1
|
Song X, Lei T, Cui N, Jin X, Huang Y, Shi Y, Zhao Z. A preliminary investigation on the protective effects of β-glucan and mannan induced trained immunity in pufferfish Takifugu obscurus. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110035. [PMID: 39577788 DOI: 10.1016/j.fsi.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Immune stimuli are able to trigger long-term protective effects through mechanisms of trained immunity, which has attracted increasing attention. Although the existence of trained immunity has evidenced in teleost fish, while there were no such reports in pufferfish (Takifugu obscurus) so far. Therefore, the present study aimed to evaluate the induction of β-glucan and mannan on the trained immunity and their protective efficacy against Vibrio harveyi re-stimulation in pufferfish. β-glucan and mannan induction of trained immunity in head-kidney primary leukocytes is accompanied by a strong increase in immediate ROS burst, cumulative NO production and lactate concentrations after V. harveyi re-stimulation. In addition, β-glucan and mannan-treated pufferfish exhibited reduced bacterial loads in multiple tissues, a rapid and long-term elevated inflammatory response in head kidney during secondary V. harveyi infection. Notably, immune receptors dectin-1 and dectin-2, and cytokines tnfsf14 and il-1β exhibited comparatively upregulation to the β-glucan training, while NK-lysin and faslg showed stronger response to the mannan training post V. harveyi stimulation, implying the different signaling pathway activated post β-glucan and mannan training. Subsequent markers for immune training including abundance of genes encoding glycolytic enzymes (hk1, pfkla, and ldha) and transcription factors (mtor and hif-1α), as well as increased acetylation levels were elevated in the β-glucan and mannan trained pufferfish, depicting heightened glycolysis following β-glucan and mannan training. These results collectively demonstrated that β-glucan and mannan both induced protective responses against V. harveyi infection probably through mediating distinct signaling pathway in pufferfish, and studies are underway to harness its potential applicability for prime and boost vaccination strategies.
Collapse
Affiliation(s)
- Xiaorui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Tianying Lei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Nan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xingkun Jin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
2
|
Yang J, Cui S, Shao B, Zhao Y, Wang Z, Liu Q, Zhang Y, Yang D. ScRNA-seq reveals trained immunity-engaged Th17 cell activation against Edwardsiella piscicida-induced intestinal inflammation in teleost. Microbiol Res 2024; 289:127912. [PMID: 39326350 DOI: 10.1016/j.micres.2024.127912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Mucosal immunity typically involves innate and adaptive immune cells, while the cellular mechanism of teleost's intestinal immune cells that engages gut homeostasis against bacterial infection remains largely unknown. Taking advantage of the enteric fish pathogen (Edwardsiella piscicida) infection-induced intestinal inflammation in turbot (Scophthalmus maximus), we find that β-glucan training could mitigate the bacterial infection-induced intestinal inflammation. Through single-cell transcriptome profiling and cellular function analysis, we identify that E. piscicida infection could tune down the activation of intestinal Th17 cells, while β-glucan-training could preserve the potential to amplify and restore the function of intestinal Th17 cells. Moreover, through pharmacological inhibitor treatment, we identify that Th17 cells are essential for ameliorating bacterial infection-induced intestinal inflammation in teleost. Taken together, these results suggest a new concept of trained immunity activation to regulate the intestinal Th17 cells' function, which might contribute to better developing strategies for maintaining gut homeostasis against bacterial infection.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Shu Cui
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Boning Shao
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbo Zhao
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
3
|
Waikhom D, Kezhedath J, Nediyirippil Suresh S, Bedekar MK, Varghese T, Prasad Kurcheti P, Kooloth Valappil R. Induction of trained immunity using β-glucan and its protective responses in Nile tilapia, Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105188. [PMID: 38677664 DOI: 10.1016/j.dci.2024.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Emerging and re-emerging diseases in fish cause drastic economic losses in the aquaculture sector. To combat the impact of disease outbreaks and prevent the emergence of infections in culture systems, understanding the advanced strategies for protecting fish against infections is inevitable in fish health research. Therefore, the present study aimed to evaluate the induction of trained immunity and its protective efficacy against Streptococcus agalactiae in tilapia. For this, Nile tilapia and the Tilapia head kidney macrophage primary culture were primed using β-glucan @200 μg/10 g body weight and 10 μg/mL respectively. Expression profiles of the markers of trained immunity and production of metabolites were monitored at different time points, post-priming and training, which depicted enhanced responsiveness. Higher lactate and lactate dehydrogenase (LDH) production in vitro suggests heightened glycolysis induced by priming of the cells using β-glucan. A survival rate of 60% was observed in β-glucan trained fish post challenge with virulent S. agalactiae at an LD50 of 2.6 × 107 cfu/ml, providing valuable insights into promising strategies of trained immunity for combating infections in fish.
Collapse
Affiliation(s)
- David Waikhom
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, 61, India
| | - Jeena Kezhedath
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, 61, India.
| | - Sooraj Nediyirippil Suresh
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, 61, India
| | - Megha Kadam Bedekar
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, 61, India
| | - Tincy Varghese
- Fish Nutrition, Physiology and Biochemistry Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, 61, India
| | - Pani Prasad Kurcheti
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, 61, India
| | - Rajendran Kooloth Valappil
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, 61, India
| |
Collapse
|
4
|
Wang Z, Liu Y, Hu J, You X, Yang J, Zhang Y, Liu Q, Yang D. Tissue-resident trained immunity in hepatocytes protects against septic liver injury in zebrafish. Cell Rep 2024; 43:114324. [PMID: 38850536 DOI: 10.1016/j.celrep.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Trained immunity is classically characterized by long-term functional reprogramming of innate immune cells to combat infectious diseases. Infection-induced organ injury is a common clinical severity phenotype of sepsis. However, whether the induction of trained immunity plays a role in protecting septic organ injury remains largely unknown. Here, through establishing an in vivo β-glucan training and lipopolysaccharide (LPS) challenge model in zebrafish larvae, we observe that induction of trained immunity could inhibit pyroptosis of hepatocytes to alleviate septic liver injury, with an elevated trimethyl-histone H3 lysine 4 (H3K4me3) modification that targets mitophagy-related genes. Moreover, we identify a C-type lectin domain receptor in zebrafish, named DrDectin-1, which is revealed as the orchestrator in gating H3K4me3 rewiring-mediated mitophagy activation and alleviating pyroptosis-engaged septic liver injury in vivo. Taken together, our results uncover tissue-resident trained immunity in maintaining liver homeostasis at the whole-animal level and offer an in vivo model to efficiently integrate trained immunity for immunotherapies.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanyuan Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Hu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Xinwei You
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
5
|
Boraschi D, Toepfer E, Italiani P. Innate and germline immune memory: specificity and heritability of the ancient immune mechanisms for adaptation and survival. Front Immunol 2024; 15:1386578. [PMID: 38903500 PMCID: PMC11186993 DOI: 10.3389/fimmu.2024.1386578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The immune memory is one of the defensive strategies developed by both unicellular and multicellular organisms for ensuring their integrity and functionality. While the immune memory of the vertebrate adaptive immune system (based on somatic recombination) is antigen-specific, encompassing the generation of memory T and B cells that only recognize/react to a specific antigen epitope, the capacity of vertebrate innate cells to remember past events is a mostly non-specific mechanism of adaptation. This "innate memory" can be considered as germline-encoded because its effector tools (such as innate receptors) do not need somatic recombination for being active. Also, in several organisms the memory-related information is integrated in the genome of germline cells and can be transmitted to the progeny for several generations, but it can also be erased depending on the environmental conditions. Overall, depending on the organism, its environment and its living habits, innate immune memory appears to be a mechanism for achieving better protection and survival against repeated exposure to microbes/stressful agents present in the same environment or occurring in the same anatomical district, able to adapt to changes in the environmental cues. The anatomical and functional complexity of the organism and its lifespan drive the generation of different immune memory mechanisms, for optimal adaptation to changes in the living/environmental conditions. The concept of innate immunity being non-specific needs to be revisited, as a wealth of evidence suggests a significant degree of specificity both in the primary immune reaction and in the ensuing memory-like responses. This is clearly evident in invertebrate metazoans, in which distinct scenarios can be observed, with both non-specific (immune enhancement) or specific (immune priming) memory-like responses. In the case of mammals, there is evidence that some degree of specificity can be attained in different situations, for instance as organ-specific protection rather than microorganism-specific reaction. Thus, depending on the challenges and conditions, innate memory can be non-specific or specific, can be integrated in the germline and transmitted to the progeny or be short-lived, thereby representing an exceptionally plastic mechanism of defensive adaptation for ensuring individual and species survival.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Stazione Zoologica Anton Dorhn, Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Application, Shenzhen, China
| | | | - Paola Italiani
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Stazione Zoologica Anton Dorhn, Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Application, Shenzhen, China
| |
Collapse
|
6
|
Xia N, Zhang Y, Zhu W, Su J. GCRV-II invades monocytes/macrophages and induces macrophage polarization and apoptosis in tissues to facilitate viral replication and dissemination. J Virol 2024; 98:e0146923. [PMID: 38345385 PMCID: PMC10949474 DOI: 10.1128/jvi.01469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/21/2024] [Indexed: 03/20/2024] Open
Abstract
Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.
Collapse
Affiliation(s)
- Ning Xia
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yanqi Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wentao Zhu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
7
|
Gomes MC, Brokatzky D, Bielecka MK, Wardle FC, Mostowy S. Shigella induces epigenetic reprogramming of zebrafish neutrophils. SCIENCE ADVANCES 2023; 9:eadf9706. [PMID: 37672585 PMCID: PMC10482349 DOI: 10.1126/sciadv.adf9706] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Trained immunity is a long-term memory of innate immune cells, generating an improved response upon reinfection. Shigella is an important human pathogen and inflammatory paradigm for which there is no effective vaccine. Using zebrafish larvae, we demonstrate that after Shigella training, neutrophils are more efficient at bacterial clearance. We observe that Shigella-induced protection is nonspecific and has differences with training by BCG and β-glucan. Analysis of histone ChIP-seq on trained neutrophils revealed that Shigella training deposits the active H3K4me3 mark on promoter regions of 1612 genes, dramatically changing the epigenetic landscape of neutrophils toward enhanced microbial recognition and mitochondrial ROS production. Last, we demonstrate that mitochondrial ROS plays a key role in enhanced antimicrobial activity of trained neutrophils. It is envisioned that signals and mechanisms we discover here can be used in other vertebrates, including humans, to suggest new therapeutic strategies involving neutrophils to control bacterial infection.
Collapse
Affiliation(s)
- Margarida C. Gomes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Magdalena K. Bielecka
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Kim SY, Lee KM, Kim KH. Differences between DNA vaccine and single-cycle viral vaccine in the ability of cross-protection against viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Vaccine 2023; 41:5580-5586. [PMID: 37517909 DOI: 10.1016/j.vaccine.2023.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Vaccination procedures can be stressful for fish and can bring severe side effects. Therefore, vaccines that can minimize the number of administrations and maximize cross-protection against multiple serotypes, genotypes, or even different species would be highly advantageous. In the present study, we investigated the cross-protective ability of two types of vaccines - viral hemorrhagic septicemia virus (VHSV) G protein-expressing DNA vaccine and G gene-deleted single-cycle VHSV genotype IVa (rVHSV-ΔG) vaccine - against both VHSV genotype Ia and infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). The results showed that rainbow trout immunized with VHSV genotype Ia G gene- or IVa G gene-expressing DNA vaccine were significantly protected against VHSV genotype Ia, but were not protected against IHNV. In contrast to the DNA vaccine, the single-cycle VHSV IVa vaccine induced significant protection against not only VHSV Ia but also IHNV. Considering no significant increase in ELISA titer and serum neutralization activity against IHNV in fish immunized with single-cycle VHSV IVa, the protection might be independent of humoral adaptive immunity. The scarcity of cytotoxic T cell epitopes between VHSV and IHNV suggested that the possibility of involvement of cytotoxic T cell-mediated cellular adaptive immunity would be low. The role of trained immunity (innate immune memory) in cross-protection should be further investigated.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Kyung Min Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
9
|
Carmona-Rocha E, Puig L. The biological basis of disease recurrence in psoriasis. Ital J Dermatol Venerol 2023; 158:279-291. [PMID: 37404193 DOI: 10.23736/s2784-8671.23.07583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Despite the amazing advances produced in our understanding of the pathogenesis of psoriasis, which have led to a therapeutic revolution, our knowledge of the mechanisms of relapse and elicitation of lesions is just starting to unravel. This narrative review tours the different cell types and mechanisms involved in the priming, maintenance, and relapse of psoriasis vulgaris. Our discussion includes dendritic cells, T cells, tissue resident memory cells and mast cells, with a foray into the epigenetic mechanisms of inflammatory memory in keratinocytes. Increasing knowledge is providing a glimpse of a potential therapeutic window of opportunity in psoriasis, providing long term remission and eventual modification of the natural history of the disease.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain -
| |
Collapse
|
10
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
11
|
Porter D, Peggs D, McGurk C, Martin SAM. In-vivo analysis of Protec™ and β-glucan supplementation on innate immune performance and intestinal health of rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108573. [PMID: 36720374 DOI: 10.1016/j.fsi.2023.108573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Functional diets are often given to fish during key stages to improve health through the interaction of the feed components with the host intestine. The additional factors added in these diets are known to modulate the immune response and as such may also offer protection against pathogenic challenges. The present study was undertaken to evaluate whether β-glucan supplementation for 6 weeks can alter the magnitude of immune response to immunological challenges and subsequently offer an improved innate immune response to bacterial challenge in rainbow trout. Two experimental diets were used to study these effects: a basic commercial diet supplemented with β-glucan and a commercially available functional diet (Protec™) that has β-glucan as a functional component in addition to other components were compared to a basic commercial control diet. No significant differences were observed in biometric data. Histological analysis revealed a significantly greater number of goblet cells in the fish fed Protec™ and β-glucan diets compared to those fed a control diet. Cell marker gene expression of distal intestine leucocytes indicated higher expression of T- and B-cells marker genes to both the β-glucan containing diets in comparison to control. The Protec™ diet demonstrated modulation of innate immune markers after 6 weeks of feeding with key antimicrobial genes (SAA, HAMP, IL-1β and TNFα) showing significant increases compared to the other diets. After stimulation with both PAMPs and an immune challenge with A. salmonicida fish fed the β-glucan diet and the Protec™ exhibited modulation of the innate immune response. An immune challenge with A. salmonicida was carried out to identify if dietary composition led to differences in the innate immune response of rainbow trout. Modulation of the magnitude of response in some immune genes (SAA, IL-1β and HAMP) was observed in both the distal intestine and head kidney in the Protec™ and β-glucan fed fish compared to those fed the control diet.
Collapse
Affiliation(s)
- D Porter
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24, 2TZ, UK
| | - D Peggs
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016, Stavanger, Norway
| | - C McGurk
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016, Stavanger, Norway
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24, 2TZ, UK.
| |
Collapse
|
12
|
He W, Kamely M, Wakaruk J, Goes EC, Korver DR, Barreda DR. Early-life β-glucan exposure enhances disease resilience of broiler chickens to a natural Clostridium perfringens infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104613. [PMID: 36496011 DOI: 10.1016/j.dci.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Necrotic enteritis (NE) is an economically important disease in poultry. Colonization by the opportunistic pathogen C. perfringens occurs early after hatch and induces host immune tolerance, which allows it to persist as part of the bird's commensal microflora. β-glucan, a yeast cell wall component, is well characterized for its immunomodulatory capacity, and is a strong driver of innate immune memory. In this study, we assessed the effectiveness of β-glucan to reduce severity of NE, when co-administered with heat-killed C. perfringens via intra-abdominal route at day 1 of age. We found that this early-life exposure in the presence of β-glucan did not reduce intestinal C. perfringens loads or lesion severity during a subsequent NE outbreak. However, it improved ileal morphology, prevented liver and spleen weight decline, and preserved feed efficiency in challenged birds. Molecular analyses revealed metabolic changes consistent with innate immune memory. Together, our results suggest that β-glucan can reduce the negative impacts of NE by influencing the context in which C. perfringens is first encountered.
Collapse
Affiliation(s)
- Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammad Kamely
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Emanuele C Goes
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Waikhom D, Kezhedath J, Krishnan R, Varghese T, Kurcheti PP, Valappil RK. Βeta-glucan stimulation induces trained immunity markers in common carp, Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2022; 131:855-861. [PMID: 36336239 DOI: 10.1016/j.fsi.2022.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Trained immunity refers to the memory acquired by innate immune cells, leading to cross-protection and non-specific responses to subsequent infection, thereby improving host survival. Trained immunity induction is a combined effect of immune signaling, metabolic changes, and epigenetic modifications. The present study evaluated the induction of markers of the phenomenon of trained immunity in common carp, which is trained using β-glucan. The mammalian target of rapamycin (mtor) and hypoxia-inducible factor (hif1α), the metabolic basis of trained immunity; the histone deacetylase (hdac7), one of the markers of epigenetic modifications, metabolic activity of activated cells and expression profiles of proinflammatory cytokines viz. il6a, tnfαa2, and ifnγ were targeted in the study and analyzed in vivo. Besides in vivo analysis, in vitro analysis of mtorc2, hif1α, hdac7, and ifnγ were analyzed. In vitro analyses were performed on head kidney macrophages isolated and maintained in L-15 media and double trained with β-glucan at 100μg/mL. The culture supernatant was collected at different time intervals and processed for expression studies. Healthy common carp were injected with β-glucan at 20 mg/kg body weight for training followed by a resting phase for 6 days and were restimulated with the same dose. Head kidney was collected from the fish post-induction as well as post-restimulation. The expression profile of mtorc2, hdac7, and hif1α were found elevated post-stimulation of β-glucan. Further, a significantly upregulated expression profile of proinflammatory cytokines (ifnγ, il6a and tnfαa2) was observed. Increased glycolysis in the cells post-β-glucan stimulation was confirmed by the high lactate and LDH production detected in the cell culture supernatant. Overall, the study revealed the expression profile of the trained immunity markers and the increased metabolic activity in cells induced with β-glucan, which further validates that the action of trained immunity is indispensable in fish on encounter with a potential ligand. The study supports the existing reports on trained immunity in teleost fish with evidence at the genomic level. However, further studies are required to understand the responses and actions of trained immune cells during infection in detail.
Collapse
Affiliation(s)
- David Waikhom
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400 061, India
| | - Jeena Kezhedath
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400 061, India.
| | - Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, South Korea
| | - Tincy Varghese
- Fish Nutrition, Physiology and Biochemistry Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400 061, India
| | - Pani Prasad Kurcheti
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400 061, India
| | - Rajendran Kooloth Valappil
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400 061, India
| |
Collapse
|
14
|
Petrie-Hanson L, Peterman AE(B. Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish. Pathogens 2022; 11:pathogens11101140. [PMID: 36297197 PMCID: PMC9607340 DOI: 10.3390/pathogens11101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Beta glucan exposure induced trained immunity in channel catfish that conferred long-term protection against Edwardsiella ictaluri and Edwardsiella piscicida infections one month post exposure. Flow cytometric analyses demonstrated that isolated macrophages and neutrophils phagocytosed higher amounts of E. ictaluri and E. piscicida. Beta glucan induced changes in the distribution of histone modifications in the monomethylation and trimethylation of H3K4 and modifications in the acetylation and trimethylation of H3K27. KEGG pathway analyses revealed that these modifications affected expressions of genes controlling phagocytosis, phagosome functions and enhanced immune cell signaling. These analyses correlate the histone modifications with gene functions and to the observed enhanced phagocytosis and to the increased survival following bacterial challenge in channel catfish. These data suggest the chromatin reconfiguration that directs trained immunity as demonstrated in mammals also occurs in channel catfish. Understanding the mechanisms underlying trained immunity can help us design prophylactic and non-antibiotic based therapies and develop broad-based vaccines to limit bacterial disease outbreaks in catfish production.
Collapse
|
15
|
Mu D, Yang J, Jiang Y, Wang Z, Chen W, Huang J, Zhang Y, Liu Q, Yang D. Single-Cell Transcriptomic Analysis Reveals Neutrophil as Orchestrator during β-Glucan–Induced Trained Immunity in a Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2022; 209:783-795. [DOI: 10.4049/jimmunol.2200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/05/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Trained immunity defines long-term memory of innate immunity based on transcriptional, epigenetic, and metabolic modifications of myeloid cells, which are characterized by elevated proinflammatory responses toward homologous or heterologous secondary stimuli in mammals. However, the evidence of trained immunity-associated immune cells and its molecular mechanism in teleost fish remains largely unknown. In this study, we established a trained immunity activation model in turbot (Scophthalmus maximus) and found that administration with β-glucan induces protection against a bacterial infection. Through single-cell RNA sequencing to annotate 14 clusters of innate and adaptive immune cells, as well as two clusters of blood cells, from head kidney and spleen, respectively, we characterized that neutrophil displays cardinal features of trained immunity by analyzing the expression abundance of trained immunity database–related genes at the single-cell level. Subsequently, through establishing an in vivo training and in vitro neutrophil challenge model, we found that the trained neutrophils exhibit a significant elevation of the IL-1R signaling pathway after Edwardsiella piscicida infection. Furthermore, inhibition of neutrophil’s IL-1R signaling pathway through anakinra treatment impaired the heightened production of reactive oxygen, nitrogen species, lactate, as well as the neutrophil extracellular traps formation and bacterial killing ability. Taken together, these findings characterized neutrophil as the orchestrator to express features of trained immunity, and revealed that the IL-1R signaling pathway plays a critical role in induction of trained immunity for bacterial clearance in teleost fish.
Collapse
Affiliation(s)
- Di Mu
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin Yang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Jiang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuang Wang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weijie Chen
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianchang Huang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- †Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qin Liu
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- ‡Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; and
- §Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Dahai Yang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- §Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
16
|
Darroch H, Astin JW, Hall CJ. Towards a new model of trained immunity: Exposure to bacteria and β-glucan protects larval zebrafish against subsequent infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104400. [PMID: 35367515 DOI: 10.1016/j.dci.2022.104400] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Once thought to be a feature exclusive to lymphocyte-driven adaptive immunity, immune memory has also been shown to operate as part of the innate immune system following infection to provide an elevated host response to subsequent pathogenic challenge. This evolutionarily conserved process, termed 'trained immunity', enables cells of the innate immune system to 'remember' previous pathogen encounters and mount stronger responses to the same, or different, pathogens after returning to a non-activated state. Here we show that challenging larval zebrafish, that exclusively rely on innate immunity, with live or heat-killed Salmonella typhimurium provides protection to subsequent infection with either Salmonella typhimurium or Streptococcus iniae, that lasts for at least 12 days. We also show that larvae injected with β-glucan, the well-known trigger of trained immunity, demonstrate enhanced survival to similar live bacterial infections, a phenotype supported by increased cxcl8 expression and neutrophil recruitment to the infection site. These results support the conservation of a trained immunity-like phenotype in larval zebrafish and provide a foundation to exploit the experimental attributes of larval zebrafish to further understand this form of immunological memory.
Collapse
Affiliation(s)
- Hannah Darroch
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Juste RA, Ferreras-Colino E, de la Fuente J, Domínguez M, Risalde MA, Domínguez L, Cabezas-Cruz A, Gortázar C. Heat inactivated mycobacteria, alpha-gal and zebra fish: insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunol Suppl 2022; 167:139-153. [PMID: 35752944 DOI: 10.1111/imm.13529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in nonspecific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the etiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,NySA. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, 28220 Majadahonda, Madrid, Spain
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| |
Collapse
|
18
|
Angulo M, Angulo C. Trained immunity against diseases in domestic animals. Acta Trop 2022; 229:106361. [PMID: 35149041 DOI: 10.1016/j.actatropica.2022.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
Abstract
Trained immunity is a biological concept that has been demonstrated in different animal species, including human beings. Evidences indicate that innate immune cells can be trained and have a "memory". Under this concept, studies have shown that a first stimulus can potentiate immune responses upon a second one or protect upon homologous or heterologous pathogenic challenges. Research progress on trained innate immunity in mouse models and human beings has provided key information of this phenomenon. In domestic animals, this concept offers a heterologous protection against diseases. Recent studies in domestic animals have demonstrated that trained immunity is induced even by mucosal routes rather than only parenteral routes, as previously evidenced in mice and humans. This situation has led to a major breakthrough in the biotechnology field. Remarkably, the recent first proof-of-concept in calves and goats provides a reality beyond trained immunity as an affordable immunobiotechnological approach to control diseases. Currently, several responses to questions that have been deciphered in mouse and humans seem different in domestic animals; even these differences have been observed among animal species and breeds, which open new questions and challenges. The information of mechanistic studies in domestic animals based on the trained immunity paradigm has not been integrated before; therefore, it needs to be discussed and accurately presented. Moreover, prospects should be defined and biotechnological perspectives provided to promote research and development (R&D) to become a near reality in domestic animal, so this is the main objective of the review.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México.
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México.
| |
Collapse
|
19
|
Gao Y, Zhang JG, Liu ZZ, Ma K, Lin XQ, Zhang JB, Chen W, Yang YJ. Extracellular trap can be trained as a memory response. Virulence 2022; 13:471-482. [PMID: 35254202 PMCID: PMC8903778 DOI: 10.1080/21505594.2022.2046950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Extracellular trap (ET) appears as a double-edged sword for the host since it participates in host immune defense by entrapping pathogens, while excessive ET release also contributes to various diseases progression including atherosclerosis, cancer, and autoimmune disorders. A better understanding of ET formation and regulation will be beneficial for developing strategies for infection control and ET-associated disease treatment. There is some evidence indicating that prior infection can enhance extracellular killing. Neutrophils from cancer or sepsis are predisposed to generate ET. It is reasonable to suspect that ET may be trained to form as a memory response, just like cytokine memory response termed “trained immunity.” The mice were intraperitoneally injected with heat-killed Candida albicans (HK-C. albicans), 3 days later bone marrow-derived macrophages (BMDM) were isolated and challenged with Clostridium perfringens as a second stimulation. We found that HK-C. albicans priming enhanced ET formation upon Clostridium perfringens infection, accompanied by increased extracellular killing capacity. Mannan priming also enhanced ET formation. Since ETs memory was induced in chicken PBMC, ETs memory may be evolutionarily conserved. Moreover, mTOR was required for ETs memory response. Collectively, this study showed that ETs can be trained as a memory response and indicated that memory property of ETs should be considered during the understanding of recurrent infection and ET-associated disorders.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian-Gang Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Qi Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
20
|
Abstract
Over the past decades, tremendous success in the treatment of psoriasis has been achieved using biologics, such as neutralizing antibodies against TNF/TNFR, IL-23, and IL-17A/IL-17RA. Although psoriatic skin lesions appear to resolve after treatment with these biologics, lesions often recur after therapy is discontinued or during therapy. Memory T cells residing in the skin have been considered as the major driver of psoriasis relapse. However, whether structural cells in the skin such as keratinocytes and fibroblasts are involved in the relapse of psoriasis is unknown. In this review, we outline the therapeutic rationale of biologics used in the treatment of psoriasis, summarize different clinical features of psoriasis relapse on the basis of preclinical and clinical data, and specifically discuss how memory T cells and structural cells in the skin are involved in psoriasis relapse. Finally, we discuss the future challenges in the basic or clinical research on psoriasis.
Collapse
|
21
|
Petit J, de Bruijn I, Goldman MRG, van den Brink E, Pellikaan WF, Forlenza M, Wiegertjes GF. β-Glucan-Induced Immuno-Modulation: A Role for the Intestinal Microbiota and Short-Chain Fatty Acids in Common Carp. Front Immunol 2022; 12:761820. [PMID: 35069532 PMCID: PMC8770818 DOI: 10.3389/fimmu.2021.761820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Dietary supplementation of fish with β-glucans has been commonly associated with immunomodulation and generally accepted as beneficial for fish health. However, to date the exact mechanisms of immunomodulation by β-glucan supplementation in fish have remained elusive. In mammals, a clear relation between high-fibre diets, such as those including β-glucans, and diet-induced immunomodulation via intestinal microbiota and associated metabolites has been observed. In this study, first we describe by 16S rRNA sequencing the active naive microbiota of common carp intestine. Based on the abundance of the genus Bacteroides, well known for their capacity to degrade and ferment carbohydrates, we hypothesize that common carp intestinal microbiota could ferment dietary β-glucans. Indeed, two different β-glucan preparations (curdlan and MacroGard®) were both fermented in vitro, albeit with distinct fermentation dynamics and distinct production of short-chain fatty acids (SCFA). Second, we describe the potential immunomodulatory effects of the three dominant SCFAs (acetate, butyrate, and propionate) on head kidney leukocytes, showing effects on both nitric oxide production and expression of several cytokines (il-1b, il-6, tnfα, and il-10) in vitro. Interestingly, we also observed a regulation of expression of several gpr40L genes, which were recently described as putative SCFA receptors. Third, we describe how a single in vivo oral gavage of carp with MacroGard® modulated simultaneously, the expression of several pro-inflammatory genes (il-1b, il-6, tnfα), type I IFN-associated genes (tlr3.1, mx3), and three specific gpr40L genes. The in vivo observations provide indirect support to our in vitro data and the possible role of SCFAs in β-glucan-induced immunomodulation. We discuss how β-glucan-induced immunomodulatory effects can be explained, at least in part, by fermentation of MacroGard® by specific bacteria, part of the naive microbiota of common carp intestine, and how a subsequent production of SFCAs could possibly explain immunomodulation by β-glucan via SCFA receptors present on leukocytes.
Collapse
Affiliation(s)
- Jules Petit
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology-The Royal Netherlands Academy of Arts and Sciences, (NIOO-KNAW), Wageningen, Netherlands
| | - Mark R G Goldman
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Erik van den Brink
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wilbert F Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
22
|
Verwoolde MB, Arts J, Jansen CA, Parmentier HK, Lammers A. Transgenerational Effects of Maternal Immune Activation on Specific Antibody Responses in Layer Chickens. Front Vet Sci 2022; 9:832130. [PMID: 35252424 PMCID: PMC8891521 DOI: 10.3389/fvets.2022.832130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Activation of the maternal immune system may affect innate and adaptive immune responses in the next generation and may therefore have implications for vaccine efficacy and dietary immune modulation by feed additives. However, transgenerational effects on immune responses in chickens have been investigated to a limited extend. The present study investigated effects of intratracheal (i.t) specific and aspecific immune activation of laying hens on specific antibody production in the next generation. In two experiments laying hens received intratracheally an immune stimulus with human serum albumin (HuSA) or lipopolysaccharide (LPS). In experiment 1, hatchlings of the immune activated hens were at 4 weeks i.t. immunized with HuSA or HuSA+LPS. Maternal immune activation with LPS increased HuSA specific IgY and IgM responses in offspring. These results suggest a transgenerational effect of the maternal immune system on the specific antibody response in the next generation. In experiment 2 hatchlings received either β-glucan-enriched feed or control feed and were i.t. immunized with HuSA. Maternal immune activation with LPS decreased IgY anti-HuSA responses after HuSA immunization within hatchlings that received β-glucan enriched feed. The results of Experiment 2 suggest a transgenerational link between the innate immune system of mother and specific antibody responses in offspring. Despite variabilities in the outcomes of the two experiments, the observations of both suggest a link between the maternal innate immune system and the immune system of the offspring. Furthermore, our results may imply that maternal activation of the innate immune system can influence immune modulating dietary interventions and vaccine strategies in the next generation.
Collapse
Affiliation(s)
- Michel B. Verwoolde
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Joop Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Aart Lammers
| |
Collapse
|
23
|
Krishnan R, Jang YS, Oh MJ. Beta glucan induced immune priming protects against nervous necrosis virus infection in sevenband grouper. FISH & SHELLFISH IMMUNOLOGY 2022; 121:163-171. [PMID: 35017048 DOI: 10.1016/j.fsi.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/28/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we studied the effect of β-glucan on the activation of antiviral immune responses against nervous necrosis virus (NNV) taking into consideration the role of innate immune training. Sevenband grouper primary macrophages showed an attenuated proinflammatory response and elevated antiviral response to NNV infection. In vitro, priming of β-glucan enhanced macrophage viability against NNV infection which is associated with the activation of sustained inflammatory cytokines gene expression. Observations were clear to understand that NLR Family CARD Domain Containing 3 (NLRC3) and caspase-1 activation and subsequent IL-1β production were reduced in β-glucan-primed macrophages. Subsequent markers for training including Lactate and abundance of HIF-1α were elevated in the cells following training. However, the lactate dehydrogenase (LDH) concentrations remained stable among the β-glucan stimulated infected and uninfected groups suggesting similar macrophage health in both groups. In vivo, the NNV-infected fish primed with β-glucan had a higher survival rate (60%) than the control NNV-infected group (40%). Our findings demonstrate that β-glucan induced protective responses against NNV infection and studies are underway to harness its potential applicability for prime and boost vaccination strategies.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| | - Yo-Seb Jang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| |
Collapse
|
24
|
Petit J, Wiegertjes GF. Conservation of members of the free fatty acid receptor gene family in common carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104240. [PMID: 34461159 DOI: 10.1016/j.dci.2021.104240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Accumulating evidence supports the crucial role intestinal microbiota and their metabolites play in the homeostasis of organisms. An important class of metabolites that have been shown to affect the immune system are short chain fatty acids (SCFAs). These SCFAs can affect the host cells via passive diffusion or via ligation to receptors, among others G-protein coupled receptor (GPR) 41 and 43. GPR41 and GPR43 are both part of a family of GPR40-related receptors. Mammalian studies have shown an important role for GPR41 and GPR43 in the modulation of immune responses by SCFAs. However, up till date, no validated coding sequences for orthologues of these SCFA receptors have been published for teleost fish. We used genomic resources and cDNA cloning, to identify and validate ten coding sequences for gpr40L genes in common carp. Phylogenetic analysis showed a division into three subclasses, putatively named class a, b and c, and showed the common carp genes had a closer phylogenetic relationship to mammalian GPR43 than to mammalian GPR41. Synteny analysis revealed a clear conservation of syntenic relationships between gpr40L in the genomes of spotted gar and common carp with the relevant region in the human genome. This conservation of synteny validates the genes identified, as gpr40L. Finally, presence of gpr40L genes was investigated in silico for genomes of 25 different, mostly teleost, fish species largely confirming the observations for gpr40L of common carp with regards to both, subdivision in three subclasses a-c and conservation of synteny. Our data provide an important first step towards an understanding of the role and function of receptors for SCFAs and immunomodulation in fish.
Collapse
Affiliation(s)
- Jules Petit
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research, PO Box 338, 6700, AH, Wageningen, the Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research, PO Box 338, 6700, AH, Wageningen, the Netherlands.
| |
Collapse
|
25
|
Dalum AS, Kraus A, Khan S, Davydova E, Rigaudeau D, Bjørgen H, López-Porras A, Griffiths G, Wiegertjes GF, Koppang EO, Salinas I, Boudinot P, Rességuier J. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Front Immunol 2021; 12:769901. [PMID: 34880866 PMCID: PMC8647647 DOI: 10.3389/fimmu.2021.769901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts ("Percomorphs"), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills.
Collapse
Affiliation(s)
- Alf S. Dalum
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Aurora Kraus
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Shanawaz Khan
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Erna Davydova
- Department of Biosciences, BMB, University of Oslo, Oslo, Norway
| | | | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Gareth Griffiths
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Erling O. Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julien Rességuier
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Trained Immunity as an Adaptive Branch of Innate Immunity. Int J Mol Sci 2021; 22:ijms221910684. [PMID: 34639025 PMCID: PMC8508929 DOI: 10.3390/ijms221910684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The concept of trained immunity has become one of the most interesting and potentially commercially and clinically relevant ideas of current immunology. Trained immunity is realized by the epigenetic reprogramming of non-immunocompetent cells, primarily monocytes/macrophages and natural killer (NK) cells, and is less specific than adaptive immunity; therefore, it may cross-protect against other infectious agents. It remains possible, however, that some of the observed changes are simply caused by increased levels of immune reactions resulting from supplementation with immunomodulators, such as glucan. In addition, the question of whether we can talk about trained immunity in cells with a life span of only few days is still unresolved.
Collapse
|
27
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunological memory in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2021; 115:95-103. [PMID: 34058353 DOI: 10.1016/j.fsi.2021.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Immunological memory can be regarded as the key aspect of adaptive immunity, i.e. a specific response to first contact with an antigen, which in mammals is determined by the properties of T, B and NK cells. Re-exposure to the same antigen results in a more rapid response of the activated specific cells, which have a unique property that is the immunological memory acquired upon first contact with the antigen. Such a state of immune activity is also to be understood as related to "altered behavior of the immune system" due to genetic alterations, presumably maintained independently of the antigen. It also indicates a possible alternative mechanism of maintaining the immune state at a low level of the immune response, "directed" by an antigen or dependent on an antigen, associated with repeated exposure to the same antigen from time to time, as well as the concept of innate immune memory, associated with epigenetic reprogramming of myeloid cells, i.e. macrophages and NK cells. Studies on Teleostei have provided evidence for the presence of immunological memory determined by T and B cells and a secondary response stronger than the primary response. Research has also demonstrated that in these animals macrophages and NK-like cells (similar to mammalian NK cells) are able to respond when re-exposed to the same antigen. Regardless of previous reports on immunological memory in teleost fish, many reactions and mechanisms related to this ability require further investigation. The very nature of immunological memory and the activity of cells involved in this process, in particular macrophages and NK-like cells, need to be explained. This paper presents problems associated with adaptive and innate immune memory in teleost fish and characteristics of cells associated with this ability.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Gora, Poland
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
28
|
Keating ST, Groh L, van der Heijden CDCC, Rodriguez H, Dos Santos JC, Fanucchi S, Okabe J, Kaipananickal H, van Puffelen JH, Helder L, Noz MP, Matzaraki V, Li Y, de Bree LCJ, Koeken VACM, Moorlag SJCFM, Mourits VP, Domínguez-Andrés J, Oosting M, Bulthuis EP, Koopman WJH, Mhlanga M, El-Osta A, Joosten LAB, Netea MG, Riksen NP. The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan. Cell Rep 2021; 31:107548. [PMID: 32320649 PMCID: PMC7184679 DOI: 10.1016/j.celrep.2020.107548] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by β-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of β-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory. Set7 regulates enhanced cytokine production in trained immunity in vitro Set7 knockout mice are unable to mount trained immunity against endotoxin challenge Set7 modulates cellular respiration in β-glucan-trained macrophages Set7-dependent histone methylation regulates MDH2 and SDHB in trained cells
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo Groh
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte D C C van der Heijden
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanah Rodriguez
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Jéssica C Dos Santos
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Fanucchi
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Gene Expression and Biophysics Group, CSIR Biosciences, Pretoria, South Africa
| | - Jun Okabe
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jelmer H van Puffelen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies P Noz
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School, 30625 Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Musa Mhlanga
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia; Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong City, Hong Kong SAR
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Maas RM, Deng Y, Dersjant-Li Y, Petit J, Verdegem MCJ, Schrama JW, Kokou F. Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci Rep 2021; 11:8221. [PMID: 33859242 PMCID: PMC8050056 DOI: 10.1038/s41598-021-87408-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.
Collapse
Affiliation(s)
- Roel M. Maas
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yale Deng
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Jules Petit
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc C. J. Verdegem
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan W. Schrama
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Fotini Kokou
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
30
|
Miccoli A, Picchietti S, Fausto AM, Scapigliati G. Evolution of immune defence responses as incremental layers among Metazoa. EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1849435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A. Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - S. Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - A. M. Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - G. Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| |
Collapse
|
31
|
Epidermal Club Cells in Fishes: A Case for Ecoimmunological Analysis. Int J Mol Sci 2021; 22:ijms22031440. [PMID: 33535506 PMCID: PMC7867084 DOI: 10.3390/ijms22031440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermal club cells (ECCs), along with mucus cells, are present in the skin of many fishes, particularly in the well-studied Ostariophysan family Cyprinidae. Most ECC-associated literature has focused on the potential role of ECCs as a component of chemical alarm cues released passively when a predator damages the skin of its prey, alerting nearby prey to the presence of an active predator. Because this warning system is maintained by receiver-side selection (senders are eaten), there is want of a mechanism to confer fitness benefits to the individual that invests in ECCs to explain their evolutionary origin and maintenance in this speciose group of fishes. In an attempt to understand the fitness benefits that accrue from investment in ECCs, we reviewed the phylogenetic distribution of ECCs and their histochemical properties. ECCs are found in various forms in all teleost superorders and in the chondrostei inferring either early or multiple independent origins over evolutionary time. We noted that ECCs respond to several environmental stressors/immunomodulators including parasites and pathogens, are suppressed by immunomodulators such as testosterone and cortisol, and their density covaries with food ration, demonstrating a dynamic metabolic cost to maintaining these cells. ECC density varies widely among and within fish populations, suggesting that ECCs may be a convenient tool with which to assay ecoimmunological tradeoffs between immune stress and foraging activity, reproductive state, and predator-prey interactions. Here, we review the case for ECC immune function, immune functions in fishes generally, and encourage future work describing the precise role of ECCs in the immune system and life history evolution in fishes.
Collapse
|
32
|
Verwoolde MB, van den Biggelaar RHGA, de Vries Reilingh G, Arts JAJ, van Baal J, Lammers A, Jansen CA. Innate immune training and metabolic reprogramming in primary monocytes of broiler and laying hens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103811. [PMID: 32750399 DOI: 10.1016/j.dci.2020.103811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Recently, we have reported trained innate immunity in laying chicken monocytes. In the present study, we further investigated trained innate immunity of monocytes in layers and broilers. Monocytes of both breeds isolated from blood were trained in vitro with β-glucan, rec-chicken IL-4 or a combination of both, and restimulated with lipopolysaccharide (LPS), after which inflammation and metabolism-related responses were measured. Training of laying and broiler hen monocytes resulted in increased mRNA levels of IL-1β, iNOS and HIF-1α, but enhanced surface expression of CD40 and NO production was only observed in layers. Our in vitro study demonstrates that monocytes from different genetic backgrounds can be trained. However, the observed differences suggest a differential effect on immune functionality associated with innate training. Whether these differences in immune functions between layers and broilers have effect on disease resistance remains to be elucidated.
Collapse
Affiliation(s)
- Michel B Verwoolde
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands; Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - Robin H G A van den Biggelaar
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ger de Vries Reilingh
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Joop A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - Christine A Jansen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
33
|
Kwak T, Wang F, Deng H, Condamine T, Kumar V, Perego M, Kossenkov A, Montaner LJ, Xu X, Xu W, Zheng C, Schuchter LM, Amaravadi RK, Mitchell TC, Karakousis GC, Mulligan C, Nam B, Masters G, Hockstein N, Bennett J, Nefedova Y, Gabrilovich DI. Distinct Populations of Immune-Suppressive Macrophages Differentiate from Monocytic Myeloid-Derived Suppressor Cells in Cancer. Cell Rep 2020; 33:108571. [PMID: 33378668 PMCID: PMC7809772 DOI: 10.1016/j.celrep.2020.108571] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we report that functional heterogeneity of macrophages in cancer could be determined by the nature of their precursors: monocytes (Mons) and monocytic myeloid-derived suppressor cells (M-MDSCs). Macrophages that are differentiated from M-MDSCs, but not from Mons, are immune suppressive, with a genomic profile matching that of M-MDSCs. Immune-suppressive activity of M-MDSC-derived macrophages is dependent on the persistent expression of S100A9 protein in these cells. S100A9 also promotes M2 polarization of macrophages. Tissue-resident- and Mon-derived macrophages lack expression of this protein. S100A9-dependent immune-suppressive activity of macrophages involves transcription factor C/EBPβ. The presence of S100A9-positive macrophages in tumor tissues is associated with shorter survival in patients with head and neck cancer and poor response to PD-1 antibody treatment in patients with metastatic melanoma. Thus, this study reveals the pathway of the development of immune-suppressive macrophages and suggests an approach to their selective targeting.
Collapse
Affiliation(s)
| | - Fang Wang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hui Deng
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Vinit Kumar
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | - Xiaowei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Tara Miller Melanoma Center, Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center and Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Mulligan
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Brian Nam
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Gregory Masters
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Neil Hockstein
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Joseph Bennett
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | | | | |
Collapse
|
34
|
Carballo C, Mateus AP, Maya C, Mantecón L, Power DM, Manchado M. Microalgal extracts induce larval programming and modify growth and the immune response to bioactive treatments and LCDV in Senegalese sole post-larvae. FISH & SHELLFISH IMMUNOLOGY 2020; 106:263-272. [PMID: 32750543 DOI: 10.1016/j.fsi.2020.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Immunostimulants are key molecules in aquaculture since they heighten defensive responses and protection against pathogens. The present study investigated the treatment of Senegalese sole larvae with a whole-cell crude extract of the microalgae Nannochloropsis gaditana (Nanno) and programming of growth and the immune system. Larvae at hatch were treated with the Nanno extracts for 2 h and thereafter were cultivated for 32 days post-hatch (dph) in parallel with an untreated control group (CN). Dry weight and length at 21 days post-hatch (dph) were higher in post-larvae of the Nanno than CN group. These differences in weight were later confirmed at 32 dph. To evaluate changes in the immune response associated with Nanno-programming treatments, the Nanno and CN post-larvae were supplied with two bioactive compounds yeast β-glucan (Y) and a microalga extract from the diatom Phaeodactylum tricornutum (MAe). The bioactive treatments were administrated to the treatment groups through the live prey (artemia metanauplii, 200 artemia mL-1) enriched for 30 min with MAe or Y (at 2 mg mL-1 SW) or untreated prey in the case of the negative control (SW). The effect of the treatments was assessed by monitoring gene expression, enzyme activity and mortality over 48 h. The post-larvae sole supplied with the bioactive compounds Y and MAe had increased mortality at 48 h compared to the SW group. Moreover, mortality was higher in Nanno-programmed than CN post-larvae. Lysozyme and total anti-protease enzymatic activities at 6 and 24 h after the start of the trial were significantly higher in the Nanno and MAe supplied post-larvae compared to their corresponding control (CN and SW, respectively). Immune gene transcripts revealed that il1b, cxc10 and mx mRNAs were significantly different between Nanno and CN post-larvae at 6 and 24 h. Moreover, the expression of il1b, tnfa, cxc10, irf3, irf7 and mx was modified by bioactive treatments but with temporal differences. At 48 h after bioactive treatments, Y and SW post-larvae were challenged with the lymphocystis disease virus (LCDV). No difference existed in viral copy number between programming or bioactive treatment groups at 3, 6 and 24 h after LCDV challenge although the total number of copies reduced with time. Gene expression profiles in the LCDV-challenged group indicated that post-larvae triggered a wide defensive response compared to SWC 24 h after challenge, which was modulated by programming and bioactive compound treatments. Cluster analysis of expressed genes separated the SW and Y groups indicating long-lasting effects of yeast β-glucan treatment in larvae. A noteworthy interaction between Nanno-programming and Y-treatment on the regulation of antiviral genes was observed. Overall, the data demonstrate the capacity of microalgal crude extracts to modify sole larval plasticity with long-term effects on larval growth and the immune responses.
Collapse
Affiliation(s)
- Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain; Universidad de Málaga, Departamento de Microbiologia, Campus de Teatinos, 29071, Malaga, Spain
| | - Ana Patricia Mateus
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde da Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Claudia Maya
- Fitoplanton Marino S.L., 11500, El Puerto de Santa, María, Spain
| | - Lalia Mantecón
- Fitoplanton Marino S.L., 11500, El Puerto de Santa, María, Spain
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain; Crecimiento Azul, Centro IFAPA El Toruño, Unidad Asociada al CSIC, Spain.
| |
Collapse
|
35
|
Peñaranda DS, Bäuerl C, Tomás-Vidal A, Jover-Cerdá M, Estruch G, Pérez Martínez G, Martínez Llorens S. Intestinal Explant Cultures from Gilthead Seabream ( Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet. Int J Mol Sci 2020; 21:ijms21207584. [PMID: 33066515 PMCID: PMC7588912 DOI: 10.3390/ijms21207584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/03/2023] Open
Abstract
The interaction between diet and intestinal health has been widely discussed, although in vivo approaches have reported limitations. The intestine explant culture system developed provides an advantage since it reduces the number of experimental fish and increases the time of incubation compared to similar methods, becoming a valuable tool in the study of the interactions between pathogenic bacteria, rearing conditions, or dietary components and fish gut immune response. The objective of this study was to determine the influence of the total substitution of fish meal by plants on the immune intestinal status of seabream using an ex vivo bacterial challenge. For this aim, two growth stages of fish were assayed (12 g): phase I (90 days), up to 68 g, and phase II (305 days), up to 250 g. Additionally, in phase II, the effects of long term and short term exposure (15 days) to a plant protein (PP) diet were determined. PP diet altered the mucosal immune homeostasis, the younger fish being more sensitive, and the intestine from fish fed short-term plant diets showed a higher immune response than with long-term feeding. Vibrio alginolyticus (V. alginolyticus) triggered the highest immune and inflammatory response, while COX-2 expression was significantly induced by Photobacterium damselae subsp. Piscicida (P. damselae subsp. Piscicida), showing a positive high correlation between the pro-inflammatory genes encoding interleukin 1β (IL1-β), interleukin 6 (IL-6) and cyclooxygenase 2(COX-2).
Collapse
Affiliation(s)
- David Sánchez Peñaranda
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
- Correspondence: ; Tel.: +34-9638-79434
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Consejo Superior de Investigaciones Científicas (CSIC) (Spanish National Research Council), 46980 Paterna, Valencia, Spain; (C.B.); (G.P.M.)
| | - Ana Tomás-Vidal
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| | - Miguel Jover-Cerdá
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| | - Guillem Estruch
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| | - Gaspar Pérez Martínez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Consejo Superior de Investigaciones Científicas (CSIC) (Spanish National Research Council), 46980 Paterna, Valencia, Spain; (C.B.); (G.P.M.)
| | - Silvia Martínez Llorens
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| |
Collapse
|
36
|
Paris S, Chapat L, Pasin M, Lambiel M, Sharrock TE, Shukla R, Sigoillot-Claude C, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan-Induced Trained Immunity in Dogs. Front Immunol 2020; 11:566893. [PMID: 33162983 PMCID: PMC7581789 DOI: 10.3389/fimmu.2020.566893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Several observations in the world of comparative immunology in plants, insects, fish and eventually mammals lead to the discovery of trained immunity in the early 2010's. The first demonstrations provided evidence that innate immune cells were capable of developing memory after a first encounter with some pathogens. Trained immunity in mammals was initially described in monocytes with the Bacille Calmette-Guerin vaccine (BCG) or prototypical agonists like β-glucans. This phenomenon relies on epigenetic and metabolic modifications leading to an enhanced secretion of inflammatory cytokines when the host encounters homologous or heterologous pathogens. The objective of our research was to investigate the trained immunity, well-described in mouse and human, in other species of veterinary importance. For this purpose, we adapted an in vitro model of trained innate immunity in dogs. Blood enriched monocytes were stimulated with β-glucans and we confirmed that it induced an increased production of pro-inflammatory and anti-microbial compounds in response to bacterial stimuli. These results constitute the first demonstration of trained immunity in dogs and confirm its signatures in other mammalian species, with an implication of cellular mechanisms similar to those described in mice and humans regarding cellular epigenetics and metabolic regulations.
Collapse
Affiliation(s)
- Simon Paris
- Boehringer Ingelheim Animal Health, R&D, Lyon, France.,Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Étoile, France.,Département Biologie, Faculté des Sciences et Techniques, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Marion Pasin
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Manon Lambiel
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | | | | | | | - Jeanne-Marie Bonnet
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Étoile, France
| | - Hervé Poulet
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Ludovic Freyburger
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Étoile, France
| | | |
Collapse
|
37
|
Paris S, Chapat L, Martin-Cagnon N, Durand PY, Piney L, Cariou C, Bergamo P, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs. Front Immunol 2020; 11:564497. [PMID: 33162977 PMCID: PMC7580252 DOI: 10.3389/fimmu.2020.564497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of trained immunity have been extensively described in vitro and the beneficial effects are starting to be deciphered in in vivo settings. Prototypical compounds inducing trained immunity, such as β-glucans, act through epigenetic reprogramming and metabolic changes of innate immune cells. The recent advances in this field have opened new areas for the development of Trained immunity-based adjuvants (TIbAs). In this study, we assessed in dogs the potential immune training effects of β-glucans as well as their capacity to enhance the adaptive immune response of an inactivated rabies vaccine (Rabisin®). Injection of β-glucan from Euglena gracilis was performed 1 month before vaccination with Rabisin® supplemented or not with the same β-glucan used as adjuvant. Trained innate immunity parameters were assessed during the first month of the trial. The second phase of the study was focused on the ability of β-glucan to enhance adaptive immune responses measured by multiple immunological parameters. B and T-cell specific responses were monitored to evaluate the immunogenicity of the rabies vaccine adjuvanted with β-glucan or not. Our preliminary results support that adjuvantation of Rabisin® vaccine with β-glucan elicit a higher B-lymphocyte immune response, the prevailing factor of protection against rabies. β-glucan also tend to stimulate the T cell response as shown by the cytokine secretion profile of PBMCs re-stimulated ex vivo. Our data are providing new insights on the impact of trained immunity on the adaptive immune response to vaccines in dogs. The administration of β-glucan, 1 month before or simultaneously to Rabisin® vaccination give promising results for the generation of new TIbA candidates and their potential to provide increased immunogenicity of specific vaccines.
Collapse
Affiliation(s)
- Simon Paris
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
- Département Biologie, Faculté des Sciences et Techniques, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | - Carine Cariou
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | | | - Jeanne-Marie Bonnet
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | - Hervé Poulet
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Ludovic Freyburger
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | | |
Collapse
|
38
|
Zhang K, Liu X, Li X, Liu Y, Yu H, Liu J, Zhang Q. Antibacterial functions of a novel fish-egg lectin from spotted knifejaw (Oplegnathus punctatus) during host defense immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103758. [PMID: 32502504 DOI: 10.1016/j.dci.2020.103758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Fish-egg lectins (FELs) have been identified in several teleost species and have been proved to play important roles in innate immune system against pathogen infection. In this study a novel fish-egg lectin (OppFEL) was identified from spotted knifejaw (Oplegnathus punctatus), and the expression patterns against bacterial infection was characterized. The amino acid sequence is highly homologous to other teleost FELs, containing five repeats of the conserved TECPR domain. Expression of OppFEL was widely observed in examined tissues, with the most abundant transcripts observed in gill, showing a pattern of tissue specific expression. The OppFEL expression was significantly up-regulated following a Gram-negative bacterium (Vibrio anguillarum) challenge in vivo, suggesting participation in host antibacterial immune responses. Recombinant OppFEL protein (rOppFEL) possessed calcium dependent binding capacities and agglutination to four Gram-negative bacterium and two Gram-positive bacterium. Sugar binding assay revealed that rOppFEL specifically bound to insoluble lipopolysaccharide and peptidoglycan. In addition, rOppFEL was also proved to have hemagglutinating activity against erythrocytes from Mus musculus, O. punctatus, Sebastes schlegelii and Paralichthys olivaceus. Dual-luciferase analysis showed that overexpression of OppFEL could suppress the activity of NF-κB in a dose dependent manner. Taken together, these results suggest that OppFEL is a unique fish-egg lectin that possesses apparent immunomodulating property and is involved in host defense against pathogens invasion.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xuemei Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao -National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao -National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao -National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
39
|
Geller A, Yan J. Could the Induction of Trained Immunity by β-Glucan Serve as a Defense Against COVID-19? Front Immunol 2020; 11:1782. [PMID: 32760409 PMCID: PMC7372085 DOI: 10.3389/fimmu.2020.01782] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
As the SARS-CoV-2 virus wreaks havoc on the populations, health care infrastructures and economies of nations around the world, finding ways to protect health care workers and bolster immune responses in the general population while we await an effective vaccine will be the difference between life and death for many people. Recent studies show that innate immune populations may possess a form of memory, termed Trained Immunity (TRIM), where innate immune cells undergo metabolic, mitochondrial, and epigenetic reprogramming following exposure to an initial stimulus that results in a memory phenotype of enhanced immune responses when exposed to a secondary, heterologous, stimulus. Throughout the literature, it has been shown that the induction of TRIM using such inducers as the BCG vaccine and β-glucan can provide protection through altered immune responses against a range of viral infections. Here we hypothesize a potential role for β-glucan in decreasing worldwide morbidity and mortality due to COVID-19, and posit several ideas as to how TRIM may actually shape the observed epidemiological phenomena related to COVID-19. We also evaluate the potential effects of β-glucan in relation to the immune dysregulation and cytokine storm observed in COVID-19. Ultimately, we hypothesize that the use of oral β-glucan in a prophylactic setting could be an effective way to boost immune responses and abrogate symptoms in COVID-19, though clinical trials are necessary to confirm the efficacy of this treatment and to further examine differential effects of β-glucan's from various sources.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
40
|
Cornet V, Douxfils J, Mandiki SNM, Kestemont P. Early-life infection with a bacterial pathogen increases expression levels of innate immunity related genes during adulthood in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103672. [PMID: 32151677 DOI: 10.1016/j.dci.2020.103672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Early-life exposure to different stressors can lead to various consequences on fish health status in later life development. To evaluate the effects of Aeromonas salmonicida achromogenes infection in the early-life on immunity in adulthood, zebrafish were either early-infected at 18 days post-fertilization (dpf), chronically infected from 18 to 35 dpf, or late infected at 35 dpf and then grown up to 61 dpf to be re-infected with the pathogen. The age of first infection was shown to influence both, level and timing of the immune gene expressions, especially for inflammation-related genes. In addition, evidence for an innate immune memory in zebrafish primarily infected with the pathogen at 35 dpf and re-infected at 61dpf provide new insights to consolidate the concept of a "trained" innate immunity in fish.
Collapse
Affiliation(s)
- Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium.
| | - Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium
| |
Collapse
|
41
|
Smith NC, Christian SL, Woldemariam NT, Clow KA, Rise ML, Andreassen R. Characterization of miRNAs in Cultured Atlantic Salmon Head Kidney Monocyte-Like and Macrophage-Like Cells. Int J Mol Sci 2020; 21:ijms21113989. [PMID: 32498303 PMCID: PMC7312525 DOI: 10.3390/ijms21113989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages are among the first cells to respond to infection and disease. While microRNAs (miRNAs) are involved in the process of monocyte-to-macrophage differentiation in mammals, less is known in teleost fish. Here, Atlantic salmon head kidney leukocytes (HKLs) were used to study the expression of miRNAs in response to in vitro culture. The morphological analysis of cultures showed predominantly monocyte-like cells on Day 1 and macrophage-like cells on Day 5, suggesting that the HKLs had differentiated from monocytes to macrophages. Day 5 HKLs also contained a higher percentage of phagocytic cells. Small RNA sequencing and qPCR analysis were applied to examine the miRNA diversity and expression. There were 370 known mature Atlantic salmon miRNAs in HKLs. Twenty-two miRNAs (15 families) were downregulated while 44 miRNAs (25 families) were upregulated on Day 5 vs. Day 1. Mammalian orthologs of many of the differentially expressed (DE) miRNAs are known to regulate macrophage activation and differentiation, while the teleost-specific miR-2188, miR-462 and miR-731 were also DE and are associated with immune responses in fish. In silico predictions identified several putative target genes of qPCR-validated miRNAs associated with vertebrate macrophage differentiation. This study identified Atlantic salmon miRNAs likely to influence macrophage differentiation, providing important knowledge for future functional studies.
Collapse
Affiliation(s)
- Nicole C. Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
- Correspondence: ; Tel.: +1-709-864-7478
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| |
Collapse
|
42
|
Ni X, Lai Y. Keratinocyte: A trigger or an executor of psoriasis? J Leukoc Biol 2020; 108:485-491. [PMID: 32170886 DOI: 10.1002/jlb.5mr0120-439r] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/21/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by abnormal proliferation/differentiation of keratinocytes and excessive immune cell infiltration in the dermis and epidermis. Over the past 2 decades, immune cells have been considered as the main driver of psoriasis because the neutralizing antibodies targeting the IL-23/IL-17 axis that regulates cross-talk between dendritic cells and T cells achieve tremendous success in the treatment of psoriasis. However, whether keratinocyte would be a driver of psoriasis or just an executor in response to immune cells is still under debate. In this review, we focus on the recent advances in the identification of keratinocyte as a trigger of psoriasis, summarize on the role of keratinocytes in self-perpetuating loop to maintain inflammation in psoriasis, and then discuss the possible roles of keratinocytes in the relapse of psoriasis.
Collapse
Affiliation(s)
- Xinhui Ni
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|