNAs (D- and K-type), CpG-DNAs complexed with DOTAP, and genomic DNAs complexed with LL37. Mechanistically, EGA suppressed phosphorylation of IKKα/β, STAT1, Akt, and p38, and decreased colocalization of CpG oligodeoxynucleotides with LAMP+ endo-lysosomes. EGA also diminished type 1 IFN expression by pDCs from systemic lupus erythematosus patients. Therefore, our findings help understand mechanisms for the bifurcated cytokine responses by pDCs and support future examination of the potential benefit of EGA in treating type 1 IFN-associated inflammatory diseases in the future.
Collapse
Affiliation(s)
- Matthew J. Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Hyoungjun Ham
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Laurent Gorvel
- CRCM, Aix Marseille Universite, INSERM, Marseille, France
| | - Mira T. Keddis
- Department of Nephrology, Mayo Clinic, Scottsdale, AZ, United States
| | - Leroy W. Griffing
- Department of Rheumatology, Mayo Clinic, Scottsdale, AZ, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | | | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
- *Correspondence: SangKon Oh,
| |
Collapse
|
6
|
Oberemok VV, Andreeva OA, Laikova KV, Novikov IA, Kubyshkin AV. Post-genomic platform for development of oligonucleotide vaccines against RNA viruses: diamond cuts diamond. Inflamm Res 2022; 71:729-739. [PMID: 35523969 PMCID: PMC9075145 DOI: 10.1007/s00011-022-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
The coronavirus pandemic has starkly demonstrated the need to create highly effective vaccines against various viral diseases. The emerging new platforms for vaccine creation (adenovirus vectors and mRNA vaccines) have shown their worth in the fight against the prevention of coronavirus infection. However, adenovirus vectors and mRNA vaccines have a serious disadvantage: as a rule, only the S protein of the coronavirus is presented as an antigen. This tactic for preventing infection allows the ever-mutating virus to escape quickly from the immunity protection provided by such vaccines. Today, viral genomic databases are well-developed, which makes it possible to create new vaccines on a fundamentally new post-genomic platform. In addition, the technology for the synthesis of nucleic acids is currently experiencing an upsurge in demand in various fields of molecular biology. The accumulated experience suggests that the unique genomic sequences of viruses can act as antigens that trigger powerful humoral and cellular immunity. To achieve this effect, the following conditions must be created: the structure of the nucleic acid must be single-stranded, have a permanent 3D nanostructure, and have a unique sequence absent in the vaccinated organism. Oligonucleotide vaccines are able to resist the rapidly changing genomic sequences of RNA viruses by using conserved regions of their genomes to generate a long-term immune response, acting according to the adage that a diamond cuts a diamond. In addition, oligonucleotide vaccines will not contribute to antibody-dependent enhanced infection, since the nucleic acid of the coronavirus is inside the viral particle. It is obvious that new epidemics and pandemics caused by RNA viruses will continue to arise periodically in the human population. The creation of new, safe, and effective platforms for the production of vaccines that can flexibly change and adapt to new subtypes of viruses is very urgent and at this moment should be considered as a strategically necessary task.
Collapse
Affiliation(s)
- V V Oberemok
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
| | - O A Andreeva
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - K V Laikova
- Biochemistry Department, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - I A Novikov
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - A V Kubyshkin
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| |
Collapse
|
7
|
Tu ATT, Hoshi K, Shobo M, Yamazaki T. G-quadruplex-based CpG oligodeoxynucleotide/DOTAP complex strongly stimulates immunity in CpG motif-specific and loop-length-dependent manners. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102508. [PMID: 34906721 DOI: 10.1016/j.nano.2021.102508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Guanine-quadruplex (G4) oligodeoxynucleotides (ODNs) that contain unmethylated cytosine-phosphate-guanine motifs (G4 CpG ODN) with phosphodiester backbones are safer than the phosphorothioate (PT)-modified CpG ODNs recently used as vaccine adjuvants. However, cellular uptake and the nuclease stability of G4 CpG ODNs are still insufficient, resulting in lower immunostimulatory activity than PT-modified CpG ODNs. We aimed to enhance the immunostimulatory properties of G4 CpG ODNs by complexing with the cationic liposome 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The complex acquired nuclease resistance and improved cellular uptake. The immunostimulatory activity of the G4 CpG ODN-DOTAP lipoplexes was enhanced to a level comparable to that of PT-modified ODNs. In addition, the lipoplexes based on unmodified G4 CpG ODNs demonstrated CpG motif-specific immunostimulant activity, although PT-modified ODNs lacking the CpG motif could activate human immune cells. Interestingly, G4 CpG ODN-DOTAP lipoplexes induced interferon-α production in a loop-length dependent manner.
Collapse
Affiliation(s)
- Anh Thi Tram Tu
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan; Division of Life Science, Hokkaido university, Sapporo, Japan
| | - Kazuaki Hoshi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan; Division of Life Science, Hokkaido university, Sapporo, Japan.
| |
Collapse
|
8
|
Johnson MB, Chandler M, Afonin KA. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Deliv Rev 2021; 173:427-438. [PMID: 33857556 PMCID: PMC8178219 DOI: 10.1016/j.addr.2021.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
9
|
Bode C, Poth JM, Fox M, Schulz S, Klinman DM, Latz E, Steinhagen F. Cytosolic d-type CpG-oligonucleotides induce a type I interferon response by activating the cGAS-STING signaling pathway. Eur J Immunol 2021; 51:1686-1697. [PMID: 33860535 DOI: 10.1002/eji.202048810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Cytosolic DNA receptor cyclic GMP-AMP (cGAMP) synthase (cGAS) has been shown to be critically involved in the detection of cytosolic, self- and non-self-DNA, initiating a type I IFN response through the adaptor protein Stimulator of Interferon Genes (STING) and interferon regulatory factor 3 (IRF3). Current studies propose that canonical binding of dsDNA by cGAS depends on DNA length, but not on base sequence. In contrast, activation of TLR9 is sequence dependent. It requires unmethylated CpG dinucleotides in microbial DNA, which is mimicked by synthetic oligodeoxynucleotides (ODN). Here, we provide evidence that d-type ODN (D-ODN), but not K-type ODN (K-ODN), bind to human cGAS and activate downstream signaling. Transfection of D-ODN into a TLR9-deficient, human monocytic cell line (THP-1) induced phosphorylation of IRF3 and secretion of IFN. This response was absent in cells with CRISPR/Cas9-mediated cGAS- or STING-deficiency. Utilizing a protein pulldown approach, we further demonstrate direct binding of D-ODN to cGAS. Induction of a type I IFN response by D-ODN was confirmed in human primary monocytes and monocyte-derived macrophages. These results are relevant to our understanding of self-nonself-discrimination by cGAS and to the pharmacologic effects of ODN, which currently are investigated in clinical studies.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens M Poth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Mario Fox
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Susanne Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Dennis M Klinman
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Folkert Steinhagen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.,Department of Anesthesiology and Intensive Care Medicine, SHG-Clinic Voelklingen, Voelklingen, Germany
| |
Collapse
|
10
|
Zhou J, Deng GM. The role of bacterial DNA containing CpG motifs in diseases. J Leukoc Biol 2021; 109:991-998. [PMID: 33527516 DOI: 10.1002/jlb.3mr1220-748rrrrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterial DNA containing unmethylated CpG motifs can activate immune cells to release proinflammatory cytokines. Here, the role of bacterial DNA containing CpG motifs in diseases with a focus on arthritis is discussed. Our studies demonstrate that the intraarticular injection of bacterial DNA and oligodeoxynucleotides containing CpG motifs (CpG ODN) induced arthritis. The induction of arthritis involves the role of macrophages over other cells such as neutrophils, NK cells, and lymphocytes. TNF-α and TNFRI play an important role in the development of arthritis. NF-κB also plays a critical regulatory role in arthritis. Systemic anti-inflammatory treatment, along with antibiotic therapy, has beneficial effects on the course and the outcome of bacterial arthritis. Thus, future treatment strategies for bacterial arthritis should include attempts to minimizing bacterial growth while blocking the proinflammatory effects of the bacterial DNA. Significant therapeutic efficiency has also been shown by CpG ODN-mediated Th1 immune activation in mouse models of cancer, infectious disease, and allergy/asthma.
Collapse
Affiliation(s)
- Jiayuan Zhou
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Li J, Huynh L, Cornwell WD, Tang MS, Simborio H, Huang J, Kosmider B, Rogers TJ, Zhao H, Steinberg MB, Thu Thi Le L, Zhang L, Pham K, Liu C, Wang H. Electronic Cigarettes Induce Mitochondrial DNA Damage and Trigger TLR9 (Toll-Like Receptor 9)-Mediated Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 41:839-853. [PMID: 33380174 DOI: 10.1161/atvbaha.120.315556] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Electronic cigarette (e-cig) use has recently been implicated in promoting atherosclerosis. In this study, we aimed to investigate the mechanism of e-cig exposure accelerated atherosclerotic lesion development. Approach and Results: Eight-week-old ApoE-/- mice fed normal laboratory diet were exposed to e-cig vapor (ECV) for 2 hours/day, 5 days/week for 16 weeks. We found that ECV exposure significantly induced atherosclerotic lesions as examined by Oil Red O staining and greatly upregulated TLR9 (toll-like receptor 9) expression in classical monocytes and in the atherosclerotic plaques, which the latter was corroborated by enhanced TLR9 expression in human femoral artery atherosclerotic plaques from e-cig smokers. Intriguingly, we found a significant increase of oxidative mitochondria DNA lesion in the plasma of ECV-exposed mice. Administration of TLR9 antagonist before ECV exposure not only alleviated atherosclerosis and the upregulation of TLR9 in plaques but also attenuated the increase of plasma levels of inflammatory cytokines, reduced the plaque accumulation of lipid and macrophages, and decreased the frequency of blood CCR2+ (C-C chemokine receptor type 2) classical monocytes. Surprisingly, we found that cytoplasmic mitochondrial DNA isolated from ECV extract-treated macrophages can enhance TLR9 activation in reporter cells and the induction of inflammatory cytokine could be suppressed by TLR9 inhibitor in macrophages. CONCLUSIONS E-cig increases level of damaged mitochondrial DNA in circulating blood and induces the expression of TLR9, which elevate the expression of proinflammatory cytokines in monocyte/macrophage and consequently lead to atherosclerosis. Our results raise the possibility that intervention of TLR9 activation is a potential pharmacological target of ECV-related inflammation and cardiovascular diseases.
Collapse
Affiliation(s)
- Jieliang Li
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (J.L., L.H., J.H., L.T.T.L., H.W.)
| | - Luong Huynh
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (J.L., L.H., J.H., L.T.T.L., H.W.)
| | - William D Cornwell
- Department of Physiology (W.D.C.), Temple University School of Medicine, Philadelphia, PA
| | - Moon-Shong Tang
- Department of Environment Medicine, New York University School of Medicine, Tuxedo Park (M.-S.T.)
| | - Hannah Simborio
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (H.S., B.K., T.J.R.)
| | - Jing Huang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (J.L., L.H., J.H., L.T.T.L., H.W.)
| | - Beata Kosmider
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (H.S., B.K., T.J.R.).,Department of Thoracic Medicine and Surgery (B.K.), Temple University School of Medicine, Philadelphia, PA
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (H.S., B.K., T.J.R.)
| | - Huaqing Zhao
- Department of Clinical Sciences (H.Z.), Temple University School of Medicine, Philadelphia, PA
| | - Michael B Steinberg
- Division of General Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (M.B.S.)
| | - Le Thu Thi Le
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (J.L., L.H., J.H., L.T.T.L., H.W.)
| | - Lanjing Zhang
- Gastrointestinal and Liver Pathology, Penn Medicine Princeton Medical Center, Plainsboro, New Jersey (L.Z.)
| | - Kien Pham
- Department of Pathology, Yale University School of Medicine, New Haven, CT (K.P., C.L.)
| | - Chen Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT (K.P., C.L.)
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (J.L., L.H., J.H., L.T.T.L., H.W.)
| |
Collapse
|
12
|
Ng J, Guo F, Marneth AE, Ghanta S, Kwon MY, Keegan J, Liu X, Wright KT, Kamaz B, Cahill LA, Mullally A, Perrella MA, Lederer JA. Augmenting emergency granulopoiesis with CpG conditioned mesenchymal stromal cells in murine neutropenic sepsis. Blood Adv 2020; 4:4965-4979. [PMID: 33049055 PMCID: PMC7556132 DOI: 10.1182/bloodadvances.2020002556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Patients with immune deficiencies from cancers and associated treatments represent a growing population within the intensive care unit with increased risk of morbidity and mortality from sepsis. Mesenchymal stromal cells (MSCs) are an integral part of the hematopoietic niche and express toll-like receptors, making them candidate cells to sense and translate pathogenic signals into an innate immune response. In this study, we demonstrate that MSCs administered therapeutically in a murine model of radiation-associated neutropenia have dual actions to confer a survival benefit in Pseudomonas aeruginosa pneumo-sepsis that is not from improved bacterial clearance. First, MSCs augment the neutrophil response to infection, an effect that is enhanced when MSCs are preconditioned with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist. Using cytometry by time of flight, we identified proliferating neutrophils (Ly6GlowKi-67+) as the main expanded cell population within the bone marrow. Further analysis revealed that CpG-MSCs expand a lineage restricted progenitor population (Lin-Sca1+C-kit+CD150-CD48+) in the bone marrow, which corresponded to a doubling in the myeloid proliferation and differentiation potential in response to infection compared with control. Despite increased neutrophils, no reduction in organ bacterial count was observed between experimental groups. However, the second effect exerted by CpG-MSCs is to attenuate organ damage, particularly in the lungs. Neutrophils obtained from irradiated mice and cocultured with CpG-MSCs had decreased neutrophil extracellular trap formation, which was associated with decreased citrullinated H3 staining in the lungs of mice given CpG-MSCs in vivo. Thus, this preclinical study provides evidence for the therapeutic potential of MSCs in neutropenic sepsis.
Collapse
Affiliation(s)
- Julie Ng
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | | | | | - Min-Young Kwon
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | - Xiaoli Liu
- Division of Pulmonary and Critical Care, Department of Medicine
- Department of Pediatric Newborn Medicine, and
| | - Kyle T Wright
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | | - Mark A Perrella
- Division of Pulmonary and Critical Care, Department of Medicine
- Department of Pediatric Newborn Medicine, and
| | | |
Collapse
|
13
|
SARS-CoV-2 will constantly sweep its tracks: a vaccine containing CpG motifs in 'lasso' for the multi-faced virus. Inflamm Res 2020; 69:801-812. [PMID: 32656668 PMCID: PMC7354743 DOI: 10.1007/s00011-020-01377-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
During the current COVID-19 pandemic, the global ratio between the dead and the survivors is approximately 1 to 10, which has put humanity on high alert and provided strong motivation for the intensive search for vaccines and drugs. It is already clear that if we follow the most likely scenario, which is similar to that used to create seasonal influenza vaccines, then we will need to develop improved vaccine formulas every year to control the spread of the new, highly mutable coronavirus SARS-CoV-2. In this article, using well-known RNA viruses (HIV, influenza viruses, HCV) as examples, we consider the main successes and failures in creating primarily highly effective vaccines. The experience accumulated dealing with the biology of zoonotic RNA viruses suggests that the fight against COVID-19 will be difficult and lengthy. The most effective vaccines against SARS-CoV-2 will be those able to form highly effective memory cells for both humoral (memory B cells) and cellular (cross-reactive antiviral memory T cells) immunity. Unfortunately, RNA viruses constantly sweep their tracks and perhaps one of the most promising solutions in the fight against the COVID-19 pandemic is the creation of 'universal' vaccines based on conservative SARS-CoV-2 genome sequences (antigen-presenting) and unmethylated CpG dinucleotides (adjuvant) in the composition of the phosphorothioate backbone of single-stranded DNA oligonucleotides (ODN), which can be effective for long periods of use. Here, we propose a SARS-CoV-2 vaccine based on a lasso-like phosphorothioate oligonucleotide construction containing CpG motifs and the antigen-presenting unique ACG-containing genome sequence of SARS-CoV-2. We found that CpG dinucleotides are the most rare dinucleotides in the genomes of SARS-CoV-2 and other known human coronaviruses, and hypothesized that their higher frequency could be responsible for the unwanted increased lethality to the host, causing a ‘cytokine storm’ in people who overexpress cytokines through the activation of specific Toll-like receptors in a manner similar to TLR9-CpG ODN interactions. Interestingly, the virus strains sequenced in China (Wuhan) in February 2020 contained on average one CpG dinucleotide more in their genome than the later strains from the USA (New York) sequenced in May 2020. Obviously, during the first steps of the microevolution of SARS-CoV-2 in the human population, natural selection tends to select viral genomes containing fewer CpG motifs that do not trigger a strong innate immune response, so the infected person has moderate symptoms and spreads SARS-CoV-2 more readily. However, in our opinion, unmethylated CpG dinucleotides are also capable of preparing the host immune system for the coronavirus infection and should be present in SARS-CoV-2 vaccines as strong adjuvants.
Collapse
|
14
|
Trotter TN, Shuptrine CW, Tsao LC, Marek RD, Acharya C, Wei JP, Yang XY, Lei G, Wang T, Lyerly HK, Hartman ZC. IL26, a Noncanonical Mediator of DNA Inflammatory Stimulation, Promotes TNBC Engraftment and Progression in Association with Neutrophils. Cancer Res 2020; 80:3088-3100. [PMID: 32366475 DOI: 10.1158/0008-5472.can-18-3825] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/23/2019] [Accepted: 04/29/2020] [Indexed: 01/19/2023]
Abstract
IL26 is a unique amphipathic member of the IL10 family of cytokines that participates in inflammatory signaling through a canonical receptor pathway. It also directly binds DNA to facilitate cellular transduction and intracellular inflammatory signaling. Although IL26 has almost no described role in cancer, our in vivo screen of inflammatory and cytokine pathway genes revealed IL26 to be one of the most significant inflammatory mediators of mammary engraftment and lung metastatic growth in triple-negative breast cancer (TNBC). Examination of human breast cancers demonstrated elevated IL26 transcripts in TNBC specimens, specifically in tumor cells as well as in Th17 CD4+ T cells within clinical TNBC specimens. IL26 did not have an autocrine effect on human TNBC cells, but rather its effect on engraftment and growth in vivo required neutrophils. IL26 enhanced mouse-derived DNA induction of inflammatory cytokines, which were collectively important for mammary and metastatic lung engraftment. To neutralize this effect, we developed a novel IL26 vaccine to stimulate antibody production and suppress IL26-enhanced engraftment in vivo, suggesting that targeting this inflammatory amplifier could be a unique means to control cancer-promoting inflammation in TNBC and other autoimmune diseases. Thus, we identified IL26 as a novel key modulator of TNBC metastasis and a potential therapeutic target in TNBC as well as other diseases reliant upon IL26-mediated inflammatory stimulation. SIGNIFICANCE: These findings identify IL26 as a unique, clinically relevant, inflammatory amplifier that enhances TNBC engraftment and dissemination in association with neutrophils, which has potential as a therapeutic target. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/15/3088/F1.large.jpg.
Collapse
Affiliation(s)
| | | | - Li-Chung Tsao
- Department of Surgery, Duke University, Durham, North Carolina
| | - Robert D Marek
- Department of Pathology/Immunology, Duke University, Durham, North Carolina
| | | | - Jun-Ping Wei
- Department of Surgery, Duke University, Durham, North Carolina
| | - Xiao-Yi Yang
- Department of Surgery, Duke University, Durham, North Carolina
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, North Carolina
| | - Tao Wang
- Department of Surgery, Duke University, Durham, North Carolina
| | | | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, North Carolina. .,Department of Pathology/Immunology, Duke University, Durham, North Carolina
| |
Collapse
|
15
|
Abstract
Despite an increase in the rates of survival in patients suffering myocardial infarction, as yet there is no therapy specifically targeting ischaemia and reperfusion injury of the myocardium. With a greater understanding of immune activation during infarction, more potential treatment targets are now being identified. The innate immune system is believed to play an important role in the myocardium after ischaemia-driven cardiomyocyte death. The release of intracellular contents including DNA into the extracellular space during necrosis and cell rupture is now believed to create a pro-inflammatory milieu which propagates the inflammatory process. DNA and DNA fragments have been shown to activate the innate immune system by acting as Danger-Associated Molecular Patterns (DAMPs), which act as ligands on toll-like receptors (TLRs). Stimulation of TLRs, in turn, can activate intracellular cell death pathways such as pyroptosis. Here, we review the role of DNA fragments during ischaemia and reperfusion, and assess their potential as a target in the quest to preserve cardiomyocyte viability following myocardial infarction.
Collapse
Affiliation(s)
- Mohammed Shah
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
16
|
Microfluidic-prepared DOTAP nanoparticles induce strong T-cell responses in mice. PLoS One 2020; 15:e0227891. [PMID: 31978077 PMCID: PMC6980563 DOI: 10.1371/journal.pone.0227891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/01/2020] [Indexed: 12/31/2022] Open
Abstract
For the induction of antigen-specific T-cell responses by vaccination, an appropriate immune adjuvant is required. Vaccine adjuvants generally provide two functions, namely, immune potentiator and delivery, and many adjuvants that can efficiently induce T-cell responses are known to have the combination of these two functions. In this study, we explored a cationic lipid DOTAP-based adjuvant. We found that the microfluidic preparation of DOTAP nanoparticles induced stronger CD4+ and CD8+ T-cell responses than liposomal DOTAP. The further addition of Type-A CpG D35 in DOTAP nanoparticles increased the induction of T-cell responses, particularly in CD4+ T cells. Further investigations revealed that the size of DOTAP nanoparticles, prepared buffer conditions, and physicochemical interaction with vaccine antigen are important factors for the efficient induction of T-cell responses with a relatively small antigen dose. These results suggested that microfluidic-prepared DOTAP nanoparticles plus D35 are a promising adjuvant for a vaccine that induces therapeutic T-cell responses for treating cancer and infectious diseases.
Collapse
|
17
|
Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nat Commun 2020; 11:105. [PMID: 31913271 PMCID: PMC6949246 DOI: 10.1038/s41467-019-13756-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is an inflammatory skin disease with strong neutrophil (PMN) infiltration and high levels of the antimicrobial peptide, LL37. LL37 in complex with DNA and RNA is thought to initiate disease exacerbation via plasmacytoid dendritic cells. However, the source of nucleic acids supposed to start this initial inflammatory event remains unknown. We show here that primary murine and human PMNs mount a fulminant and self-propagating neutrophil extracellular trap (NET) and cytokine response, but independently of the canonical NET component, DNA. Unexpectedly, RNA, which is abundant in NETs and psoriatic but not healthy skin, in complex with LL37 triggered TLR8/TLR13-mediated cytokine and NET release by PMNs in vitro and in vivo. Transfer of NETs to naive human PMNs prompts additional NET release, promoting further inflammation. Our study thus uncovers a self-propagating vicious cycle contributing to chronic inflammation in psoriasis, and NET-associated RNA (naRNA) as a physiologically relevant NET component.
Collapse
|
18
|
Das L, Azmoon P, Banki MA, Mantuano E, Gonias SL. Tissue-type plasminogen activator selectively inhibits multiple toll-like receptors in CSF-1-differentiated macrophages. PLoS One 2019; 14:e0224738. [PMID: 31697716 PMCID: PMC6837328 DOI: 10.1371/journal.pone.0224738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) is a major activator of fibrinolysis, which also attenuates the pro-inflammatory activity of lipopolysaccharide (LPS) in bone marrow-derived macrophages (BMDMs) and in vivo in mice. The activity of tPA as an LPS response modifier is independent of its proteinase activity and instead, dependent on the N-methyl-D-aspartate Receptor (NMDA-R), which is expressed by BMDMs. The major Toll-like receptor (TLR) for LPS is TLR4. Herein, we show that enzymatically-inactive (EI) tPA blocks the response of mouse BMDMs to selective TLR2 and TLR9 agonists, rapidly reversing IκBα phosphorylation and inhibiting expression of TNFα, CCL2, interleukin-1β, and interleukin-6. The activity of EI-tPA was replicated by activated α2-macroglobulin, which like EI-tPA, signals through an NMDA-R-dependent pathway. EI-tPA failed to inhibit cytokine expression by BMDMs in response to agonists that target the Pattern Recognition Receptors (PRRs), NOD1 and NOD2, providing evidence for specificity in the function of EI-tPA. Macrophages isolated from the peritoneal space (PMs), without adding eliciting agents, expressed decreased levels of cell-surface NMDA-R compared with BMDMs. These cells were unresponsive to EI-tPA in the presence of LPS. However, when PMs were treated with CSF-1, the abundance of cell-surface NMDA-R increased and the ability of EI-tPA to neutralize the response to LPS was established. We conclude that the anti-inflammatory activity of EI-tPA is selective for TLRs but not all PRRs. The ability of macrophages to respond to EI-tPA depends on the availability of cell surface NMDA-R, which may be macrophage differentiation-state dependent.
Collapse
Affiliation(s)
- Lipsa Das
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
19
|
Weerappuli PD, Louttit C, Kojima T, Brennan L, Yalavarthi S, Xu Y, Ochyl LJ, Maeda ML, Kim HS, Knight JS, Takayama S, Moon JJ. Extracellular Trap-Mimicking DNA-Histone Mesostructures Synergistically Activate Dendritic Cells. Adv Healthc Mater 2019; 8:e1900926. [PMID: 31614077 PMCID: PMC6872909 DOI: 10.1002/adhm.201900926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Extracellular traps (ETs), such as neutrophil extracellular traps, are a physical mesh deployed by immune cells to entrap and constrain pathogens. ETs are immunogenic structures composed of DNA, histones, and an array of variable protein and peptide components. While much attention has been paid to the multifaceted function of these structures, mechanistic studies of ETs remain challenging due to their heterogeneity and complexity. Here, a novel DNA-histone mesostructure (DHM) formed by complexation of DNA and histones into a fibrous mesh is reported. DHMs mirror the DNA-histone structural frame of ETs and offer a facile platform for cell culture studies. It is shown that DHMs are potent activators of dendritic cells and identify both the methylation state of DHMs and physical interaction between dendritic cells and DHMs as key tuning switches for immune stimulation. Overall, the DHM platform provides a new opportunity to study the role of ETs in immune activation and pathophysiology.
Collapse
Affiliation(s)
- Priyan D. Weerappuli
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
| | - Cameron Louttit
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
| | - Taisuke Kojima
- Wallace H Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Luke Brennan
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | | | - Yao Xu
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | - Lukasz J. Ochyl
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | - Midori L. Maeda
- Wallace H Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hong Sun Kim
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | - Jason S. Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI
48109, USA
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - James J. Moon
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Wang G, Kouwaki T, Mugikura K, Okamoto M, Takaki H, Funami K, Seya T, Oshiumi H. Cytoplasmic dsRNA induces the expression of OCT3/4 and NANOG mRNAs in differentiated human cells. J Biol Chem 2019; 294:18969-18979. [PMID: 31615841 DOI: 10.1074/jbc.ra119.009783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/10/2019] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic dsRNA is recognized by RNA helicase RIG-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), triggering induction of the innate immune response via the mitochondrial antiviral signaling protein (MAVS). In contrast, extracellular dsRNA is internalized into endosomes and recognized by Toll-like receptor 3 (TLR3), which triggers signaling via the Toll-like receptor adaptor molecule 1 (TICAM-1). Poly(I:C) is a synthetic dsRNA analog and increases the expression of octamer-binding protein 3/4 (OCT3/4), NANOG, and SRY-box (SOX) mRNAs during pluripotency induction. However, the mechanism underlying this increase is unclear. Here, we focused on the mechanism of poly(I:C)-induced expression of stem cell-specific genes in human somatic cells. Addition of poly(I:C) to human fibroblast culture medium did not increase OCT3/4 mRNA expression, but poly(I:C) transfection markedly increased OCT3/4 expression and induced nuclear localization of the OCT3/4 protein, implying that not TLR3, but RIG-I and MDA5 are required for OCT3/4 expression. Moreover, although cytoplasmic dsRNA increased OCT3/4 mRNA, cytoplasmic dsDNAs, such as salmon sperm DNA and poly(dA:dT), did not. Interestingly, the expression of NANOG, SOX2, Krüppel-like factor 4 (KLF4), and proto-oncogene c-Myc was also increased by cytoplasmic dsRNA. Of note, siRNAs that silenced MAVS and interferon regulatory factor 1 (IRF1) expression reduced OCT3/4 levels after stimulation with poly(I:C); however, an NF-κB inhibitor and siRNA-mediated knockdown of proto-oncogene c-Jun did not significantly reduce the mRNA levels. We conclude that cytoplasmic dsRNA increases the expression of stem cell-specific genes in human somatic cells in a MAVS- and IRF1-dependent manner.
Collapse
Affiliation(s)
- Guanming Wang
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 Japan
| | - Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 Japan
| | - Kazuki Mugikura
- Nebuta Research Institute for Life Sciences, Aomori University, Kohbata 2-3-1, Aomori 030-0943, Japan
| | - Masaaki Okamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 Japan.,Nebuta Research Institute for Life Sciences, Aomori University, Kohbata 2-3-1, Aomori 030-0943, Japan
| | - Hiromi Takaki
- Nebuta Research Institute for Life Sciences, Aomori University, Kohbata 2-3-1, Aomori 030-0943, Japan
| | - Kenji Funami
- Nebuta Research Institute for Life Sciences, Aomori University, Kohbata 2-3-1, Aomori 030-0943, Japan
| | - Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Kohbata 2-3-1, Aomori 030-0943, Japan .,Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 Japan
| |
Collapse
|
21
|
RNA-DNA hybrids and ssDNA differ in intracellular half-life and toll-like receptor 9 activation. Immunobiology 2019; 224:843-851. [PMID: 31521407 DOI: 10.1016/j.imbio.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/02/2019] [Accepted: 08/03/2019] [Indexed: 12/25/2022]
Abstract
The innate immune system senses viral and bacterial RNA or DNA via different cytoplasmic or endosomal localized pattern recognition receptors. In general, the preference of these receptors for single-stranded (ss), double-stranded (ds) RNA or DNA has been thoroughly characterized. Recently, RNA-DNA hybrids have also been identified as ligands for pattern recognition receptors such as Toll-like receptor 9 (TLR9). However, a comparison of RNA-DNA hybrids and ssDNA in terms of TLR9 stimulation potential and intracellular stability has not been addressed. RNA-DNA hybrids are formed transiently during normal cellular processes (e.g. replication), consist as part of some viral genomes (e.g. cytomegalovirus (CMV) or hepatitis B virus (HBV)) and exist during retroviral infection. Here we report that virus-derived synthetic RNA-DNA hybrids stimulate human peripheral blood mononuclear cells (PBMCs) as well as murine FMS-like tyrosine kinase 3 ligand (FLT3L) induced dendritic cells to secrete interferon alpha (IFN-α) in a TLR9-dependent manner. Furthermore, we could show that RNA-DNA hybrids exhibit increased intracellular stability, which correlates with enhanced activation of TLR9 in comparison to corresponding ssDNA. Overall, these data suggest a prominent role for TLR9 in the immune recognition of RNA-DNA hybrids in retroviral and CMV infection.
Collapse
|
22
|
Gandhapudi SK, Ward M, Bush JPC, Bedu-Addo F, Conn G, Woodward JG. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. THE JOURNAL OF IMMUNOLOGY 2019; 202:3524-3536. [PMID: 31053626 DOI: 10.4049/jimmunol.1801634] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
Certain types of cationic lipids have shown promise in cancer immunotherapy, but their mechanism of action is poorly understood. In this study, we describe the properties of an immunotherapeutic consisting of the pure cationic lipid enantiomer R-1,2-dioleoyl-3-trimethyl-ammonium-propane (R-DOTAP) formulated with modified viral or self-peptide Ags. R-DOTAP formulations with peptide Ags stimulate strong cross-presentation and potent CD8 T cell responses associated with a high frequency of polyfunctional CD8 T cells. In a human papillomavirus tumor model system, a single s.c. injection of tumor-bearing mice with R-DOTAP plus human papillomavirus Ags induces complete regression of large tumors associated with an influx of Ag-specific CD8 T cells and a reduction of the ratio of regulatory/Ag-specific CD8 T cells. R-DOTAP also synergizes with an anti-PD1 checkpoint inhibitor, resulting in a significant inhibition of B16 melanoma tumor growth. We found that R-DOTAP stimulates type I IFN production by dendritic cells in vivo and in vitro. s.c. injection of R-DOTAP results in an IFN-dependent increase in draining lymph node size and a concomitant increase in CD69 expression. Using knockout mice, we show that type I IFN is required for the induction of CD8 T cell activity following administration of R-DOTAP plus Ag. This response requires Myd88 but not TRIF or STING. We also show that R-DOTAP stimulates both TLR7 and 9. Collectively, these studies reveal that R-DOTAP stimulates endosomal TLRs, resulting in a Myd88-dependent production of type I IFN. When administered with Ag, this results in potent Ag-specific CD8 T cell responses and antitumor activity.
Collapse
Affiliation(s)
- Siva K Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| | - Martin Ward
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| | - John Peyton C Bush
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| | | | - Greg Conn
- PDS Biotechnology Corporation, Princeton, NJ 08540
| | - Jerold G Woodward
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| |
Collapse
|
23
|
Duvvuri B, Lood C. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Front Immunol 2019; 10:502. [PMID: 30941136 PMCID: PMC6433826 DOI: 10.3389/fimmu.2019.00502] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA is primarily found intracellularly in nuclei and mitochondria. However, extracellular, cell-free (cf) DNA, has been observed in several pathological conditions, including autoimmune diseases, prompting the interest of developing cfDNA as a potential biomarker. There is an upsurge in studies considering cfDNA to stratify patients, monitor the treatment response and predict disease progression, thus evaluating the prognostic potential of cfDNA for autoimmune diseases. Since the discovery of elevated cfDNA levels in lupus patients in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and the association with disease activity. However, with recent technological advancements, including genomic and methylomic sequencing, qualitative changes in cfDNA are being explored in autoimmune diseases, similar to the ones used in molecular profiling of cfDNA in cancer patients. Further, the intracellular origin, e.g., if derived from mitochondrial or nuclear source, as well as the complexing with carrier molecules, including LL-37 and HMGB1, has emerged as important factors to consider when analyzing the quality and inflammatory potential of cfDNA. The clinical relevance of cfDNA in autoimmune rheumatic diseases is strengthened by mechanistic insights into the biological processes that result in an enhanced release of DNA into the circulation during autoimmune and inflammatory conditions. Prior work have established an important role of accelerated apoptosis and impaired clearance in leakage of nucleic acids into the extracellular environment. Findings from more recent studies, including our own investigations, have demonstrated that NETosis, a neutrophil cell death process, can result in a selective extrusion of inflammatory mitochondrial DNA; a process which is enhanced in patients with lupus and rheumatoid arthritis. In this review, we will summarize the evolution of cfDNA, both nuclear and mitochondrial DNA, as biomarkers for autoimmune rheumatic diseases and discuss limitations, challenges and implications to establish cfDNA as a biomarker for clinical use. This review will also highlight recent advancements in mechanistic studies demonstrating mitochondrial DNA as a central component of cfDNA in autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Lange MJ, Burke DH, Chaput JC. Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid. Nucleic Acid Ther 2018; 29:51-59. [PMID: 30526333 DOI: 10.1089/nat.2018.0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in synthetic biology have led to the development of nucleic acid polymers with backbone structures distinct from those found in nature, termed xeno-nucleic acids (XNAs). Several unique properties of XNAs make them attractive as nucleic acid therapeutics, most notably their high resistance to serum nucleases and ability to form Watson-Crick base pairing with DNA and RNA. The ability of XNAs to induce immune responses has not been investigated. Threose nucleic acid (TNA), a type of XNA, is recalcitrant to nuclease digestion and capable of undergoing Darwinian evolution to produce high affinity aptamers; thus, TNA is an attractive candidate for diverse applications, including nucleic acid therapeutics. In this study, we evaluated a TNA oligonucleotide derived from a cytosine-phosphate-guanine oligonucleotide sequence known to activate toll-like receptor 9-dependent immune signaling in B cell lines. We observed a slight induction of relevant mRNA signals, robust B cell line activation, and negligible effects on cellular proliferation.
Collapse
Affiliation(s)
- Margaret J Lange
- 1 Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri.,2 Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Donald H Burke
- 1 Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri.,2 Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,3 Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - John C Chaput
- 4 Department of Pharmaceutical Sciences, University of California, Irvine, California.,5 Department of Chemistry, University of California, Irvine, California.,6 Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
25
|
Toll-Like Receptor 3 Is Involved in Detection of Enterovirus A71 Infection and Targeted by Viral 2A Protease. Viruses 2018; 10:v10120689. [PMID: 30563052 PMCID: PMC6315976 DOI: 10.3390/v10120689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) has emerged as a major pathogen causing hand, foot, and mouth disease, as well as neurological disorders. The host immune response affects the outcomes of EV-A71 infection, leading to either resolution or disease progression. However, the mechanisms of how the mammalian innate immune system detects EV-A71 infection to elicit antiviral immunity remain elusive. Here, we report that the Toll-like receptor 3 (TLR3) is a key viral RNA sensor for sensing EV-A71 infection to trigger antiviral immunity. Expression of TLR3 in HEK293 cells enabled the cells to sense EV-A71 infection, leading to type I, IFN-mediated antiviral immunity. Viral double-stranded RNA derived from EV-A71 infection was a key ligand for TLR3 detection. Silencing of TLR3 in mouse and human primary immune cells impaired the activation of IFN-β upon EV-A71 infection, thus reinforcing the importance of the TLR3 pathway in defending against EV-A71 infection. Our results further demonstrated that TLR3 was a target of EV-A71 infection. EV-A71 protease 2A was implicated in the downregulation of TLR3. Together, our results not only demonstrate the importance of the TLR3 pathway in response to EV-A71 infection, but also reveal the involvement of EV-A71 protease 2A in subverting TLR3-mediated antiviral defenses.
Collapse
|
26
|
Wade MF, Collins MK, Richards D, Mack DG, Martin AK, Dinarello CA, Fontenot AP, McKee AS. TLR9 and IL-1R1 Promote Mobilization of Pulmonary Dendritic Cells during Beryllium Sensitization. THE JOURNAL OF IMMUNOLOGY 2018; 201:2232-2243. [PMID: 30185516 DOI: 10.4049/jimmunol.1800303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/13/2018] [Indexed: 11/19/2022]
Abstract
Metal-induced hypersensitivity is driven by dendritic cells (DCs) that migrate from the site of exposure to the lymph nodes, upregulate costimulatory molecules, and initiate metal-specific CD4+ T cell responses. Chronic beryllium disease (CBD), a life-threatening metal-induced hypersensitivity, is driven by beryllium-specific CD4+ Th1 cells that expand in the lung-draining lymph nodes (LDLNs) after beryllium exposure (sensitization phase) and are recruited back to the lung, where they orchestrate granulomatous lung disease (elicitation phase). To understand more about how beryllium exposures impact DC function during sensitization, we examined the early events in the lung and LDLNs after pulmonary exposure to different physiochemical forms of beryllium. Exposure to soluble or crystalline forms of beryllium induced alveolar macrophage death/release of IL-1α and DNA, enhanced migration of CD80hi DCs to the LDLNs, and sensitized HLA-DP2 transgenic mice after single low-dose exposures, whereas exposures to insoluble particulate forms beryllium did not. IL-1α and DNA released by alveolar macrophages upregulated CD80 on immature BMDC via IL-1R1 and TLR9, respectively. Intrapulmonary exposure of mice to IL-1R and TLR9 agonists without beryllium was sufficient to drive accumulation of CD80hi DCs in the LDLNs, whereas blocking both pathways prevented accumulation of CD80hi DCs in the LDLNs of beryllium-exposed mice. Thus, in contrast to particulate forms of beryllium, which are poor sensitizers, soluble or crystalline forms of beryllium promote death of alveolar macrophages and their release of IL-1α and DNA, which act as damage-associated molecular pattern molecules to enhance DC function during beryllium sensitization.
Collapse
Affiliation(s)
- Morgan F Wade
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Morgan K Collins
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Denay Richards
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Webb Waring Summer Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
27
|
Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine 2017; 104:114-123. [PMID: 29032985 DOI: 10.1016/j.cyto.2017.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Random mutations leading to loss of cell cycle control is not a rare occurrence in an organism but the mutated cells are recognized and eliminated preventing the development of a tumor. These potentially tumorigenic cells release damage-associated molecular patterns (DAMPs), which are recognized by toll-like receptors (TLRs) on macrophages and dendritic cells. The initial TLR-DAMP interactions lead to different responses such as altered antigen presentation and cytokine release that directly affect T cell activation and removal of the tumorigenic cells. The indirect effects of TLR-DAMP interaction include chemokine-directed altered T cell trafficking, angiogenesis for both T cell infiltration and tumor cell metastasis, and alteration of intra-tumoral milieu contributing to the development of tumor cells heterogeneity. Thus, the initial TLR-DAMP interaction has a set of local effects that modulate tumor cell growth and heterogeneity and a disseminating set of central effects that dynamically affect T cell trafficking and functions. Herein, we argue that the DAMP-TLR-cytokine axis in the tumor microenvironment serves as the mainstay that orchestrates and regulates the pro- and anti-tumor elements which dynamically interact between themselves eventuating in tumor regression or growth. The knowledge of this TLR-based immuno-surveillance framework is a key to developing a novel immunotherapy against cancer.
Collapse
Affiliation(s)
- Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | - Bhaskar Saha
- National Institute of Traditional Medicine, Belagavi, Karnataka, India.
| |
Collapse
|
28
|
Goldfarb IT, Adeli S, Berk T, Phillippe M. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition. Reprod Sci 2017; 25:788-796. [PMID: 28884630 DOI: 10.1177/1933719117728798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. METHODS Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). RESULTS Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. CONCLUSIONS DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.
Collapse
Affiliation(s)
- Ilona Telefus Goldfarb
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Sharareh Adeli
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Tucker Berk
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Phillippe
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Akkaya M, Akkaya B, Sheehan PW, Miozzo P, Pena M, Qi CF, Manzella-Lapeira J, Bolland S, Pierce SK. T cell-dependent antigen adjuvanted with DOTAP-CpG-B but not DOTAP-CpG-A induces robust germinal center responses and high affinity antibodies in mice. Eur J Immunol 2017; 47:1890-1899. [PMID: 28762497 DOI: 10.1002/eji.201747113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The development of vaccines for infectious diseases for which we currently have none, including HIV, will likely require the use of adjuvants that strongly promote germinal center responses and somatic hypermutation to produce broadly neutralizing antibodies. Here we compared the outcome of immunization with the T-cell dependent antigen, NP-conjugated to chicken gamma globulin (NP-CGG) adjuvanted with the toll-like receptor 9 (TLR9) ligands, CpG-A or CpG-B, alone or conjugated with the cationic lipid carrier, DOTAP. We provide evidence that only NP-CGG adjuvanted with DOTAP-CpG-B was an effective vaccine in mice resulting in robust germinal center responses, isotype switching and high affinity NP-specific antibodies. The effectiveness of DOTAP-CpG-B as an adjuvant was dependent on the expression of the TLR9 signaling adaptor MyD88 in immunized mice. These results indicate DOTAP-CpG-B but not DOTAP-CpG-A is an effective adjuvant for T cell-dependent protein antigen-based vaccines.
Collapse
Affiliation(s)
- Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Billur Akkaya
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick W Sheehan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pietro Miozzo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
30
|
Akkaya M, Akkaya B, Miozzo P, Rawat M, Pena M, Sheehan PW, Kim AS, Kamenyeva O, Kabat J, Bolland S, Chaturvedi A, Pierce SK. B Cells Produce Type 1 IFNs in Response to the TLR9 Agonist CpG-A Conjugated to Cationic Lipids. THE JOURNAL OF IMMUNOLOGY 2017; 199:931-940. [PMID: 28652397 DOI: 10.4049/jimmunol.1700348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/31/2017] [Indexed: 11/19/2022]
Abstract
B cells express the innate receptor, TLR9, which signals in response to unmethylated CpG sequences in microbial DNA. Of the two major classes of CpG-containing oligonucleotides, CpG-A appears restricted to inducing type 1 IFN in innate immune cells and CpG-B to activating B cells to proliferate and produce Abs and inflammatory cytokines. Although CpGs are candidates for adjuvants to boost innate and adaptive immunity, our understanding of the effect of CpG-A and CpG-B on B cell responses is incomplete. In this study we show that both CpG-B and CpG-A activated B cells in vitro to proliferate, secrete Abs and IL-6, and that neither CpG-B nor CpG-A alone induced type 1 IFN production. However, when incorporated into the cationic lipid, DOTAP, CpG-A, but not CpG-B, induced a type 1 IFN response in B cells in vitro and in vivo. We provide evidence that differences in the function of CpG-A and CpG-B may be related to their intracellular trafficking in B cells. These findings fill an important gap in our understanding of the B cell response to CpGs, with implications for the use of CpG-A and CpG-B as immunomodulators.
Collapse
Affiliation(s)
- Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| | - Billur Akkaya
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pietro Miozzo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Mukul Rawat
- Indian Institute of Science Education and Research, Pune 411 008, India; and
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Patrick W Sheehan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ann S Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Olena Kamenyeva
- Biological Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Juraj Kabat
- Biological Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Akanksha Chaturvedi
- Indian Institute of Science Education and Research, Pune 411 008, India; and
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
31
|
Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nat Commun 2017; 8:15363. [PMID: 28530246 PMCID: PMC5458134 DOI: 10.1038/ncomms15363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/23/2017] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors encounter a diversity of degradation products in endosomes. TLR7 and TLR8 have been shown to be activated by RNA degradation products. Here we show that although TLR9 requires single-stranded DNA longer than 20 nucleotides for a robust response, TLR9 activation is augmented by CpG-containing oligodeoxyribonucleotides (sODNs) as short as 2 nucleotides, which, by themselves, do not induce activation in cell cultures, as well as in mice. sODNs also activate human TLR9 in combination with ODNs containing a single CpG motif that by themselves do not activate human TLR9. The specific sequence motif of sODN and colocalization of ODN and sODN suggest that the mechanism of activation involves binding of both ODN and sODN to TLR9. sODNs augment TLR9 activation by mammalian genomic DNA indicating the role of short DNA degradation products in the endosomes in response to infection or in autoimmune disease, particularly at limiting concentrations of ODNs. DNA degradation products are frequently found in the endosome, but how they regulate the activation of Toll-like receptors is not known. Here the authors show that single-stranded DNA as short as two nucleotides can enhance the ability of longer DNA oligonucleotides to activate Toll-like receptors.
Collapse
|
32
|
Fischer JC, Bscheider M, Eisenkolb G, Lin CC, Wintges A, Otten V, Lindemans CA, Heidegger S, Rudelius M, Monette S, Porosnicu Rodriguez KA, Calafiore M, Liebermann S, Liu C, Lienenklaus S, Weiss S, Kalinke U, Ruland J, Peschel C, Shono Y, Docampo M, Velardi E, Jenq RR, Hanash AM, Dudakov JA, Haas T, van den Brink MRM, Poeck H. RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Sci Transl Med 2017; 9:eaag2513. [PMID: 28424327 PMCID: PMC5604790 DOI: 10.1126/scitranslmed.aag2513] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/30/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
The molecular pathways that regulate the tissue repair function of type I interferon (IFN-I) during acute tissue damage are poorly understood. We describe a protective role for IFN-I and the RIG-I/MAVS signaling pathway during acute tissue damage in mice. Mice lacking mitochondrial antiviral-signaling protein (MAVS) were more sensitive to total body irradiation- and chemotherapy-induced intestinal barrier damage. These mice developed worse graft-versus-host disease (GVHD) in a preclinical model of allogeneic hematopoietic stem cell transplantation (allo-HSCT) than did wild-type mice. This phenotype was not associated with changes in the intestinal microbiota but was associated with reduced gut epithelial integrity. Conversely, targeted activation of the RIG-I pathway during tissue injury promoted gut barrier integrity and reduced GVHD. Recombinant IFN-I or IFN-I expression induced by RIG-I promoted growth of intestinal organoids in vitro and production of the antimicrobial peptide regenerating islet-derived protein 3 γ (RegIIIγ). Our findings were not confined to RIG-I/MAVS signaling because targeted engagement of the STING (stimulator of interferon genes) pathway also protected gut barrier function and reduced GVHD. Consistent with this, STING-deficient mice suffered worse GVHD after allo-HSCT than did wild-type mice. Overall, our data suggest that activation of either RIG-I/MAVS or STING pathways during acute intestinal tissue injury in mice resulted in IFN-I signaling that maintained gut epithelial barrier integrity and reduced GVHD severity. Targeting these pathways may help to prevent acute intestinal injury and GVHD during allogeneic transplantation.
Collapse
Affiliation(s)
- Julius C Fischer
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Bscheider
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriel Eisenkolb
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chia-Ching Lin
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Wintges
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Vera Otten
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Caroline A Lindemans
- Pediatric Blood and Bone Marrow Transplant Program, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Heidegger
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Marco Calafiore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sophie Liebermann
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School and Robert Wood Johnson Medical School, Rutgers University, Newark, NJ 08903, USA
| | - Stefan Lienenklaus
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Christian Peschel
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Yusuke Shono
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Melissa Docampo
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Enrico Velardi
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert R Jenq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jarrod A Dudakov
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias Haas
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marcel R M van den Brink
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hendrik Poeck
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
33
|
Poli C, Augusto JF, Dauvé J, Adam C, Preisser L, Larochette V, Pignon P, Savina A, Blanchard S, Subra JF, Chevailler A, Procaccio V, Croué A, Créminon C, Morel A, Delneste Y, Fickenscher H, Jeannin P. IL-26 Confers Proinflammatory Properties to Extracellular DNA. THE JOURNAL OF IMMUNOLOGY 2017; 198:3650-3661. [DOI: 10.4049/jimmunol.1600594] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
|
34
|
TLR9 and its signaling pathway in multiple sclerosis. J Neurol Sci 2017; 373:95-99. [DOI: 10.1016/j.jns.2016.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
|
35
|
Kiziltas S. Toll-like receptors in pathophysiology of liver diseases. World J Hepatol 2016; 8:1354-1369. [PMID: 27917262 PMCID: PMC5114472 DOI: 10.4254/wjh.v8.i32.1354] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that participate in host defense by recognizing pathogen-associated molecular patterns alongside inflammatory processes by recognizing damage associated molecular patterns. Given constant exposure to pathogens from gut, strict control of TLR-associated signaling pathways is essential in the liver, which otherwise may lead to inappropriate production of pro-inflammatory cytokines and interferons and may generate a predisposition to several autoimmune and chronic inflammatory diseases. The liver is considered to be a site of tolerance induction rather than immunity induction, with specificity in hepatic cell functions and distribution of TLR. Recent data emphasize significant contribution of TLR signaling in chronic liver diseases via complex immune responses mediating hepatocyte (i.e., hepatocellular injury and regeneration) or hepatic stellate cell (i.e., fibrosis and cirrhosis) inflammatory or immune pathologies. Herein, we review the available data on TLR signaling, hepatic expression of TLRs and associated ligands, as well as the contribution of TLRs to the pathophysiology of hepatic diseases.
Collapse
Affiliation(s)
- Safak Kiziltas
- Safak Kiziltas, Department of Gastroenterology, Baskent University Istanbul Hospital, 34662 Istanbul, Turkey
| |
Collapse
|
36
|
Stein K, Brand S, Jenckel A, Sigmund A, Chen ZJ, Kirschning CJ, Kauth M, Heine H. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects. J Allergy Clin Immunol 2016; 139:667-678.e5. [PMID: 27544739 DOI: 10.1016/j.jaci.2016.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/02/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. OBJECTIVE We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. METHODS L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4+ T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. RESULTS L lactis G121-treated murine BMDCs and human moDCs released TH1-polarizing cytokines and induced TH1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of TH1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13-/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The TH1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. CONCLUSION Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8.
Collapse
Affiliation(s)
- Karina Stein
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North, German Center for Lung Research (DZL), Germany
| | | | - André Jenckel
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North, German Center for Lung Research (DZL), Germany
| | - Anna Sigmund
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Zhijian James Chen
- Department of Molecular Biology, Howard Hughes Medical Institute, UT Southwestern Medical School, Dallas, Tex
| | | | | | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North, German Center for Lung Research (DZL), Germany.
| |
Collapse
|
37
|
Tamura Y, Yoneda A, Takei N, Sawada K. Spatiotemporal Regulation of Hsp90-Ligand Complex Leads to Immune Activation. Front Immunol 2016; 7:201. [PMID: 27252703 PMCID: PMC4877505 DOI: 10.3389/fimmu.2016.00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Although heat shock proteins (HSPs) primarily play a pivotal role in the maintenance of cellular homeostasis while reducing extracellular as well as intracellular stresses, their role in immunologically relevant scenarios, including activation of innate immunity as danger signals, antitumor immunity, and autoimmune diseases, is now gaining much attention. The most prominent feature of HSPs is that they function both in their own and as an HSP–ligand complex. We here show as a unique feature of extracellular HSPs that they target chaperoned molecules into a particular endosomal compartment of dendritic cells, thereby inducing innate and adaptive immune responses via spatiotemporal regulation.
Collapse
Affiliation(s)
- Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| | - Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| | - Norio Takei
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| | - Kaori Sawada
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| |
Collapse
|
38
|
Lewis AJ, Billiar TR, Rosengart MR. Biology and Metabolism of Sepsis: Innate Immunity, Bioenergetics, and Autophagy. Surg Infect (Larchmt) 2016; 17:286-93. [PMID: 27093228 DOI: 10.1089/sur.2015.262] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a complex, heterogeneous physiologic condition that represents a significant public health concern. While many insights into the pathophysiology of sepsis have been elucidated over the past decades of research, important questions remain. This article serves as a review of several important areas in sepsis research. Understanding the innate immune response has been at the forefront as of late, especially in the context of cytokine-directed therapeutic trials. Cellular bioenergetic changes provide insight into the development of organ dysfunction in sepsis. Autophagy and mitophagy perform crucial cell housekeeping and stress response functions. Finally, age-related changes and their potential impact on the septic response are reviewed.
Collapse
Affiliation(s)
- Anthony J Lewis
- Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | |
Collapse
|
39
|
MyD88 dependence of beryllium-induced dendritic cell trafficking and CD4⁺ T-cell priming. Mucosal Immunol 2015; 8:1237-47. [PMID: 25760420 PMCID: PMC4567547 DOI: 10.1038/mi.2015.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
Beryllium exposure results in beryllium hypersensitivity in a subset of exposed individuals, leading to granulomatous inflammation and fibrosis in the lung. In addition to its antigenic properties, beryllium has potent adjuvant activity that contributes to sensitization via unknown pathways. Here we show that beryllium induces cellular death and release of interleukin (IL)-1α and DNA into the lung. Release of IL-1α was inflammasome independent and required for beryllium-induced neutrophil recruitment into the lung. Beryllium enhanced classical dendritic cell (cDC) migration from the lung to draining lymph nodes (LNs) in an IL-1R-independent manner, and the accumulation of activated cDCs in the LN was associated with increased priming of CD4(+) T cells. DC migration was reduced in Toll-like receptor 9 knockout (TLR9KO) mice; however, cDCs in the LNs of TLR9-deficient mice were highly activated, suggesting a role for more than one innate receptor in the effects on DCs. The adjuvant effects of beryllium on CD4(+) T-cell priming were similar in wild-type, IL-1R-, caspase-1-, TLR2-, TLR4-, TLR7-, and TLR9-deficient mice. In contrast, DC migration, activation, and the adjuvant effects of beryllium were significantly reduced in myeloid differentiation primary response gene 88 knockout (MyD88KO) mice. Collectively, these data suggest that beryllium exposure results in the release of damage-associated molecular patterns that engage MyD88-dependent receptors to enhance pulmonary DC function.
Collapse
|
40
|
Chinnathambi S, Pi X, Xu M, Hanagata N. Regulation of bifurcated cytokine induction by surface charge of nanoparticles during interaction between CpG oligodeoxynucleotides and toll-like receptor 9. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Development of Nonaggregating Poly-A Tailed Immunostimulatory A/D Type CpG Oligodeoxynucleotides Applicable for Clinical Use. J Immunol Res 2015; 2015:316364. [PMID: 26380317 PMCID: PMC4562176 DOI: 10.1155/2015/316364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/18/2015] [Indexed: 11/18/2022] Open
Abstract
Immunostimulatory CpG ODNs have been developed and utilized as TLR9-dependent innate immune activators and vaccine adjuvants. Four different types of immunostimulatory CpG ODNs (A/D, B/K, C, and P type) have been reported. A/D type ODNs are characterized by high IFN-α production but intrinsically form aggregates, hindering its good manufacturing practice grade preparation. In this study, we developed several D35-derived ODNs (a commonly used A/D type ODN), which were modified with the addition of a phosphorothioate polynucleotide tail (such as dAs40), and examined their physical properties, solubility in saline, immunostimulatory activity on human PBMCs, and vaccine adjuvant potential in monkeys. We found that two modified ODNs including D35-dAs40 and D35core-dAs40 were immunostimulatory, similar to original D35 in human PBMCs, resulting in high IFN-α secretion in a dose-dependent manner. Physical property analysis by dynamic light scattering revealed that both D35-dAs40 and D35core-dAs40 did not form aggregates in saline, which is currently impossible for the original D35. Furthermore, D35-dAs40 and D35core-dAs40 worked as better vaccine adjuvant in monkeys. These results suggested that D35-dAs40 and D35core-dAs40 are two promising prototypes of nonaggregating A/D type ODN with advantages of ease of drug preparation for clinical applications as vaccine adjuvants or IFN-α inducing immunomodifiers.
Collapse
|
42
|
Abstract
Multiple previous reports have provided compelling support for the premise that spontaneous parturition is mediated by activation of inflammation-related signaling pathways leading to increased secretion of cytokines and chemokines, the influx of neutrophils and macrophages into the pregnant uterus, increased production of uterine activation proteins (eg, connexin-43, cyclo-oxygenase-2, oxytocin receptors, etc), activation of matrix metalloproteinases, and the release of uterotonins leading to cervical ripening, membrane rupture, and myometrial contractions. The missing link has been the fetal/placental signal that triggers these proinflammatory events in the absence of microbial invasion and intrauterine infection. This article reviews the biomedical literature regarding the increase in cell-free fetal DNA (cffDNA), which is released during apoptosis in the placenta and fetal membranes at term, the ability of apoptosis modified vertebrate DNA to stimulate toll-like receptor-9 (TLR9) leading to increased release of cytokines and chemokines, and the potential "fail-safe" role for the anti-inflammatory cytokine IL-10. This article also reviews the literature supporting the key role that telomere loss plays in regard to increasing the ability of vertebrate (including placental) DNA to stimulate TLR9, and in regard to signaling the onset of apoptosis in the placenta and fetal membranes, thereby providing a biologic clock that determines the length of gestation and the timing for the onset of parturition. In summary, this literature review provides a strong rationale for future research to test the hypothesis that telomere loss and increased cffDNA levels trigger the proinflammatory events leading to the spontaneous onset of parturition in mammals: the "cffDNA/telomere hypothesis."
Collapse
Affiliation(s)
- Mark Phillippe
- Department of Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Vichaya EG, Chiu GS, Krukowski K, Lacourt TE, Kavelaars A, Dantzer R, Heijnen CJ, Walker AK. Mechanisms of chemotherapy-induced behavioral toxicities. Front Neurosci 2015; 9:131. [PMID: 25954147 PMCID: PMC4404721 DOI: 10.3389/fnins.2015.00131] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms) of chemotherapy include (i) cognitive deficiencies such as problems with attention, memory and executive functioning; (ii) fatigue and motivational deficit; and (iii) neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence, neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs) activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.
Collapse
Affiliation(s)
- Elisabeth G Vichaya
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Gabriel S Chiu
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Karen Krukowski
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Tamara E Lacourt
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Robert Dantzer
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Adam K Walker
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
44
|
Lee Y, Lee YS, Cho SY, Kwon HJ. Perspective of Peptide Vaccine Composed of Epitope Peptide, CpG-DNA, and Liposome Complex Without Carriers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:75-97. [PMID: 26067817 DOI: 10.1016/bs.apcsb.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The magnitude and specificity of cell-mediated and humoral immunity are critically determined by peptide sequences; peptides corresponding to the B- or T-cell receptor epitopes are sufficient to induce an effective immune response if delivered properly. Therefore, studies on the screening and application of peptide-based epitopes have been done extensively for the development of therapeutic antibodies and prophylactic vaccines. However, the efficacy of immune response and antibody production by peptide-based immunization is too limited for human application at the present. To improve the efficacy of vaccines, researchers formulated adjuvants such as alum, water-in-oil emulsion, and Toll-like receptor agonists. They also employed liposomes as delivering vehicles to stimulate immune responses. Here, we review our recent studies providing a potent method of epitope screening and antibody production without conventional carriers. We adopted Lipoplex(O), comprising a natural phosphodiester bond CpG-DNA and a specific liposome complex, as an adjuvant. Lipoplex(O) induces potent stimulatory activity in humans as well as in mice, and immunization of mice with several peptides along with Lipoplex(O) without general carriers induces significant production of each peptide-specific IgG2a. Immunization of peptide vaccines against virus-associated antigens in mice has protective effects against the viral infection. A peptide vaccine against carcinoma-associated antigen and the peptide-specific monoclonal antibody has functional effects against cancer cells in mouse models. In conclusion, we improved the efficacy of peptide vaccines in mice. Our strategy can be applied in development of therapeutic antibodies or in defense against pandemic infectious diseases through rapid screening of potent B-cell epitopes.
Collapse
Affiliation(s)
- Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Young Seek Lee
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | - Soo Young Cho
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science BK21, Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
45
|
The sterile inflammation in the exacerbation of HBV-associated liver injury. Mediators Inflamm 2015; 2015:508681. [PMID: 25892853 PMCID: PMC4393905 DOI: 10.1155/2015/508681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Exacerbation of hepatitis B virus-associated liver injury is characterized by abnormal immune response which not only mobilizes specific antiviral effects but also poses a potentially lethal nonspecific sterile inflammation to the host. How nonspecific sterile inflammation is triggered after the preexisting injury caused by specific immune injury remains elusive. In the setting of sterile inflammation, endogenous damage-associated molecular patterns are released by stressed and dying hepatocytes, which alarm the immune system through their potential pattern recognition receptors and related signaling pathways, orchestrate the influx of diverse cytokines, and ultimately amplify liver destruction. This review highlights current knowledge about the sterile hepatic inflammation in the exacerbation of chronic hepatitis B.
Collapse
|
46
|
Fieber C, Janos M, Koestler T, Gratz N, Li XD, Castiglia V, Aberle M, Sauert M, Wegner M, Alexopoulou L, Kirschning CJ, Chen ZJ, von Haeseler A, Kovarik P. Innate immune response to Streptococcus pyogenes depends on the combined activation of TLR13 and TLR2. PLoS One 2015; 10:e0119727. [PMID: 25756897 PMCID: PMC4355416 DOI: 10.1371/journal.pone.0119727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13−/− cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms.
Collapse
Affiliation(s)
- Christina Fieber
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Marton Janos
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Tina Koestler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Xiao-Dong Li
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | - Marion Aberle
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Martina Sauert
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mareike Wegner
- Universitätsklinikum Freiburg, Universitäts-Hautklinik, Freiburg, Germany
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM 2, Marseille, France
| | | | - Zhijian J. Chen
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
47
|
Nakagawa Y, Gallo RL. Endogenous intracellular cathelicidin enhances TLR9 activation in dendritic cells and macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1274-84. [PMID: 25548223 PMCID: PMC4297737 DOI: 10.4049/jimmunol.1402388] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cathelicidins are a gene family best known for their antimicrobial action, but the diverse mature peptides they encode also have other host defense functions. The human cathelicidin peptide LL-37 enhances recognition of nucleic acids, an action whose significance is seen in human diseases such as psoriasis where it is associated with increased type 1 IFN production. This function has been attributed to the extracellular action of the peptide to facilitate uptake of nucleic acids. In this study, we demonstrate that the murine mature cathelicidin peptide (CRAMP), encoded by the mouse gene (Camp), is functionally distinct from the human mature peptide (LL-37), as it does not facilitate CpG entry. However, mouse cathelicidin does influence recognition of CpG as bone marrow-derived dendritic cells from Camp(-/-) mice have impaired CpG responses and Camp(-/-) mice had impaired response to CpG given i.v. or s.c. We show that cathelicidin concentrates in Lamp1 positive compartments, is colocalized with CpG in the endolysosome, can be immunoprecipitated with TLR9, and binds to CpG intracellulary. Collectively, these results indicate that the functions of cathelicidin in control of TLR9 activation may include both intracellular and extracellular effects.
Collapse
Affiliation(s)
- Yukinobu Nakagawa
- Division of Dermatology, University of California, San Diego, San Diego, CA 92161
| | - Richard L Gallo
- Division of Dermatology, University of California, San Diego, San Diego, CA 92161
| |
Collapse
|
48
|
Interferon regulatory factors: critical mediators of human lupus. Transl Res 2015; 165:283-95. [PMID: 25445206 PMCID: PMC4306637 DOI: 10.1016/j.trsl.2014.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is multifactorial, and the interferon regulatory factors (IRFs) play an important role. Autoantibodies formed in SLE target nuclear antigens, and immune complexes formed by these antibodies contain nucleic acid. These immune complexes can activate antiviral pattern recognition receptors (PRRs), resulting in the downstream activation of IRFs, which can induce type I interferon (IFN-I) and other inflammatory mediators. Genetic variations in IRFs have been associated with susceptibility to SLE, and current evidence supports the idea that these polymorphisms are gain of function in humans. Recent studies suggest that these genetic variations contribute to the break in humoral tolerance that allows for nucleic acid binding autoantibodies, and that the same polymorphisms also augment IFN-I production in the presence of these autoantibody immune complexes, forming a feed-forward loop. In this review, we will outline major features of the PRR/IRF systems and describe the role of the IRFs in human SLE pathogenesis.
Collapse
|
49
|
Khan ME, Borde C, Rocha EP, Mériaux V, Maréchal V, Escoll P, Goyard S, Cavaillon JM, Manoury B, Doyen N. TLR9 activation is triggered by the excess of stimulatory versus inhibitory motifs present in Trypanosomatidae DNA. PLoS Negl Trop Dis 2014; 8:e3308. [PMID: 25392997 PMCID: PMC4230925 DOI: 10.1371/journal.pntd.0003308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
DNA sequences purified from distinct organisms, e.g. non vertebrate versus vertebrate ones, were shown to differ in their TLR9 signalling properties especially when either mouse bone marrow-derived- or human dendritic cells (DCs) are probed as target cells. Here we found that the DC-targeting immunostimulatory property of Leishmania major DNA is shared by other Trypanosomatidae DNA, suggesting that this is a general trait of these eukaryotic single-celled parasites. We first documented, in vitro, that the low level of immunostimulatory activity by vertebrate DNA is not due to its limited access to DCs' TLR9. In addition, vertebrate DNA inhibits the activation induced by the parasite DNA. This inhibition could result from the presence of competing elements for TLR9 activation and suggests that DNA from different species can be discriminated by mouse and human DCs. Second, using computational analysis of genomic DNA sequences, it was possible to detect the presence of over-represented inhibitory and under-represented stimulatory sequences in the vertebrate genomes, whereas L. major genome displays the opposite trend. Interestingly, this contrasting features between L. major and vertebrate genomes in the frequency of these motifs are shared by other Trypanosomatidae genomes (Trypanosoma cruzi, brucei and vivax). We also addressed the possibility that proteins expressed in DCs could interact with DNA and promote TLR9 activation. We found that TLR9 is specifically activated with L. major HMGB1-bound DNA and that HMGB1 preferentially binds to L. major compared to mouse DNA. Our results highlight that both DNA sequence and vertebrate DNA-binding proteins, such as the mouse HMGB1, allow the TLR9-signaling to be initiated and achieved by Trypanosomatidae DNA.
Collapse
Affiliation(s)
- Mélissa Erin Khan
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Chloé Borde
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Eduardo P.C. Rocha
- Institut Pasteur, Département Génomes et Génétique, Unité de Génomique Evolutive des Microbes, Paris, France
- CNRS UMR3525, Paris, France
| | - Véronique Mériaux
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Vincent Maréchal
- Sorbonne Universités, UPMC Université Paris 6, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Persistent Viral Infections (PVI) Team, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Département Génomes et Génétique, Unité de Biologie des Bactéries intracellulaires, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus Infectieux à Trypanosomatidés, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | | | - Noëlle Doyen
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- * E-mail:
| |
Collapse
|
50
|
Self DNA from lymphocytes that have undergone activation-induced cell death enhances murine B cell proliferation and antibody production. PLoS One 2014; 9:e109095. [PMID: 25296026 PMCID: PMC4189923 DOI: 10.1371/journal.pone.0109095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/02/2014] [Indexed: 11/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by prominent autoinflammatory tissue damage associated with impaired removal of dying cells and DNA. Self DNA-containing immune complexes are able to activate both innate and adaptive immune responses and play an important role in the maintenance and exacerbation of autoimmunity in SLE. In this study, we used DNA from lymphocytes that have undergone activation-induced cell death (ALD-DNA) and analyzed its role on the activation and differentiation of B cells from normal BALB/c mice as well as lupus-prone MRL+/+ and MRL/lpr mice. We found that ALD-DNA directly increased the expression of costimulatory molecules and the survival of naïve B cells in vitro. Although ALD-DNA alone had little effect on the proliferation of naïve B cells, it enhanced LPS-activated B cell proliferation in vitro and in vivo. In addition, ALD-DNA increased plasma cell numbers and IgG production in LPS-stimulated cultures of naïve B cells, in part via enhancing IL-6 production. Importantly, B cells from lupus mice were hyperresponsive to ALD-DNA and/or LPS relative to normal control B cells in terminal plasma cell differentiation, as evidenced by increases in CD138+ cell numbers, IgM production, and mRNA levels of B lymphocyte-induced maturation protein-1 (Blimp-1) and the X-box binding protein 1 (XBP1). Furthermore, ALD-DNA enhanced CD40-activated naïve B cell proliferation. Collectively, these data indicate that self DNA can serve as a DAMP (damage-associated molecular pattern) that cooperates with signals from both innate and adaptive immunity to promote polyclonal B cell activation, a common characteristic of autoimmune diseases.
Collapse
|