1
|
Nieves-Rosado HM, Banerjee H, Gocher-Demske A, Manandhar P, Mehta I, Ezenwa O, Xie B, Murter B, Das J, Vignali DAA, Delgoffe GM, Kane LP. Tim-3 Is Required for Regulatory T Cell-Mediated Promotion of T Cell Exhaustion and Viral Persistence during Chronic Lymphocytic Choriomeningitis Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1488-1498. [PMID: 39345172 DOI: 10.4049/jimmunol.2400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Expression of T cell Ig and mucin domain-containing protein 3 (Tim-3) is upregulated on regulatory T cells (Tregs) during chronic viral infections. In several murine and human chronic infections, the expression of Tim-3 is associated with poor control of viral burden and impaired antiviral immune responses. However, the role of Tim-3+ Tregs during persistent viral infections has not been fully defined. We employed an inducible Treg-specific Tim-3 loss-of-function (Tim-3 Treg knockout) murine model to dissect the role of Tim-3 on Tregs during chronic lymphocytic choriomeningitis virus infection. Tim-3 Treg knockout mice exhibited a decrease in morbidity, a more potent virus-specific T cell response, and a significant decrease in viral burden. These mice also had a reduction in the frequency of PD-1+Tim-3+ and PD-1+Tox+ gp33-specific exhausted CD8+ T cells. Our findings demonstrate that modulation of a single surface protein on Tregs can lead to a reduction in viral burden, limit T cell exhaustion, and enhance gp33-specific T cell response. These studies may help to identify Tim-3-directed therapies for the management of persistent infections and cancer.
Collapse
Affiliation(s)
- Hector M Nieves-Rosado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Hridesh Banerjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | | | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Ogechukwu Ezenwa
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Ben Murter
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | | | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
2
|
Esmail Nia G, Mohammadi M, Sharifizadeh M, Ghalamfarsa G, Bolhassani A. The role of T regulatory cells in the immunopathogenesis of HIV: Clinical implications. Braz J Infect Dis 2024; 28:103866. [PMID: 39163991 PMCID: PMC11402453 DOI: 10.1016/j.bjid.2024.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) infection is among the most challenging issues in the healthcare system, presenting significant financial and hygiene problems with a wide range of clinical manifestations. Despite the hopeful outcomes of Antiretroviral Therapies (ARTs), the current strategies for the treatment of patients with HIV infection have not shown clinical significance for all subjects, which is mainly due to the complexity of the disease. Therefore, the need for collaborative and interdisciplinary research focused on deciphering the multifaceted cellular, and molecular immunopathogenesis of HIV remains essential in the development of innovative and more efficacious therapeutic approaches. T-regulatory (Treg) cells function as suppressors of effector T-cell responses contributing to the inhibition of autoimmune disorders and the limitation of chronic inflammatory diseases. Notably, these cells can play substantial roles in regulating immune responses, immunopathogenesis, viral persistence and disease progression, and affect therapeutic responses in HIV patients. In this review, we aim elucidating the role of T-regulatory cells (Tregs) in the immunopathogenesis of HIV, including immunological fatigue and seroconversion. In particular, the focus of the current study is exploration of novel immunotherapeutic approaches to target HIV or related co-infections.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Pasteur Institute of Iran, Department of Hepatitis and AIDS, Tehran, Iran
| | - Marzieh Mohammadi
- Pasteur Institute of Iran, Biotechnology Research Center, Department of Molecular Medicine, Tehran, Iran
| | - Maedeh Sharifizadeh
- Islamic Azad University, Faculty of Biological Sciences, Tonekabon Branch, Department of Genetic, Tonekabon, Iran
| | - Ghasem Ghalamfarsa
- Yasuj University of Medical Science, Cellular and Molecular Research Center, Yasuj, Iran
| | - Azam Bolhassani
- Pasteur Institute of Iran, Department of Hepatitis and AIDS, Tehran, Iran.
| |
Collapse
|
3
|
Koch-Heier J, Vogel AB, Füll Y, Ebensperger M, Schönsiegel A, Zinser RS, Planz O. MEK-inhibitor treatment reduces the induction of regulatory T cells in mice after influenza A virus infection. Front Immunol 2024; 15:1360698. [PMID: 38979428 PMCID: PMC11228811 DOI: 10.3389/fimmu.2024.1360698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.
Collapse
Affiliation(s)
- Julia Koch-Heier
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | | | | | | | - Annika Schönsiegel
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | - Raphael S. Zinser
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
4
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Macca L, Moscatt V, Ceccarelli M, Ingrasciotta Y, Nunnari G, Guarneri C. Hidradenitis Suppurativa in Patients with HIV: A Scoping Review. Biomedicines 2022; 10:2761. [PMID: 36359281 PMCID: PMC9687577 DOI: 10.3390/biomedicines10112761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 07/25/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, debilitating skin disease of the apocrine glands. Bibliographic search revealed few studies concerning the association between HS and human immunodeficiency virus (HIV). To assess this link, we performed a systematic review of the current knowledge through a careful analysis of the relevant and authoritative medical literature in the field. Results showed that people with HIV are particularly susceptible to developing HS with the characteristic involvement of atypical sites, such as face or thighs, due to HIV-related immunosuppression. Based on the pathogenesis of both conditions and according to our review, we suggest that HIV screening should be routinely performed in suspected cases while monitoring and integrated approach in management are mandatory in the management of HIV-positive patients with HS.
Collapse
Affiliation(s)
- Laura Macca
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, Italy C/O A.O.U.P. “Gaetano Martino”, via Consolare Valeria 1, 98125 Messina, Italy
| | - Vittoria Moscatt
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, Italy C/O ARNAS “Garibaldi”, “Nesima” Hospital, Via Palermo 636, 95122 Catania, Italy
| | - Manuela Ceccarelli
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, Italy C/O ARNAS “Garibaldi”, “Nesima” Hospital, Via Palermo 636, 95122 Catania, Italy
| | - Ylenia Ingrasciotta
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Italy C/O A.O.U.P. “Gaetano Martino”, via Consolare Valeria 1, 98124 Messina, Italy
| | - Claudio Guarneri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Dermatology, University of Messina, Italy C/O A.O.U.P. “Gaetano Martino”, via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
6
|
Briceño O, Gónzalez-Navarro M, Montufar N, Chávez-Torres M, Abato I, Espinosa-Sosa A, Ablanedo-Terrazas Y, Luna-Villalobos Y, Ávila-Ríos S, Reyes-Terán G, Pinto-Cardoso S. Mucosal immune cell populations and the bacteriome of adenoids and tonsils from people living with HIV on suppressive antiretroviral therapy. Front Microbiol 2022; 13:958739. [PMID: 36033845 PMCID: PMC9404693 DOI: 10.3389/fmicb.2022.958739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ear, nose, and throat (ENT) conditions are prevalent in people living with HIV (PLWH) and occur at all strata of CD4 counts and despite antiretroviral therapy (ART). ENT conditions are underreported in PLWH. Also, little is known about the adenotonsillar microbiota and its relation to resident adaptive and innate immune cells. To bridge this gap, we characterized immune cell populations and the bacterial microbiota of two anatomical sites (adenoids, tonsils) and the oral cavity. Adenoids and tonsils were obtained from PLWH (n = 23) and HIV-seronegative individuals (SN, n = 16) after nasal surgery and tonsillectomy and processed for flow cytometry. Nasopharyngeal, oropharyngeal swabs, and oral rinses were collected prior to surgery for 16S sequencing. Wilcoxon rank sum test, principal coordinate analysis, permutational multivariate analysis of variance, and linear discriminant analysis (LEfSe) were used to assess differences between PLWH and SN. Spearman’s correlations were performed to explore interactions between the bacteriome and mucosal immune cells. Of the 39 individuals included, 30 (77%) were men; the median age was 32 years. All PLWH were on ART, with a median CD4 of 723 cells. ENT conditions were classified as inflammatory or obstructive, with no differences observed between PLWH and SN. PLWH had higher frequencies of activated CD4+ and CD8+ T cells, increased T helper (Th)1 and decreased Th2 cells; no differences were observed for B cells and innate immune cells. Alpha diversity was comparable between PLWH and SN at all 3 anatomical sites (adenoids, tonsils, and oral cavity). The impact of HIV infection on the bacterial community structure at each site, as determined by Permutational multivariate analysis of variance, was minor and not significant. Two discriminant genera were identified in adenoids using LEfSe: Staphylococcus for PLWH and Corynebacterium for SN. No discriminant genera were identified in the oropharynx and oral cavity. Niche-specific differences in microbial diversity and communities were observed. PLWH shared less of a core microbiota than SN. In the oropharynx, correlation analysis revealed that Th17 cells were inversely correlated with bacterial richness and diversity, Filifactor, Actinomyces and Treponema; and positively correlated with Streptococcus. Our study contributes toward understanding the role of the adenotonsillar microbiota in the pathophysiology of ENT conditions.
Collapse
Affiliation(s)
- Olivia Briceño
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Mauricio Gónzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Nadia Montufar
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Indira Abato
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Ariana Espinosa-Sosa
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Yuria Ablanedo-Terrazas
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Yara Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de Institutos Nacional de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Ciudad de México, Mexico
| | - Sandra Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Sandra Pinto-Cardoso,
| |
Collapse
|
7
|
Strongin Z, Hoang TN, Tharp GK, Rahmberg AR, Harper JL, Nguyen K, Franchitti L, Cervasi B, Lee M, Zhang Z, Boritz EA, Silvestri G, Marconi VC, Bosinger SE, Brenchley JM, Kulpa DA, Paiardini M. The role of CD101-expressing CD4 T cells in HIV/SIV pathogenesis and persistence. PLoS Pathog 2022; 18:e1010723. [PMID: 35867722 PMCID: PMC9348691 DOI: 10.1371/journal.ppat.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/03/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4β7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Timothy N. Hoang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Andrew R. Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH; Bethesda, Maryland, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Lavinia Franchitti
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University; Atlanta, Georgia, United States of America
| | - Max Lee
- Vaccine Research Center, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Zhan Zhang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Eli A. Boritz
- Vaccine Research Center, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Vincent C. Marconi
- Division of Infectious Diseases, Emory University School of Medicine; Atlanta, Georgia, United States of America
- Division of Infectious Diseases Research, Atlanta Veterans Affairs Medical Center; Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University; Atlanta, Georgia, United States of America
- Emory Vaccine Center, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH; Bethesda, Maryland, United States of America
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Christian ML, Dapp MJ, Scharffenberger SC, Jones H, Song C, Frenkel LM, Krumm A, Mullins JI, Rawlings DJ. CRISPR/Cas9-Mediated Insertion of HIV Long Terminal Repeat within BACH2 Promotes Expansion of T Regulatory-like Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1700-1710. [PMID: 35264460 PMCID: PMC8976747 DOI: 10.4049/jimmunol.2100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
One key barrier to curative therapies for HIV is the limited understanding of HIV persistence. HIV provirus integration sites (ISs) within BACH2 are common, and almost all sites mapped to date are located upstream of the start codon in the same transcriptional orientation as the gene. These unique features suggest the possibility of insertional mutagenesis at this location. Using CRISPR/Cas9-based homology-directed repair in primary human CD4+ T cells, we directly modeled the effects of HIV integration within BACH2 Integration of the HIV long terminal repeat (LTR) and major splice donor increased BACH2 mRNA and protein levels, altered gene expression, and promoted selective outgrowth of an activated, proliferative, and T regulatory-like cell population. In contrast, introduction of the HIV-LTR alone or an HIV-LTR-major splice donor construct into STAT5B, a second common HIV IS, had no functional impact. Thus, HIV LTR-driven BACH2 expression modulates T cell programming and leads to cellular outgrowth and unique phenotypic changes, findings that support a direct role for IS-dependent HIV-1 persistence.
Collapse
Affiliation(s)
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA
| | | | - Hank Jones
- Seattle Children's Research Institute, Seattle, WA
| | - Chaozhong Song
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA
| | - Lisa M Frenkel
- Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA
- Department of Global Health, University of Washington, School of Medicine, Seattle, WA
| | - Anthony Krumm
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA
| | - James I Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA;
- Department of Global Health, University of Washington, School of Medicine, Seattle, WA
- Department of Medicine, University of Washington, School of Medicine, Seattle, WA; and
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA;
- Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA
- Department of Immunology, University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
9
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Wang D, Jiang Y, Song Y, Zeng Y, Li C, Wang X, Liu Y, Xiao J, Kong Y, Zhao H. Altered T-Cell Subsets are Associated with Dysregulated Cytokine Secretion of CD4 + T Cells During HIV Infection. J Inflamm Res 2021; 14:5149-5163. [PMID: 34675594 PMCID: PMC8504938 DOI: 10.2147/jir.s333902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background CD4+ T cells play a critical role in the regulation of immunopathogenesis in HIV infection. Previous studies have shown contradictory results of the CD4+ T-cell responses in people living with HIV (PLHIV). Methods A cross-sectional study was performed on 40 healthy controls, 134 ART-naïve PLHIV, and 34 individuals who experienced 3-year ART with low baseline CD4 count from 4 August 2016 to 23 January 2019. We determined the frequencies of CD4+ T-cell subsets and described the cytokine secretion pattern of total and subsets of CD4+ T cells in these individuals. Results We found that CD4+ T cells in PLHIV displayed enhanced secretion of pro-inflammation cytokines and polyfunctionality due to HIV disease progression (r = -0.282, P = 0.0035 for IFN-γ; r = -0.412, P = 0.0002 for TNF-α; r = -0.243, P < 0.0001 for GM-CSF; r = -0.252, P = 0.0093 for IFN-γ+ TNF-α+ cells). However, the altered T-cell subsets, as presented by the loss of naïve cells and expansion of memory/effector population in PLHIV, were associated with discordant results in total and subsets of CD4+ T cells. As major cytokine-producing T subsets, effector/memory CD4 subsets showed impaired cytokine production (P < 0.05). We further demonstrated that 3-year ART treatment could improve CD4 counts by increasing the pool of naïve T cells but could not restore cytokine secretion in CD4+ T-cell subsets (P < 0.05). Conclusion These data identified the impaired capacity of cytokine secretion in CD4+ T-cell subsets due to HIV disease progression, and the altered T-cell subsets were associated with pseudo-elevation of cytokine production in total CD4+ T cells. This study collectively suggested the importance of therapies that can preserve and/or enhance the function of CD4+ T cells in strategies of HIV remission.
Collapse
Affiliation(s)
- Di Wang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yu Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yangzi Song
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongqin Zeng
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Cuilin Li
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinyue Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying Liu
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jiang Xiao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Bhaskaran N, Schneider E, Faddoul F, Paes da Silva A, Asaad R, Talla A, Greenspan N, Levine AD, McDonald D, Karn J, Lederman MM, Pandiyan P. Oral immune dysfunction is associated with the expansion of FOXP3 +PD-1 +Amphiregulin + T cells during HIV infection. Nat Commun 2021; 12:5143. [PMID: 34446704 PMCID: PMC8390677 DOI: 10.1038/s41467-021-25340-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Residual systemic inflammation and mucosal immune dysfunction persist in people living with HIV, despite treatment with combined anti-retroviral therapy, but the underlying immune mechanisms are poorly understood. Here we report that the altered immune landscape of the oral mucosa of HIV-positive patients on therapy involves increased TLR and inflammasome signaling, localized CD4+ T cell hyperactivation, and, counterintuitively, enrichment of FOXP3+ T cells. HIV infection of oral tonsil cultures in vitro causes an increase in FOXP3+ T cells expressing PD-1, IFN-γ, Amphiregulin and IL-10. These cells persist even in the presence of anti-retroviral drugs, and further expand when stimulated by TLR2 ligands and IL-1β. Mechanistically, IL-1β upregulates PD-1 expression via AKT signaling, and PD-1 stabilizes FOXP3 and Amphiregulin through a mechanism involving asparaginyl endopeptidase, resulting in FOXP3+ cells that are incapable of suppressing CD4+ T cells in vitro. The FOXP3+ T cells that are abundant in HIV-positive patients are phenotypically similar to the in vitro cultured, HIV-responsive FOXP3+ T cells, and their presence strongly correlates with CD4+ T cell hyper-activation. This suggests that FOXP3+ T cell dysregulation might play a role in the mucosal immune dysfunction of HIV patients on therapy.
Collapse
Affiliation(s)
- N Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - E Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - F Faddoul
- Advanced Education in General Dentistry, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Paes da Silva
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - R Asaad
- University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Division of Infectious Diseases & HIV Medicine, Cleveland, OH, USA
| | - A Talla
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - N Greenspan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A D Levine
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - D McDonald
- Division of AIDS, NIAID, NIH, Bethesda, MD, USA
| | - J Karn
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M M Lederman
- University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Division of Infectious Diseases & HIV Medicine, Cleveland, OH, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - P Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Conte FL, Tasca KI, Santiago KB, de Oliveira Cardoso E, Romagnoli GG, de Assis Golim M, Braz AMM, Berretta AA, do Rosário de Souza L, Sforcin JM. Propolis increases Foxp3 expression and lymphocyte proliferation in HIV-infected people: A randomized, double blind, parallel-group and placebo-controlled study. Biomed Pharmacother 2021; 142:111984. [PMID: 34365061 DOI: 10.1016/j.biopha.2021.111984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/30/2023] Open
Abstract
HIV infection and the prolonged use of antiretroviral therapy (ART) contribute to persistent inflammation and immune deregulation in people living with HIV/AIDS (PLWHA). Propolis is a bee product with plenty of biological properties, including immunomodulatory and anti-inflammatory action. This work aimed to evaluate possible changes in the immune/inflammatory response in PLWHA under ART after propolis intake. Asymptomatic PLWHA were double-blindly randomized into parallel groups receiving propolis (500 mg/day, n = 20) for 3 months or placebo (n = 20). Plasma cytokines (TNF-α, IL-2, IL-4, IL-6, IL-10 and IL17) were evaluated by cytometric bead array; cytokine production by PBMC (IFN-γ, IL-5, IL-17, IL-10, IL-1β, IL-18, and IL-33) was assessed by ELISA; gene expression (T-bet, GATA-3, RORγt and Foxp3) was determined by RT-qPCR, and cell proliferation was analysed by flow cytometry using CFSE staining. The average of gender, age, CD4+/CD8+ T cell count, time of diagnosis and treatment were similar in both groups. No differences were observed in cytokine levels nor in inflammasome activation. However, Pearson's correlation showed that IL-10 was directly correlated to CD4+ T cell count and inversely to IFN-γ after treatment with propolis. Foxp3 expression and lymphocyte proliferation increased in the propolis group. Data suggested that daily propolis consumption may improve the immune response and decrease the inflammatory status in asymptomatic PLWHA under ART.
Collapse
Affiliation(s)
- Fernanda Lopes Conte
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Campus Botucatu, São Paulo, Brazil
| | - Karen Ingrid Tasca
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, São Paulo, Brazil
| | - Karina Basso Santiago
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, São Paulo, Brazil
| | | | | | - Marjorie de Assis Golim
- São Paulo State University (UNESP), Botucatu Medical School, Campus Botucatu, São Paulo, Brazil
| | | | - Andresa Aparecida Berretta
- Research, Development & Innovation Laboratory, Apis Flora Indl. Coml. Ltda., Ribeirão Preto, São Paulo, Brazil
| | | | - José Maurício Sforcin
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, São Paulo, Brazil.
| |
Collapse
|
13
|
Harrison MJ, Brice N, Scott C. Clinical Features of HIV Arthropathy in Children: A Case Series and Literature Review. Front Immunol 2021; 12:677984. [PMID: 34354702 PMCID: PMC8329591 DOI: 10.3389/fimmu.2021.677984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/02/2021] [Indexed: 12/02/2022] Open
Abstract
Background HIV infection has been associated with a non-erosive inflammatory arthritis in children, although few published reports exist. This study describes the clinical, laboratory and imaging features of this noncommunicable disease in a series of HIV-infected children in South Africa. Methods A database search was conducted to identify HIV-infected children enrolled in a Paediatric Rheumatology service in Cape Town, South Africa between 1 January 2010 and 31 December 2020. Retrospective data were collected from individuals classified with HIV arthropathy, based on a predefined checklist. Demographic, clinical, laboratory, sonographic, therapeutic, and outcomes data were extracted by chart review. Descriptive statistical analysis was performed using R (v4.0.3). Results Eleven cases of HIV arthropathy were included in the analysis. Cases predominantly presented in older boys with low CD4+ counts. Median age at arthritis onset was 10.3 years (IQR 6.9 – 11.6) and the male-female ratio was 3.0. The median absolute CD4+ count was 389 cells/uL (IQR 322 – 449). The clinical presentation was variable, with both oligoarthritis and polyarthritis being common. Elevated acute phase reactants were the most consistent laboratory feature, with a median ESR of 126 mL/h (IQR 67 – 136) and median CRP of 36 mg/L (IQR 25 – 68). Ultrasonography demonstrated joint effusions and synovial hypertrophy. Response to therapy was slower than has generally been described in adults, with almost all cases requiring more than one immunosuppressive agent. Five children were discharged in established remission after discontinuing immunotherapy, however outcomes data were incomplete for the remaining six cases. Conclusions In this case series, HIV arthropathy was associated with advanced immunosuppression. Therapeutic modalities included immunomodulators and antiretroviral therapy, which consistently induced disease remission although data were limited by a high rate of attrition. Prospective studies are needed to define and understand this HIV-associated noncommunicable disease.
Collapse
Affiliation(s)
- Michael J Harrison
- Fort Beaufort Provincial Hospital, Amathole District, Eastern Cape, South Africa
| | - Nicola Brice
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa.,University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa.,University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
14
|
Allam M, Hu T, Cai S, Laxminarayanan K, Hughley RB, Coskun AF. Spatially visualized single-cell pathology of highly multiplexed protein profiles in health and disease. Commun Biol 2021; 4:632. [PMID: 34045665 PMCID: PMC8160218 DOI: 10.1038/s42003-021-02166-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Deep molecular profiling of biological tissues is an indicator of health and disease. We used imaging mass cytometry (IMC) to acquire spatially resolved 20-plex protein data in tissue sections from normal and chronic tonsillitis cases. We present SpatialViz, a suite of algorithms to explore spatial relationships in multiplexed tissue images by visualizing and quantifying single-cell granularity and anatomical complexity in diverse multiplexed tissue imaging data. Single-cell and spatial maps confirmed that CD68+ cells were correlated with the enhanced Granzyme B expression and CD3+ cells exhibited enrichment of CD4+ phenotype in chronic tonsillitis. SpatialViz revealed morphological distributions of cellular organizations in distinct anatomical areas, spatially resolved single-cell associations across anatomical categories, and distance maps between the markers. Spatial topographic maps showed the unique organization of different tissue layers. The spatial reference framework generated network-based comparisons of multiplex data from healthy and diseased tonsils. SpatialViz is broadly applicable to multiplexed tissue biology.
Collapse
Affiliation(s)
- Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krishnan Laxminarayanan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert B Hughley
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Shahbaz S, Jovel J, Elahi S. Differential transcriptional and functional properties of regulatory T cells in HIV-infected individuals on antiretroviral therapy and long-term non-progressors. Clin Transl Immunology 2021; 10:e1289. [PMID: 34094548 PMCID: PMC8155695 DOI: 10.1002/cti2.1289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are widely recognised as a subset of CD4+CD25+FOXP3+ T cells that have a key role in maintaining immune homeostasis. The impact of HIV-1 infection on immunological properties and effector functions of Tregs has remained the topic of debate and controversy. In the present study, we investigated transcriptional profile and functional properties of Tregs in HIV-1-infected individuals either receiving antiretroviral therapy (ART, n = 50) or long-term non-progressors (LTNPs, n = 24) compared to healthy controls (HCs, n = 38). METHODS RNA sequencing (RNAseq), flow cytometry-based immunophenotyping and functional assays were performed to study Tregs in different HIV cohorts. RESULTS Our RNAseq analysis revealed that Tregs exhibit different transcriptional profiles in HIV-infected individuals. While Tregs from patients on ART upregulate pathways associated with a more suppressive (activated) phenotype, Tregs in LTNPs exhibit upregulation of pathways associated with impaired suppressive properties. These observations may explain a higher propensity for autoimmune diseases in LTNPs. Also, we found substantial upregulation of HLA-F mRNA and HLA-F protein in Tregs from HIV-infected subjects compared to healthy individuals. These observations highlight a potential role for this non-classical HLA in Tregs in the context of HIV infection, which should be investigated further in other chronic viral infections and cancer. CONCLUSION Our study has provided a novel insight into Tregs at the transcriptional and functional levels in different HIV-infected groups.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Juan Jovel
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Shokrollah Elahi
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Medical Microbiology and ImmunologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of OncologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Li Ka Shing Institute of VirologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
16
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Sajiki Y, Konnai S, Goto S, Okagawa T, Ohira K, Shimakura H, Maekawa N, Gondaira S, Higuchi H, Tajima M, Hirano Y, Kohara J, Murata S, Ohashi K. The Suppression of Th1 Response by Inducing TGF-β1 From Regulatory T Cells in Bovine Mycoplasmosis. Front Vet Sci 2020; 7:609443. [PMID: 33344537 PMCID: PMC7738317 DOI: 10.3389/fvets.2020.609443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) regulate immune responses and maintain host immune homeostasis. Tregs contribute to the disease progression of several chronic infections by oversuppressing immune responses via the secretion of immunosuppressive cytokines, such as transforming growth factor (TGF)-β and interleukin-10. In the present study, we examined the association of Tregs with Mycoplasma bovis infection, in which immunosuppression is frequently observed. Compared with uninfected cattle, the percentage of Tregs, CD4+CD25highFoxp3+ T cells, was increased in M. bovis-infected cattle. Additionally, the plasma of M. bovis-infected cattle contained the high concentrations of TGF-β1, and M. bovis infection induced TGF-β1 production from bovine immune cells in in vitro cultures. Finally, we analyzed the immunosuppressive effects of TGF-β1 on bovine immune cells. Treatment with TGF-β1 significantly decreased the expression of CD69, an activation marker, in T cells, and Th1 cytokine production in vitro. These results suggest that the increase in Tregs and TGF-β1 secretion could be one of the immunosuppressive mechanisms and that lead to increased susceptibility to other infections in terms of exacerbation of disease during M. bovis infection.
Collapse
Affiliation(s)
- Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kosuke Ohira
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Honami Shimakura
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Gondaira
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hidetoshi Higuchi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Motoshi Tajima
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yuki Hirano
- Animal Research Center, Agriculture Research Department, Hokkaido Research Organization, Shintoku, Japan
| | - Junko Kohara
- Animal Research Center, Agriculture Research Department, Hokkaido Research Organization, Shintoku, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Ahmed A, Vyakarnam A. Emerging patterns of regulatory T cell function in tuberculosis. Clin Exp Immunol 2020; 202:273-287. [PMID: 32639588 PMCID: PMC7670141 DOI: 10.1111/cei.13488] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is one of the top 10 causes of mortality worldwide from a single infectious agent and has significant implications for global health. A major hurdle in the development of effective TB vaccines and therapies is the absence of defined immune‐correlates of protection. In this context, the role of regulatory T cells (Treg), which are essential for maintaining immune homeostasis, is even less understood. This review aims to address this knowledge gap by providing an overview of the emerging patterns of Treg function in TB. Increasing evidence from studies, both in animal models of infection and TB patients, points to the fact the role of Tregs in TB is dependent on disease stage. While Tregs might expand and delay the appearance of protective responses in the early stages of infection, their role in the chronic phase perhaps is to counter‐regulate excessive inflammation. New data highlight that this important homeostatic role of Tregs in the chronic phase of TB may be compromised by the expansion of activated human leucocyte antigen D‐related (HLA‐DR)+CD4+ suppression‐resistant effector T cells. This review provides a comprehensive and critical analysis of the key features of Treg cells in TB; highlights the importance of a balanced immune response as being important in TB and discusses the importance of probing not just Treg frequency but also qualitative aspects of Treg function as part of a comprehensive search for novel TB treatments.
Collapse
Affiliation(s)
- A Ahmed
- Laboratory of Immunology of HIV-TB Co-infection, Center for Infectious Disease Research (CIDR), Indian Institute of Science (IISc), Bangalore, India
| | - A Vyakarnam
- Laboratory of Immunology of HIV-TB Co-infection, Center for Infectious Disease Research (CIDR), Indian Institute of Science (IISc), Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London (KCL), London, UK
| |
Collapse
|
19
|
Dalzini A, Petrara MR, Ballin G, Zanchetta M, Giaquinto C, De Rossi A. Biological Aging and Immune Senescence in Children with Perinatally Acquired HIV. J Immunol Res 2020; 2020:8041616. [PMID: 32509884 PMCID: PMC7246406 DOI: 10.1155/2020/8041616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-infected children suffer from premature aging and aging-related diseases. Viral replication induces an ongoing inflammation process, with the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), the activation of the immune system, and the production of proinflammatory cytokines. Although combined highly active antiretroviral therapy (ART) has significantly modified the natural course of HIV infection, normalization of T and B cell phenotype is not completely achievable; thus, many HIV-infected children display several phenotypical alterations, including higher percentages of activated cells, that favor an accelerated telomere attrition, and higher percentages of exhausted and senescent cells. All these features ultimately lead to the clinical manifestations related to premature aging and comorbidities typically observed in older general population, including non-AIDS-related malignancies. Therefore, even under effective treatment, the premature aging process of HIV-infected children negatively impacts their quality and length of life. This review examines the available data on the impact of HIV and ART on immune and biological senescence of HIV-infected children.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Maria Raffaella Petrara
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Giovanni Ballin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | | | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| |
Collapse
|
20
|
Singh AK, Salwe S, Padwal V, Velhal S, Sutar J, Bhowmick S, Mukherjee S, Nagar V, Patil P, Patel V. Delineation of Homeostatic Immune Signatures Defining Viremic Non-progression in HIV-1 Infection. Front Immunol 2020; 11:182. [PMID: 32194543 PMCID: PMC7066316 DOI: 10.3389/fimmu.2020.00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Viremic non-progressors (VNPs), a distinct group of HIV-1-infected individuals, exhibit no signs of disease progression and maintain persistently elevated CD4+ T cell counts for several years despite high viral replication. Comprehensive characterization of homeostatic cellular immune signatures in VNPs can provide unique insights into mechanisms responsible for coping with viral pathogenesis as well as identifying strategies for immune restoration under clinically relevant settings such as antiretroviral therapy (ART) failure. We report a novel homeostatic signature in VNPs, the preservation of the central memory CD4+ T cell (CD4+ TCM) compartment. In addition, CD4+ TCM preservation was supported by ongoing interleukin-7 (IL-7)-mediated thymic repopulation of naive CD4+ T cells leading to intact CD4+ T cell homeostasis in VNPs. Regulatory T cell (Treg) expansion was found to be a function of preserved CD4+ T cell count and CD4+ T cell activation independent of disease status. However, in light of continual depletion of CD4+ T cell count in progressors but not in VNPs, Tregs appear to be involved in lack of disease progression despite high viremia. In addition to these homeostatic mechanisms resisting CD4+ T cell depletion in VNPs, a relative diminution of terminally differentiated effector subset was observed exclusively in these individuals that might ameliorate consequences of high viral replication. VNPs also shared signatures of impaired CD8+ T cell cytotoxic function with progressors evidenced by increased exhaustion (PD-1 upregulation) and CD127 (IL-7Rα) downregulation contributing to persistent viremia. Thus, the homeostatic immune signatures reported in our study suggest a complex multifactorial mechanism accounting for non-progression in VNPs.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sukeshani Salwe
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Varsha Padwal
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Velhal
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Jyoti Sutar
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Bhowmick
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
21
|
Caetano DG, de Paula HHS, Bello G, Hoagland B, Villela LM, Grinsztejn B, Veloso VG, Morgado MG, Guimarães ML, Côrtes FH. HIV-1 elite controllers present a high frequency of activated regulatory T and Th17 cells. PLoS One 2020; 15:e0228745. [PMID: 32023301 PMCID: PMC7001932 DOI: 10.1371/journal.pone.0228745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
HIV-1 infection is characterized by generalized deregulation of the immune system, resulting in increased chronic immune activation. However, some individuals called HIV controllers (HICs) present spontaneous control of viral replication and have a more preserved immune system. Among HICs, discordant results have been observed regarding immune activation and the frequency of different T cell subsets, including Treg and Th17 cells. We evaluated T cell immune activation, differentiation and regulatory profiles in two groups of HICs—elite controllers (ECs) and viremic controllers (VCs)—and compared them to those of cART-treated individuals (cART) and HIV-1-negative (HIV-neg) individuals. ECs demonstrated similar levels of activated CD4+ and CD8+ T cells in comparison to HIV-neg, while cART and VCs showed elevated T cell activation. CD4+ T cell subset analyses showed differences only for transitional memory T cell frequency between the EC and HIV-neg groups. However, VC individuals showed higher frequencies of terminally differentiated, naïve, and stem cell memory T cells and lower frequencies of transitional memory and central memory T cells compared to the HIV-neg group. Among CD8+ T cell subsets, ECs presented higher frequencies of stem cell memory T cells, while VCs presented higher frequencies of terminally differentiated T cells compared to the HIV-neg group. HICs showed lower frequencies of total Treg cells compared to the HIV-neg and cART groups. ECs also presented higher frequencies of activated and a lower frequency of resting Treg cells than the HIV-neg and cART groups. Furthermore, we observed a high frequency of Th17 cells in ECs and high Th17/Treg ratios in both HIC groups. Our data showed that ECs had low levels of activated T cells and a high frequency of activated Treg and Th17 cells, which could restrict chronic immune activation and be indicative of a preserved mucosal response in these individuals.
Collapse
Affiliation(s)
- Diogo G. Caetano
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hury H. S. de Paula
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Larissa M. Villela
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea G. Veloso
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Monick L. Guimarães
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda H. Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail: ,
| |
Collapse
|
22
|
Lee YL, Chen GJ, Chen NY, Liou BH, Wang NC, Lee YT, Yang CJ, Huang YS, Tang HJ, Huang SS, Lin YC, Cheng CY, Lee CH, Chen TC, Wu TS, Liu CE, Lu PL, Hung CC. Less Severe but Prolonged Course of Acute Hepatitis A in Human Immunodeficiency Virus (HIV)-Infected Patients Compared With HIV-Uninfected Patients During an Outbreak: A Multicenter Observational Study. Clin Infect Dis 2019; 67:1595-1602. [PMID: 29672699 DOI: 10.1093/cid/ciy328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023] Open
Abstract
Background This multicenter retrospective cohort study aimed to compare the clinical presentations and evolution of acute hepatitis A (AHA) between human immunodeficiency virus (HIV)-infected patients and HIV-uninfected counterparts during the AHA outbreak. Methods Clinical and laboratory data were collected from the medical records of the patients with AHA at the 14 hospitals around Taiwan between May 2015 and May 2017. Results A total of 297 adult patients with AHA were included during the study period. Their mean age was 31.4 years (range, 19.0-76.1 years); 93.4% were men and 58.6% were men who have sex with men. Of 265 patients with known HIV serostatus, 166 (62.6%) were HIV infected. Compared with HIV-uninfected patients, HIV-infected patients had a lower peak alanine aminotransferase (ALT) level (median, 1312 vs 2014 IU/L, P = .003), less coagulopathy (6.0% vs 16.2%, P = .007), and less hepatomegaly or splenomegaly on imaging studies, but a higher rate of delayed resolution of hepatitis (38.8% vs 21.3%, P = .009). HIV-infected patients with plasma RNA load <1000 copies/mL while receiving combination antiretroviral therapy (cART) had a higher peak ALT level (median, 1420 vs 978 IU/L, P = .006) and less delay in resolution of hepatitis (30.6% vs 48.8%, P = .047) than patients without cART or with plasma RNA load ≥1000 copies/mL. Conclusions During an AHA outbreak, HIV-infected patients had a lower severity, but delayed resolution, of AHA than HIV-uninfected patients. Better viral suppression by cART alleviated the impact of HIV infection on the disease course of AHA in HIV-infected patients.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Taipei
| | - Guan-Jhou Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan
| | - Bo-Huang Liou
- Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, National Defense Medical Center, Taipei
| | - Ning-Chi Wang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Yuan-Ti Lee
- School of Medicine, Chung Shan Medical University, Taichung.,Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City.,School of Medicine, National Yang-Ming University, Taipei
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Sciences, Tainan
| | - Shie-Shian Huang
- Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Taipei
| | - Yi-Chun Lin
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taipei
| | - Chien-Yu Cheng
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taipei.,School of Public Health, National Yang-Ming University, Taipei
| | - Chen-Hsiang Lee
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Taipei.,Chang Gung University College of Medicine, Taipei
| | - Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Taipei.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Taipei
| | - Ting-Shu Wu
- Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan
| | - Chun-Eng Liu
- Department of Internal Medicine, Changhua Christian Hospital, Taipei
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Taipei.,College of Medicine, Kaohsiung Medical University, Taipei
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Department of Parasitology, National Taiwan University College of Medicine, Taipei
| | | |
Collapse
|
23
|
Saidakova EV, Shmagel KV, Shmagel NG, Korolevskaya LB, Chereshnev VA. Changes in the Regulatory T-Lymphocyte Counts in HIV-Infected Patients with a Discordant Response to Antiretroviral Therapy. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2019; 487:128-131. [PMID: 31571082 DOI: 10.1134/s0012496619040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022]
Abstract
We examined HIV-infected patients with different efficacies of immune system restoration during antiretroviral therapy. The study showed that against the background of low CD4+ T cell counts, subjects with a discordant immunologic response (patients with <350 CD4+ T cells per μL of blood after more than two years of treatment) develop a regulatory CD4+ T cell (Treg) deficiency. Furthermore, in these patients, the immunodeficiency is accompanied by an increase in the Treg frequency. Accumulation of regulatory T lymphocytes in the blood of HIV‑infected subjects with discordant response to the treatment indicates a high viability of this T cell subset.
Collapse
Affiliation(s)
- E V Saidakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia.
| | - K V Shmagel
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - N G Shmagel
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - L B Korolevskaya
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - V A Chereshnev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia.,Institute of Immunology and Physiology of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
24
|
Márquez-Coello M, Montes de Oca Arjona M, Martín-Aspas A, Guerrero Sánchez F, Fernández-Gutiérrez Del Álamo C, Girón-González JA. Antiretroviral therapy partially improves the abnormalities of dendritic cells and lymphoid and myeloid regulatory populations in recently infected HIV patients. Sci Rep 2019; 9:11654. [PMID: 31406185 PMCID: PMC6690933 DOI: 10.1038/s41598-019-48185-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/29/2019] [Indexed: 01/07/2023] Open
Abstract
This study aimed to evaluate the effects of antiretroviral therapy on plasmacytoid (pDC) and myeloid (mDC) dendritic cells as well as regulatory T (Treg) and myeloid-derived suppressor (MDSC) cells in HIV-infected patients. Forty-five HIV-infected patients (20 of them with detectable HIV load −10 recently infected and 10 chronically infected patients-, at baseline and after antiretroviral therapy, and 25 with undetectable viral loads) and 20 healthy controls were studied. The influence of HIV load, bacterial translocation (measured by 16S rDNA and lipopolysaccharide-binding protein) and immune activation markers (interleukin –IL- 6, soluble CD14, activated T cells) was analyzed. The absolute numbers and percentages of pDC and mDC were significantly increased in patients. Patients with detectable viral load exhibited increased intracellular expression of IL-12 by mDCs and interferon -IFN- α by pDCs. Activated population markers were elevated, and the proportion of Tregs was significantly higher in HIV-infected patients. The MDSC percentage was similar in patients and controls, but the intracellular expression of IL-10 was significantly higher in patients. The achievement of undetectable HIV load after therapy did not modify bacterial translocation parameters, but induce an increase in pDCs, mDCs and MDSCs only in recently infected patients. Our data support the importance of early antiretroviral therapy to preserve dendritic and regulatory cell function in HIV-infected individuals.
Collapse
Affiliation(s)
- Mercedes Márquez-Coello
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Montserrat Montes de Oca Arjona
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Andrés Martín-Aspas
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Francisca Guerrero Sánchez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | | | - José A Girón-González
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain. .,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
25
|
Naicker T, Phoswa WN, Onyangunga OA, Gathiram P, Moodley J. Angiogenesis, Lymphangiogenesis, and the Immune Response in South African Preeclamptic Women Receiving HAART. Int J Mol Sci 2019; 20:ijms20153728. [PMID: 31366152 PMCID: PMC6696390 DOI: 10.3390/ijms20153728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose of the review: This review highlights the role of angiogenesis, lymphangiogenesis, and immune markers in human immunodeficiency virus (HIV)-associated preeclamptic (PE) pregnancies in an attempt to unravel the mysteries underlying the duality of both conditions in South Africa. Recent findings: Studies demonstrate that HIV-infected pregnant women develop PE at a lower frequency than uninfected women. In contrast, women receiving highly active anti-retroviral therapy (HAART) are more inclined to develop PE, stemming from an imbalance of angiogenesis, lymphangiogenesis, and immune response. Summary: In view of the paradoxical effect of HIV infection on PE development, this study examines angiogenesis, lymphangiogenesis, and immune markers in the highly HIV endemic area of KwaZulu-Natal. We believe that HAART re-constitutes the immune response in PE, thereby predisposing women to PE development. This susceptibility is due to an imbalance in the angiogenic/lymphangiogenic/immune response as compared to normotensive pregnant women. Further large-scale studies are urgently required to investigate the effect of the duration of HAART on PE development.
Collapse
Affiliation(s)
- Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa.
| | - Wendy N Phoswa
- Discipline of Obstetrics and Gynecology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa.
| | - Onankoy A Onyangunga
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Premjith Gathiram
- Women's Health and HIV Research Group. Department of Obstetrics and Gynecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Jagidesa Moodley
- Women's Health and HIV Research Group. Department of Obstetrics and Gynecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| |
Collapse
|
26
|
Tingstedt JL, Hove-Skovsgaard M, Gaardbo J, Ullum H, Nielsen SD, Gelpi M. The impact of concurrent HIV and type II diabetes on immune maturation, immune regulation and immune activation. APMIS 2019; 127:529-537. [PMID: 31017317 DOI: 10.1111/apm.12956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
Chronic immune activation and inflammation are constant findings in people living with HIV (PLWH) and contribute to the risk of non-AIDS-related morbidities, including cardiovascular diseases (CVD). Type 2 diabetes (T2D) is also characterized by immune activation and inflammation. We aimed to investigate the impact of concurrent HIV infection and T2D on T-cell subsets. The study included PLWH with T2D (HIV+T2D+, N = 25) and without T2D (HIV+T2D-, N = 25) and HIV-negative controls with T2D (HIV-T2D+, N = 22) and without T2D (HIV-T2D-, N = 28). All PLWH in the study were receiving combination antiretroviral therapy. We examined T-cell homeostasis by determining T-cell subsets (immune maturation, immune regulation and immune activation) using flow cytometry. HIV+T2D- had lower proportion of Tc17 cells and higher proportion of apoptotic cells than HIV-T2D-. When comparing HIV+T2D+ and HIV+T2D- a lower proportion of CD4+ recent thymic emigrants (RTE) was found (p = 0.028). Furthermore, HIV+T2D+ had a higher proportion of non-suppressive CD4+ Tregs compared to HIV+T2D- (p = 0.010). In conclusion, even in the setting of treated HIV infection, distinct immunological alterations are found. In PLWH with concomitant T2D, most alterations in T-cell subsets were related to HIV and only few differences were found between PLWH with and without diabetes.
Collapse
Affiliation(s)
- Jeanette Linnea Tingstedt
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Malene Hove-Skovsgaard
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Julie Gaardbo
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Marco Gelpi
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Gutiérrez C, Lopez-Abente J, Pérez-Fernández V, Prieto-Sánchez A, Correa-Rocha R, Moreno-Guillen S, Muñoz-Fernández MÁ, Pion M. Analysis of the dysregulation between regulatory B and T cells (Breg and Treg) in human immunodeficiency virus (HIV)-infected patients. PLoS One 2019; 14:e0213744. [PMID: 30917149 PMCID: PMC6436717 DOI: 10.1371/journal.pone.0213744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
This study examines the relationship between regulatory B (Breg) and T (Treg) compartments, which play crucial roles in the maintenance of immune homeostasis in the context of HIV. Using flow cytometry, the phenotypes of different Breg and Treg subsets from HIV-infected and healthy individuals were analyzed, along with the suppressive capacity of Breg. Peripheral blood samples of thirteen HIV+ treatment-naïve individuals, fourteen treated-HIV+ individuals with undetectable viral load and twelve healthy individuals were analyzed. The absolute counts of Breg and Treg subsets were decreased in HIV+ treatment-naïve individuals in comparison to treated-HIV+ and healthy individuals. Interestingly, correlations between Breg subsets (CD24hiCD27+ and PD-L1+ B cells) and IL-10-producing Breg observed in healthy individuals were lost in HIV+ treatment-naïve individuals. However, a correlation between frequencies of CD24hiCD38hi or TIM-1+-Breg subsets and Treg was observed in HIV+ treatment-naïve individuals and not in healthy individuals. Therefore, we hypothesized that various Breg subsets might have different functions during B and T-cell homeostasis during HIV-1 infection. In parallel, stimulated Breg from HIV-infected treatment-naïve individuals presented a decreased ability to suppress CD4+ T-cell proliferation in comparison to the stimulated Breg from treated-HIV+ or healthy individuals. We demonstrate a dysregulation between Breg and Treg subsets in HIV-infected individuals, which might participate in the hyper-activation and exhaustion of the immune system that occurs in such patients.
Collapse
Affiliation(s)
- Carolina Gutiérrez
- Molecular Immunovirology Laboratory, Department of Infectious Diseases, Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Jacobo Lopez-Abente
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Verónica Pérez-Fernández
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Adrián Prieto-Sánchez
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Rafael Correa-Rocha
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| | - Santiago Moreno-Guillen
- Molecular Immunovirology Laboratory, Department of Infectious Diseases, Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - María-Ángeles Muñoz-Fernández
- Molecular ImmunoBiology Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjorie Pion
- Immuno-Regulation Laboratory, University General Hospital Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Medicine and Experimental Surgery Building, Madrid, Spain
| |
Collapse
|
28
|
Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome Dependent Regulation of T regs and Th17 Cells in Mucosa. Front Immunol 2019; 10:426. [PMID: 30906299 PMCID: PMC6419713 DOI: 10.3389/fimmu.2019.00426] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Mammals co-exist with resident microbial ecosystem that is composed of an incredible number and diversity of bacteria, viruses and fungi. Owing to direct contact between resident microbes and mucosal surfaces, both parties are in continuous and complex interactions resulting in important functional consequences. These interactions govern immune homeostasis, host response to infection, vaccination and cancer, as well as predisposition to metabolic, inflammatory and neurological disorders. Here, we discuss recent studies on direct and indirect effects of resident microbiota on regulatory T cells (Tregs) and Th17 cells at the cellular and molecular level. We review mechanisms by which commensal microbes influence mucosa in the context of bioactive molecules derived from resident bacteria, immune senescence, chronic inflammation and cancer. Lastly, we discuss potential therapeutic applications of microbiota alterations and microbial derivatives, for improving resilience of mucosal immunity and combating immunopathology.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Augustin M, Horn C, Koch J, Sandaradura de Silva U, Platten M, Nierhoff D, Suarez I, Chon SH, Rybniker J, Lehmann C. Short Communication: Tracking Tregs: Translocation of CD49b/LAG-3 + Type 1 T Regulatory Cells to the Gut-Associated Lymphoid Tissue of HIV + Patients. AIDS Res Hum Retroviruses 2019; 35:247-250. [PMID: 30019612 DOI: 10.1089/aid.2018.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal mucosa [gut-associated lymphoid tissue (GALT)] represents the largest site of chronic immune activation and HIV replication. Important cellular agents in the immunopathogenesis of an HIV infection are, in particular, CD49b/LAG-3+ type 1 T regulatory cells (Tr1), which secrete large amounts of IL-10 (interleukin-10), and plasmacytoid dendritic cells, the main producers of IFN-α (interferon-alpha). However, the distribution of CD49b/LAG-3+ Tr1 cells along the GALT is unknown.
Collapse
Affiliation(s)
- Max Augustin
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| | - Carola Horn
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| | - Julian Koch
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Martin Platten
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Clinic for Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Isabelle Suarez
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral Surgery and Surgical Oncology, University Hospital Cologne, Cologne, Germany
| | - Jan Rybniker
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| | - Clara Lehmann
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| |
Collapse
|
30
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
31
|
Roider J, Ngoepe A, Muenchhoff M, Adland E, Groll A, Ndung'u T, Kløverpris H, Goulder P, Leslie A. Increased Regulatory T-Cell Activity and Enhanced T-Cell Homeostatic Signaling in Slow Progressing HIV-infected Children. Front Immunol 2019; 10:213. [PMID: 30809229 PMCID: PMC6379343 DOI: 10.3389/fimmu.2019.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Pediatric slow progressors (PSP) are rare ART-naïve, HIV-infected children who maintain high CD4 T-cell counts and low immune activation despite persistently high viral loads. Using a well-defined cohort of PSP, we investigated the role of regulatory T-cells (TREG) and of IL-7 homeostatic signaling in maintaining normal-for-age CD4 counts in these individuals. Compared to children with progressive disease, PSP had greater absolute numbers of TREG, skewed toward functionally suppressive phenotypes. As with immune activation, overall T-cell proliferation was lower in PSP, but was uniquely higher in central memory TREG (CM TREG), indicating active engagement of this subset. Furthermore, PSP secreted higher levels of the immunosuppressive cytokine IL-10 than children who progressed. The frequency of suppressive TREG, CM TREG proliferation, and IL-10 production were all lower in PSP who go on to progress at a later time-point, supporting the importance of an active TREG response in preventing disease progression. In addition, we find that IL-7 homeostatic signaling is enhanced in PSP, both through preserved surface IL-7receptor (CD127) expression on central memory T-cells and increased plasma levels of soluble IL-7receptor, which enhances the bioactivity of IL-7. Combined analysis, using a LASSO modeling approach, indicates that both TREG activity and homeostatic T-cell signaling make independent contributions to the preservation of CD4 T-cells in HIV-infected children. Together, these data demonstrate that maintenance of normal-for-age CD4 counts in PSP is an active process, which requires both suppression of immune activation through functional TREG, and enhanced T-cell homeostatic signaling.
Collapse
Affiliation(s)
- Julia Roider
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infectious Diseases, Medizinische Klinik IV, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Abigail Ngoepe
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Maximilian Muenchhoff
- Department of Virology, Max von Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Emily Adland
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
| | - Andreas Groll
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Thumbi Ndung'u
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Henrik Kløverpris
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
32
|
Salwe S, Singh A, Padwal V, Velhal S, Nagar V, Patil P, Deshpande A, Patel V. Immune signatures for HIV-1 and HIV-2 induced CD4 +T cell dysregulation in an Indian cohort. BMC Infect Dis 2019; 19:135. [PMID: 30744575 PMCID: PMC6371624 DOI: 10.1186/s12879-019-3743-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
Background HIV-2 infection is characterised by a longer asymptomatic phase and slower AIDS progression than HIV-1 infection. Identifying unique immune signatures associated with HIV-2 pathogenesis may thus provide therapeutically useful insight into the management of HIV infection. This study examined the dynamics of the CD4+T cell compartment, critical in disease progression, focussing on chronic HIV-2 and HIV-1 infected individuals at various stages of disease progression. Methods A total of 111 participants including untreated and treated HIV infected individuals and seronegative individuals were enrolled in this study. The relative proportion of CD4+T cell subsets, expressing CD25 (IL-2Rα) and CD127 (IL-7R), in HIV infected individuals and seronegative controls were assessed by multiparametric flow cytometry. Additionally, levels of immune activation and cytotoxic T lymphocytes in both the CD4+T and CD8+T cell compartments was evaluated. Results Both treated and untreated, HIV-1 and HIV-2 infected individuals showed apparent dysregulation in CD4+ T cell subset frequency that was associated with disease progression. Furthermore, longitudinal sampling from a group of HIV-1 infected individuals on virologically effective ART showed no significant change in dysregulated CD4+T cell subset frequency. For both ART naïve and receiving groups associations with disease progression were strongest and significant with CD4+ T cell subset frequency compared to per cell expression of IL-2Rα and IL-7Rα. In untreated HIV-2 infected individuals, T cell activation was lower compared to ART naïve HIV-1 infected individuals and higher than seronegative individuals. Also, the level of Granzyme-B expressing circulating T cells was higher in both ART-naïve HIV-1 and HIV-2 infected individuals compared to seronegative controls. Conclusion Dysregulation of IL-2 and IL-7 homeostasis persists in CD4+T cell subsets irrespective of presence or absence of viremia or antiretroviral therapy in HIV infection. Furthermore, we report for the first time on levels of circulating Granzyme-B expressing CD4+T and CD8+T cells in chronic HIV-2 infection. Lower immune activation in these individuals indicates that persistent immune activation driven CD4+T cell depletion, as observed in untreated HIV-1 infected individuals, may not be as severe and provides evidence for a disparate pathogenesis mechanism. Our work also supports novel immunomodulatory therapeutic strategies for both HIV-1 and HIV-2 infection. Electronic supplementary material The online version of this article (10.1186/s12879-019-3743-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sukeshani Salwe
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Amitkumar Singh
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Varsha Padwal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Shilpa Velhal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. group of Hospitals, Mumbai, 400008, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. group of Hospitals, Mumbai, 400008, India
| | - Alaka Deshpande
- Department of Medicine, Grant Medical College & Sir J. J. group of Hospitals, Mumbai, 400008, India
| | - Vainav Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
33
|
Waltl I, Käufer C, Gerhauser I, Chhatbar C, Ghita L, Kalinke U, Löscher W. Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain Behav Immun 2018; 74:186-204. [PMID: 30217535 PMCID: PMC7111316 DOI: 10.1016/j.bbi.2018.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/23/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
In the central nervous system (CNS), innate immune surveillance is mainly coordinated by microglia. These CNS resident myeloid cells are assumed to help orchestrate the immune response against infections of the brain. However, their specific role in this process and their interactions with CNS infiltrating immune cells, such as blood-borne monocytes and T cells are only incompletely understood. The recent development of PLX5622, a specific inhibitor of colony-stimulating factor 1 receptor that depletes microglia, allows studying the role of microglia in conditions of brain injury such as viral encephalitis, the most common form of brain infection. Here we used this inhibitor in a model of viral infection-induced epilepsy, in which C57BL/6 mice are infected by a picornavirus (Theiler's murine encephalomyelitis virus) and display seizures and hippocampal damage. Our results show that microglia are required early after infection to limit virus distribution and persistence, most likely by modulating T cell activation. Microglia depletion accelerated the occurrence of seizures, exacerbated hippocampal damage, and led to neurodegeneration in the spinal cord, which is normally not observed in this mouse strain. This study enhances our understanding of the role of microglia in viral encephalitis and adds to the concept of microglia-T cell crosstalk.
Collapse
Affiliation(s)
- Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany,Center for Systems Neuroscience, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | - Chintan Chhatbar
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Center for Systems Neuroscience, Hannover, Germany,Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
34
|
Filaci G, Fenoglio D, Taramasso L, Indiveri F, Di Biagio A. Rationale for an Association Between PD1 Checkpoint Inhibition and Therapeutic Vaccination Against HIV. Front Immunol 2018; 9:2447. [PMID: 30459765 PMCID: PMC6232923 DOI: 10.3389/fimmu.2018.02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 12/02/2022] Open
Abstract
The pathogenesis of HIV immunodeficiency is mainly dependent on the cytopatic effects exerted by the virus against infected CD4+ T cells. However, CD4+ T cell loss cannot be the only pathogenic factor since severe opportunistic infections may develop in HIV infected patients with normal CD4+ T cell counts and since the recent START study indicated that absolute CD4+ T cell counts are not predictive for AIDS and non-AIDS events. Recently our group demonstrated that CD8+CD28-CD127lowCD39+ regulatory T lymphocytes, previously found highly concentrated within tumor microenvironment, circulate with elevated frequency in the peripheral blood of HIV infected patients. Here, we show that these cells, that at least in part are HIV specific, express the PD1 immune checkpoint. Based on these evidences and considerations, in this Perspective article we speculate on the opportunity to treat HIV infected patients with anti-PD1 immune checkpoint inhibitors as a way to counteract the T regulatory cell compartment and to unleash virus-specific immune responses. In order to potentiate the immune responses against HIV we also propose the potential utility to associate immune checkpoint inhibition with HIV-specific therapeutic vaccination, reminiscent of what currently applied in oncologic protocols. We suggest that such an innovative strategy could permit drug-sparing regimens and, perhaps, lead to eradication of the infection in some patients.
Collapse
Affiliation(s)
- Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy.,Biotherapy Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy.,Biotherapy Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Taramasso
- Infectious Disease Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Indiveri
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Disease Unit, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
35
|
Moysi E, Petrovas C, Koup RA. The role of follicular helper CD4 T cells in the development of HIV-1 specific broadly neutralizing antibody responses. Retrovirology 2018; 15:54. [PMID: 30081906 PMCID: PMC6080353 DOI: 10.1186/s12977-018-0437-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/28/2018] [Indexed: 01/23/2023] Open
Abstract
The induction of HIV-1-specific antibodies that can neutralize a broad number of isolates is a major goal of HIV-1 vaccination strategies. However, to date no candidate HIV-1 vaccine has successfully elicited broadly neutralizing antibodies of sufficient quality and breadth for protection. In this review, we focus on the role of follicular helper CD4 T-cells (Tfh) in the development of such cross-reactive protective antibodies. We discuss germinal center (GC) formation and the dynamics of Tfh and GC B cells during HIV-1/SIV infection and vaccination. Finally, we consider future directions for the study of Tfh and offer perspective on factors that could be modulated to enhance Tfh function in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| | | | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| |
Collapse
|
36
|
Nag M, Wang Y, De Paris K, E Fogle J. Histone Modulation Blocks Treg-Induced Foxp3 Binding to the IL-2 Promoter of Virus-Specific CD8⁺ T Cells from Feline Immunodeficiency Virus-Infected Cats. Viruses 2018; 10:v10060287. [PMID: 29861472 PMCID: PMC6024775 DOI: 10.3390/v10060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/05/2022] Open
Abstract
CD8+ T cells are critical for controlling HIV infection. During the chronic phase of lentiviral infection, CD8+ T cells lose their proliferative capacity and exhibit impaired antiviral function. This loss of CD8+ T cell function is due, in part, to CD4+CD25+ T regulatory (Treg) cell-mediated suppression. Our research group has demonstrated that lentivirus-activated CD4+CD25+ Treg cells induce the repressive transcription factor forkhead box P3 (Foxp3) in autologous CD8+ T cells following co-culture. We have recently reported that Treg-induced Foxp3 binds the interleukin-2 (IL-2), interferon-γ (IFN- γ), and tumor necrosis factor-α (TNF-α) promoters in virus-specific CD8+ T cells. These data suggest an important role of Foxp3-mediated CD8+ T cell dysfunction in lentiviral infection. To elucidate the mechanism of this suppression, we previously reported that decreased methylation facilitates Foxp3 binding in mitogen-activated CD8+ T cells from feline immunodeficiency virus (FIV)-infected cats. We demonstrated the reduced binding of Foxp3 to the IL-2 promoter by increasing methylation of CD8+ T cells. In the studies presented here, we ask if another form of epigenetic modulation might alleviate Foxp3-mediated suppression in CD8+ T cells. We hypothesized that decreasing histone acetylation in virus-specific CD8+ T cells would decrease Treg-induced Foxp3 binding to the IL-2 promoter. Indeed, using anacardic acid (AA), a known histone acetyl transferase (HAT) inhibitor, we demonstrate a reduction in Foxp3 binding to the IL-2 promoter in virus-specific CD8+ T cells co-cultured with autologous Treg cells. These data identify a novel mechanism of Foxp3-mediated CD8+ T cell dysfunction during lentiviral infection.
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yan Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
37
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Innes S, Patel K. Noncommunicable diseases in adolescents with perinatally acquired HIV-1 infection in high-income and low-income settings. Curr Opin HIV AIDS 2018; 13:187-195. [PMID: 29432231 PMCID: PMC5934760 DOI: 10.1097/coh.0000000000000458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Perinatally HIV-infected adolescents may be at increased risk of noninfectious comorbidities later in life. This review summarizes recent advances in the understanding of noncommunicable diseases (NCD) among HIV-infected adolescents in high-income and lower middle-income countries, and identifies key questions that remain unanswered. We review atherosclerotic vascular disease (AVD), chronic bone disease (CBD), chronic kidney disease (CKD), and chronic lung disease (CLD). RECENT FINDINGS Persistent immune activation and inflammation underlie the pathogenesis of AVD, highlighting the importance of treatment adherence and maintenance of viral suppression, and the need to evaluate interventions to decrease risk. Tenofovir disoproxil fumarate (TDF) and trials of vitamin D supplementation have been the focus of recent studies of CBD with limited studies to date evaluating tenofovir alafenamide as an alternative to TDF for decreasing risk for bone and renal adverse effects among HIV-infected adolescents. Recent studies of CKD have focused primarily on estimating prevalence in different settings whereas studies of CLD are limited. SUMMARY As perinatally HIV-infected children age into adolescence and adulthood with effective long-term ART, it is necessary to continue to evaluate their risks for noninfectious comorbidities and complications, understand mechanisms underlying their risks, and identify and evaluate interventions specifically in this population.
Collapse
Affiliation(s)
- Steve Innes
- Family Infectious Diseases Clinical Research Unit (FAMCRU), Stellenbosch University, and Department of Paediatrics and Child Health, Tygerberg Children’s Hospital, Cape Town, South Africa
| | - Kunjal Patel
- Department of Epidemiology, Harvard T.H. Chan School of Public Health and Center for Biostatistics in AIDS Research (CBAR), Boston, MA, USA
| |
Collapse
|
39
|
Kleinman AJ, Sivanandham R, Pandrea I, Chougnet CA, Apetrei C. Regulatory T Cells As Potential Targets for HIV Cure Research. Front Immunol 2018; 9:734. [PMID: 29706961 PMCID: PMC5908895 DOI: 10.3389/fimmu.2018.00734] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.
Collapse
Affiliation(s)
- Adam J Kleinman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati University, Cincinnati, OH, United States
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
40
|
Rahman MA, McKinnon KM, Karpova TS, Ball DA, Venzon DJ, Fan W, Kang G, Li Q, Robert-Guroff M. Associations of Simian Immunodeficiency Virus (SIV)-Specific Follicular CD8 + T Cells with Other Follicular T Cells Suggest Complex Contributions to SIV Viremia Control. THE JOURNAL OF IMMUNOLOGY 2018; 200:2714-2726. [PMID: 29507105 DOI: 10.4049/jimmunol.1701403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 11/19/2022]
Abstract
Follicular CD8+ T (fCD8) cells reside within B cell follicles and are thought to be immune-privileged sites of HIV/SIV infection. We have observed comparable levels of fCD8 cells between chronically SIV-infected rhesus macaques with low viral loads (LVL) and high viral loads (HVL), raising the question concerning their contribution to viremia control. In this study, we sought to clarify the role of SIV-specific fCD8 cells in lymph nodes during the course of SIV infection in rhesus macaques. We observed that fCD8 cells, T follicular helper (Tfh) cells, and T follicular regulatory cells (Tfreg) were all elevated in chronic SIV infection. fCD8 cells of LVL animals tended to express more Gag-specific granzyme B and exhibited significantly greater killing than did HVL animals, and their cell frequencies were negatively correlated with viremia, suggesting a role in viremia control. Env- and Gag-specific IL-21+ Tfh of LVL but not HVL macaques negatively correlated with viral load, suggesting better provision of T cell help to fCD8 cells. Tfreg positively correlated with fCD8 cells in LVL animals and negatively correlated with viremia, suggesting a potential benefit of Tfreg via suppression of chronic inflammation. In contrast, in HVL macaques, Tfreg and fCD8 cell frequencies tended to be negatively correlated, and a positive correlation was seen between Tfreg number and viremia, suggesting possible dysfunction and suppression of an effective fCD8 cell immune response. Our data suggest that control of virus-infected cells in B cell follicles not only depends on fCD8 cell cytotoxicity but also on complex fCD8 cell associations with Tfh cells and Tfreg.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Katherine M McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tatiana S Karpova
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David A Ball
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Wenjin Fan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Guobin Kang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
41
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
42
|
Pastor L, Urrea V, Carrillo J, Parker E, Fuente-Soro L, Jairoce C, Mandomando I, Naniche D, Blanco J. Dynamics of CD4 and CD8 T-Cell Subsets and Inflammatory Biomarkers during Early and Chronic HIV Infection in Mozambican Adults. Front Immunol 2018; 8:1925. [PMID: 29354131 PMCID: PMC5760549 DOI: 10.3389/fimmu.2017.01925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
During primary HIV infection (PHI), there is a striking cascade response of inflammatory cytokines and many cells of the immune system show altered frequencies and signs of extensive activation. These changes have been shown to have a relevant role in predicting disease progression; however, the challenges of identifying PHI have resulted in a lack of critical information about the dynamics of early pathogenic events. We studied soluble inflammatory biomarkers and changes in T-cell subsets in individuals at PHI (n = 40), chronic HIV infection (CHI, n = 56), and HIV-uninfected (n = 58) recruited at the Manhiça District Hospital in Mozambique. Plasma levels of 49 biomarkers were determined by Luminex and ELISA. T-cell immunophenotyping was performed by multicolor flow cytometry. Plasma HIV viremia, CD4, and CD8 T cell counts underwent rapid stabilization after PHI. However, several immunological parameters, including Th1-Th17 CD4 T cells and activation or exhaustion of CD8 T cells continued decreasing until more than 9 months postinfection. Importantly, no sign of immunosenescence was observed over the first year of HIV infection. Levels of IP-10, MCP-1, BAFF, sCD14, tumor necrosis factor receptor-2, and TRAIL were significantly overexpressed at the first month of infection and underwent a prompt decrease in the subsequent months while, MIG and CD27 levels began to increase 1 month after infection and remained overexpressed for almost 1 year postinfection. Early levels of soluble biomarkers were significantly associated with subsequently exhausted CD4 T-cells or with CD8 T-cell activation. Despite rapid immune control of virus replication, the stabilization of the T-cell subsets occurs months after viremia and CD4 count plateau, suggesting persistent immune dysfunction and highlighting the potential benefit of early treatment initiation that could limit immunological damage.
Collapse
Affiliation(s)
- Lucía Pastor
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Victor Urrea
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jorge Carrillo
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Erica Parker
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Denise Naniche
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Julià Blanco
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain.,Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
43
|
Lima HR, Gasparoto TH, de Souza Malaspina TS, Marques VR, Vicente MJ, Marcos EC, Souza FC, Nogueira MRS, Barreto JA, Garlet GP, da Silva JS, Brito-de-Souza VN, Campanelli AP. Immune Checkpoints in Leprosy: Immunotherapy As a Feasible Approach to Control Disease Progression. Front Immunol 2017; 8:1724. [PMID: 29312289 PMCID: PMC5732247 DOI: 10.3389/fimmu.2017.01724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Leprosy remains a health problem in several countries. Current management of patients with leprosy is complex and requires multidrug therapy. Nonetheless, antibiotic treatment is insufficient to prevent nerve disabilities and control Mycobacterium leprae. Successful infectious disease treatment demands an understanding of the host immune response against a pathogen. Immune-based therapy is an effective treatment option for malignancies and infectious diseases. A promising therapeutic approach to improve the clinical outcome of malignancies is the blockade of immune checkpoints. Immune checkpoints refer to a wide range of inhibitory or regulatory pathways that are critical for maintaining self-tolerance and modulating the immune response. Programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4, and lymphocyte-activation gene-3 are the most important immune checkpoint molecules. Several pathogens, including M. leprae, are supposed to utilize these mechanisms to evade the host immune response. Regulatory T cells and expression of co-inhibitory molecules on lymphocytes induce specific T-cell anergy/exhaustion, leading to disseminated and progressive disease. From this perspective, we outline how the co-inhibitory molecules PD-1, PD-L1, and Th1/Th17 versus Th2/Treg cells are balanced, how antigen-presenting cell maturation acts at different levels to inhibit T cells and modulate the development of leprosy, and how new interventions interfere with leprosy development.
Collapse
Affiliation(s)
- Hayana Ramos Lima
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thaís Helena Gasparoto
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Vinícius Rizzo Marques
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Marina Jurado Vicente
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | | - João Santana da Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
44
|
Veazey RS, Lackner AA. Nonhuman Primate Models and Understanding the Pathogenesis of HIV Infection and AIDS. ILAR J 2017; 58:160-171. [PMID: 29228218 PMCID: PMC5886333 DOI: 10.1093/ilar/ilx032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022] Open
Abstract
Research using nonhuman primates (NHPs) as models for human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) has resulted in tremendous achievements not only in the prevention and treatment of HIV, but also in biomedical research more broadly. Once considered a death sentence, HIV infection is now fairly well controlled with combination antiretroviral treatments, almost all of which were first tested for efficacy and safety in nonhuman primates or other laboratory animals. Research in NHP has led to "dogma changing" discoveries in immunology, infectious disease, and even our own genetics. We now know that many of our genes are retroviral remnants, or developed in response to archaic HIV-like retroviral infections. Early studies involving blood from HIV patients and in experiments in cultured tissues contributed to confusion regarding the cause of AIDS and impeded progress in the development of effective interventions. Research on the many retroviruses of different NHP species have broadened our understanding of human immunology and perhaps even our origins and evolution as a species. In combination with recent advances in molecular biology and computational analytics, research in NHPs has unique potential for discoveries that will directly lead to new cures for old human and animal diseases, including HIV/AIDS.
Collapse
Affiliation(s)
- Ronald S Veazey
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| | - Andrew A Lackner
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| |
Collapse
|
45
|
Fenoglio D, Dentone C, Signori A, Di Biagio A, Parodi A, Kalli F, Nasi G, Curto M, Cenderello G, De Leo P, Bartolacci V, Orofino G, Nicolini LA, Taramasso L, Fiorillo E, Orrù V, Traverso P, Bruzzone B, Ivaldi F, Mantia E, Guerra M, Negrini S, Giacomini M, Bhagani S, Filaci G. CD8 +CD28 -CD127 loCD39 + regulatory T-cell expansion: A new possible pathogenic mechanism for HIV infection? J Allergy Clin Immunol 2017; 141:2220-2233.e4. [PMID: 29103633 DOI: 10.1016/j.jaci.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/10/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND HIV-associated immunodeficiency is related to loss of CD4+ T cells. This mechanism does not explain certain manifestations of HIV disease, such as immunodeficiency events in patients with greater than 500 CD4+ T cells/μL. CD8+CD28-CD127loCD39+ T cells are regulatory T (Treg) lymphocytes that are highly concentrated within the tumor microenvironment and never analyzed in the circulation of HIV-infected patients. OBJECTIVES We sought to analyze the frequency of CD8+CD28-CD127loCD39+ Treg cells in the circulation of HIV-infected patients. METHODS The frequency of circulating CD8+CD28-CD127loCD39+ Treg cells was analyzed and correlated with viral load and CD4+ T-cell counts/percentages in 93 HIV-1-infected patients subdivided as follows: naive (n = 63), elite controllers (n = 19), long-term nonprogressors (n = 7), and HIV-infected patients affected by tumor (n = 4). The same analyses were performed in HIV-negative patients with cancer (n = 53), hepatitis C virus-infected patients (n = 17), and healthy donors (n = 173). RESULTS HIV-infected patients had increased circulating levels of functional CD8+CD28-CD127loCD39+ Treg cells. These cells showed antigen specificity against HIV proteins. Their frequency after antiretroviral therapy (ART) correlated with HIV viremia, CD4+ T-cell counts, and immune activation markers, suggesting their pathogenic involvement in AIDS- or non-AIDS-related complications. Their increase after initiation of ART heralded a lack of virologic or clinical response, and hence their monitoring is clinically relevant. CONCLUSION HIV infection induces remarkable expansion of CD8+CD28-CD127loCD39+ Treg cells, the frequency of which correlates with both clinical disease and signs of chronic immune cell activation. Monitoring their frequency in the circulation is a new marker of response to ART when effects on viremia and clinical response are not met.
Collapse
Affiliation(s)
- Daniela Fenoglio
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Chiara Dentone
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Infectious Diseases Department, Sanremo Hospital, Imperia, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Disease Unit, IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Francesca Kalli
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Giorgia Nasi
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Monica Curto
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | | | | | | - Giancarlo Orofino
- Infectious Diseases Department, Amedeo di Savoia Hospital, Turin, Italy
| | - Laura Ambra Nicolini
- Department of Health Sciences, University of Genoa, Genoa, Italy; Infectious Disease Unit, IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Lucia Taramasso
- Infectious Disease Unit, IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria IRGB, Lanusei, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria IRGB, Lanusei, Italy
| | - Paolo Traverso
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy; Department of Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Infectious Disease Unit, IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Federico Ivaldi
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Eugenio Mantia
- Infectious Diseases Department, SS Antonio, Biagio, Cesare Arrigo Hospital, Alessandria, Italy
| | - Michele Guerra
- Infectious Diseases Department, Sant'Andrea Hospital, La Spezia, Italy
| | - Simone Negrini
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Mauro Giacomini
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Informatics, Bioengineering, Robotic and System Engineering, University of Genoa, Genoa, Italy
| | - Sanjay Bhagani
- Department of Infectious Diseases/HIV Medicine, Royal Free Hospital, National Health Service, London, United Kingdom
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliero Universitaria San Martino, IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.
| |
Collapse
|
46
|
Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure. AIDS Res Hum Retroviruses 2017; 33:S40-S58. [PMID: 28882067 PMCID: PMC5685216 DOI: 10.1089/aid.2017.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4+ T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4+ T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.
Collapse
Affiliation(s)
- Shahzada Khan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Sushama Telwatte
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Martin Trapecar
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Steven Yukl
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Shomyseh Sanjabi
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
47
|
Borrow P, Moody MA. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies. Immunol Rev 2017; 275:62-78. [PMID: 28133804 PMCID: PMC5299500 DOI: 10.1111/imr.12504] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) capable of inhibiting infection with diverse variants of human immunodeficiency virus type 1 (HIV‐1) is a key, as‐yet‐unachieved goal of prophylactic HIV‐1 vaccine strategies. However, some HIV‐infected individuals develop bnAbs after approximately 2‐4 years of infection, enabling analysis of features of these antibodies and the immunological environment that enables their induction. Distinct subsets of CD4+ T cells play opposing roles in the regulation of humoral responses: T follicular helper (Tfh) cells support germinal center formation and provide help for affinity maturation and the development of memory B cells and plasma cells, while regulatory CD4+ (Treg) cells including T follicular regulatory (Tfr) cells inhibit the germinal center reaction to limit autoantibody production. BnAbs exhibit high somatic mutation frequencies, long third heavy‐chain complementarity determining regions, and/or autoreactivity, suggesting that bnAb generation is likely to be highly dependent on the activity of CD4+ Tfh cells, and may be constrained by host tolerance controls. This review discusses what is known about the immunological environment during HIV‐1 infection, in particular alterations in CD4+ Tfh, Treg, and Tfr populations and autoantibody generation, and how this is related to bnAb development, and considers the implications for HIV‐1 vaccine design.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M Anthony Moody
- Duke University Human Vaccine Institute and Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
48
|
Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol 2017; 8:580. [PMID: 28588579 PMCID: PMC5440548 DOI: 10.3389/fimmu.2017.00580] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022] Open
Abstract
The hall mark of human immunodeficiency virus (HIV) infection is a gradual loss of CD4+ T-cells and imbalance in CD4+ T-cell homeostasis, with progressive impairment of immunity that leads ultimately to death. HIV infection in humans is caused by two related yet distinct viruses: HIV-1 and HIV-2. HIV-2 is typically less virulent than HIV-1 and permits the host to mount a more effective and sustained T-cell immunity. Although both infections manifest the same clinical spectrum, the much lower rate of CD4+ T-cell decline and slower progression of disease in HIV-2 infected individuals have grabbed the attention of several researchers. Here, we review the most recent findings on the differential rate of decline of CD4+ T-cell in HIV-1 and HIV-2 infections and provide plausible reasons for the observed differences between the two groups.
Collapse
Affiliation(s)
- K K Vidya Vijayan
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | | | - Srikanth P Tripathi
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Luke Elizabeth Hanna
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
49
|
Wang Y, Nag M, Tuohy JL, Fogle JE. Micro-RNA 10a Is Increased in Feline T Regulatory Cells and Increases Foxp3 Protein Expression Following In Vitro Transfection. Vet Sci 2017; 4:E12. [PMID: 29056671 PMCID: PMC5606610 DOI: 10.3390/vetsci4010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022] Open
Abstract
CD4⁺CD25⁺Foxp3⁺ T regulatory (Treg) cells are activated during the course of lentiviral infection and exhibit heightened suppressor function when compared to Treg cells from uninfected controls. Foxp3 is essential to Treg cell function and multiple studies have documented that lentivirus-activated Treg cells exhibit heightened Foxp3 expression when compared to Treg cells from uninfected controls. Our hypothesis was that lentivirus-induced micro-RNAs (miRNAs) contribute to heightened Treg cell suppressor function by stabilizing Foxp3 expression. We demonstrated that CD4⁺CD25⁺ T cells from both feline immunodeficiency virus infected (FIV⁺) cats and uninfected control cats exhibit increased miRNA 10a and 21 levels compared to autologous CD4⁺CD25- T cells but there was no difference in the levels of these miRNAs when Treg cells from FIV⁺ cats were compared to Treg cells from uninfected controls. Further, there was no increase in Foxp3 mRNA following transfection of miRNA 10a or 21 into a feline cell line. However, transfection with miRNA 10a resulted in increased Foxp3 protein expression.
Collapse
Affiliation(s)
- Yan Wang
- North Carolina State University College of Veterinary Medicine, Department of Population Health and Pathobiology and Comparative Biomedical Sciences Graduate Program (Immunology), 1060 William Moore Drive, Raleigh, NC 27607, USA.
- Current address: University of North Carolina at Chapel Hill, School of Medicine, Department of Microbiology and Immunology, Lineberger Cancer Center, Chapel Hill, NC 27599, USA.
| | - Mukta Nag
- North Carolina State University College of Veterinary Medicine, Department of Population Health and Pathobiology and Comparative Biomedical Sciences Graduate Program (Immunology), 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Joanne L Tuohy
- North Carolina State University College of Veterinary Medicine, Department of Population Health and Pathobiology and Comparative Biomedical Sciences Graduate Program (Immunology), 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jonathan E Fogle
- North Carolina State University College of Veterinary Medicine, Department of Population Health and Pathobiology and Comparative Biomedical Sciences Graduate Program (Immunology), 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
50
|
DePaula-Silva AB, Hanak TJ, Libbey JE, Fujinami RS. Theiler's murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: Models for multiple sclerosis and epilepsy. J Neuroimmunol 2017; 308:30-42. [PMID: 28237622 DOI: 10.1016/j.jneuroim.2017.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
Mouse models are great tools to study the mechanisms of disease development. Theiler's murine encephalomyelitis virus is used in two distinct viral infection mouse models to study the human diseases multiple sclerosis (MS) and epilepsy. Intracerebral (i.c.) infection of the SJL/J mouse strain results in persistent viral infection of the central nervous system and a MS-like disease, while i.c. infection of the C57BL/6J mouse strain results in acute seizures and epilepsy. Our understanding of how the immune system contributes to the development of two disparate diseases caused by the same virus is presented.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|