1
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
2
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
3
|
Xue H, Xiao Z, Zhao X, Li S, Wang Z, Zhao J, Zhu F. A comprehensive analysis of immune features and construction of an immune gene diagnostic model for sepsis. BMC Genomics 2023; 24:794. [PMID: 38124071 PMCID: PMC10734174 DOI: 10.1186/s12864-023-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Sepsis is a life-threatening syndrome resulting from immune system dysfunction that is caused by infection. It is of great importance to analyze the immune characteristics of sepsis, identify the key immune system related genes, and construct diagnostic models for sepsis. In this study, the sepsis transcriptome and expression profiling data were merged into an integrated dataset containing 277 sepsis samples and 117 non-sepsis control samples. Single-sample gene set enrichment analysis (ssGSEA) was used to assess the immune cell infiltration. Two sepsis immune subtypes were identified based on the 22 differential immune cells between the sepsis and the healthy control groups. Weighted gene co-expression network analysis (WCGNA) was used to identify the key module genes. Then, 36 differentially expressed immune-related genes were identified, based on which a robust diagnostic model was constructed with 11 diagnostic genes. The expression of 11 diagnostic genes was finally assessed in the training and validation datasets respectively. In this study, we provide comprehensive insight into the immune features of sepsis and establish a robust diagnostic model for sepsis. These findings may provide new strategies for the early diagnosis of sepsis in the future.
Collapse
Affiliation(s)
- Haiyan Xue
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Ziyan Xiao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiujuan Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Shu Li
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Zhenzhou Wang
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Jie Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Fengxue Zhu
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
- National Center for Trauma Medicine of China, Beijing, China.
| |
Collapse
|
4
|
Pei XB, Liu B. Research Progress on the Mechanism and Management of Septic Cardiomyopathy: A Comprehensive Review. Emerg Med Int 2023; 2023:8107336. [PMID: 38029224 PMCID: PMC10681771 DOI: 10.1155/2023/8107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as a kind of life-threatening organ dysfunction due to a dysregulated host immune response to infection and is a leading cause of mortality in the intensive care unit. Sepsis-induced myocardial dysfunction, also called septic cardiomyopathy, is a common and serious complication in patients with sepsis, which may indicate a bad prognosis. Although efforts have been made to uncover the pathophysiology of septic cardiomyopathy, a number of uncertainties remain. This article sought to review available literature to summarize the existing knowledge on current diagnostic tools and biomarkers, pathogenesis, and treatments for septic cardiomyopathy.
Collapse
Affiliation(s)
- Xue-Bin Pei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Liu
- Department of Emergency Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Hu R, Wan L, Liu X, Lu J, Hu X, Zhang X, Zhang M. K. pneumoniae and M. smegmatis infect epithelial cells via different strategies. J Thorac Dis 2023; 15:4396-4412. [PMID: 37691650 PMCID: PMC10482649 DOI: 10.21037/jtd-23-493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023]
Abstract
Background As the first line of defense, epithelial cells play a vital role in the initiation and control of both innate and adaptive immunity, which participate in the development of disease. Despite its therapeutic significance, little is understood about the specific interaction between pathogenic microorganisms and lung epithelial cells. Methods In this study, we performed a head-to-head comparison of the virulence and infection mechanisms of Klebsiella pneumoniae (K. pneumoniae) and Mycobacterium smegmatis (M. smegmatis), which represent Gram-negative/positive respiratory pathogens, respectively, in lung epithelial cell models for the first time. Results Through scanning electron microscopy combined with bacterial infection experiments, we confirmed the ability of K. pneumoniae and M. smegmatis strains to form biofilm and cord factor out of the cell wall. M. smegmatis has stronger adhesion and intracellular retention ability, while K. pneumoniae is more likely to induce acute infection. These pathogens could stay and proliferate in lung epithelial cells and stimulate the secretion of specific cytokines and chemokines through a gene transcription regulator. M. smegmatis infection can promote crosstalk among epithelial cells and other immune cells in the lung from a very early stage by prompting the secretion of pro-inflammatory cytokines. Meanwhile, there were significant correlations between K. pneumonia infection and higher levels of interleukin-15 (IL-15), interleukin-1Rα (IL-1Rα), fibroblast growth factor (FGF) basic, and granulocyte colony-stimulating factor (G-CSF). At the same time, K. pneumonia infection also led to changes in the expression of cytoskeletal proteins in epithelial cells. Conclusions Our results emphasized the immunoprotection and immunomodulation of lung epithelial cells against exogenous pathogenic microorganisms, indicating that different pathogens damaged the host through different strategies and induced varying innate immune responses. At the same time, they provided important clues and key immune factors for dealing with complicated pulmonary infections.
Collapse
Affiliation(s)
- Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Lin Wan
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xiaoyun Liu
- Center Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Lu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xichi Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xiaoli Zhang
- Department of Dermatology, Jiangnan University Medical Center, Wuxi, China
| | | |
Collapse
|
6
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
7
|
Bernard JK, Marakovits C, Smith LG, Francis H. Mast Cell and Innate Immune Cell Communication in Cholestatic Liver Disease. Semin Liver Dis 2023; 43:226-233. [PMID: 37268012 DOI: 10.1055/a-2104-9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells (MCs) contribute to the pathogenesis of cholestatic liver diseases (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]). PSC and PBC are immune-mediated, chronic inflammatory diseases, characterized by bile duct inflammation and stricturing, advancing to hepatobiliary cirrhosis. MCs are tissue resident immune cells that may promote hepatic injury, inflammation, and fibrosis formation by either direct or indirect interactions with other innate immune cells (neutrophils, macrophages/Kupffer cells, dendritic cells, natural killer, and innate lymphoid cells). The activation of these innate immune cells, usually through the degranulation of MCs, promotes antigen uptake and presentation to adaptive immune cells, exacerbating liver injury. In conclusion, dysregulation of MC-innate immune cell communications during liver injury and inflammation can lead to chronic liver injury and cancer.
Collapse
Grants
- IK6BX005226 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- 1I01BX003031 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- DK108959 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
- DK119421 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
Collapse
Affiliation(s)
- Jessica K Bernard
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah G Smith
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
8
|
Brucella abortus induces mast cell activation through TLR-2 and TLR-4. Microb Pathog 2023; 176:106005. [PMID: 36717005 DOI: 10.1016/j.micpath.2023.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacteria Brucella abortus is a major cause of brucellosis in animals and humans. The host innate immune response to B. abortus is mainly associated with phagocytic cells such as dendritic cells, neutrophils, and macrophages. However, as mast cells naturally reside in the main bacterial entry sites they may be involved in bacterial recognition. At present, little is known about the role of mast cells during B. abortus infection. The role of the innate immune receptors TLR2 and TLR4 in activation of mast cells by B. abortus (strain RB51) infection was analyzed in this study. The results showed that B. abortus did not induce mast cell degranulation, but did induce the synthesis of the cytokines IL-1β, IL-6, TNF-α, CCL3, CCL4, and CCL5. Furthermore, B. abortus stimulated key cell signaling molecules involved in mast cell activation such as p38 and NF-κB. Blockade of the receptors TLR2 and TLR4 decreased TNF-α and IL-6 release by mast cells in response to B. abortus. Taken together, our results demonstrate that mast cells are activated by B. abortus and may play a role in inducing an inflammatory response during the initial phase of the infection.
Collapse
|
9
|
Cao Y, Bai C, Si P, Yan X, Zhang P, Yisha Z, Lu P, Tuoheti K, Guo L, Chen Z, Bai X, Liu T. A novel model of urosepsis in rats developed by injection of Escherichia coli into the renal pelvis. Front Immunol 2023; 13:1074488. [PMID: 36685507 PMCID: PMC9849364 DOI: 10.3389/fimmu.2022.1074488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Despite extensive research, urosepsis remains a life-threatening, high-mortality disease. Currently, animal models of urosepsis widely accepted by investigators are very scarce. This study aimed to establish a standardized and reproducible model of urosepsis in rats. Forty adult Wistar rats were randomly divided into four groups according to the concentration of injected E. coli suspensions: Sham, Sep 3×, Sep 6×, and Sep 12×. Because the ureter is so thin and fragile, no conventional needle can be inserted into the ureter, which is probably why rats are rarely used to develop models of urosepsis. To solve this problem, the left ureter was ligated in the first procedure. After 24 hours, the left ureter above the ligation was significantly dilated, then saline or different concentrations of E. coli at 3 ml/kg were injected into the left renal pelvis using a 30G needle. The left ureter was subsequently ligated again at a distance of 1 cm from the renal hilum to maintain high pressure in the renal pelvis. Following injection of E. coli or saline for 24 h, three rats from each group were sacrificed and their organs (lung, liver, and right kidney) were collected. In contrast, the remaining seven rats continued to be observed for survival. At 10 days after E. coli injection, rats in the sep12× group had a higher mortality rate (100%) compared to the sep3× group (28.6%) or the sep6× group (71.4%). The significant changes in peripheral blood WBC count, serum IL-6 and TNF-α levels were also in the sep12× group. In addition, rats in the sepsis group showed multi-organ dysfunction, including damage to the lungs, liver, and kidneys. The establishment of a standardized rat model of urosepsis may be of great value for studying the pathophysiological of urosepsis.
Collapse
Affiliation(s)
- Yuanfei Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Penghui Si
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Hepatobiliary Diseases , Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhaer Yisha
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peixiang Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kuerban Tuoheti
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Tongzu Liu, ; Xiaojie Bai,
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Tongzu Liu, ; Xiaojie Bai,
| |
Collapse
|
10
|
Mayavannan A, Shantz E, Haidl ID, Wang J, Marshall JS. Mast cells selectively produce inflammatory mediators and impact the early response to Chlamydia reproductive tract infection. Front Immunol 2023; 14:1166068. [PMID: 37138882 PMCID: PMC10150091 DOI: 10.3389/fimmu.2023.1166068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Chlamydia trachomatis (C. trachomatis) is a Gram-negative obligate intracellular bacterium that causes reproductive tract complications in women, including ectopic pregnancies and tubal factor infertility. We hypothesized that mast cells, which are common at mucosal barriers, may contribute to responses to Chlamydia infection and aimed to define human mast cell responses to C. trachomatis. Methods Human cord blood-derived mast cells (CBMCs) were exposed to C. trachomatis to assess bacterial uptake, mast cell degranulation, gene expression, and production of inflammatory mediators. The role of formyl peptide receptors and Toll-like receptor 2 (TLR2) were investigated using pharmacological inhibitors and soluble TLR2. Mast cell-deficient mice and littermate controls were used to examine the in vivo role of mast cells in influencing the immune response to Chlamydia infection in the female reproductive tract. Results C. trachomatis bacteria were taken up by human mast cells but did not replicate efficiently inside CBMCs. C. trachomatis-activated mast cells did not degranulate but maintained viability and exhibited cellular activation with homotypic aggregation and upregulation of ICAM-1. However, they significantly enhanced the gene expression of IL1B, CCL3, NFKB1, CXCL8, and IL6. Inflammatory mediators were produced, including TNF, IL-1β, IL-1RA, IL-6, GM-CSF, IL-23, CCL3, CCL5, and CXCL8. Endocytic blockade resulted in reduced gene expression of IL6, IL1B, and CCL3, suggesting C. trachomatis induced mast cell activation in both extracellular and intracellular locations. The IL-6 response to C. trachomatis was reduced when CBMCs were treated with C. trachomatis coated with soluble TLR2. Mast cells derived from TLR2-deficient mice also demonstrated a reduced IL-6 response to C. muridarum. Five days following C. muridarum infection, mast cell-deficient mice showed attenuated CXCL2 production and significantly reduced numbers of neutrophils, eosinophils, and B cells in the reproductive tract when compared with mast cell-containing littermates. Discussion Taken together, these data demonstrate that mast cells are reactive to Chlamydia spp. through multiple mechanisms that include TLR2-dependent pathways. Mast cells also play an important role in shaping in vivo immune responses in Chlamydia reproductive tract infection through both effector cell recruitment and modification of the chemokine microenvironment.
Collapse
Affiliation(s)
- Animamalar Mayavannan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Emily Shantz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ian D. Haidl
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Jean S. Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall,
| |
Collapse
|
11
|
Joulia R, Guerrero-Fonseca IM, Girbl T, Coates JA, Stein M, Vázquez-Martínez L, Lynam E, Whiteford J, Schnoor M, Voehringer D, Roers A, Nourshargh S, Voisin MB. Neutrophil breaching of the blood vessel pericyte layer during diapedesis requires mast cell-derived IL-17A. Nat Commun 2022; 13:7029. [PMID: 36396641 PMCID: PMC9672103 DOI: 10.1038/s41467-022-34695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Neutrophil diapedesis is an immediate step following infections and injury and is driven by complex interactions between leukocytes and various components of the blood vessel wall. Here, we show that perivascular mast cells (MC) are key regulators of neutrophil behaviour within the sub-endothelial space of inflamed venules. Using confocal intravital microscopy, we observe directed abluminal neutrophil motility along pericyte processes towards perivascular MCs, a response that created neutrophil extravasation hotspots. Conversely, MC-deficiency and pharmacological or genetic blockade of IL-17A leads to impaired neutrophil sub-endothelial migration and breaching of the pericyte layer. Mechanistically, identifying MCs as a significant cellular source of IL-17A, we establish that MC-derived IL-17A regulates the enrichment of key effector molecules ICAM-1 and CXCL1 in nearby pericytes. Collectively, we identify a novel MC-IL-17A-pericyte axis as modulator of the final steps of neutrophil diapedesis, with potential translational implications for inflammatory disorders driven by increased neutrophil diapedesis.
Collapse
Affiliation(s)
- Régis Joulia
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- NHLI, Imperial College London, London, UK
| | - Idaira María Guerrero-Fonseca
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | - Tamara Girbl
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jonathon A Coates
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Monja Stein
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Laura Vázquez-Martínez
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eleanor Lynam
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - James Whiteford
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, 91054, Germany
| | - Axel Roers
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sussan Nourshargh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
12
|
Mackey E, Moeser AJ. Sex Differences in Mast Cell-Associated Disorders: A Life Span Perspective. Cold Spring Harb Perspect Biol 2022; 14:a039172. [PMID: 35817512 PMCID: PMC9524281 DOI: 10.1101/cshperspect.a039172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mast cells are critical innate immune effectors located throughout the body that are crucial for host defense mechanisms via orchestrating immune responses to a variety of host and environmental stimuli necessary for survival. The role of mast cells in brain development and behavior, meningeal function, and stress-related disorders has also been increasingly recognized. While critical for survival and development, excessive mast cell activation has been linked with an increasing number of inflammatory, stress-associated, and neuroimmune disorders including allergy/anaphylaxis, autoimmune diseases, migraine headache, and chronic pain disorders. Further, a strong sex bias exists for mast cell-associated diseases with females often at increased risk. Here we review sex differences in human mast cell-associated diseases and animal models, and the underlying biological mechanisms driving these sex differences, which include adult gonadal sex hormones as well the emerging organizational role of perinatal gonadal hormones on mast cell activity and development.
Collapse
Affiliation(s)
- Emily Mackey
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48864, USA
- Comparative Biomedical Sciences Program, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina 27603, USA
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48864, USA
| |
Collapse
|
13
|
Català C, Velasco-de Andrés M, Casadó-Llombart S, Leyton-Pereira A, Carrillo-Serradell L, Isamat M, Lozano F. Innate immune response to peritoneal bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:43-61. [PMID: 35965000 DOI: 10.1016/bs.ircmb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spontaneous and secondary peritoneal infections, mostly of bacterial origin, easily spread to cause severe sepsis. Cellular and humoral elements of the innate immune system are constitutively present in peritoneal cavity and omentum, and play an important role in peritonitis progression and resolution. This review will focus on the description of the anatomic characteristics of the peritoneal cavity and the composition and function of such innate immune elements under both steady-state and bacterial infection conditions. Potential innate immune-based therapeutic interventions in bacterial peritonitis alternative or adjunctive to classical antibiotic therapy will be briefly discussed.
Collapse
Affiliation(s)
- Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sergi Casadó-Llombart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marcos Isamat
- Sepsia Therapeutics S.L. 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain; Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Ragipoglu D, Bülow J, Hauff K, Voss M, Haffner-Luntzer M, Dudeck A, Ignatius A, Fischer V. Mast Cells Drive Systemic Inflammation and Compromised Bone Repair After Trauma. Front Immunol 2022; 13:883707. [PMID: 35558068 PMCID: PMC9086903 DOI: 10.3389/fimmu.2022.883707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
There is evidence that mast cells contribute to inflammation induced by hemorrhagic shock, severe tissue injury or sepsis. Mast cells are highly responsive to alarm signals generated after trauma, and release many inflammatory mediators including interleukin-6, a key mediator of posttraumatic inflammation. An overwhelming posttraumatic inflammation causes compromised bone healing; however, the underlying cellular and molecular mechanisms are poorly understood. Recently, we found that mast cells trigger local and systemic inflammation after isolated fracture leading to uneventful bone repair. Here, we investigated whether mast cells critically contribute to trauma-induced compromised bone healing. Male Mcpt5-Cre+ R-DTA mice, which lack connective tissue type mast cells, and their mast cell-competent Cre- littermates underwent a femur fracture with/without thoracic trauma. Posttraumatic systemic and local inflammation and bone repair were assessed 3 h and 21 d post injury. Both, the systemic and pulmonary inflammation was significantly increased in mast cell-competent mice upon combined trauma compared to isolated fracture. In mast cell-deficient mice, the increase of inflammatory mediators in the circulation induced by the severe trauma was abolished. In the bronchoalveolar lavage fluid, the trauma-induced increase of inflammatory cytokines was not reduced, but the neutrophil invasion into the lungs was significantly diminished in the absence of mast cells. Locally in the fracture hematoma, mast cell-competent mice displayed reduced inflammatory mediator concentrations after combined trauma compared to isolated fracture, which was abolished in mast cell-deficient mice. Notably, while combined trauma resulted in compromised bone repair in mast cell-competent mice, indicated by significantly reduced bone and increased cartilage fracture callus contents, this was abolished in Mcpt5-Cre+ R-DTA mice. Therefore, mast cells contribute to trauma-induced compromised bone repair and could be a potential target for new treatment options to improve fracture healing in multiply injured patients.
Collapse
Affiliation(s)
- Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Jasmin Bülow
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Kristin Hauff
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
15
|
Çelik E, Kara SS, Çevik Ö. The Potential Use of Saliva as a Biofluid for Systemic Inflammatory Response Monitoring in Children with Pneumonia. Indian J Pediatr 2022; 89:477-483. [PMID: 34595601 DOI: 10.1007/s12098-021-03973-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the levels of C-reactive protein, procalcitonin, calprotectin, interleukin 1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) in both saliva and serum in children with community-acquired pneumonia and to compare the saliva response with the systemic response. METHODS Forty hospitalized children with community-acquired pneumonia aged between 1 mo and 15 y; and 40 healthy controls were included. Both serum and saliva samples were collected on admission and at the time of discharge. RESULTS Calculated differences between values for each serum and salivary parameter on admission and before discharge named delta (Δ) values were used for correlation analysis. Salivary Δ values of each parameter were moderately/strongly correlated with their corresponding serum Δ levels [IL-1β ÷ (r = 0.554, p < 0.001); IL-6 ÷ (r = 0.484, p = 0.002); PCT ÷ (r = 0.737, p < 0.001); TNF-α ÷ (r = 0.587, p < 0.001); CRP ÷ (r = 0.703, p < 0.001); and calprotectin ÷ (r = 0.774, p < 0.001)]. CONCLUSIONS This study will evaluate the reflection of systemic changes in saliva and the efficacy of saliva in pediatric patients with pneumonia. Results will highlight saliva potential use as a biofluid for systemic monitoring in this patient group.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Pediatrics, Faculty of Medicine, Adnan Menderes University, Aydın, 09010, Turkey.
| | - Soner Sertan Kara
- Department of Pediatric Infectious Disease, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
16
|
Mancuso P, Curtis JL, Weitzel AM, Griffin CA, Bouchard B, Freeman CM, Bridges D, Singer K. Diet-induced obesity in mice impairs host defense against Klebsiella pneumonia in vivo and glucose transport and bactericidal functions in neutrophils in vitro. Am J Physiol Lung Cell Mol Physiol 2022; 322:L116-L128. [PMID: 34850640 PMCID: PMC8794018 DOI: 10.1152/ajplung.00008.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023] Open
Abstract
Obesity impairs host defense against Klebsiella pneumoniae, but responsible mechanisms are incompletely understood. To determine the impact of diet-induced obesity on pulmonary host defense against K. pneumoniae, we fed 6-wk-old male C57BL/6j mice a normal diet (ND) or high-fat diet (HFD) (13% vs. 60% fat, respectively) for 16 wk. Mice were intratracheally infected with Klebsiella, assayed at 24 or 48 h for bacterial colony-forming units, lung cytokines, and leukocytes from alveolar spaces, lung parenchyma, and gonadal adipose tissue were assessed using flow cytometry. Neutrophils from uninfected mice were cultured with and without 2-deoxy-d-glucose (2-DG) and assessed for phagocytosis, killing, reactive oxygen intermediates (ROI), transport of 2-DG, and glucose transporter (GLUT1-4) transcripts, and protein expression of GLUT1 and GLUT3. HFD mice had higher lung and splenic bacterial burdens. In HFD mice, baseline lung homogenate concentrations of IL-1β, IL-6, IL-17, IFN-γ, CXCL2, and TNF-α were reduced relative to ND mice, but following infection were greater for IL-6, CCL2, CXCL2, and IL-1β (24 h only). Despite equivalent lung homogenate leukocytes, HFD mice had fewer intraalveolar neutrophils. HFD neutrophils exhibited decreased Klebsiella phagocytosis and killing and reduced ROI to heat-killed Klebsiella in vitro. 2-DG transport was lower in HFD neutrophils, with reduced GLUT1 and GLUT3 transcripts and protein (GLUT3 only). Blocking glycolysis with 2-DG impaired bacterial killing and ROI production in neutrophils from mice fed ND but not HFD. Diet-induced obesity impairs pulmonary Klebsiella clearance and augments blood dissemination by reducing neutrophil killing and ROI due to impaired glucose transport.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey L Curtis
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Anne M Weitzel
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Cameron A Griffin
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Benjamin Bouchard
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Christine M Freeman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Dave Bridges
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Kanakadurga Singer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Pejler G, Alanazi S, Grujic M, Adler J, Olsson AK, Sommerhoff CP, Rabelo Melo F. Mast Cell Tryptase Potentiates Neutrophil Extracellular Trap Formation. J Innate Immun 2021; 14:433-446. [PMID: 34937018 PMCID: PMC9485958 DOI: 10.1159/000520972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Previous research has indicated an intimate functional communication between mast cells (MCs) and neutrophils during inflammatory conditions, but the nature of such communication is not fully understood. Activated neutrophils are known to release DNA-containing extracellular traps (neutrophil extracellular traps [NETs]) and, based on the known ability of tryptase to interact with negatively charged polymers, we here hypothesized that tryptase might interact with NET-contained DNA and thereby regulate NET formation. In support of this, we showed that tryptase markedly enhances NET formation in phorbol myristate acetate-activated human neutrophils. Moreover, tryptase was found to bind vividly to the NETs, to cause proteolysis of core histones and to cause a reduction in the levels of citrullinated histone-3. Secretome analysis revealed that tryptase caused increased release of numerous neutrophil granule compounds, including gelatinase, lactoferrin, and myeloperoxidase. We also show that DNA can induce the tetrameric, active organization of tryptase, suggesting that NET-contained DNA can maintain tryptase activity in the extracellular milieu. In line with such a scenario, DNA-stabilized tryptase was shown to efficiently degrade numerous pro-inflammatory compounds. Finally, we showed that tryptase is associated with NET formation in vivo in a melanoma setting and that NET formation in vivo is attenuated in mice lacking tryptase expression. Altogether, these findings reveal that NET formation can be regulated by MC tryptase, thus introducing a novel mechanism of communication between MCs and neutrophils.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Gunnar Pejler,
| | - Sultan Alanazi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jeremy Adler
- Department of Immunology, Genetics and Pathology − BioVis, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Fabio Rabelo Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- **Fabio Rabelo Melo,
| |
Collapse
|
18
|
Wu Y, Yang Y, Dang H, Xiao H, Huang W, Jia Z, Zhao X, Chen K, Ji N, Guo J, Qin Z, Wang J, Zou J. Molecular identification of Klebsiella pneumoniae and expression of immune genes in infected spotted gar Lepisosteus oculatus. FISH & SHELLFISH IMMUNOLOGY 2021; 119:220-230. [PMID: 34626790 DOI: 10.1016/j.fsi.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Spotted gar (Lepisosteus oculatus) is a primitive ray-finned fish which has not undergone the third round whole genome duplication and commonly used as a model to study the evolution of immune genes. In this study, a pathogenic strain of Klebsiella pneumoniae (termed KPY01) was isolated from a diseased spotted gar, based on the Gram-stain and phylogenetic analysis of the 16S rDNA and khe genes. Further, the virulence genes and drug resistance genes were determined and drug sensitivity tests were performed to explore the virulence and drug resistance of the KPY01. Putative biosynthetic gene clusters (BGCs) for the biosynthesis of secondary metabolites were predicted using the anti-SMASH5.0 online genome mining platform. Histopathological analysis revealed that the immune cells were significantly decreased in the white pulp of spleen of fish infected with K. pneumonia and tissue inflammation became apparent. Besides, the expression of cytokines including interleukin (il) -8, il-10, il-12a, il-18 and interferon γ (ifn-γ) were shown to be modulated in the spleen, gills and kidney. Our work provides useful information for further investigation on the virulence of K. pneumoniae and host immune responses to K. pneumoniae infection in fish.
Collapse
Affiliation(s)
- Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yibin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ning Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiahong Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 100875, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, 100875, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
19
|
Rangasamy T, Ghimire L, Jin L, Le J, Periasamy S, Paudel S, Cai S, Jeyaseelan S. Host Defense against Klebsiella pneumoniae Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1112-1127. [PMID: 34341173 DOI: 10.4049/jimmunol.2000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae is a common cause of Gram-negative pneumonia. The spread of antibiotic-resistant and hypervirulent strains has made treatment more challenging. This study sought to determine the immunomodulatory, antibacterial, and therapeutic potential of purified murine stem cell Ag-1+ (Sca-1+) lung mesenchymal stem cells (LMSCs) using in vitro cell culture and an in vivo mouse model of pneumonia caused by K pneumoniae. Sca-1+ LMSCs are plastic adherent, possess colony-forming capacity, express mesenchymal stem cell markers, differentiate into osteogenic and adipogenic lineages in vitro, and exhibit a high proliferative capacity. Further, these Sca-1+ LMSCs are morphologically similar to fibroblasts but differ ultrastructurally. Moreover, Sca-1+ LMSCs have the capacity to inhibit LPS-induced secretion of inflammatory cytokines by bone marrow-derived macrophages and neutrophils in vitro. Sca-1+ LMSCs inhibit the growth of K pneumoniae more potently than do neutrophils. Sca-1+ LMSCs also possess the intrinsic ability to phagocytize and kill K. pneumoniae intracellularly. Whereas the induction of autophagy promotes bacterial replication, inhibition of autophagy enhances the intracellular clearance of K. pneumoniae in Sca-1+ LMSCs during the early time of infection. Adoptive transfer of Sca-1+ LMSCs in K. pneumoniae-infected mice improved survival, reduced inflammatory cells in bronchoalveolar lavage fluid, reduced inflammatory cytokine levels and pathological lesions in the lung, and enhanced bacterial clearance in the lung and in extrapulmonary organs. To our knowledge, these results together illustrate for the first time the protective role of LMSCs in bacterial pneumonia.
Collapse
Affiliation(s)
- Tirumalai Rangasamy
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - John Le
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sivakumar Periasamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Shanshan Cai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and.,Division of Pulmonary and Critical Care, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
20
|
Mohammed RJ, Al-Samarraae IAA. Investigating the Effect of Three Antigens of Citrobacter freundii on Rabbit’s Immune Response. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i1.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Citrobacter freundii (C. freundii) is responsible for a number of significant opportunistic infections. The present research was aimed to estimate the immune response of rabbits immunized with whole cell sonicated antigen (WCSA), lipopolysaccharide (LPS), and DNA antigens (Ag) extracted from C. freundii. Twenty-four Albino rabbits of both sexes, with 2-3 kg body weight, were divided randomly into four groups (6 rabbits for each). Two types of tests were performed including ELISA and skin test (delayed type hypersensitivity, DTH)). The 1st group was immunized with WCSA (1000 μg/mL). The 2nd group was immunized with LPS Ag at the same dose. The 3rd group was immunized with DNA extracted Ag (0.083 μg/mL). The 4th group (negative control) was injected with 1 mL PBS (pH 7.2) subcutaneously. After 14 days, rabbits were given booster doses of same Ag. The immunized animals showed significant increase of IgG and IL-6 concentration (P<0.05) following 28, 32, 46, 50 and 60 days of immunization in comparison with the negative control group. Concerning DTH, it showed an increase in the means of induration and erythema, with significant differences (P˂0.05) exerted by the concentrated antigens in all immunized groups after 24 h and 48 h compared with diluted Ag and negative control group. In conclusion, WCSA and LPS Ag, in comparison to DNA Ag, were observed to promote stronger humoral (IgG) and cellular (DTH and IL-6) immune responses. DNA Ag, on the other hand, elicited a weaker humoral and cellular immune response than other Ag.
Collapse
|
21
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
22
|
Soria-Castro R, Alfaro-Doblado ÁR, Rodríguez-López G, Campillo-Navarro M, Meneses-Preza YG, Galán-Salinas A, Alvarez-Jimenez V, Yam-Puc JC, Munguía-Fuentes R, Domínguez-Flores A, Estrada-Parra S, Pérez-Tapia SM, Chávez-Blanco AD, Chacón-Salinas R. TLR2 Regulates Mast Cell IL-6 and IL-13 Production During Listeria monocytogenes Infection. Front Immunol 2021; 12:650779. [PMID: 34194428 PMCID: PMC8238461 DOI: 10.3389/fimmu.2021.650779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1β, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Ángel R. Alfaro-Doblado
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Gloria Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Research Coordination, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Yatsiri G. Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Adrian Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Violeta Alvarez-Jimenez
- Unidad de Citometría de Flujo, Lab de Biología Molecular y Bioseguridad Nivel 3, Centro Médico Naval, Secretaría de Marina (SEMAR), Mexico City, Mexico
| | - Juan C. Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rosario Munguía-Fuentes
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City, Mexico
| | - Adriana Domínguez-Flores
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Alma D. Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| |
Collapse
|
23
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
24
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts. Endocr Metab Immune Disord Drug Targets 2021; 20:670-686. [PMID: 31789136 DOI: 10.2174/1871530319666191202121644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) bear many receptors that allow them to respond to a variety of exogenous and endogenous stimuli. However, MC function is dual since they can initiate pathological events or protect the host against infectious challenges. The role of MCs in disease will be analyzed in a broad sense, describing cellular and molecular mechanisms related to their involvement in auto-inflammatory diseases, asthma, autoimmune diseases and cancer. On the other hand, their protective role in the course of bacterial, fungal and parasitic infections will also be illustrated. As far as treatment of MC-derived diseases is concerned, allergen immunotherapy as well as other attempts to reduce MC-activation will be outlined according to the recent data. Finally, in agreement with current literature and our own data polyphenols have been demonstrated to attenuate type I allergic reactions and contact dermatitis in response to nickel. The use of polyphenols in these diseases will be discussed also in view of MC involvement.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
25
|
Musdja MY. Potential bangle ( Zingiber montanum J.König) rhizome extract as a supplement to prevent and reduce symptoms of Covid-19. Saudi J Biol Sci 2021; 28:2245-2253. [PMID: 33519275 PMCID: PMC7832787 DOI: 10.1016/j.sjbs.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
The morbidity and mortality rates due to Covid-19 are increasing day by day, to overcome this, we urgently need a better treatment strategy, therefore various ways and strategies for this must be pursued. The purpose of the present review is to explain that the rhizome of bangle (Zingiber montanum) has great potential to increase antibodies and reduce symptoms of acute respiratory distress syndrome (ARDS), which also seems suitable for treating Covid-19. Method: This review is looking for the results of scientific research from various sources, regarding the efficacy of bangle (Zingiber montanum) rhizome which is strongly suspected to be able to prevent, and reduce the symptoms that occur in COVID-19. The results showed that the bangle rhizome extract had activity as immunomodulatory, antiviral and reduced symptoms such as what happened in COVID-19. Conclusion: Bangle rhizome extract has dozens of nutritious substances and has multifunctional activities, and it can be postulated that among the benefits of bangle rhizome extract it is able to prevent and reduce symptoms that occur in Covid-19, and preclinical studies and clinical studies are needed to prove this postulate.
Collapse
Affiliation(s)
- Muhammad Yanis Musdja
- Department of Pharmacology, Faculty of Health Sciences, State Islamic University, Syarif Hidayatullah, Jakarta, Indonesia
| |
Collapse
|
26
|
Wang LT, Chiu SK, Lee W, Siu LK, Liu KJ, Yen ML, Yen BL. Protocol for human placental mesenchymal stem cell therapy in a murine model of intra-abdominal infection of hypervirulent Klebsiella. STAR Protoc 2021; 2:100337. [PMID: 33644772 PMCID: PMC7887434 DOI: 10.1016/j.xpro.2021.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) strains cause extra-pulmonary infections such as intra-abdominal infection (IAI) even in healthy individuals due to its resistance to polymorphonuclear neutrophil (PMN) killing and a high incidence of multidrug resistance. To assess whether human placental mesenchymal stem cell (PMSC) therapy can be an effective treatment option, we established a murine model of hvKP-IAI to evaluate immune cell modulation and bacterial clearance for this highly lethal infection. This protocol can rapidly assess potential therapies for severe bacterial IAIs. For complete details on the use and execution of this protocol, please refer to Wang et al. (2020). PMSC treatment in a mouse model of hvKP-induced intra-abdominal infection Isolation of mouse peritoneal immune cells without affixing mice to a dissecting board Analysis of PMN, T, and NK cells in peritoneal washings Determination of bacterial CFUs in hvKP-infected peritoneal fluid
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei 100, Taiwan
| | - Sheng-Kang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | - L Kristopher Siu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.,National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan 350, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Zhunan 350, Taiwan.,Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan 701, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei 100, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan.,Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei City 221, Taiwan
| |
Collapse
|
27
|
Aerobic exercise ameliorates survival, clinical score, lung inflammation, DNA and protein damage in septic mice. Cytokine 2021; 140:155401. [PMID: 33508652 DOI: 10.1016/j.cyto.2020.155401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Sepsis is a potentially deadly organic dysfunction, and one of the main causes of mortality in intensive care units (ICU). Aerobic exercise (AE) is a preventive intervention in the establishment of inflammatory conditions, such as chronic lung diseases, but its effects on sepsis remain unclear. Therefore, this study aimed to evaluate the effects of AE on health condition, mortality, inflammation, and oxidative damage in an experimental model of pneumosepsis induced by Klebsiella pneumoniae (K.p). METHODS Animals were randomly allocated to Control; Exercise (EXE); Pneumosepsis (PS) or Exercise + Pneumosepsis (EPS) groups. Exercised animals were submitted to treadmill exercise for 2 weeks, 30 min/day, prior to pneumosepsis induced by K.p tracheal instillation. RESULTS PS produced a striking decrease in the health condition leading to massive death (85%). AE protected mice, as evidenced by better clinical scores and increased survival (70%). AE alleviated sickness behavior in EPS mice as evaluated in the open field test, and inflammation (nitrite + nitrate, TNF-α and IL-1β levels) in broncoalveolar fluid. Catalase activity, oxidative damage to proteins and DNA was increased by sepsis and prevented by exercise. CONCLUSION Overall, the beneficial effects of exercise in septic animals encompassed a markedly improved clinical score and decreased mortality, along with lower inflammation markers, less DNA and protein damage, as well as preserved antioxidant enzyme activity. Neural network risk analysis revealed exercise had a considerable effect on the overall health condition of septic mice.
Collapse
|
28
|
Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells 2020; 9:cells9122538. [PMID: 33255519 PMCID: PMC7761480 DOI: 10.3390/cells9122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is increasing evidence for their critical role in host defense. MCs not only play an important role in initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely from the periphery. In this review, we provide a summary of recent findings that explain how MCs act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult to orchestrating the final outcome of the immune response.
Collapse
|
29
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
30
|
Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:342-365. [PMID: 31828527 DOI: 10.1007/s12016-019-08769-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor-based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, 400 Mountain Avenue, Springfield, NJ, 07081-2515, USA.
- Department of Medicine, Thomas Jefferson Universi ty Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
| |
Collapse
|
31
|
Allergic Diseases: Can They Be Good for You? Crit Care Med 2020; 47:1808-1810. [PMID: 31738250 DOI: 10.1097/ccm.0000000000004053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
von Beek C, Waern I, Eriksson J, Melo FR, Robinson C, Waller AS, Sellin ME, Guss B, Pejler G. Streptococcal sagA activates a proinflammatory response in mast cells by a sublytic mechanism. Cell Microbiol 2019; 21:e13064. [PMID: 31155820 PMCID: PMC6771685 DOI: 10.1111/cmi.13064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/10/2019] [Accepted: 05/26/2019] [Indexed: 01/21/2023]
Abstract
Mast cells are implicated in the innate proinflammatory immune defence against bacterial insult, but the mechanisms through which mast cells respond to bacterial encounter are poorly defined. Here, we addressed this issue and show that mast cells respond vividly to wild type Streptococcus equi by up‐regulating a panel of proinflammatory genes and by secreting proinflammatory cytokines. However, this response was completely abrogated when the bacteria lacked expression of sagA, whereas the lack of a range of other potential virulence genes (seeH, seeI, seeL, seeM, hasA, seM, aroB, pyrC, and recA) had no effect on the amplitude of the mast cell responses. The sagA gene encodes streptolysin S, a lytic toxin, and we next showed that the wild type strain but not a sagA‐deficient mutant induced lysis of mast cells. To investigate whether host cell membrane perturbation per se could play a role in the activation of the proinflammatory response, we evaluated the effects of detergent‐ and pneumolysin‐dependent lysis on mast cells. Indeed, exposure of mast cells to sublytic concentrations of all these agents resulted in cytokine responses of similar amplitudes as those caused by wild type streptococci. This suggests that sublytic membrane perturbation is sufficient to trigger full‐blown proinflammatory signalling in mast cells. Subsequent analysis showed that the p38 and Erk1/2 signalling pathways had central roles in the proinflammatory response of mast cells challenged by either sagA‐expressing streptococci or detergent. Altogether, these findings suggest that sagA‐dependent mast cell membrane perturbation is a mechanism capable of activating the innate immune response upon bacterial challenge.
Collapse
Affiliation(s)
- Christopher von Beek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fabio Rabelo Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl Robinson
- Department of Bacteriology, Animal Health Trust, Newmarket, UK
| | - Andrew S Waller
- Department of Bacteriology, Animal Health Trust, Newmarket, UK
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
33
|
Piliponsky AM, Acharya M, Shubin NJ. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int J Mol Sci 2019; 20:ijms20122851. [PMID: 31212724 PMCID: PMC6627964 DOI: 10.3390/ijms20122851] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Mast cells are granule-rich immune cells that are distributed throughout the body in areas where microorganisms typically reside, such as mucosal tissues and the skin, as well as connective tissues. It is well known that mast cells have significant roles in IgE-mediated conditions, such as anaphylaxis, but, because of their location, it is also thought that mast cells act as innate immune cells against pathogens and initiate defensive immune responses. In this review, we discuss recent studies focused on mast cell interactions with flaviviruses and Candida albicans, and mast cell function in the cecal ligation and puncture model of sepsis. We selected these studies because they are clear examples of how mast cells can either promote host resistance to infection, as previously proposed, or contribute to a dysregulated host response that can increase host morbidity and mortality. Importantly, we can distill from these studies that the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, the species in which mast cells are studied, and the differential contribution of mast cell subtypes to immunity. Accordingly, we think that this review highlights the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA 98195, USA.
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Manasa Acharya
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Nicholas J Shubin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
34
|
Caslin HL, Abebayehu D, Abdul Qayum A, Haque TT, Taruselli MT, Paez PA, Pondicherry N, Barnstein BO, Hoeferlin LA, Chalfant CE, Ryan JJ. Lactic Acid Inhibits Lipopolysaccharide-Induced Mast Cell Function by Limiting Glycolysis and ATP Availability. THE JOURNAL OF IMMUNOLOGY 2019; 203:453-464. [PMID: 31160535 DOI: 10.4049/jimmunol.1801005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Abstract
Sepsis has a well-studied inflammatory phase, with a less-understood secondary immunosuppressive phase. Elevated blood lactate and slow lactate clearance are associated with mortality; however, regulatory roles are unknown. We hypothesized that lactic acid (LA) contributes to the late phase and is not solely a consequence of bacterial infection. No studies have examined LA effects in sepsis models in vivo or a mechanism by which it suppresses LPS-induced activation in vitro. Because mast cells can be activated systemically and contribute to sepsis, we examined LA effects on the mast cell response to LPS. LA significantly suppressed LPS-induced cytokine production and NF-κB transcriptional activity in mouse bone marrow-derived mast cells and cytokine production in peritoneal mast cells. Suppression was MCT-1 dependent and reproducible with sodium lactate or formic acid. Further, LA significantly suppressed cytokine induction following LPS-induced endotoxemia in mice. Because glycolysis is linked to inflammation and LA is a byproduct of this process, we examined changes in glucose metabolism. LA treatment reduced glucose uptake and lactate export during LPS stimulation. LA effects were mimicked by glycolytic inhibitors and reversed by increasing ATP availability. These results indicate that glycolytic suppression and ATP production are necessary and sufficient for LA effects. Our work suggests that enhancing glycolysis and ATP production could improve immune function, counteracting LA suppressive effects in the immunosuppressive phase of sepsis.
Collapse
Affiliation(s)
- Heather L Caslin
- Virginia Commonwealth University Life Sciences, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Patrick A Paez
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Neha Pondicherry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - L Alexis Hoeferlin
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Charles E Chalfant
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620.,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612; and.,Moffitt Cancer Center, Tampa, FL 33620
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284;
| |
Collapse
|
35
|
Yang J, Wang J, Zhang X, Qiu Y, Yan J, Sun S, He Y, Yin Y, Xu W. Mast cell degranulation impairs pneumococcus clearance in mice via IL-6 dependent and TNF-α independent mechanisms. World Allergy Organ J 2019; 12:100028. [PMID: 31044024 PMCID: PMC6479162 DOI: 10.1016/j.waojou.2019.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Mast cells participate in immune responses by releasing potent immune system modifiers via degranulation. Due to currently reported controversial roles of mast cells in Streptococcus pneumoniae infections, this study aimed to determine the role and mechanism of mast cells in clearing S. pneumoniae in mice. Methods In vivo mouse model of mast cell degranulation established by administration of C48/80 was evaluated for the influences of mast cell degranulation on bacterial colonization and inflammation. In vitro model was established to observe the influences of mast cell degranulation on phagocytic and bactericidal functions of neutrophils and macrophages. IL-6 null and TNF-α null mice on the C57BL/6 background were used to investigate the effects of inflammatory factors released by mast cell degranulation on bacterial clearance. Results Mast cell degranulation increased IL-6 and TNF-α levels and immune cell numbers in nasal lavage fluid, and inhibited the bactericidal function of macrophages and neutrophils in vitro. It decreased the number of neutrophils and macrophages recruited to respiratory tract after S. pneumoniae challenge and inhibited the clearance of S. pneumoniae in mice. After pretreatment with C48/80, S. pneumoniae loads were significantly lower in IL-6 null mice than in wild type mice, while no differences were observed between TNF-α null and wild type mice. Conclusions Mast cell degranulation can cause inflammation and impair immune cell recruitment to respiratory tract after S. pneumoniae challenge. Products of mast cell degranulation including IL-6 decreased the bactericidal function of neutrophils and macrophages. Through these mechanisms, mast cell degranulation inhibited clearance of S. pneumoniae in mice.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jichao Wang
- Department of Clinical Laboratory, Chongqing Hospital for Women and Children, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulan Qiu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jurong Yan
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Si Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Espinosa-Riquer ZP, Ibarra-Sánchez A, Vibhushan S, Bratti M, Charles N, Blank U, Rodríguez-Manzo G, González-Espinosa C. TLR4 Receptor Induces 2-AG-Dependent Tolerance to Lipopolysaccharide and Trafficking of CB2 Receptor in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:2360-2371. [PMID: 30814309 DOI: 10.4049/jimmunol.1800997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
Mast cells (MCs) contribute to the control of local inflammatory reactions and become hyporesponsive after prolonged TLR4 activation by bacterial LPS. The molecular mechanisms involved in endotoxin tolerance (ET) induction in MCs are not fully understood. In this study, we demonstrate that the endocannabinoid 2-arachidonoylglycerol (2-AG) and its receptor, cannabinoid receptor 2 (CB2), play a role in the establishment of ET in bone marrow-derived MCs from C57BL/6J mice. We found that CB2 antagonism prevented the development of ET and that bone marrow-derived MCs produce 2-AG in a TLR4-dependent fashion. Exogenous 2-AG induced ET similarly to LPS, blocking the phosphorylation of IKK and the p65 subunit of NF-κB and inducing the synthesis of molecular markers of ET. LPS caused CB2 receptor trafficking in Rab11-, Rab7-, and Lamp2-positive vesicles, indicating recycling and degradation of the receptor. 2-AG also prevented LPS-induced TNF secretion in vivo, in a MC-dependent model of endotoxemia, demonstrating that TLR4 engagement leads to 2-AG secretion, which contributes to the negative control of MCs activation. Our study uncovers a functional role for the endocannabinoid system in the inhibition of MC-dependent innate immune responses in vivo.
Collapse
Affiliation(s)
- Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico
| | - Shamila Vibhushan
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Manuela Bratti
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Nicolas Charles
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Ulrich Blank
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico;
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico;
| |
Collapse
|
37
|
The influence of etiological factors on immunoreactivity in patients with community-acquired pneumonia. КЛИНИЧЕСКАЯ ПРАКТИКА 2018. [DOI: 10.17816/clinpract9447-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to uncover the characteristics of immunoreactivity in patients with community-acquired pneumonia, depending on the pathogen. The inflammatory process caused by various pathogens, has its own characteristics and affects the course of the disease. The study of the mechanisms of these complex interactions can improve the understanding of the processes occurring in community-acquired pneumonia, and, therefore, develop individual approaches to the therapy depending on the etiological factor.
Collapse
|
38
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
39
|
Mast cells as protectors of health. J Allergy Clin Immunol 2018; 144:S4-S18. [PMID: 30468774 DOI: 10.1016/j.jaci.2018.10.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.
Collapse
|
40
|
Mast Cells Exert Anti-Inflammatory Effects in an IL10 -/- Model of Spontaneous Colitis. Mediators Inflamm 2018; 2018:7817360. [PMID: 29849494 PMCID: PMC5932457 DOI: 10.1155/2018/7817360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 12/14/2022] Open
Abstract
Mast cells are well established as divergent modulators of inflammation and immunosuppression, but their role in inflammatory bowel disease (IBD) remains to be fully defined. While previous studies have demonstrated a proinflammatory role for mast cells in acute models of chemical colitis, more recent investigations have shown that mast cell deficiency can exacerbate inflammation in spontaneous colitis models, thus suggesting a potential anti-inflammatory role of mast cells in IBD. Here, we tested the hypothesis that in chronic, spontaneous colitis, mast cells are protective. We compared colitis and intestinal barrier function in IL10−/− mice to mast cell deficient/IL10−/− (double knockout (DKO): KitWsh/Wsh × IL10−/−) mice. Compared with IL10−/− mice, DKO mice exhibited more severe colitis as assessed by increased colitis scores, mucosal hypertrophy, intestinal permeability, and colonic cytokine production. PCR array analyses demonstrated enhanced expression of numerous cytokine and chemokine genes and downregulation of anti-inflammatory genes (e.g., Tgfb2, Bmp2, Bmp4, Bmp6, and Bmp7) in the colonic mucosa of DKO mice. Systemic reconstitution of DKO mice with bone marrow-derived mast cells resulted in significant amelioration of IL10−/−-mediated colitis and intestinal barrier injury. Together, the results presented here demonstrate that mast cells exert anti-inflammatory properties in an established model of chronic, spontaneous IBD. Given the previously established proinflammatory role of mast cells in acute chemical colitis models, the present findings provide new insight into the divergent roles of mast cells in modulating inflammation during different stages of colitis. Further investigation of the mechanism of the anti-inflammatory role of the mast cells may elucidate novel therapies.
Collapse
|
41
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. Inhibitory effects of methamphetamine on mast cell activation and cytokine/chemokine production stimulated by lipopolysaccharide in C57BL/6J mice. Exp Ther Med 2018; 15:3544-3550. [PMID: 29545881 PMCID: PMC5841010 DOI: 10.3892/etm.2018.5837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 01/09/2023] Open
Abstract
Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yao-Feng Jin
- Department of Pathology, The Second Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of The Health Ministry for Forensic Medicine, Key Laboratory of The Ministry of Education for Environment and Genes Related to Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
42
|
Costa MB, Mimura KKO, Freitas AA, Hungria EM, Sousa ALOM, Oliani SM, Stefani MMA. Mast cell heterogeneity and anti-inflammatory annexin A1 expression in leprosy skin lesions. Microb Pathog 2018; 118:277-284. [PMID: 29605649 DOI: 10.1016/j.micpath.2018.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Mast cells (MCs) have important immunoregulatory roles in skin inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory protein that can be expressed by mast cells, neutrophils, eosinophils, monocytes, epithelial and T cells. This study investigated MCs heterogeneity and ANXA1 expression in human dermatoses with special emphasis in leprosy. Sixty one skin biopsies from 2 groups were investigated: 40 newly diagnosed untreated leprosy patients (18 reaction-free, 11 type 1 reaction/T1R, 11 type 2 reaction/T2R); 21 patients with other dermatoses. Tryptase/try+ and chymase/chy + phenotypic markers and toluidine blue stained intact/degranulated MC counts/mm2 were evaluated. Try+/chy+ MCs and ANXA1 were identified by streptavidin-biotin-peroxidase immunostaining and density was reported. In leprosy, degranulated MCs outnumbered intact ones regardless of the leprosy form (from tuberculoid/TT to lepromatous/LL), leprosy reactions (reactional/reaction-free) and type of reaction (T1R/T2R). Compared to other dermatoses, leprosy skin lesions showed lower numbers of degranulated and intact MCs. Try+ MCs outnumbered chy+ in leprosy lesions (reaction-free/reactional, particularly in T2R), but not in other dermatoses. Compared to other dermatoses, ANXA1 expression, which is also expressed in mast cells, was higher in the epidermis of leprosy skin lesions, independently of reactional episode. In leprosy, higher MC degranulation and differential expression of try+/chy+ subsets independent of leprosy type and reaction suggest that the Mycobacterium leprae infection itself dictates the inflammatory MCs activation in skin lesions. Higher expression of ANXA1 in leprosy suggests its potential anti-inflammatory role to maintain homeostasis preventing tissue and nerve damage.
Collapse
Affiliation(s)
- Maurício B Costa
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, Brazil
| | - Kallyne K O Mimura
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil
| | - Aline A Freitas
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, Brazil
| | - Emerith M Hungria
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, Brazil
| | - Ana Lúcia O M Sousa
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, Brazil
| | - Sonia M Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil
| | - Mariane M A Stefani
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
43
|
Abstract
Mast cells are hematopoietic progenitor-derived, granule-containing immune cells that are widely distributed in tissues that interact with the external environment, such as the skin and mucosal tissues. It is well-known that mast cells are significantly involved in IgE-mediated allergic reactions, but because of their location, it has also been long hypothesized that mast cells can act as sentinel cells that sense pathogens and initiate protective immune responses. Using mast cell or mast cell protease-deficient murine models, recent studies by our groups and others indicate that mast cells have pleiotropic regulatory roles in immunological responses against pathogens. In this review, we discuss studies that demonstrate that mast cells can either promote host resistance to infections caused by bacteria and fungi or contribute to dysregulated immune responses that can increase host morbidity and mortality. Overall, these studies indicate that mast cells can influence innate immune responses against bacterial and fungal infections via multiple mechanisms. Importantly, the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, hence highlighting the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Center of functional genomics (C.U.R.Ge.F.), Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
Zein JG, Love TE, Erzurum SC. Asthma Is Associated with a Lower Risk of Sepsis and Sepsis-related Mortality. Am J Respir Crit Care Med 2017; 196:787-790. [PMID: 28530491 DOI: 10.1164/rccm.201608-1583le] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Thomas E Love
- 2 Case Western Reserve University School of Medicine Cleveland, Ohio
| | | |
Collapse
|
45
|
Garcia-Rodriguez KM, Goenka A, Alonso-Rasgado MT, Hernández-Pando R, Bulfone-Paus S. The Role of Mast Cells in Tuberculosis: Orchestrating Innate Immune Crosstalk? Front Immunol 2017; 8:1290. [PMID: 29089945 PMCID: PMC5650967 DOI: 10.3389/fimmu.2017.01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis causes more annual deaths globally than any other infectious disease. However, progress in developing novel vaccines, diagnostics, and therapies has been hampered by an incomplete understanding of the immune response to Mycobacterium tuberculosis (Mtb). While the role of many immune cells has been extensively explored, mast cells (MCs) have been relatively ignored. MCs are tissue resident cells involved in defense against bacterial infections playing an important role mediating immune cell crosstalk. This review discusses specific interactions between MCs and Mtb, their contribution to both immunity and disease pathogenesis, and explores their role in orchestrating other immune cells against infections.
Collapse
Affiliation(s)
- Karen M. Garcia-Rodriguez
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Anu Goenka
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Maria T. Alonso-Rasgado
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubiran”, Mexico City, Mexico
| | - Silvia Bulfone-Paus
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Utility of Assessing Cytokine Levels for the Differential Diagnosis of Pneumonia in a Pediatric Population. Pediatr Crit Care Med 2017; 18:e162-e166. [PMID: 28198756 DOI: 10.1097/pcc.0000000000001092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Although pneumonia is easily diagnosed, determining the causative agent is difficult due to low pathogen detection rates. We performed a prospective observational study to evaluate the utility of measuring inflammatory cytokine levels to discriminate between pneumonia caused by typical bacteria, respiratory syncytial virus, or Mycoplasma pneumoniae in a pediatric population. DESIGN Serum inflammatory cytokine levels at early stages of the disease were evaluated for pneumonia caused by the three different pathogenic microorganisms. SETTING The Children's Hospital of Zhejiang University School of Medicine, China. PATIENTS One hundred sixty-six patients with bacterial pneumonia, 182 with M. pneumonia, and 167 with respiratory syncytial virus pneumonia. MEASUREMENTS AND MAIN RESULTS The levels of interleukin-6 for pneumonia were significantly higher with typical bacteria than with either Mycoplasma pneumoniae or respiratory syncytial virus (p < 0.001). The area under the curve for serum concentrations of interleukin-6 was 0.997. A serum interleukin-6 level of greater than or equal to 93.0 pg/mL had 100.0% sensitivity and 99.14% specificity in discriminating bacterial pneumonia from respiratory syncytial virus pneumonia and Mycoplasma pneumoniae pneumonia. The interleukin-6 levels were higher in patients with Mycoplasma pneumoniae pneumonia than in those with respiratory syncytial virus pneumonia (p < 0.001). They also simultaneously had lower interleukin-10 levels than patients with respiratory syncytial virus pneumonia who had interleukin-10 levels comparable to those of patients with bacterial pneumonia, indicating a significant difference in the interleukin-6/interleukin-10 ratio between patients with Mycoplasma pneumoniae pneumonia and respiratory syncytial virus pneumonia (median interleukin-6/interleukin-10 ratio, 2.5 vs 0.5; p < 0.001). At an optimal cut-off value of 0.8, the interleukin-6/interleukin-10 ratio showed 90.3% sensitivity and 88.0% specificity. CONCLUSIONS These results suggest that interleukin-6 is a good biomarker for identifying bacterial pneumonia and that the interleukin-6/interleukin-10 ratio is an effective biomarker for discriminating Mycoplasma pneumoniae pneumonia from respiratory syncytial virus pneumonia.
Collapse
|
47
|
Michels KR, Zhang Z, Bettina AM, Cagnina RE, Stefanova D, Burdick MD, Vaulont S, Nemeth E, Ganz T, Mehrad B. Hepcidin-mediated iron sequestration protects against bacterial dissemination during pneumonia. JCI Insight 2017; 2:e92002. [PMID: 28352667 DOI: 10.1172/jci.insight.92002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gram-negative pneumonia is a dangerous illness, and bacterial dissemination to the bloodstream during the infection is strongly associated with death. Antibiotic resistance among the causative pathogens has resulted in diminishing treatment options against this infection. Hepcidin is the master regulator of extracellular iron availability in vertebrates, but its role in the context of host defense is undefined. We hypothesized that hepcidin-mediated depletion of extracellular iron during Gram-negative pneumonia protects the host by limiting dissemination of bacteria to the bloodstream. During experimental pneumonia, hepcidin was induced in the liver in an IL-6-dependent manner and mediated a rapid decline in plasma iron. In contrast, hepcidin-deficient mice developed a paradoxical increase in plasma iron during infection associated with profound susceptibility to bacteremia. Incubation of bacteria with iron-supplemented plasma enhanced bacterial growth in vitro, and systemic administration of iron to WT mice similarly promoted increased susceptibility to bloodstream infection. Finally, treatment with a hepcidin analogue restored hypoferremia in hepcidin-deficient hosts, mediated bacterial control, and improved outcomes. These data show hepcidin induction during pneumonia to be essential to preventing bacterial dissemination by limiting extracellular iron availability. Hepcidin agonists may represent an effective therapy for Gram-negative infections in patients with impaired hepcidin production or signaling.
Collapse
Affiliation(s)
| | - Zhimin Zhang
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | - R Elaine Cagnina
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Debora Stefanova
- Departments of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, California, USA
| | - Marie D Burdick
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sophie Vaulont
- INSERM U1016, Cochin Institute, Descartes University, Paris, France
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Borna Mehrad
- Departments of Microbiology, Immunology, and Cancer Biology.,Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Beirne B. Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
48
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
49
|
Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia. mBio 2016; 7:mBio.01397-16. [PMID: 27624128 PMCID: PMC5021805 DOI: 10.1128/mbio.01397-16] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae. Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood.
Collapse
|
50
|
Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res 2016; 174:60-76. [PMID: 26845625 DOI: 10.1016/j.trsl.2016.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes.
Collapse
Affiliation(s)
- Harvinder Virk
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|