1
|
Gorbacheva V, Fan R, Gaudette B, Baldwin WM, Fairchild RL, Valujskikh A. Marginal zone B cells are required for optimal humoral responses to allograft. Am J Transplant 2025; 25:48-59. [PMID: 39278625 PMCID: PMC11734443 DOI: 10.1016/j.ajt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Antibody-mediated rejection (AMR) is among the leading causes of graft failure in solid organ transplantation. However, AMR treatment options are limited by an incomplete understanding of the mechanisms underlying de novo donor-specific antibody (DSA) generation. The development of pathogenic isotype-switched DSA in response to transplanted allografts is typically attributed to follicular B cells undergoing germinal center reaction whereas the contribution of other B cell subsets has not been previously addressed. The current study investigated the role of recipient marginal zone B cells (MZ B cells) in DSA responses using mouse models of heart and renal allotransplantation. MZ B cells rapidly differentiate into antibody-secreting cells in response to allotransplantation. Despite the selective depletion of follicular B cells in heart allograft recipients, MZ B cells are sufficient for T-dependent IgM and early IgG DSA production. Furthermore, the presence of intact MZ B cell subset is required to support the generation of pathogenic isotype-switched DSA in renal allograft recipients containing donor-reactive memory helper T cells. These findings are the first demonstration of the role of MZ B cells in humoral alloimmune responses following solid organ transplantation and identify MZ B cells as a potential therapeutic target for minimizing de novo DSA production and AMR in transplant recipients.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Shao W, Wang Y, Fang Q, Shi W, Qi H. Epigenetic recording of stimulation history reveals BLIMP1-BACH2 balance in determining memory B cell fate upon recall challenge. Nat Immunol 2024; 25:1432-1444. [PMID: 38969872 DOI: 10.1038/s41590-024-01900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
Memory B cells (MBCs) differentiate into plasma cells (PCs) or germinal centers (GCs) upon antigen recall. How this decision is programmed is not understood. We found that the relative strength between two antagonistic transcription factors, B lymphocyte-induced maturation protein 1 (BLIMP1) and BTB domain and CNC homolog 2 (BACH2), progressively increases in favor of BLIMP1 in antigen-responding B cells through the course of primary responses. MBC subsets that preferentially produce secondary GCs expressed comparatively higher BACH2 but lower BLIMP1 than those predisposed for PC development. Skewing the BLIMP1-BACH2 balance in otherwise fate-predisposed MBC subsets could switch their fate preferences. Underlying the changing BLIMP1-over-BACH2 balance, we observed progressively increased accessibilities at chromatin loci that are specifically opened in PCs, particularly those that contain interferon-sensitive response elements (ISREs) and are controlled by interferon regulatory factor 4 (IRF4). IRF4 is upregulated by B cell receptor, CD40 or innate receptor signaling and it induces graded levels of PC-specifying epigenetic imprints according to the strength of stimulation. By analyzing history-stamped GC B cells, we found progressively increased chromatin accessibilities at PC-specific, IRF4-controlled gene loci over time. Therefore, the cumulative stimulation history of B cells is epigenetically recorded in an IRF4-dependent manner, determines the relative strength between BLIMP1 and BACH2 in individual MBCs and dictates their probabilities to develop into GCs or PCs upon restimulation.
Collapse
Affiliation(s)
- Wen Shao
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Beijing, China
- New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yifeng Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Beijing, China
- Changping Laboratory, Beijing, China
| | - Qian Fang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Beijing, China
| | - Wenjuan Shi
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Beijing, China.
- New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing, China.
- Changping Laboratory, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Elsner RA, Smita S, Shlomchik MJ. IL-12 induces a B cell-intrinsic IL-12/IFNγ feed-forward loop promoting extrafollicular B cell responses. Nat Immunol 2024; 25:1283-1295. [PMID: 38862796 DOI: 10.1038/s41590-024-01858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/26/2024] [Indexed: 06/13/2024]
Abstract
While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Jenberie S, van der Wal YA, Jensen I, Jørgensen JB. There and back again? A B cell's tale on responses and spatial distribution in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109479. [PMID: 38467322 DOI: 10.1016/j.fsi.2024.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Teleost B cells are of special interest due to their evolutionary position and involvement in vaccine-induced adaptive immune responses. While recent progress has revealed uneven distribution of B cell subsets across the various immune sites and that B cells are one of the early responders to infection, substantial knowledge gaps persist regarding their immunophenotypic profile, functional mechanisms, and what factors lead them to occupy different immune niches. This review aims to assess the current understanding of B cell diversity, their spatial distribution in various systemic and peripheral immune sites, how B cell responses initiate, the sites where these responses develop, their trafficking, and the locations where long-term B cell responses take place.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway.
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Li S, Hu X, Wang M, Yu L, Zhang Q, Xiao J, Hong Z, Zhou D, Li J. Single-cell RNA sequencing reveals diverse B cell phenotypes in patients with anti-NMDAR encephalitis. Psychiatry Clin Neurosci 2024; 78:197-208. [PMID: 38063052 DOI: 10.1111/pcn.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUNDS Anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune disorder characterized by prominent psychiatric symptoms. Although the role of NMDAR antibodies in the disease has been extensively studied, the phenotype of B cell subsets is still not fully understood. METHODS We utilized single-cell RNA sequencing, single-cell B cell receptor sequencing (scBCR-seq), bulk BCR sequencing, flow cytometry, and enzyme-linked immunosorbent assay to analyze samples from both NMDAR-E patients and control individuals. RESULTS The cerebrospinal fluid (CSF) of NMDAR-E patients showed significantly increased B cell counts, predominantly memory B (Bm) cells. CSF Bm cells in NMDAR-E patients exhibited upregulated expression of differential expression genes (DEGs) associated with immune regulatory function (TNFRSF13B and ITGB1), whereas peripheral B cells upregulated DEGs related to antigen presentation. Additionally, NMDAR-E patients displayed higher levels of IgD- CD27- double negative (DN) cells and DN3 cells in peripheral blood (PB). In vitro, DN1 cell subsets from NMDAR-E patients differentiated into DN2 and DN3 cells, while CD27+ and/or IgD+ B cells (non-DN) differentiated into antibody-secreting cells (ASCs) and DN cells. NR1-IgG antibodies were found in B cell culture supernatants from patients. Differential expression of B cell IGHV genes in CSF and PB of NMDAR-E patients suggests potential antigen class switching. CONCLUSION B cell subpopulations in the CSF and PB of NMDAR-E patients exhibit distinct compositions and transcriptomic features. In vitro, non-DN cells from NMDAR-E can differentiate into DN cells and ASCs, potentially producing NR1-IgG antibodies. Further research is necessary to investigate the potential contribution of DN cell subpopulations to NR1-IgG antibody production.
Collapse
Affiliation(s)
- Sisi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiang Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Sakai Y, Mura S, Kuwabara Y, Kagimoto S, Sakurai M, Morimoto M, Park ES, Shimojima M, Nagata N, Ami Y, Yoshikawa T, Iwata-Yoshikawa N, Fukushi S, Watanabe S, Kurosu T, Okutani A, Kimura M, Imaoka K, Saijo M, Morikawa S, Suzuki T, Maeda K. Lethal severe fever with thrombocytopenia syndrome virus infection causes systemic germinal centre failure and massive T cell apoptosis in cats. Front Microbiol 2024; 14:1333946. [PMID: 38249467 PMCID: PMC10796997 DOI: 10.3389/fmicb.2023.1333946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) is a fatal viral disease characterized by high fever, thrombocytopenia, leukopenia, and multi-organ haemorrhage. Disruption of the humoral immune response and decreased lymphocyte numbers are thought to contribute to the disease severity. These findings have been obtained through the analysis of peripheral blood leukocytes in human patients, whereas analysis of lymph nodes has been limited. Thus, in this study, we characterized the germinal centre response and apoptosis in the lymph nodes of cats with fatal SFTS, because SFTS in cats well mimics the pathology of human SFTS. Methods Lymph node tissue sections collected during necropsy from seven fatal SFTS patients and five non-SFTS cases were used for histopathological analysis. Additionally, lymph node tissue sections collected from cats with experimental infection of SFTS virus (SFTSV) were also analysed. Results In the lymphoid follicles of cats with SFTS, a drastic decrease in Bcl6- and Ki67-positive germinal centre B cells was observed. Together, the number of T cells in the follicles was also decreased in SFTS cases. In the paracortex, a marked increase in cleaved-caspase3 positivity was observed in T cells. These changes were independent of the number of local SFTS virus-positive cell. Furthermore, the analysis of cats with experimental SFTSV infection revealed that the intrafollicular Bcl6- and CD3-positive cell numbers in cats with low anti-SFTSV antibody production were significantly lower than those in cats with high anti-SFTSV antibody production. Discussion These results suggest that dysfunction of the humoral response in severe SFTS was caused by the loss of germinal centre formation and massive apoptosis of T cells in the lymph nodes due to systemically circulating viruses.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Serina Mura
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuko Kuwabara
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Saya Kagimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahiro Morimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Eun-sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shumpei Watanabe
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masanobu Kimura
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Dolbec D, Lehoux M, de Beauville AA, Zahn A, Di Noia JM, Segura M. Unmutated but T cell dependent IgM antibodies targeting Streptococcus suis play an essential role in bacterial clearance. PLoS Pathog 2024; 20:e1011957. [PMID: 38241393 PMCID: PMC10829992 DOI: 10.1371/journal.ppat.1011957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.
Collapse
Affiliation(s)
- Dominic Dolbec
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Alexis Asselin de Beauville
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
| | - Javier Marcelo Di Noia
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
- Department of Medicine, Faculty of Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
8
|
Hajra D, Nair AV, Chakravortty D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res 2023; 277:127488. [PMID: 37716125 DOI: 10.1016/j.micres.2023.127488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Invasive-Non-Typhoidal Salmonella (iNTS) are the major cause of health concern in the low-income, under-developed nations in Africa and Asia that lack proper sanitation facilities. Around 5% of the NTS cases give rise to invasive, extraintestinal diseases leading to focal infections like osteomyelitis, meningitis, osteoarthritis, endocarditis and neonatal sepsis. iNTS serovars like S. Typhimurium, S. Enteritidis, S. Dublin, S. Choleraesuis show a greater propensity to become invasive than others which hints at the genetic basis of their emergence. The major risk factors attributing to the invasive diseases include immune-compromised individuals having co-infection with malaria or HIV, or suffering from malnutrition. The rampant use of antibiotics leading to the emergence of multi-drug resistant strains poses a great challenge in disease management. An extensive understanding of the iNTS pathogenesis and its epidemiology will open up avenues for the development of new vaccination and therapeutic strategies to restrict the spread of this neglected disease.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
9
|
Boerth EM, Gong J, Roffler B, Thompson CM, Song B, Malley SF, Hirsch A, MacLennan CA, Zhang F, Malley R, Lu YJ. Induction of Broad Immunity against Invasive Salmonella Disease by a Quadrivalent Combination Salmonella MAPS Vaccine Targeting Salmonella Enterica Serovars Typhimurium, Enteritidis, Typhi, and Paratyphi A. Vaccines (Basel) 2023; 11:1671. [PMID: 38006003 PMCID: PMC10675568 DOI: 10.3390/vaccines11111671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Bloodstream infections in low- and middle-income countries (LMICs) are most frequently attributed to invasive Salmonella disease caused by four primary serovars of Salmonella enterica: Typhi, Paratyphi A, Typhimurium, and Enteritidis. We showed previously that a bivalent vaccine targeting S. Typhi and S. Paratyphi A using a Multiple Antigen-Presenting System (MAPS) induced functional antibodies against S. Typhi and S. Paratyphi. In the current study, we describe the preclinical development of a first candidate quadrivalent combination Salmonella vaccine with the potential to cover all four leading invasive Salmonella serotypes. We showed that the quadrivalent Salmonella MAPS vaccine, containing Vi from S. Typhi, O-specific Polysaccharide (OSP) from S. Paratyphi A, S. Enteritidis and S. Typhimurium, combined with the Salmonella-specific protein SseB, elicits robust and functional antibody responses to each of the components of the vaccine. Our data indicates that the application of MAPS technology to the development of vaccines targeting invasive forms of Salmonella is practical and merits additional consideration.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Claudette M. Thompson
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angelika Hirsch
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan X, Kam N, Dai W. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol Med 2023; 15:e17341. [PMID: 37272217 PMCID: PMC10493577 DOI: 10.15252/emmm.202217341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/06/2023] Open
Abstract
Most mature B cells can be divided into four subtypes based on the expression of the surface markers IgD and CD27: IgD+ CD27- naïve B cells, IgD+ CD27+ unswitched memory B cells, IgD- CD27+ switched memory B cells, and IgD- CD27- double-negative (DN) B cells. Despite their small population size in normal peripheral blood, DN B cells play integral roles in various diseases. For example, they generate autoimmunity in autoimmune conditions, while these cells may generate both autoimmune and antipathogenic responses in COVID-19, or act in a purely antipathogenic capacity in malaria. Recently, DN B cells have been identified in nasopharyngeal carcinoma and non-small-cell lung cancers, where they may play an immunosuppressive role. The distinct functions that DN B cells play in different diseases suggest that they are a heterogeneous B-cell population. Therefore, further study of the mechanisms underlying the involvement of DN B cells in these diseases is essential for understanding their pathogenesis and the development of therapeutic strategies. Further research is thus warranted to characterize the DN B-cell population in detail.
Collapse
Affiliation(s)
- Michael King Yung Chung
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Dora Lai‐Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Victor Ho‐Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ann Wing‐Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Xin‐Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ngar‐Woon Kam
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Laboratory for Synthetic Chemistry and Chemical BiologyHong Kong (SAR)China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
11
|
Wang N, Scott TA, Kupz A, Shreenivas MM, Peres NG, Hocking DM, Yang C, Jebeli L, Beattie L, Groom JR, Pierce TP, Wakim LM, Bedoui S, Strugnell RA. Vaccine-induced inflammation and inflammatory monocytes promote CD4+ T cell-dependent immunity against murine salmonellosis. PLoS Pathog 2023; 19:e1011666. [PMID: 37733817 PMCID: PMC10547166 DOI: 10.1371/journal.ppat.1011666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.
Collapse
Affiliation(s)
- Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy A. Scott
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andreas Kupz
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Newton G. Peres
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chenying Yang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P. Pierce
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Marcial-Juárez E, Pérez-Toledo M, Nayar S, Pipi E, Alshayea A, Persaud R, Jossi SE, Lamerton R, Barone F, Henderson IR, Cunningham AF. Salmonella infection induces the reorganization of follicular dendritic cell networks concomitant with the failure to generate germinal centers. iScience 2023; 26:106310. [PMID: 36950118 PMCID: PMC10025972 DOI: 10.1016/j.isci.2023.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Germinal centers (GCs) are sites where plasma and memory B cells form to generate high-affinity, Ig class-switched antibodies. Specialized stromal cells called follicular dendritic cells (FDCs) are essential for GC formation. During systemic Salmonella Typhimurium (STm) infection GCs are absent, whereas extensive extrafollicular and switched antibody responses are maintained. The mechanisms that underpin the absence of GC formation are incompletely understood. Here, we demonstrate that STm induces a reversible disruption of niches within the splenic microenvironment, including the T and B cell compartments and the marginal zone. Alongside these effects after infection, mature FDC networks are strikingly absent, whereas immature FDC precursors, including marginal sinus pre-FDCs (MadCAM-1+) and perivascular pre-FDCs (PDGFRβ+) are enriched. As normal FDC networks re-establish, extensive GCs become detectable throughout the spleen. Therefore, the reorganization of FDC networks and the loss of GC responses are key, parallel features of systemic STm infections.
Collapse
Affiliation(s)
- Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Marisol Pérez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Areej Alshayea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Ruby Persaud
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Sian E. Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Rachel Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, UK and Sandwell and West Birmingham Trust, Birmingham, West Midlands, B15 2TH, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
13
|
Beckers L, Somers V, Fraussen J. IgD -CD27 - double negative (DN) B cells: Origins and functions in health and disease. Immunol Lett 2023; 255:67-76. [PMID: 36906182 DOI: 10.1016/j.imlet.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Human B cells can be divided into four main subsets based on differential expression of immunoglobulin (Ig)D and CD27. IgD-CD27- double negative (DN) B cells make up a heterogeneous group of B cells that have first been described in relation to aging and systemic lupus erythematosus but have been mostly disregarded in B cell research. Over the last few years, DN B cells have gained a lot of interest because of their involvement in autoimmune and infectious diseases. DN B cells can be divided into different subsets that originate via different developmental processes and have different functional properties. Further research into the origin and function of different DN subsets is needed to better understand the role of these B cells in normal immune responses and how they could be targeted in specific pathologies. In this review, we give an overview of both phenotypic and functional properties of DN B cells and provide insight into the currently proposed origins of DN B cells. Moreover, their involvement in normal aging and different pathologies is discussed.
Collapse
Affiliation(s)
- Lien Beckers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Veerle Somers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Judith Fraussen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
14
|
Gauthier J, Grégoire M, Reizine F, Lesouhaitier M, Desvois Y, Ghukasyan G, Moreau C, Amé P, Tarte K, Tadié JM, Delaloy C. Citrulline enteral administration markedly reduces immunosuppressive extrafollicular plasma cell differentiation in a preclinical model of sepsis. Eur J Immunol 2023; 53:e2250154. [PMID: 36564641 DOI: 10.1002/eji.202250154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The sustained immunosuppression associated with severe sepsis favors an increased susceptibility to secondary infections and remains incompletely understood. Plasmablast and plasma cell subsets, whose primary function is to secrete antibodies, have emerged as important suppressive populations that expand during sepsis. In particular, sepsis supports CD39hi plasmablast metabolic reprogramming associated with adenosine-mediated suppressive activity. Arginine deficiency has been linked to an increased risk of secondary infections in sepsis. Overcoming arginine shortage by citrulline administration efficiently improves sepsis-induced immunosuppression and secondary infections in the cecal ligation and puncture murine model. Here, we aimed to determine the impact of citrulline administration on B cell suppressive responses in sepsis. We demonstrate that restoring arginine bioavailability through citrulline administration markedly reduces the dominant extrafollicular B cell response, decreasing the immunosuppressive LAG3+ and CD39+ plasma cell populations, and restoring splenic follicles. At the molecular level, the IRF4/MYC-mediated B cell reprogramming required for extrafollicular plasma cell differentiation is shunted in the splenic B cells of mice fed with citrulline. Our study reveals a prominent impact of nutrition on B cell responses and plasma cell differentiation and further supports the development of citrulline-based clinical studies to prevent sepsis-associated immune dysfunction.
Collapse
Affiliation(s)
| | - Murielle Grégoire
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
- CHU Rennes, SITI Laboratory, Pôle Biologie, Rennes, France
| | - Florian Reizine
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
- CHU Rennes, SITI Laboratory, Pôle Biologie, Rennes, France
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Mathieu Lesouhaitier
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
- CHU Rennes, SITI Laboratory, Pôle Biologie, Rennes, France
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Yoni Desvois
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
| | | | - Caroline Moreau
- CHU Rennes, Laboratoire de Biochimie, Pôle Biologie, Rennes, France
- Univ Rennes, INSERM, EHESP, IRSET, UMR S1085, Rennes, France
| | - Patricia Amé
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
- CHU Rennes, SITI Laboratory, Pôle Biologie, Rennes, France
| | - Karin Tarte
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
- CHU Rennes, SITI Laboratory, Pôle Biologie, Rennes, France
| | - Jean-Marc Tadié
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
- CHU Rennes, SITI Laboratory, Pôle Biologie, Rennes, France
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Céline Delaloy
- UMR INSERM S1236, LabEx IGO, Univ Rennes, EFS, Rennes, France
| |
Collapse
|
15
|
Sollid LM, Iversen R. Tango of B cells with T cells in the making of secretory antibodies to gut bacteria. Nat Rev Gastroenterol Hepatol 2023; 20:120-128. [PMID: 36056203 DOI: 10.1038/s41575-022-00674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 02/03/2023]
Abstract
Polymeric IgA and IgM are transported across the epithelial barrier from plasma cells in the lamina propria to exert a function in the gut lumen as secretory antibodies. Many secretory antibodies are reactive with the gut bacteria, and mounting evidence suggests that these antibodies are important for the host to control gut bacterial communities. However, we have incomplete knowledge of how bacteria-reactive secretory antibodies are formed. Antibodies from gut plasma cells often show bacterial cross-species reactivity, putting the degree of specificity behind anti-bacterial antibody responses into question. Such cross-species reactive antibodies frequently recognize non-genome-encoded membrane glycan structures. On the other hand, the T cell epitopes are peptides encoded in the bacterial genomes, thereby allowing a higher degree of predictable specificity on the T cell side of anti-bacterial immune responses. In this Perspective, we argue that the production of bacteria-reactive secretory antibodies is mainly controlled by the antigen specificity of T cells, which provide help to B cells. To be able to harness this system (for instance, for manipulation with vaccines), we need to obtain insight into the bacterial epitopes recognized by T cells in addition to characterizing the reactivity of the antibodies.
Collapse
Affiliation(s)
- Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | - Rasmus Iversen
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
16
|
Asashima H, Mohanty S, Comi M, Ruff WE, Hoehn KB, Wong P, Klein J, Lucas C, Cohen I, Coffey S, Lele N, Greta L, Raddassi K, Chaudhary O, Unterman A, Emu B, Kleinstein SH, Montgomery RR, Iwasaki A, Dela Cruz CS, Kaminski N, Shaw AC, Hafler DA, Sumida TS. PD-1 highCXCR5 -CD4 + peripheral helper T cells promote CXCR3 + plasmablasts in human acute viral infection. Cell Rep 2023; 42:111895. [PMID: 36596303 PMCID: PMC9806868 DOI: 10.1016/j.celrep.2022.111895] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/15/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023] Open
Abstract
T cell-B cell interaction is the key immune response to protect the host from severe viral infection. However, how T cells support B cells to exert protective humoral immunity in humans is not well understood. Here, we use COVID-19 as a model of acute viral infections and analyze CD4+ T cell subsets associated with plasmablast expansion and clinical outcome. Peripheral helper T cells (Tph cells; denoted as PD-1highCXCR5-CD4+ T cells) are significantly increased, as are plasmablasts. Tph cells exhibit "B cell help" signatures and induce plasmablast differentiation in vitro. Interestingly, expanded plasmablasts show increased CXCR3 expression, which is positively correlated with higher frequency of activated Tph cells and better clinical outcome. Mechanistically, Tph cells help B cell differentiation and produce more interferon γ (IFNγ), which induces CXCR3 expression on plasmablasts. These results elucidate a role for Tph cells in regulating protective B cell response during acute viral infection.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michela Comi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - William E Ruff
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Inessa Cohen
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Coffey
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Nikhil Lele
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Leissa Greta
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Omkar Chaudhary
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Brinda Emu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Koers J, Marsman C, Steuten J, Tol S, Derksen NIL, ten Brinke A, van Ham SM, Rispens T. Oxygen level is a critical regulator of human B cell differentiation and IgG class switch recombination. Front Immunol 2022; 13:1082154. [PMID: 36591315 PMCID: PMC9795029 DOI: 10.3389/fimmu.2022.1082154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The generation of high-affinity antibodies requires an efficient germinal center (GC) response. As differentiating B cells cycle between GC dark and light zones they encounter different oxygen pressures (pO2). However, it is essentially unknown if and how variations in pO2 affect B cell differentiation, in particular for humans. Using optimized in vitro cultures together with in-depth assessment of B cell phenotype and signaling pathways, we show that oxygen is a critical regulator of human naive B cell differentiation and class switch recombination. Normoxia promotes differentiation into functional antibody secreting cells, while a population of CD27++ B cells was uniquely generated under hypoxia. Moreover, time-dependent transitions between hypoxic and normoxic pO2 during culture - reminiscent of in vivo GC cyclic re-entry - steer different human B cell differentiation trajectories and IgG class switch recombination. Taken together, we identified multiple mechanisms trough which oxygen pressure governs human B cell differentiation.
Collapse
Affiliation(s)
- Jana Koers
- Department of Immunopathology, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Casper Marsman
- Department of Immunopathology, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Juulke Steuten
- Department of Immunopathology, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Simon Tol
- Department of Research Facilities, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ninotska I. L. Derksen
- Department of Immunopathology, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Department of Immunopathology, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, and Landsteiner Laboratory, Sanquin Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
19
|
Wang X, Li P, Singh AK, Zhang X, Guan Z, Curtiss R, Sun W. Remodeling Yersinia pseudotuberculosis to generate a highly immunogenic outer membrane vesicle vaccine against pneumonic plague. Proc Natl Acad Sci U S A 2022; 119:e2109667119. [PMID: 35275791 PMCID: PMC8931243 DOI: 10.1073/pnas.2109667119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
SignificanceYersinia pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. This plague bacillus has been used as a biological weapon during human history and is currently one of the deadliest biological threats. Currently, no licensed plague vaccines are available in the Western world. Since an array of immunogens are enclosed in outer membrane vesicles (OMVs), immune responses elicited by OMVs against a diverse range of antigens may reduce the likelihood of antigen circumvention. Therefore, self-adjuvanting OMVs from a remodeled Yersinia pseudotuberculosis strain as a type of plague vaccine could diversify prophylactic choices and solve current vaccine limitations.
Collapse
Affiliation(s)
- Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Amit K. Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI 48201
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| |
Collapse
|
20
|
Aryl Hydrocarbon Receptor Activation by Benzo[ a]pyrene Prevents Development of Septic Shock and Fatal Outcome in a Mouse Model of Systemic Salmonella enterica Infection. Cells 2022; 11:cells11040737. [PMID: 35203386 PMCID: PMC8870598 DOI: 10.3390/cells11040737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
This study focused on immunomodulatory effects of aryl hydrocarbon receptor (AhR) activation through benzo[a]pyrene (BaP) during systemic bacterial infection. Using a well-established mouse model of systemic Salmonella enterica (S.E.) infection, we studied the influence of BaP on the cellular and humoral immune response and the outcome of disease. BaP exposure significantly reduced mortality, which is mainly caused by septic shock. Surprisingly, the bacterial burden in BaP-exposed surviving mice was significantly higher compared to non-exposed mice. During the early phase of infection (days 1-3 post-infection (p.i.)), the transcription of proinflammatory factors (i.e., IL-12, IFN-γ, TNF-α, IL-1β, IL-6, IL-18) was induced faster under BaP exposure. Moreover, BaP supported the activity of antigen-presenting cells (i.e., CD64 (FcγRI), MHC II, NO radicals, phagocytosis) at the site of infection. However, early in infection, the anti-inflammatory cytokines IL-10 and IL-22 were also locally and systemically upregulated in BaP-exposed S.E.-infected mice. BaP-exposure resulted in long-term persistence of salmonellae up to day 90 p.i., which was accompanied by significantly elevated S.E.-specific antibody responses (i.e., IgG1, IgG2c). In summary, these data suggest that BaP-induced AhR activation is capable of preventing a fatal outcome of systemic S.E. infection, but may result in long-term bacterial persistence, which, in turn, may support the development of chronic inflammation.
Collapse
|
21
|
Biram A, Liu J, Hezroni H, Davidzohn N, Schmiedel D, Khatib-Massalha E, Haddad M, Grenov A, Lebon S, Salame TM, Dezorella N, Hoffman D, Abou Karam P, Biton M, Lapidot T, Bemark M, Avraham R, Jung S, Shulman Z. Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity 2022; 55:442-458.e8. [PMID: 35182483 DOI: 10.1016/j.immuni.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jingjing Liu
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadas Hezroni
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Natalia Davidzohn
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dominik Schmiedel
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eman Khatib-Massalha
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Montaser Haddad
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amalie Grenov
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sacha Lebon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tomer Meir Salame
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dotan Hoffman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Paula Abou Karam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moshe Biton
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
22
|
Sachinidis A, Garyfallos A. Double Negative (DN) B cells: A connecting bridge between rheumatic diseases and COVID-19? Mediterr J Rheumatol 2021; 32:192-199. [PMID: 34964023 PMCID: PMC8693305 DOI: 10.31138/mjr.32.3.192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Double Negative (DN) B cells constitute a B cell population that lacks expression of immunoglobulin D and CD27 memory marker. These cells expand in elderly healthy individuals, but also accumulate prematurely in autoimmune and infectious diseases. COVID-19 is a pandemic infectious disease caused by SARS-CoV-2, a coronavirus that was first observed in Wuhan, China in December 2019. In its more severe cases, COVID-19 causes severe pneumonia and acute respiratory syndrome with high morbidity and mortality. Recent studies have revealed that the extrafollicular DN2 B cell subset, previously described in lupus patients, does also expand in severe and/or critical groups of COVID-19 patients. These DN2 cells correlate with disease severity and laboratory parameters of inflammation. However, their exact role and function in COVID-19 require to be further investigated. In this review, we highlight the DN immune responses in both rheumatic diseases and COVID-19, and we point out the importance of clarifying DN’s role in the immunopathology of the aforementioned infection, as it could probably enable better management of rheumatic diseases during the pandemic. Of note, the symptomatology of COVID-19, as well as the potential outcome of death, have given rise to a worldwide concern and scare of exposition to SARS-CoV-2, especially among the rheumatological patients who believe to be at higher risk due to their immunological background and the immunosuppressive therapies. Nevertheless, there is no convincing evidence so far that these patients are truly at higher risk than others.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4 Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4 Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
24
|
Anti-LPS IgA and IgG Can Inhibit Serum Killing of Pseudomonas aeruginosa in Patients with Cystic Fibrosis. Infect Immun 2021; 89:e0041221. [PMID: 34460286 DOI: 10.1128/iai.00412-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa is one of the principal pathogens implicated in respiratory infections of patients with cystic fibrosis (CF) and non-CF bronchiectasis. Previously, we demonstrated that impaired serum-mediated killing of P. aeruginosa was associated with increased severity of respiratory infections in patients with non-CF bronchiectasis. This inhibition was mediated by high titers of O-antigen-specific IgG2 antibodies that cloak the surface of the bacteria, blocking access to the membrane. Infection-related symptomatology was ameliorated in patients by using plasmapheresis to remove the offending antibodies. To determine if these inhibitory "cloaking antibodies" were prevalent in patients with CF, we investigated 70 serum samples from patients with P. aeruginosa infection and 5 from those without P. aeruginosa infection. Of these patients, 32% had serum that inhibited the ability of healthy control serum to kill P. aeruginosa. Here, we demonstrate that this inhibition of killing requires O-antigen expression. Furthermore, we reveal that while IgG alone can inhibit the activity of healthy control serum, O-antigen-specific IgA in patient sera can also inhibit serum-killing. We found that antibody affinity, not just titer, was also important in the inhibition of serum-mediated killing. These studies provide novel insight into cloaking antibodies in human infection and may provide further options in CF and other diseases for treatment of recalcitrant P. aeruginosa infections.
Collapse
|
25
|
Nguyen HTT, Guevarra RB, Magez S, Radwanska M. Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis. PLoS Pathog 2021; 17:e1010026. [PMID: 34762705 PMCID: PMC8610246 DOI: 10.1371/journal.ppat.1010026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/23/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Salivarian trypanosomes are extracellular protozoan parasites causing infections in a wide range of mammalian hosts, with Trypanosoma evansi having the widest geographic distribution, reaching territories far outside Africa and occasionally even Europe. Besides causing the animal diseases, T. evansi can cause atypical Human Trypanosomosis. The success of this parasite is attributed to its capacity to evade and disable the mammalian defense response. To unravel the latter, we applied here for the first time a scRNA-seq analysis on splenocytes from trypanosome infected mice, at two time points during infection, i.e. just after control of the first parasitemia peak (day 14) and a late chronic time point during infection (day 42). This analysis was combined with flow cytometry and ELISA, revealing that T. evansi induces prompt activation of splenic IgM+CD1d+ Marginal Zone and IgMIntIgD+ Follicular B cells, coinciding with an increase in plasma IgG2c Ab levels. Despite the absence of follicles, a rapid accumulation of Aicda+ GC-like B cells followed first parasitemia peak clearance, accompanied by the occurrence of Xbp1+ expressing CD138+ plasma B cells and Tbx21+ atypical CD11c+ memory B cells. Ablation of immature CD93+ bone marrow and Vpreb3+Ly6d+Ighm+ expressing transitional spleen B cells prevented mature peripheral B cell replenishment. Interestingly, AID-/- mice that lack the capacity to mount anti-parasite IgG responses, exhibited a superior defense level against T. evansi infections. Here, elevated natural IgMs were able to exert in vivo and in vitro trypanocidal activity. Hence, we conclude that in immune competent mice, trypanosomosis associated B cell activation and switched IgG production is rapidly induced by T. evansi, facilitating an escape from the detrimental natural IgM killing activity, and resulting in increased host susceptibility. This unique role of IgM and its anti-trypanosome activity are discussed in the context of the dilemma this causes for the future development of anti-trypanosome vaccines.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin B. Guevarra
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Kuley R, Draves KE, Fuller DH, Giltiay NV, Clark EA, Giordano D. B cell activating factor (BAFF) from neutrophils and dendritic cells is required for protective B cell responses against Salmonella typhimurium infection. PLoS One 2021; 16:e0259158. [PMID: 34705890 PMCID: PMC8550399 DOI: 10.1371/journal.pone.0259158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Mice lacking B cells are more susceptible to S. typhimurium infection. How B cells contribute to protective immunity against Salmonella and what signals drive their activation are still unclear. Neutrophils (Nphs), monocytes (MOs), and dendritic cells (DCs) are involved in early immune responses to control the initial replication of S. typhimurium. These cells can produce B cell activating factor (BAFF) required for mature B cell survival and may help regulate B cell responses during Salmonella infection. Using BAFF reporter mice (BAFF-RFP+/-), we discovered that an i.p. infection with a virulent strain of S. typhimurium increased BAFF expression in splenic conventional DCs (cDC) and inflammatory Ly6Chi MOs/DCs four days post-infection. S. typhimurium infection induced the release of BAFF from Nphs, a decrease of BAFF-RFP expression and expansion of BAFF-RFP+ Nphs in the spleen and peritoneal cavity. After S. typhimurium infection, serum BAFF levels and immature and mature B cell subsets and plasma cells increased substantially. Conditional knockout (cKO) mice lacking BAFF in either Nphs or cDCs compared to control Bafffl/fl mice had reduced up-regulation of systemic BAFF levels and reduced expansion of mature and germinal center B cell subsets after infection. Importantly, the cKO mice lacking BAFF from either Nphs or cDCs had impaired induction of Salmonella-specific IgM Abs, and were more susceptible to S. typhimurium infection. Thus, Nphs and cDCs are major cellular sources of BAFF driving B cell responses, required for mounting optimal protective immunity against lethal Salmonella infection.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (RK); (DG)
| | - Kevin E. Draves
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (RK); (DG)
| |
Collapse
|
27
|
Ji HJ, Byun EB, Chen F, Ahn KB, Jung HK, Han SH, Lim JH, Won Y, Moon JY, Hur J, Seo HS. Radiation-Inactivated S. gallinarum Vaccine Provides a High Protective Immune Response by Activating Both Humoral and Cellular Immunity. Front Immunol 2021; 12:717556. [PMID: 34484221 PMCID: PMC8415480 DOI: 10.3389/fimmu.2021.717556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) is a common pathogen in chickens, and causes an acute systemic disease that leads to high mortality. The live attenuated vaccine 9R is able to successfully protect chickens older than six weeks by activating a robust cell-mediated immune response, but its safety and efficacy in young chickens remains controversial. An inactivated SG vaccine is being used as an alternative, but because of its low cellular immune response, it cannot be used as a replacement for live attenuated 9R vaccine. In this study, we employed gamma irradiation instead of formalin as an inactivation method to increase the efficacy of the inactivated SG vaccine. Humoral, cellular, and protective immune responses were compared in both mouse and chicken models. The radiation-inactivated SG vaccine (r-SG) induced production of significantly higher levels of IgG2b and IgG3 antibodies than the formalin-inactivated vaccine (f-SG), and provided a homogeneous functional antibody response against group D, but not group B Salmonella. Moreover, we found that r-SG vaccination could provide a higher protective immune response than f-SG by inducing higher Th17 activation. These results indicate that r-SG can provide a protective immune response similar to the live attenuated 9R vaccine by activating a higher humoral immunity and a lower, but still protective, cellular immune response. Therefore, we expect that the radiation inactivation method might substitute for the 9R vaccine with little or no side effects in chickens younger than six weeks.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea
| | - Yongkwan Won
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ja Young Moon
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
28
|
Nguyen DC, Duan M, Ali M, Ley A, Sanz I, Lee FEH. Plasma cell survival: The intrinsic drivers, migratory signals, and extrinsic regulators. Immunol Rev 2021; 303:138-153. [PMID: 34337772 PMCID: PMC8387437 DOI: 10.1111/imr.13013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Antibody-secreting cells (ASC) are the effectors of protective humoral immunity and the only cell type that produces antibodies or immunoglobulins in mammals. In addition to their formidable capacity to secrete massive quantities of proteins, ASC are terminally differentiated and have unique features to become long-lived plasma cells (LLPC). Upon antigen encounter, B cells are activated through a complex multistep process to undergo fundamental morphological, subcellular, and molecular transformation to become an efficient protein factory with lifelong potential. The ASC survival potential is determined by factors at the time of induction, capacity to migration from induction to survival sites, and ability to mature in the specialized bone marrow microenvironments. In the past decade, considerable progress has been made in identifying factors regulating ASC longevity. Here, we review the intrinsic drivers, trafficking signals, and extrinsic regulators with particular focus on how they impact the survival potential to become a LLPC.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mohammad Ali
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ariel Ley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Corrado A, Ramonell RP, Woodruff MC, Tipton C, Wise S, Levy J, DelGaudio J, Kuruvilla ME, Magliocca KR, Tomar D, Garimalla S, Scharer CD, Boss JM, Wu H, Gumber S, Fucile C, Gibson G, Rosenberg A, Sanz I, Lee FEH. Extrafollicular IgD+ B cells generate IgE antibody secreting cells in the nasal mucosa. Mucosal Immunol 2021; 14:1144-1159. [PMID: 34050324 PMCID: PMC8160425 DOI: 10.1038/s41385-021-00410-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/05/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023]
Abstract
Increased IgE is a typical feature of allergic rhinitis. Local class-switch recombination has been intimated but B cell precursors and mechanisms remain elusive. Here we describe the dynamics underlying the generation of IgE-antibody secreting cells (ASC) in human nasal polyps (NP), mucosal tissues rich in ASC without germinal centers (GC). Using VH next generation sequencing, we identified an extrafollicular (EF) mucosal IgD+ naïve-like intermediate B cell population with high connectivity to the mucosal IgE ASC. Mucosal IgD+ B cells, express germline epsilon transcripts and predominantly co-express IgM. However, a small but significant fraction co-express IgG or IgA instead which also show connectivity to ASC IgE. Phenotypically, NP IgD+ B cells display an activated profile and molecular evidence of BCR engagement. Transcriptionally, mucosal IgD+ B cells reveal an intermediate profile between naïve B cells and ASC. Single cell IgE ASC analysis demonstrates lower mutational frequencies relative to IgG, IgA, and IgD ASC consistent with IgE ASC derivation from mucosal IgD+ B cell with low mutational load. In conclusion, we describe a novel mechanism of GC-independent, extrafollicular IgE ASC formation at the nasal mucosa whereby activated IgD+ naïve B cells locally undergo direct and indirect (through IgG and IgA), IgE class switch.
Collapse
Affiliation(s)
- Alessia Corrado
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Richard P Ramonell
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology Emory University, Atlanta, GA, USA
| | - Christopher Tipton
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology Emory University, Atlanta, GA, USA
| | - Sarah Wise
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - Joshua Levy
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - John DelGaudio
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - Merin E Kuruvilla
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Kelly R Magliocca
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Deepak Tomar
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology Emory University, Atlanta, GA, USA
| | - Swetha Garimalla
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Chris Fucile
- Department of Microbiology and Immunology, Informatics Institute, University of Alabama, Birmingham, AL, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alexander Rosenberg
- Department of Microbiology and Immunology, Informatics Institute, University of Alabama, Birmingham, AL, USA
| | - Iñaki Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.
- Lowance Center for Human Immunology Emory University, Atlanta, GA, USA.
| |
Collapse
|
30
|
Wishnie AJ, Chwat-Edelstein T, Attaway M, Vuong BQ. BCR Affinity Influences T-B Interactions and B Cell Development in Secondary Lymphoid Organs. Front Immunol 2021; 12:703918. [PMID: 34381455 PMCID: PMC8350505 DOI: 10.3389/fimmu.2021.703918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre-Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B cells in the EF and GC response. Overall, these studies demonstrate that B cells expressing high affinity BCRs preferentially differentiate into antibody secreting cells (ASCs) while those expressing low affinity BCRs undergo further affinity maturation or differentiate into memory B cells (MBCs).
Collapse
Affiliation(s)
- Alec J Wishnie
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| | - Tzippora Chwat-Edelstein
- Department of Biology, The City College of New York, New York, NY, United States.,Macaulay Honors College, New York, NY, United States
| | - Mary Attaway
- Department of Biology, The City College of New York, New York, NY, United States
| | - Bao Q Vuong
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| |
Collapse
|
31
|
Nellore A, Killian JT, Porrett PM. Memory B Cells in Pregnancy Sensitization. Front Immunol 2021; 12:688987. [PMID: 34276679 PMCID: PMC8278195 DOI: 10.3389/fimmu.2021.688987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Memory B cells play an important role in immunity to pathogens as these cells are poised to rapidly differentiate into antibody-secreting cells upon antigen re-encounter. Memory B cells also develop over the course of HLA-sensitization during pregnancy and transplantation. In this review, we discuss the potential contribution of memory B cells to pregnancy sensitization as well as the impact of these cells on transplant candidacy and outcomes. We start by summarizing how B cell subsets are altered in pregnancy and discuss what is known about HLA-specific B cell responses given our current understanding of fetal antigen availability in maternal secondary lymphoid tissues. We then review the molecular mechanisms governing the generation and maintenance of memory B cells during infection - including the role of T follicular helper cells - and discuss the experimental evidence for the development of these cells during pregnancy. Finally, we discuss how memory B cells impact access to transplantation and transplant outcomes for a range of transplant recipients.
Collapse
Affiliation(s)
- Anoma Nellore
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - John T. Killian
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Paige M. Porrett
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| |
Collapse
|
32
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
33
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
34
|
Fiorino F, Pettini E, Koeberling O, Ciabattini A, Pozzi G, Martin LB, Medaglini D. Long-Term Anti-Bacterial Immunity against Systemic Infection by Salmonella enterica Serovar Typhimurium Elicited by a GMMA-Based Vaccine. Vaccines (Basel) 2021; 9:495. [PMID: 34065899 PMCID: PMC8150838 DOI: 10.3390/vaccines9050495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella Typhimurium (STm) represents the most prevalent cause of invasive non-typhoidal Salmonella (iNTS) disease, and currently no licensed vaccine is available. In this work we characterized the long-term anti-bacterial immunity elicited by a STm vaccine based on Generalized Modules of Membrane Antigens (GMMA) delivering O:4,5 antigen, using a murine model of systemic infection. Subcutaneous immunization of mice with STmGMMA/Alhydrogel elicited rapid, high, and persistent antigen-specific serum IgG and IgM responses. The serum was bactericidal in vitro. O:4,5-specific IgG were also detected in fecal samples after immunization and positively correlated with IgG observed in intestinal washes. Long-lived plasma cells and O:4,5-specific memory B cells were detected in spleen and bone marrow. After systemic STm challenge, a significant reduction of bacterial load in blood, spleen, and liver, as well as a reduction of circulating neutrophils and G-CSF glycoprotein was observed in STmGMMA/Alhydrogel immunized mice compared to untreated animals. Taken together, these data support the development of a GMMA-based vaccine for prevention of iNTS disease.
Collapse
Affiliation(s)
- Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Oliver Koeberling
- GSK Vaccines Institute for Global Health S.r.l., 53100 Siena, Italy;
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Laura B. Martin
- GSK Vaccines Institute for Global Health S.r.l., 53100 Siena, Italy;
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| |
Collapse
|
35
|
Kennedy DE, Clark MR. Compartments and Connections Within the Germinal Center. Front Immunol 2021; 12:659151. [PMID: 33868306 PMCID: PMC8045557 DOI: 10.3389/fimmu.2021.659151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Protective high affinity antibody responses emerge through an orchestrated developmental process that occurs in germinal centers (GCs). While GCs have been appreciated since 1930, a wealth of recent progress provides new insights into the molecular and cellular dynamics governing humoral immunity. In this review, we highlight advances that demonstrate that fundamental GC B cell function, selection, proliferation and SHM occur within distinct cell states. The resulting new model provides new opportunities to understand the evolution of immunity in infectious, autoimmune and neoplastic diseases.
Collapse
Affiliation(s)
| | - Marcus R. Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Fetal Macrophages Exposed to Salmonella Antigens Elicit Protective Immunity Against Overwhelming Salmonella Challenge in A Murine Model. Biomedicines 2021; 9:biomedicines9030245. [PMID: 33804435 PMCID: PMC8001423 DOI: 10.3390/biomedicines9030245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the evidence for fetal immunization following maternal infection, it remained a mystery how the fetal immune system was primed by vertically-transmitted pathogens or microbial antigens, especially before its full maturation. We previously demonstrated the capacity of fetal macrophages for endocytosing oncoprotein and allergens to bridge towards adaptive immunity in postnatal life. To investigate the immunological consequences of fetal contact with microbial antigens and the role of fetal macrophages in the defense against infection before T-cell development, we exposed gestational day 14 murine fetuses and their macrophages to flagellin and heat-killed Salmonella Typhimurium. Recipients with in utero exposure to Salmonella antigens or adoptive transfer of microbial antigen-loaded fetal macrophages were examined for immune responses to Salmonella antigens and resistance to virulent Salmonella challenge. Fetal exposure to microbial antigens or adoptive transfer of microbial antigen-loaded fetal macrophages could confer antigen-specific adaptive immunity. However, protective immunity against lethal Salmonella challenge was only granted to those receiving heat-killed Salmonella antigens, presenting as heightened recall responses of serum anti-lipopolysaccharide immunoglobulins and interferon-gamma. In immunized recipients surviving Salmonella challenge, their serum transfer to succeeding recipients provided immediate protection from lethal Salmonella challenge in preference to lymphocyte transfer, indicating a more active role of humoral immunity in the prevention of Salmonella invasiveness. Our study sheds insight on the role of fetal macrophages in immunogenicity to transplacental pathogens regardless of fetal lymphocyte maturity, paving the way for fetal macrophage therapies to enhance vaccine responsiveness or increase resistance to pathogenic microorganisms in perinatal life.
Collapse
|
37
|
Elsner RA, Shlomchik MJ. IL-12 Blocks Tfh Cell Differentiation during Salmonella Infection, thereby Contributing to Germinal Center Suppression. Cell Rep 2020; 29:2796-2809.e5. [PMID: 31775046 DOI: 10.1016/j.celrep.2019.10.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Germinal centers (GC) are crucial for the formation of long-lived humoral immunity. Many pathogens suppress GC, including Salmonella enterica serovar Typhimurium (STm), but the mechanisms driving suppression remain unknown. We report that neither plasmablasts nor STm-specific B cells are required for GC suppression in mice. Rather, we identify that interleukin-12 (IL-12), but not interferon-γ (IFN-γ), directly suppresses T follicular helper (Tfh) cell differentiation of T cells intrinsically. Administering recombinant IL-12 during nitrophenyl-Chicken Gamma Globulin (NP-CGG) immunization also suppresses Tfh cell differentiation and GC B cells, indicating that IL-12 is sufficient to suppress Tfh cell differentiation independent of STm infection. Recombinant IL-12 induces high levels of T-bet, and T-bet is necessary for Tfh cell suppression. Therefore, IL-12 induced during STm infection in mice contributes to GC suppression via suppression of Tfh cell differentiation. More broadly, these data suggest that IL-12 can tailor the proportions of humoral (Tfh cell) and cellular (T helper type 1 [Th1] cell) immunity to the infection, with implications for IL-12 targeting therapies in autoimmunity and vaccination.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
38
|
Antibodies and Protection in Systemic Salmonella Infections: Do We Still Have More Questions than Answers? Infect Immun 2020; 88:IAI.00219-20. [PMID: 32601109 DOI: 10.1128/iai.00219-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Salmonella causes grave systemic infections in humans and other animals and provides a paradigm for other diseases in which the bacteria have both intracellular and extracellular lifestyles. New generations of vaccines rely on the essential contribution of the antibody responses for their protection. The quality, antigen specificity, and functions associated with antibody responses to this pathogen have been elusive for a long time. Recent approaches that combine studies in humans and genetically manipulated experimental models and that exploit awareness of the location and within-host life cycle of the pathogen are shedding light on how humoral immunity to Salmonella operates. However, this area of research remains full of controversy and discrepancies. The overall scenario indicates that antibodies are essential for resistance against systemic Salmonella infections and can express the highest protective function when operating in conjunction with cell-mediated immunity. Antigen specificity, isotype profile, Fc-gamma receptor usage, and complement activation are all intertwined factors that still arcanely influence antibody-mediated protection to Salmonella.
Collapse
|
39
|
Short Vi-polysaccharide abrogates T-independent immune response and hyporesponsiveness elicited by long Vi-CRM 197 conjugate vaccine. Proc Natl Acad Sci U S A 2020; 117:24443-24449. [PMID: 32900928 PMCID: PMC7533886 DOI: 10.1073/pnas.2005857117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our results suggest a rational way of designing and developing an improved typhoid conjugate vaccine and, by extension, to conjugate vaccines in general: first, modify a T-independent polysaccharide so that it no longer induces a T-independent response, then conjugate the polysaccharide to a suitable carrier protein restoring immunogenicity, thus creating a pure T-dependent antigen that induces a strongly boostable and long-lived response at an early age. Polysaccharide-protein conjugates have been developed to overcome the T-independent response, hyporesponsiveness to repeated vaccination, and poor immunogenicity in infants of polysaccharides. To address the impact of polysaccharide length, typhoid conjugates made with short- and long-chain fractions of Vi polysaccharide with average sizes of 9.5, 22.8, 42.7, 82.0, and 165 kDa were compared. Long-chain-conjugated Vi (165 kDa) induced a response in both wild-type and T cell-deficient mice, suggesting that it maintains a T-independent response. In marked contrast, short-chain Vi (9.5 to 42.7 kDa) conjugates induced a response in wild-type mice but not in T cell-deficient mice, suggesting that the response is dependent on T cell help. Mechanistically, this was explained in neonatal mice, in which long-chain, but not short-chain, Vi conjugate induced late apoptosis of Vi-specific B cells in spleen and early depletion of Vi-specific B cells in bone marrow, resulting in hyporesponsiveness and lack of long-term persistence of Vi-specific IgG in serum and IgG+ antibody-secreting cells in bone marrow. We conclude that while conjugation of long-chain Vi generates T-dependent antigens, the conjugates also retain T-independent properties, leading to detrimental effects on immune responses. The data reported here may explain some inconsistencies observed in clinical trials and help guide the design of effective conjugate vaccines.
Collapse
|
40
|
Ottens K, Schneider J, Kane LP, Satterthwaite AB. PIK3IP1 Promotes Extrafollicular Class Switching in T-Dependent Immune Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:2100-2108. [PMID: 32887751 DOI: 10.4049/jimmunol.2000584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
PI3K plays multiple roles throughout the life of a B cell. As such, its signaling is tightly regulated. The importance of this is illustrated by the fact that both loss- and gain-of-function mutations in PI3K can cause immunodeficiency in humans. PIK3IP1, also known as TrIP, is a transmembrane protein that has been shown to inhibit PI3K in T cells. Results from the ImmGen Consortium indicate that PIK3IP1 expression fluctuates throughout B cell development in a manner inversely correlated with PI3K activity; however, its role in B cells is poorly understood. In this study, we define the consequences of B cell-specific deletion of PIK3IP1. B cell development, basal Ig levels, and T-independent responses were unaffected by loss of PIK3IP1. However, there was a significant delay in the production of IgG during T-dependent responses, and secondary responses were impaired. This is likely due to a role for PIK3IP1 in the extrafollicular response because germinal center formation and affinity maturation were normal, and PIK3IP1 is not appreciably expressed in germinal center B cells. Consistent with a role early in the response, PIK3IP1 was downregulated at late time points after B cell activation, in a manner dependent on PI3K. Increased activation of the PI3K pathway was observed in PIK3IP1-deficient B cells in response to engagement of both the BCR and CD40 or strong cross-linking of CD40 alone. Taken together, these observations suggest that PIK3IP1 promotes extrafollicular responses by limiting PI3K signaling during initial interactions between B and T cells.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jalyn Schneider
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
41
|
Perez-Toledo M, Beristain-Covarrubias N, Channell WM, Hitchcock JR, Cook CN, Coughlan RE, Bobat S, Jones ND, Nakamura K, Ross EA, Rossiter AE, Rooke J, Garcia-Gimenez A, Jossi S, Persaud RR, Marcial-Juarez E, Flores-Langarica A, Henderson IR, Withers DR, Watson SP, Cunningham AF. Mice Deficient in T-bet Form Inducible NO Synthase-Positive Granulomas That Fail to Constrain Salmonella. THE JOURNAL OF IMMUNOLOGY 2020; 205:708-719. [PMID: 32591391 PMCID: PMC7372318 DOI: 10.4049/jimmunol.2000089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination.
Collapse
Affiliation(s)
- Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Nonantzin Beristain-Covarrubias
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William M Channell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica R Hitchcock
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Charlotte N Cook
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruth E Coughlan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Saeeda Bobat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicholas D Jones
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kyoko Nakamura
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ewan A Ross
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica Rooke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alicia Garcia-Gimenez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sian Jossi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruby R Persaud
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Edith Marcial-Juarez
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Adriana Flores-Langarica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
42
|
Baliban SM, Lu YJ, Malley R. Overview of the Nontyphoidal and Paratyphoidal Salmonella Vaccine Pipeline: Current Status and Future Prospects. Clin Infect Dis 2020; 71:S151-S154. [PMID: 32725233 PMCID: PMC7388718 DOI: 10.1093/cid/ciaa514] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nontyphoidal Salmonella and Salmonella Paratyphi are responsible for significant morbidity and mortality worldwide. To date, no vaccine has been licensed against these organisms. The development of effective vaccines remains an urgent priority. In this review, the rationale for and current status of various vaccine candidates against S. Paratyphi and nontyphoidal Salmonella are presented, with a focus on the research findings from the 2019 International Conference on Typhoid and Other Invasive Salmonelloses. Additionally, other vaccine candidates that are currently undergoing clinical development are highlighted. Future approaches, which may include antigens that are genetically conserved across Salmonella and confer broad, non-serotype-specific protection, are also discussed.
Collapse
Affiliation(s)
- Scott M Baliban
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Soni C, Perez OA, Voss WN, Pucella JN, Serpas L, Mehl J, Ching KL, Goike J, Georgiou G, Ippolito GC, Sisirak V, Reizis B. Plasmacytoid Dendritic Cells and Type I Interferon Promote Extrafollicular B Cell Responses to Extracellular Self-DNA. Immunity 2020; 52:1022-1038.e7. [PMID: 32454024 PMCID: PMC7306002 DOI: 10.1016/j.immuni.2020.04.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Oriana A Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - William N Voss
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Justin Mehl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Krystal L Ching
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jule Goike
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 33076 Bordeaux, France.
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
44
|
Sakakibara S, Yasui T, Jinzai H, O'donnell K, Tsai CY, Minamitani T, Takeda K, Belz GT, Tarlinton DM, Kikutani H. Self-reactive and polyreactive B cells are generated and selected in the germinal center during γ-herpesvirus infection. Int Immunol 2020; 32:27-38. [PMID: 31504561 DOI: 10.1093/intimm/dxz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/26/2019] [Indexed: 11/14/2022] Open
Abstract
Immune responses against certain viruses are accompanied by auto-antibody production although the origin of these infection-associated auto-antibodies is unclear. Here, we report that murine γ-herpesvirus 68 (MHV68)-induced auto-antibodies are derived from polyreactive B cells in the germinal center (GC) through the activity of short-lived plasmablasts. The analysis of recombinant antibodies from MHV68-infected mice revealed that about 40% of IgG+ GC B cells were self-reactive, with about half of them being polyreactive. On the other hand, virion-reactive clones accounted for only a minor proportion of IgG+ GC B cells, half of which also reacted with self-antigens. The self-reactivity of most polyreactive clones was dependent on somatic hypermutation (SHM), but this was dispensable for the reactivity of virus mono-specific clones. Furthermore, both virus-mono-specific and polyreactive clones were selected to differentiate to B220lo CD138+ plasma cells (PCs). However, the representation of GC-derived polyreactive clones was reduced and that of virus-mono-specific clones was markedly increased in terminally differentiated PCs as compared to transient plasmablasts. Collectively, our findings demonstrate that, during acute MHV68 infection, self-reactive B cells are generated through SHM and selected for further differentiation to short-lived plasmablasts but not terminally differentiated PCs.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, Ibaraki, Osaka, Japan.,Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Department of Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan , Suita, Osaka, Japan
| | - Hideyuki Jinzai
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kristy O'donnell
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takeharu Minamitani
- Laboratory of Infectious Diseases and Immunity, Ibaraki, Osaka, Japan.,Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kazuya Takeda
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Giltiay NV, Giordano D, Clark EA. The Plasticity of Newly Formed B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 203:3095-3104. [PMID: 31818922 DOI: 10.4049/jimmunol.1900928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Newly formed B cells (NF-B cells) that emerge from the bone marrow to the periphery have often been referred to as immature or transitional B cells. However, NF-B cells have several striking characteristics, including a distinct BCR repertoire, high expression of AID, high sensitivity to PAMPs, and the ability to produce cytokines. A number of findings do not support their designation as immature because NF-B cells have the potential to become Ab-producing cells and to undergo class-switch recombination. In this review, we provide a fresh perspective on NF-B cell functions and describe some of the signals driving their activation. We summarize growing evidence supporting a role for NF-B cells in protection against infections and as a potential source of autoantibody-producing cells in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109; and
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
46
|
Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nat Immunol 2020; 21:649-659. [PMID: 32424359 PMCID: PMC7610477 DOI: 10.1038/s41590-020-0672-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
Abstract
The efficient generation of germinal center (GC) responses requires the directed movement of B cells between distinct microenvironments underpinned by specialized B cell-interacting reticular cells (BRCs). How BRCs are reprogrammed to cater to the developing GC remains unclear and is largely hindered by the incomplete resolution of the cellular composition of the B cell follicle. Here, we utilized the genetic targeting of Cxcl13-expressing cells to define the molecular identity of the BRC landscape. Single-cell transcriptomic analysis revealed that BRC subset specification was predetermined in the primary B cell follicle. Further topological remodeling of light and dark zone follicular dendritic cells required the CXCL12-dependent cross-talk with B cells, and dictated GC output by retaining B cells in the follicle and steering their interaction with follicular helper T cells. Together, our results reveal that poised BRC-defined microenvironments establish a feed-forward system that determines the efficacy of the GC reaction.
Collapse
|
47
|
Wang X, Singh AK, Zhang X, Sun W. Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis. Infect Immun 2020; 88:e00081-20. [PMID: 32152195 PMCID: PMC7171232 DOI: 10.1128/iai.00081-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 × 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 × 103 CFU (50 LD50) of virulent Y. pestis This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development.
Collapse
Affiliation(s)
- Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
48
|
Domínguez-Medina CC, Pérez-Toledo M, Schager AE, Marshall JL, Cook CN, Bobat S, Hwang H, Chun BJ, Logan E, Bryant JA, Channell WM, Morris FC, Jossi SE, Alshayea A, Rossiter AE, Barrow PA, Horsnell WG, MacLennan CA, Henderson IR, Lakey JH, Gumbart JC, López-Macías C, Bavro VN, Cunningham AF. Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface. Nat Commun 2020; 11:851. [PMID: 32051408 PMCID: PMC7015928 DOI: 10.1038/s41467-020-14655-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/23/2020] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (LPS) O-antigen (O-Ag) is known to limit antibody binding to surface antigens, although the relationship between antibody, O-Ag and other outer-membrane antigens is poorly understood. Here we report, immunization with the trimeric porin OmpD from Salmonella Typhimurium (STmOmpD) protects against infection. Atomistic molecular dynamics simulations indicate this is because OmpD trimers generate footprints within the O-Ag layer sufficiently sized for a single IgG Fab to access. While STmOmpD differs from its orthologue in S. Enteritidis (SEn) by a single amino-acid residue, immunization with STmOmpD confers minimal protection to SEn. This is due to the OmpD-O-Ag interplay restricting IgG binding, with the pairing of OmpD with its native O-Ag being essential for optimal protection after immunization. Thus, both the chemical and physical structure of O-Ag are key for the presentation of specific epitopes within proteinaceous surface-antigens. This enhances combinatorial antigenic diversity in Gram-negative bacteria, while reducing associated fitness costs. The O-antigen of LPS is known to limit the binding of antibody to bacterial surface antigens. Here the AUs show that the chemical and physical structure of the O-antigen are central factors in limiting the exposure of surface antigens to antibodies during Salmonella infection, thus defining their protective qualities.
Collapse
Affiliation(s)
- C Coral Domínguez-Medina
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marisol Pérez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.,Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI" Mexican Institute for Social Security, Mexico City, Mexico
| | - Anna E Schager
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jennifer L Marshall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Charlotte N Cook
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Saeeda Bobat
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA, 30332, USA
| | - Byeong Jae Chun
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA, 30332, USA
| | - Erin Logan
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town, Western Cape, 7925, South Africa
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Will M Channell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Faye C Morris
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sian E Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Areej Alshayea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - William G Horsnell
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town, Western Cape, 7925, South Africa
| | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI" Mexican Institute for Social Security, Mexico City, Mexico
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK. .,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
49
|
Takaya A, Yamamoto T, Tokoyoda K. Humoral Immunity vs. Salmonella. Front Immunol 2020; 10:3155. [PMID: 32038650 PMCID: PMC6985548 DOI: 10.3389/fimmu.2019.03155] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/30/2019] [Indexed: 01/13/2023] Open
Abstract
In primary infection with Salmonella, it has been reported—without consideration of Salmonella's functions—that humoral immunity plays no role in the clearance of bacteria. In fact, Salmonella targets and suppresses several aspects of humoral immunity, including B cell lymphopoiesis, B cell activation, and IgG production. In particular, the suppression of IgG-secreting plasma cell maintenance allows the persistence of Salmonella in tissues. Therefore, the critical role(s) of humoral immunity in the response to Salmonella infection, especially at the late phase, should be re-investigated. The suppression of IgG plasma cell memory strongly hinders vaccine development against non-typhoidal Salmonella (NTS) because Salmonella can also reduce humoral immune memory against other bacteria and viruses, obtained from previous vaccination or infection. We propose a new vaccine against Salmonella that would not impair humoral immunity, and which could also be used as a treatment for antibody-dependent autoimmune diseases to deplete pathogenic long-lived plasma cells, by utilizing the Salmonella's own suppression mechanism of humoral immunity.
Collapse
Affiliation(s)
- Akiko Takaya
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomoko Yamamoto
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| |
Collapse
|
50
|
Amadou Amani S, Lang ML. Bacteria That Cause Enteric Diseases Stimulate Distinct Humoral Immune Responses. Front Immunol 2020; 11:565648. [PMID: 33042146 PMCID: PMC7524877 DOI: 10.3389/fimmu.2020.565648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial enteric pathogens individually and collectively represent a serious global health burden. Humoral immune responses following natural or experimentally-induced infections are broadly appreciated to contribute to pathogen clearance and prevention of disease recurrence. Herein, we have compared observations on humoral immune mechanisms following infection with Citrobacter rodentium, the model for enteropathogenic Escherichia coli, Vibrio cholerae, Shigella species, Salmonella enterica species, and Clostridioides difficile. A comparison of what is known about the humoral immune responses to these pathogens reveals considerable variance in specific features of humoral immunity including establishment of high affinity, IgG class-switched memory B cell and long-lived plasma cell compartments. This article suggests that such variance could be contributory to persistent and recurrent disease.
Collapse
|