1
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
2
|
Shao X, He L, Liu Y. The effects of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents: a meta-analysis. Neural Regen Res 2025; 20:1513-1520. [PMID: 39075917 PMCID: PMC11624860 DOI: 10.4103/nrr.nrr-d-23-01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 01/27/2024] [Indexed: 07/31/2024] Open
Abstract
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the PubMed, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using ReviewManager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference (MD; before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants (60 children and 471 adolescents, 10.9-16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I2 test provided by ReviewManager software. The meta-analysis showed that there was no heterogeneity among the studies (P = 0.67, I2 = 0.00%). The combined effect of the interventions was significant (MD = 2.88, 95% CI: 1.53-4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This meta-analysis was registered at PROSPERO (registration ID: CRD42023439408).
Collapse
Affiliation(s)
- Xueyun Shao
- Physical Education School, Shenzhen University, Shenzhen, Guangdong Province, China
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| | - Longfei He
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| | - Yangyang Liu
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Wang C, Cheng F, Han Z, Yan B, Liao P, Yin Z, Ge X, Li D, Zhong R, Liu Q, Chen F, Lei P. Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis. Neural Regen Res 2025; 20:518-532. [PMID: 38819064 PMCID: PMC11317932 DOI: 10.4103/nrr.nrr-d-23-01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Liao
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongrong Zhong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
5
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Gai K, Yang M, Chen W, Hu C, Luo X, Smith A, Xu C, Zhang H, Li X, Shi W, Sun W, Lin F, Song Y. Development of Neural Cells and Spontaneous Neural Activities in Engineered Brain-Like Constructs for Transplantation. Adv Healthc Mater 2025; 14:e2401419. [PMID: 39252653 DOI: 10.1002/adhm.202401419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Stem cell transplantation has demonstrated efficacy in treating neurological disorders by generating functional cells and secreting beneficial factors. However, challenges remain for current cell suspension injection therapy, including uncontrollable cell distribution, the potential for tumor formation, and limited ability to treat spatial defects. Therefore, implants with programmable cell development, tailored 3D structure, and functionalized biomaterials have the potential to both control cell distribution and reduce or heal spatial defects. Here, a biomimetic material system comprising gelatin, alginate, and fibrinogen has been developed for neural progenitor cell constructs using 3D printing. The resulting constructs exhibit excellent formability, stability, and developmental functions in vitro, as well as biocompatibility and integration into the hippocampus in vivo. The controllability, reproducibility, and material composition of the constructs show potential for use in personalized stem cell-based therapies for defective neurological disorders, neural development research, disease modeling, and organoid-derived intelligent systems.
Collapse
Affiliation(s)
- Ke Gai
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengliu Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100084, China
| | - Wei Chen
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenyujun Hu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiao Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Austin Smith
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Caizhe Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hefeng Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei Shi
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100084, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Song
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Zhou W, Jiang X, Gao J. Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury. Asian J Pharm Sci 2024; 19:100965. [PMID: 39640057 PMCID: PMC11617990 DOI: 10.1016/j.ajps.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of blood supply to an organ. This process can exacerbate the initial tissue damage, leading to further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells. The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and plasma in I/R injury has been actively investigated. Therefore, this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs. We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy of EVs can be enhanced through various engineering strategies. Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies. Finally, we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.
Collapse
Affiliation(s)
- Weihang Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Liu Y, Li J, Guo H, Fang C, Yang Q, Qin W, Wang H, Xian Y, Yan X, Yin B, Zhang K. Nanomaterials for stroke diagnosis and treatment. iScience 2024; 27:111112. [PMID: 39502285 PMCID: PMC11536039 DOI: 10.1016/j.isci.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Nanomaterials and nanotechnology innovations possess unique physicochemical properties that present new opportunities in the realm of stroke detection, diagnosis, and treatment. This comprehensive review explores the utilization of nanomaterials in the diagnosis and treatment of strokes, encompassing recent advancements in computed tomography (CT), magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as groundbreaking applications of nanomaterials and bionanomaterials in drug delivery systems and brain tissue repair. Additionally, this review meticulously examines significant challenges such as biocompatibility toxicity and long-term safety, proposing potential strategies to surmount these obstacles. Moreover, this review delves into the application of nanomaterials to improve the clinical diagnosis of stroke patients, elucidates the potential of nanotechnology in post-stroke therapy, and identifies future research directions and potential clinical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, No. 18 Jinfeng Road, Zhuhai 519087, Guangdong Province, China
| | - Huaijuan Guo
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Chao Fang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Qiaoling Yang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Wen Qin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Hai Wang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Yong Xian
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People’s Hospital, Affiliated Hospital of Xuzhou Medical University, Suining 221200, China
| | - Binxu Yin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| |
Collapse
|
9
|
Wang CC, Hu XM, Long YF, Huang HR, He Y, Xu ZR, Qi ZQ. Treatment of Parkinson's disease model with human umbilical cord mesenchymal stem cell-derived exosomes loaded with BDNF. Life Sci 2024; 356:123014. [PMID: 39182566 DOI: 10.1016/j.lfs.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
AIMS Parkinson's disease (PD) is a common neurodegenerative disease that has received widespread attention; however, current clinical treatments can only relieve its symptoms, and do not effectively protect dopaminergic neurons. The purpose of the present study was to investigate the therapeutic effects of human umbilical cord mesenchymal stem cell-derived exosomes loaded with brain-derived neurotrophic factor (BDNF-EXO) on PD models and to explore the underlying mechanisms of these effects. MAIN METHODS 6-Hydroxydopamine was used to establish in vivo and in vitro PD models. Western blotting, flow cytometry, and immunofluorescence were used to detect the effects of BDNF-EXO on apoptosis and ferroptosis in SH-SY5Y cells. The in vivo biological distribution of BDNF-EXO was detected using a small animal imaging system, and dopaminergic neuron improvements in brain tissue were detected using western blotting, immunofluorescence, immunohistochemistry, and Nissl and Prussian blue staining. KEY FINDINGS BDNF-EXO effectively suppressed 6-hydroxydopamine-induced apoptosis and ferroptosis in SH-SY5Y cells. Following intravenous administration, BDNF-EXO crossed the blood-brain barrier to reach afflicted brain regions in mice, leading to a notable enhancement in neuronal survival. Furthermore, BDNF-EXO modulated microtubule-associated protein 2 and phosphorylated tau expression, thereby promoting neuronal cytoskeletal stability. Additionally, BDNF-EXO bolstered cellular antioxidant defense mechanisms through the activation of the nuclear factor erythroid 2-related factor 2 signaling pathway, thereby conferring neuroprotection against damage. SIGNIFICANCE The novel drug delivery system, BDNF-EXO, had substantial therapeutic effects in both in vivo and in vitro PD models, and may represent a new treatment strategy for PD.
Collapse
Affiliation(s)
- Can-Can Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Xin-Mei Hu
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yu-Fei Long
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Hong-Ri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, Guangxi 530000, China
| | - Ying He
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
10
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
11
|
Rivero-Pino F, Marquez-Paradas E, Montserrat-de la Paz S. Food-derived vesicles as immunomodulatory drivers: Current knowledge, gaps, and perspectives. Food Chem 2024; 457:140168. [PMID: 38908244 DOI: 10.1016/j.foodchem.2024.140168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid-bound membrane vesicles released from cells, containing active compounds, which can be found in different foods. In this review, the role of food-derived vesicles (FDVs) as immunomodulatory drivers is summarized, with a focus on sources, isolation techniques and yields, as well as bioavailability and potential health implications. In addition, gaps and perspectives detected in this research field have been highlighted. FDVs have been efficiently extracted from different sources, and differential ultracentrifugation seems to be the most adequate isolation technique, with yields ranging from 108 to 1014 EV particles/mL. Animal studies show promising results in how these FDVs might regulate different pathways related to inflammation. Further investigation on the production of stable components in a cost-effective way, as well as human studies demonstrating safety and health-promoting properties, since scarce information has been reported until now, in the context of modulating the immune system are needed.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| |
Collapse
|
12
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
13
|
Li T, Zhang L, Wang P, Yu J, Zhong J, Tang Q, Zhu T, Chen K, Li F, Hong P, Wei J, Sun X, Ji G, Song B, Zhu J. Extracellular vesicles from neural stem cells safeguard neurons in intracerebral hemorrhage by suppressing reactive astrocyte neurotoxicity. Cell Rep 2024; 43:114854. [PMID: 39395173 DOI: 10.1016/j.celrep.2024.114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Extracellular vesicles (EVs) derived from stem cells have shown therapeutic potential in various diseases, but their use in treating neurological disorders remains limited. In this study, we observed neurotoxic activation of reactive astrocytes and lipoapoptosis pathways in both mice and patients with intracerebral hemorrhage (ICH) and found that EVs derived from neural stem cells (EVs-NSC) could suppress this activation. Using loss- and gain-of-function approaches, we identified interferon-β (IFNβ) as a key regulator in neurotoxic activation of astrocytes. In addition, we demonstrated that the microRNA (miRNA) miR-124-3p within EVs-NSC degrades IFNβ mRNA and inhibits ELOVL1 expression via miRNA-coding sequence (CDS) and miRNA-3' UTR binding mechanisms, respectively. This dual action likely reduces astrocyte neurotoxicity by lowering saturated lipid secretion. These mechanisms enable EVs-NSC or miR-124-3p overexpression to inhibit astrocyte neurotoxicity, reduce neural damage, and promote recovery in ICH models, offering strategies for treating neurological disorders by targeting neurotoxic reactive astrocytes.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Jingyu Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Kezhu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Fengshi Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Jiachen Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xicai Sun
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai 201318, China
| | - Guangchao Ji
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai 201318, China
| | - Bin Song
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China.
| |
Collapse
|
14
|
Zhang Q, Liu J, Wang W, Lin W, Ahmed W, Duan W, Huang S, Zhu Z, Chen L. The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair. Exp Neurol 2024; 380:114882. [PMID: 39002923 DOI: 10.1016/j.expneurol.2024.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiale Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wenjie Duan
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Yılmaz E, Baltaci SB, Mogulkoc R, Baltaci AK. The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review. Nutr Neurosci 2024; 27:1025-1041. [PMID: 38151886 DOI: 10.1080/1028415x.2023.2296165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults. AIM This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular. METHOD Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database. CONCLUSIONS The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.
Collapse
Affiliation(s)
- Esen Yılmaz
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | | - Rasim Mogulkoc
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | |
Collapse
|
16
|
Chen C, Chang ZH, Yao B, Liu XY, Zhang XW, Liang J, Wang JJ, Bao SQ, Chen MM, Zhu P, Li XH. 3D printing of interferon γ-preconditioned NSC-derived exosomes/collagen/chitosan biological scaffolds for neurological recovery after TBI. Bioact Mater 2024; 39:375-391. [PMID: 38846528 PMCID: PMC11153920 DOI: 10.1016/j.bioactmat.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
The reconstruction of neural function and recovery of chronic damage following traumatic brain injury (TBI) remain significant clinical challenges. Exosomes derived from neural stem cells (NSCs) offer various benefits in TBI treatment. Numerous studies confirmed that appropriate preconditioning methods enhanced the targeted efficacy of exosome therapy. Interferon-gamma (IFN-γ) possesses immunomodulatory capabilities and is widely involved in neurological disorders. In this study, IFN-γ was employed for preconditioning NSCs to enhance the efficacy of exosome (IFN-Exo, IE) for TBI. miRNA sequencing revealed the potential of IFN-Exo in promoting neural differentiation and modulating inflammatory responses. Through low-temperature 3D printing, IFN-Exo was combined with collagen/chitosan (3D-CC-IE) to preserve the biological activity of the exosome. The delivery of exosomes via biomaterial scaffolds benefited the retention and therapeutic potential of exosomes, ensuring that they could exert long-term effects at the injury site. The 3D-CC-IE scaffold exhibited excellent biocompatibility and mechanical properties. Subsequently, 3D-CC-IE scaffold significantly improved impaired motor and cognitive functions after TBI in rat. Histological results showed that 3D-CC-IE scaffold markedly facilitated the reconstruction of damaged neural tissue and promoted endogenous neurogenesis. Further mechanistic validation suggested that IFN-Exo alleviated neuroinflammation by modulating the MAPK/mTOR signaling pathway. In summary, the results of this study indicated that 3D-CC-IE scaffold engaged in long-term pathophysiological processes, fostering neural function recovery after TBI, offering a promising regenerative therapy avenue.
Collapse
Affiliation(s)
- Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiao-Yin Liu
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
17
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
18
|
Nouri Z, Barfar A, Perseh S, Motasadizadeh H, Maghsoudian S, Fatahi Y, Nouri K, Yektakasmaei MP, Dinarvand R, Atyabi F. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases. J Nanobiotechnology 2024; 22:463. [PMID: 39095888 PMCID: PMC11297769 DOI: 10.1186/s12951-024-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
Neurodegenerative disorders are complex, progressive, and life-threatening. They cause mortality and disability for millions of people worldwide. Appropriate treatment for neurodegenerative diseases (NDs) is still clinically lacking due to the presence of the blood-brain barrier (BBB). Developing an effective transport system that can cross the BBB and enhance the therapeutic effect of neuroprotective agents has been a major challenge for NDs. Exosomes are endogenous nano-sized vesicles that naturally carry biomolecular cargoes. Many studies have indicated that exosome content, particularly microRNAs (miRNAs), possess biological activities by targeting several signaling pathways involved in apoptosis, inflammation, autophagy, and oxidative stress. Exosome content can influence cellular function in healthy or pathological ways. Furthermore, since exosomes reflect the features of the parental cells, their cargoes offer opportunities for early diagnosis and therapeutic intervention of diseases. Exosomes have unique characteristics that make them ideal for delivering drugs directly to the brain. These characteristics include the ability to pass through the BBB, biocompatibility, stability, and innate targeting properties. This review emphasizes the role of exosomes in alleviating NDs and discusses the associated signaling pathways and molecular mechanisms. Furthermore, the unique biological features of exosomes, making them a promising natural transporter for delivering various medications to the brain to combat several NDs, are also discussed.
Collapse
Affiliation(s)
- Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Barfar
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Nouri
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
20
|
Li J, Li X, Li X, Liang Z, Wang Z, Shahzad KA, Xu M, Tan F. Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37497-37512. [PMID: 38980910 DOI: 10.1021/acsami.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhanping Liang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
- The Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
- The Royal College of Surgeons of England, London WC2A3PE, U.K
| |
Collapse
|
21
|
Song J, Zhou D, Cui L, Wu C, Jia L, Wang M, Li J, Ya J, Ji X, Meng R. Advancing stroke therapy: innovative approaches with stem cell-derived extracellular vesicles. Cell Commun Signal 2024; 22:369. [PMID: 39039539 PMCID: PMC11265156 DOI: 10.1186/s12964-024-01752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Stroke is a leading cause of mortality and long-term disability globally, with acute ischemic stroke (AIS) being the most common subtype. Despite significant advances in reperfusion therapies, their limited time window and associated risks underscore the necessity for novel treatment strategies. Stem cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic approach due to their ability to modulate the post-stroke microenvironment and facilitate neuroprotection and neurorestoration. This review synthesizes current research on the therapeutic potential of stem cell-derived EVs in AIS, focusing on their origin, biogenesis, mechanisms of action, and strategies for enhancing their targeting capacity and therapeutic efficacy. Additionally, we explore innovative combination therapies and discuss both the challenges and prospects of EV-based treatments. Our findings reveal that stem cell-derived EVs exhibit diverse therapeutic effects in AIS, such as promoting neuronal survival, diminishing neuroinflammation, protecting the blood-brain barrier, and enhancing angiogenesis and neurogenesis. Various strategies, including targeting modifications and cargo modifications, have been developed to improve the efficacy of EVs. Combining EVs with other treatments, such as reperfusion therapy, stem cell transplantation, nanomedicine, and gut microbiome modulation, holds great promise for improving stroke outcomes. However, challenges such as the heterogeneity of EVs and the need for standardized protocols for EV production and quality control remain to be addressed. Stem cell-derived EVs represent a novel therapeutic avenue for AIS, offering the potential to address the limitations of current treatments. Further research is needed to optimize EV-based therapies and translate their benefits to clinical practice, with an emphasis on ensuring safety, overcoming regulatory hurdles, and enhancing the specificity and efficacy of EV delivery to target tissues.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, England
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
22
|
Si Y, Hayat MA, Hu J. NSPCs-ES: mechanisms and functional impact on central nervous system diseases. Biomed Mater 2024; 19:042011. [PMID: 38916246 DOI: 10.1088/1748-605x/ad5819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Patients with central neuronal damage may suffer severe consequences, but effective therapies remain unclear. Previous research has established the transplantation of neural stem cells that generate new neurons to replace damaged ones. In a new field of scientific research, the extracellular secretion of NPSCs (NSPCs-ES) has been identified as an alternative to current chemical drugs. Many preclinical studies have shown that NSPCs-ES are effective in models of various central nervous system diseases (CNS) injuries, from maintaining functional structures at the cellular level to providing anti-inflammatory functions at the molecular level, as well as improving memory and motor functions, reducing apoptosis in neurons, and mediating multiple signaling pathways. The NSPC-ES can travel to the damaged tissue and exert a broad range of therapeutic effects by supporting and nourishing damaged neurons. However, gene editing and cell engineering techniques have recently improved therapeutic efficacy by modifying NSPCs-ES. Consequently, future research and application of NSPCs-ES may provide a novel strategy for the treatment of CNS diseases in the future. In this review, we summarize the current progress on these aspects.
Collapse
Affiliation(s)
- Yu Si
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Muhammad Abid Hayat
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
23
|
Zhou W, Wang X, Dong Y, Gao P, Zhao X, Wang M, Wu X, Shen J, Zhang X, Lu Z, An W. Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer's Disease, Parkinson's Disease, and stroke. Theranostics 2024; 14:3358-3384. [PMID: 38855176 PMCID: PMC11155406 DOI: 10.7150/thno.95953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Wantong Zhou
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Yumeng Dong
- Capital Medical University, 10 Xitoutiao, Youanmenwai Street, Beijing 100069, China
| | - Peifen Gao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Mengxia Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlin An
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
24
|
Zhu Z, Zhang Q, Feng J, Zebaze Dongmo S, Zhang Q, Huang S, Liu X, Zhang G, Chen L. Neural Stem Cell-Derived Small Extracellular Vesicles: key Players in Ischemic Stroke Therapy - A Comprehensive Literature Review. Int J Nanomedicine 2024; 19:4279-4295. [PMID: 38766658 PMCID: PMC11102074 DOI: 10.2147/ijn.s451642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke, being a prominent contributor to global disability and mortality, lacks an efficacious therapeutic approach in current clinical settings. Neural stem cells (NSCs) are a type of stem cell that are only found inside the nervous system. These cells can differentiate into various kinds of cells, potentially regenerating or restoring neural networks within areas of the brain that have been destroyed. This review begins by providing an introduction to the existing therapeutic approaches for ischemic stroke, followed by an examination of the promise and limits associated with the utilization of NSCs for the treatment of ischemic stroke. Subsequently, a comprehensive overview was conducted to synthesize the existing literature on the underlying processes of neural stem cell-derived small extracellular vesicles (NSC-sEVs) transplantation therapy in the context of ischemic stroke. These mechanisms encompass neuroprotection, inflammatory response suppression, and endogenous nerve and vascular regeneration facilitation. Nevertheless, the clinical translation of NSC-sEVs is hindered by challenges such as inadequate targeting efficacy and insufficient content loading. In light of these limitations, we have compiled an overview of the advancements in utilizing modified NSC-sEVs for treating ischemic stroke based on current methods of extracellular vesicle modification. In conclusion, examining NSC-sEVs-based therapeutic approaches is anticipated to be prominent in both fundamental and applied investigations about ischemic stroke.
Collapse
Affiliation(s)
- Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jia Feng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Sonia Zebaze Dongmo
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qianqian Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaowen Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Guilong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
25
|
Xia T, Liu Z, Du Y, Zhang J, Liu X, Ouyang J, Xu P, Chen B. Bifunctional iRGD-Exo-DOX crosses the blood-brain barrier to target central nervous system lymphoma. Biochem Pharmacol 2024; 223:116138. [PMID: 38494062 DOI: 10.1016/j.bcp.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Central nervous system lymphoma (CNSL) is a type of hematological tumor. Treatment of CNSL is difficult due to the existence of the blood-brain barrier (BBB). Here, we used exosomes (Exos), a type of extracellular vesicle, and iRGD to construct a new drug carrier system and use it to load doxorubicin (DOX). The results of in vitro and in vivo experiments showed that the iRGD-Exo-DOX system can efficiently and securely transport DOX through the BBB and target tumor cells. The results suggest that iRGD-Exo-DOX may cross the BBB through brain microvascular endothelial cell-mediated endocytosis. Together, our study indicates an impactful treatment of central nervous system tumors.
Collapse
Affiliation(s)
- Tian Xia
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Zhenyu Liu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Ying Du
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Jiejie Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xu Liu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Jian Ouyang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China.
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China; Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China.
| |
Collapse
|
26
|
Zhang Q, Huang S, Liu X, Wang W, Zhu Z, Chen L. Innovations in Breaking Barriers: Liposomes as Near-Perfect Drug Carriers in Ischemic Stroke Therapy. Int J Nanomedicine 2024; 19:3715-3735. [PMID: 38681090 PMCID: PMC11046314 DOI: 10.2147/ijn.s462194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Liposomes, noted for their tunable particle size, surface customization, and varied drug delivery capacities, are increasingly acknowledged in therapeutic applications. These vesicles exhibit surface flexibility, enabling the incorporation of targeting moieties or peptides to achieve specific targeting and avoid lysosomal entrapment. Internally, their adaptable architecture permits the inclusion of a broad spectrum of drugs, contingent on their solubility characteristics. This study thoroughly reviews liposome fabrication, surface modifications, and drug release mechanisms post-systemic administration, with a particular emphasis on drugs crossing the blood-brain barrier (BBB) to address lesions. Additionally, the review delves into recent developments in the use of liposomes in ischemic stroke models, offering a comparative evaluation with other nanocarriers like exosomes and nano-micelles, thereby facilitating their clinical advancement.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaowen Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
27
|
Yilmaz E, Acar G, Onal U, Erdogan E, Baltaci AK, Mogulkoc R. Effect of 2-Week Naringin Supplementation on Neurogenesis and BDNF Levels in Ischemia-Reperfusion Model of Rats. Neuromolecular Med 2024; 26:4. [PMID: 38457013 PMCID: PMC10924031 DOI: 10.1007/s12017-023-08771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae; thus, it has recently attracted a lot of attention in the field of medical study. PURPOSE The aim of this study was to determine the effect of naringin supplementation on neurogenesis and brain-derived neurotrophic factor (BDNF) levels in the brain in experimental brain ischemia-reperfusion. STUDY DESIGN The research was carried out on 40 male Wistar-type rats (10-12 weeks old) obtained from the Experimental Animals Research and Application Center of Selçuk University. Experimental groups were as follows: (1) Control group, (2) Sham group, (3) Brain ischemia-reperfusion group, (4) Brain ischemia-reperfusion + vehicle group (administered for 14 days), and (5) Brain ischemia-reperfusion + Naringin group (100 mg/kg/day administered for 14 days). METHODS In the ischemia-reperfusion groups, global ischemia was performed in the brain by ligation of the right and left carotid arteries for 30 min. Naringin was administered to experimental animals by intragastric route for 14 days following reperfusion. The training phase of the rotarod test was started 4 days before ischemia-reperfusion, and the test phase together with neurological scoring was performed the day before and 1, 7, and 14 days after the operation. At the end of the experiment, animals were sacrificed, and then hippocampus and frontal cortex tissues were taken from the brain. Double cortin marker (DCX), neuronal nuclear antigen marker (NeuN), and BDNF were evaluated in hippocampus and frontal cortex tissues by Real-Time qPCR analysis and immunohistochemistry methods. RESULTS While ischemia-reperfusion increased the neurological score values, DCX, NeuN, and BDNF levels decreased significantly after ischemia in the hippocampus and frontal cortex tissues. However, naringin supplementation restored the deterioration to a certain extent. CONCLUSION The results of the study show that 2 weeks of naringin supplementation may have protective effects on impaired neurogenesis and BDNF levels after brain ischemia and reperfusion in rats.
Collapse
Affiliation(s)
- Esen Yilmaz
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Gozde Acar
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Ummugulsum Onal
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | - Ender Erdogan
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | | | - Rasim Mogulkoc
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey.
| |
Collapse
|
28
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Akbari-Gharalari N, Khodakarimi S, Nezhadshahmohammad F, Karimipour M, Ebrahimi-Kalan A, Wu J. Exosomes in neuron-glia communication: A review on neurodegeneration. BIOIMPACTS : BI 2024; 14:30153. [PMID: 39296798 PMCID: PMC11406431 DOI: 10.34172/bi.2023.30153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 09/21/2024]
Abstract
Introduction Exosomes, a subset of extracellular vesicles (EVs), are crucial for intercellular communication in various contexts. Despite their small size, they carry diverse cargo, including RNA, proteins, and lipids. Internalization by recipient cells raises concerns about potential disruptions to cellular functions. Notably, the ability of exosomes to traverse the blood-brain barrier (BBB) has significant implications. Methods To conduct a thorough investigation into the existing academic literature on exosomes within the framework of neuron-glia communication, a comprehensive search strategy was implemented across the PubMed, Google Scholar, and Science Direct databases. Multiple iterations of the keywords "exosome," "neuron-glia communication," and "neurological disorders" were employed to systematically identify relevant publications. Furthermore, an exploration of the Clinicaltrials.gov database was undertaken to identify clinical trials related to cellular signaling, utilizing analogous terminology. Results Although the immediate practical applications of exosomes are somewhat limited, their potential as carriers of pathogenic attributes offers promising opportunities for the development of precisely targeted therapeutic strategies for neurological disorders. This review presents a comprehensive overview of contemporary insights into the pivotal roles played by exosomes as agents mediating communication between neurons and glial cells within the central nervous system (CNS). Conclusion By delving into the intricate dynamics of exosomal communication in the CNS, this review contributes to a deeper understanding of the roles of exosomes in both physiological and pathological processes, thereby paving the way for potential therapeutic advancements in the field of neurological disorders.
Collapse
Affiliation(s)
- Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jiagian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
30
|
Ahmed W, Huang S, Chen L. Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opin Drug Deliv 2024; 21:91-110. [PMID: 38258509 DOI: 10.1080/17425247.2024.2306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Using engineered exosomes produced from stem cells is an experimental therapeutic approach for treating brain diseases. According to reports, preclinical research has demonstrated notable neurogenesis and angiogenesis effects using modified stem cell-derived exosomes. These biological nanoparticles have a variety of anti-apoptotic, anti-inflammatory, and antioxidant properties that make them very promising for treating nervous system disorders. AREAS COVERED This review examines different ways to enhance the delivery of modified stem cell-derived exosomes, how they infiltrate the blood-brain barrier (BBB), and how they facilitate their access to the brain. We would also like to determine whether these nanoparticles have the most significant transmission rates through BBB when targeting brain lesions. EXPERT OPINION Using engineered stem cell-derived exosomes for treating brain disorders has generated considerable attention toward clinical research and application. However, stem cell-derived exosomes lack consistency, and their mechanisms of action are uncertain. Therefore, upcoming research needs to prioritize examining the underlying mechanisms and strategies via which these nanoparticles combat neurological disorders.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Songze Huang
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Gu C, Li Y, Liu J, Liu S, Long J, Zhang Q, Duan W, Feng T, Huang J, Qiu Y, Ahmed W, Cai H, Hu Y, Wu Y, Chen L. Neural stem cell-derived exosomes-loaded adhesive hydrogel controlled-release promotes cerebral angiogenesis and neurological function in ischemic stroke. Exp Neurol 2023; 370:114547. [PMID: 37743000 DOI: 10.1016/j.expneurol.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Ischemic stroke has become one of the leading diseases for international death, which brings burden to the economy and society. Exosomes (Exos) derived following neural stem cells (NSCs) stimulation promote neurogenesis and migration of NSCs. However, Exos themselves are easily to be removed in vivo. Our study is to investigate whether adhesive hyaluronic acid (HAD) hydrogel loading NSCs-derived-Exo (HAD-Exo) would promote the recovery of ischemic stroke. METHODS A mouse model of middle cerebral artery occlusion (MCAO) was established. PBS, Exo, HAD, and HAD-Exo groups were independently stereotactically injected in mice, respectively. The modified neurological severity score scale and behaviour tests were used to evaluate neurological improvement. Neuroimagings were used to observe the improvement of cerebral infarct volume and vessels. Immunofluorescence staining was used to verify the expression of vascular and cell proliferation-related proteins. RESULTS The structural and mechanical property of HAD and HAD-Exo were detected. Behavioral results showed that HAD-Exo significantly improved neurological functions, especially motor function. Neuroimagings showed that HAD-Exo significantly promoted infarct volume and angiogenesis. Immunofluorescence staining showed that HAD-Exo significantly promoted the cerebral angiogenesis and anti-inflammation. CONCLUSION NSCs derived exosomes-loaded adhesive HAD hydrogel controlled-release could promote cerebral angiogenesis and neurological function for ischemic stroke.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China; Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Yajing Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, PR China
| | - Jiale Liu
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Sitian Liu
- Guangdong Engineering Research Centre for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Qiankun Zhang
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Wenjie Duan
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Tingle Feng
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Jiajun Huang
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Yunhui Qiu
- Department of Pathology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Waqas Ahmed
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Hengsen Cai
- Department of Neurosurgery, The Second People's Hospital of Pingnan, Pingnan 537300, PR China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hongkong 999077, PR China
| | - Yaobin Wu
- Guangdong Engineering Research Centre for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China.
| |
Collapse
|
32
|
Zhang M, Wan L, Li R, Li X, Zhu T, Lu H. Engineered exosomes for tissue regeneration: from biouptake, functionalization and biosafety to applications. Biomater Sci 2023; 11:7247-7267. [PMID: 37794789 DOI: 10.1039/d3bm01169k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Exosomes are increasingly recognized as important effector molecules that regulate intercellular signaling pathways. Notably, certain types of exosomes can induce therapeutic responses, including cell proliferation, angiogenesis, and tissue repair. The use of exosomes in therapy is a hot spot in current research, especially in regenerative medicine. Despite the therapeutic potential, problems have hindered their success in clinical applications. These shortcomings include low concentration, poor targeting and limited loading capability. To fully realize their therapeutic potential, certain modifications are needed in native exosomes. In the present review, we summarize the exosome modification and functionalization strategies. In addition, we provide an overview of potential clinical applications and highlight the issues associated with the biosafety and biocompatibility of engineered exosomes in applications.
Collapse
Affiliation(s)
- Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| |
Collapse
|
33
|
Li P, Yin R, Chen Y, Chang J, Yang L, Liu X, Xu H, Zhang X, Wang S, Han Q, Wei J. Engineered extracellular vesicles for ischemic stroke: a systematic review and meta-analysis of preclinical studies. J Nanobiotechnology 2023; 21:396. [PMID: 37904204 PMCID: PMC10617166 DOI: 10.1186/s12951-023-02114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to evaluate the efficacy of engineered extracellular vesicles (EEVs) in the treatment of ischemic stroke (IS) in preclinical studies and to compare them with natural extracellular vesicles (EVs). The systematic review provides an up-to-date overview of the current state of the literature on the use of EEVs for IS and informs future research in this area. METHODS We searched PubMed, EMBASE, Web of Science, Cochrane Library, and Scopus databases for peer-reviewed preclinical studies on the therapeutic effect of EEVs on IS.Databases ranged from the inception to August 1, 2023. The outcome measures included infarct volumes, neurological scores, behavioral scores, apoptosis rates, numbers of neurons, and levels of IL-1β, IL-6, and TNF-α. The CAMARADES checklist was used to assess the quality and bias risks of the studies. All statistical analyses were performed using RevMan 5.4 software. RESULTS A total of 28 studies involving 1760 animals met the inclusion criteria. The results of the meta-analysis showed that compared to natural EVs, EEVs reduced infarct volume (percentage: SMD = -2.33, 95% CI: -2.92, -1.73; size: SMD = -2.36, 95% CI: -4.09, -0.63), improved neurological scores (mNSS: SMD = -1.78, 95% CI: -2.39, -1.17; Zea Longa: SMD = -2.75, 95% CI: -3.79, -1.71), promoted behavioral recovery (rotarod test: SMD = 2.50, 95% CI: 1.81, 3.18; grid-walking test: SMD = -3.45, 95% CI: -5.15, -1.75; adhesive removal test: SMD = -2.60, 95% CI: -4.27, -0.93; morris water maze test: SMD = -3.91, 95% CI: -7.03, -0.79), and reduced the release of proinflammatory factors (IL-1β: SMD = -2.02, 95% CI: -2.77, -1.27; IL-6: SMD = -3.01, 95% CI: -4.47, -1.55; TNF-α: SMD = -2.72, 95% CI: -4.30, -1.13), increasing the number of neurons (apoptosis rate: SMD = -2.24, 95% CI: -3.32, -1.16; the number of neurons: SMD = 3.70, 95% CI: 2.44, 4.96). The funnel plots for the two main outcome measures were asymmetric, indicating publication bias. The median score on the CAMARADES checklist was 7 points (IQR: 6-9). CONCLUSIONS This meta-analysis shows that EEVs are superior to natural EVs for the treatment of IS. However, research in this field is still at an early stage, and more research is needed to fully understand the potential therapeutic mechanism of EEVs and their potential use in the treatment of IS. PROSPERO REGISTRATION NUMBER CRD42022368744.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yin
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lang Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Liu W, Jin M, Chen Q, Li Q, Xing X, Luo Y, Sun X. Insight into extracellular vesicles in vascular diseases: intercellular communication role and clinical application potential. Cell Commun Signal 2023; 21:310. [PMID: 37907962 PMCID: PMC10617214 DOI: 10.1186/s12964-023-01304-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/02/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Cells have been increasingly known to release extracellular vesicles (EVs) to the extracellular environment under physiological and pathological conditions. A plethora of studies have revealed that EVs contain cell-derived biomolecules and are found in circulation, thereby implicating them in molecular trafficking between cells. Furthermore, EVs have an effect on physiological function and disease development and serve as disease biomarkers. MAIN BODY Given the close association between EV circulation and vascular disease, this review aims to provide a brief introduction to EVs, with a specific focus on the EV cargoes participating in pathological mechanisms, diagnosis, engineering, and clinical potential, to highlight the emerging evidence suggesting promising targets in vascular diseases. Despite the expansion of research in this field, some noticeable limitations remain for clinical translational research. CONCLUSION This review makes a novel contribution to a summary of recent advances and a perspective on the future of EVs in vascular diseases. Video Abstract.
Collapse
Affiliation(s)
- Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
35
|
Ahmed W, Feng J, Zhang Y, Chen L. SARS-CoV-2 and Brain Health: New Challenges in the Era of the Pandemic. Microorganisms 2023; 11:2511. [PMID: 37894169 PMCID: PMC10609574 DOI: 10.3390/microorganisms11102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections have been found to have a negative impact on neurological functions, potentially leading to significant neurological impairment. The SARS-CoV-2 virus has precipitated a worldwide pandemic, posing a substantial threat to human lives. Growing evidence suggests that SARS-CoV-2 may severely affect the CNS and respiratory system. The current prevalence of clinical neurological issues associated with SARS-CoV-2 has raised significant concerns. However, there needs to be a more comprehensive understanding of the specific pathways by which SARS-CoV-2 enters the nervous system. Based on the available evidence, this review focuses on the clinical neurological manifestations of SARS-CoV-2 and the possible mechanisms by which SARS-CoV-2 invades the brain.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
36
|
Li R, Duan W, Feng T, Gu C, Zhang Q, Long J, Huang S, Chen L. Lycium barbarum polysaccharide inhibits ischemia-induced autophagy by promoting the biogenesis of neural stem cells-derived extracellular vesicles to enhance the delivery of miR-133a-3p. Chin Med 2023; 18:117. [PMID: 37691119 PMCID: PMC10494430 DOI: 10.1186/s13020-023-00831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Neural stem cell-derived extracellular vesicles (NSC-EVs) mediated endogenous neurogenesis determines a crucial impact on spontaneous recovery after stroke. Here, we checked the influence of Lycium barbarum polysaccharide (LBP) on the biogenesis of NSC-EVs and then focused on studying mechanisms of LBP in ameliorating ischemic stroke outcome. METHODS LBP was prepared to precondition NSCs and isolate EVs. MCAO models and primary NSCs were administrated to evaluate the therapeutic effect. RT-PCR, western blot, flow cytometry, and immunofluorescence techniques were performed to explore the mechanism. RESULTS LBP pretreatment increased the production of NSC-EVs and improved the neuroprotective and recovery effects of NSC-EV in ischemic stroke mice. LBP-pretreated NSC-EV in a dose-dependent manner substantially reduced neuronal death compared with NSC-EV. Screening of the signaling cascade involved in the interaction between NSC-EV and neurons revealed that AMPK/mTOR signaling pathway inhibited autophagic activity in neurons receiving either treatment paradigm. NSC-EVs but not EVs collected from NSCs pretreated with the anti-miR-133a-3p oligonucleotide reduced cell death, whereas the anti-oligonucleotide promoted autophagy activity and cell death by modulating AMPK/mTOR signaling in OGD-induced primary neurons. CONCLUSION LBP activated AMPK/mTOR signaling pathway by increasing the enrichment and transfer of miR-133a-3p in NSC-EVs to inhibit stroke-induced autophagy activity.
Collapse
Affiliation(s)
- Rong Li
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Rd, Guangzhou, 510310, China
| | - Wenjie Duan
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Rd, Guangzhou, 510310, China
| | - Tingle Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Rd, Guangzhou, 510310, China
| | - Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Rd, Guangzhou, 510310, China
| | - Qiankun Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Rd, Guangzhou, 510310, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Rd, Guangzhou, 510310, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510310, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Rd, Guangzhou, 510310, China.
| |
Collapse
|
37
|
Li Y, Fang B. Neural stem cell-derived extracellular vesicles: The light of central nervous system diseases. Biomed Pharmacother 2023; 165:115092. [PMID: 37406512 DOI: 10.1016/j.biopha.2023.115092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Central nervous system (CNS) diseases are the leading cause of death worldwide. By performing compensatory functions and improving the inflammatory microenvironment, the transplantation of neural stem cells (NSCs) can promote functional recovery from brain injury, aging, brain tumours, and other diseases. However, the ability of NSCs to differentiate into neurons is limited, and they are associated with a risk of tumourigenicity. NSC-derived extracellular vesicles (NSC-EVs) can modulate the local microenvironment of the nervous system as well as distant neuronal functions. Thus, cell-free therapy may be a novel remedy for CNS disorders. This article reviews the characteristics, contents, and mechanisms of action of NSC-EVs as well as their roles and application prospects in various CNS diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
38
|
Ahmed W, Kuniyan MS, Jawed AM, Chen L. Engineered Extracellular Vesicles for Drug Delivery in Therapy of Stroke. Pharmaceutics 2023; 15:2173. [PMID: 37765144 PMCID: PMC10537154 DOI: 10.3390/pharmaceutics15092173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular vesicles (EVs) are promising therapeutic modalities for treating neurological conditions. EVs facilitate intercellular communication among brain cells under normal and abnormal physiological conditions. The potential capability of EVs to pass through the blood-brain barrier (BBB) makes them highly promising as nanocarrier contenders for managing stroke. EVs possess several potential advantages compared to existing drug-delivery vehicles. These advantages include their capacity to surpass natural barriers, target specific cells, and stability within the circulatory system. This review explores the trafficking and cellular uptake of EVs and evaluates recent findings in the field of EVs research. Additionally, an overview is provided of the techniques researchers utilize to bioengineer EVs for stroke therapy, new results on EV-BBB interactions, and the limitations and prospects of clinically using EVs for brain therapies. The primary objective of this study is to provide a comprehensive analysis of the advantages and challenges related to engineered EVs drug delivery, specifically focusing on their application in the treatment of stroke.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | | | - Aqil Mohammad Jawed
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
| |
Collapse
|
39
|
Zhong L, Wang J, Wang P, Liu X, Liu P, Cheng X, Cao L, Wu H, Chen J, Zhou L. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res Ther 2023; 14:198. [PMID: 37553595 PMCID: PMC10408078 DOI: 10.1186/s13287-023-03409-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Regenerative repair of the brain after traumatic brain injury (TBI) remains an extensive clinical challenge, inspiring intensified interest in therapeutic approaches to explore superior repair strategies. Exosome therapy is another research hotspot following stem cell alternative therapy. Prior research verified that exosomes produced by neural stem cells can participate in the physiological and pathological changes associated with TBI and have potential neuroregulatory and repair functions. In comparison with their parental stem cells, exosomes have superior stability and immune tolerance and lower tumorigenic risk. In addition, they can readily penetrate the blood‒brain barrier, which makes their treatment efficiency superior to that of transplanted stem cells. Exosomes secreted by neural stem cells present a promising strategy for the development of novel regenerative therapies. Their tissue regeneration and immunomodulatory potential have made them encouraging candidates for TBI repair. The present review addresses the challenges, applications and potential mechanisms of neural stem cell exosomes in regenerating damaged brains.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Peng Wang
- Department of Health Management, Tianjin Hospital, Tianjin, 300211, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lujia Cao
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hongwei Wu
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
40
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
41
|
Zhao X, Zhu J, Chen S, Liu R, Long T. Neural Stem Cell-Derived Exosomes Improve Neurological Function in Rats with Cerebral Ischemia-Reperfusion Injury by Regulating Microglia-Mediated Inflammatory Response. J Inflamm Res 2023; 16:3079-3092. [PMID: 37520663 PMCID: PMC10378531 DOI: 10.2147/jir.s414121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To investigate the effect of neural stem cell-derived exosomes (NSC-Exos) on neural function after rat cerebral ischemia-reperfusion injury by regulating microglia-mediated inflammatory response. Methods SD rats were randomly divided into Sham group, IRI group, PBS group and NSC-Exos group. Each group was divided into 1d, 3d, 7d and 14d subgroups. In the Sham group, only cervical vessels were isolated without blockage. MCAO model was constructed in the other three groups by blocking middle cerebral artery with thread embolism. PBS group and NSC-Exos group were, respectively, injected into the lateral ventricle of PBS and Exos. Neurobehavioral deficit scores were performed for each subgroup at relative time points, then brains were taken for TTC staining, parietal cortex histopathology and microglia-mediated inflammatory response-related factors were detected. Results Compared with Sham group, neurological defect score and infarction volume in both the IRI and PBS groups were significantly increased. The exploration target quadrant time and escape latency time of maze test were increased. The number of CD86+/Iba1+ double-positive cells increased, while CD206+/Iba1+ double-positive cells decreased. The expressions of IL-6 and CD86 in parietal cortex were increased, while the expressions of Arg1 and CD206 were decreased. Compared with the IRI group and PBS group, neurological defect score and infarction volume in NSC-Exos group were decreased. The exploration target quadrant time and escape latency time of water maze test were decreased. The number of CD206+/Iba1+ double-positive cells increased, while CD86+/Iba1+ double-positive cells decreased. The expressions of Arg1 and CD206 in parietal cortex were increased, while the expressions of IL-6 and CD86 were decreased. Conclusion NSC-Exos can promote the polarization of microglia, that is, inhibit the polarization of M1 and promote polarization of M2, reduce microglia-mediated neuroinflammation, suggesting that NSC-Exos may be a strategy for the treatment of microglia-mediated neuroinflammation after ischemic brain injury.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Junde Zhu
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shan Chen
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Ruojing Liu
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Tingting Long
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|
42
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, Yang Q. Advances in Therapeutic Applications of Extracellular Vesicles. Int J Nanomedicine 2023; 18:3285-3307. [PMID: 37346366 PMCID: PMC10281276 DOI: 10.2147/ijn.s409588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale bilayer phospholipid membrane vesicles released by cells. Contained large molecules such as nucleic acid, protein, and lipid, EVs are an integral part of cell communication. The contents of EVs vary based on the cell source and play an important role in both pathological and physiological conditions. EVs can be used as drugs or targets in disease treatment, and changes in the contents of EVs can indicate the progression of diseases. In recent years, with the continuous exploration of the structure, characteristics, and functions of EVs, the potential of engineered EVs for drug delivery and therapy being constantly explored. This review provides a brief overview of the structure, characteristics and functions of EVs, summarizes the advanced application of EVs and outlook on the prospect of it. It is our hope that this review will increase understanding of the current development of medical applications of EVs and help us overcome future challenges.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
43
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
44
|
Feng Q, Zhang Y, Fang Y, Kong X, He Z, Ji J, Yang X, Zhai G. Research progress of exosomes as drug carriers in cancer and inflammation. J Drug Target 2023; 31:335-353. [PMID: 36543743 DOI: 10.1080/1061186x.2022.2162059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) could be produced by most cells and play an important role in disease development. As a subtype of EVs, exosomes exhibit suitable size, rich surface markers and diverse contents, making them more appealing as potential drug carriers. Compared with traditional synthetic nanoparticles, exosomes possess superior biocompatibility and much lower immunogenicity. This work reviewed the most up-to-date research progress of exosomes as carriers for nucleic acids, proteins and small molecule drugs for cancer and inflammation management. The drug loading strategies and potential cellular uptake behaviour of exosomes are highlighted, trying to provide reference for future exosome design and application.
Collapse
Affiliation(s)
- Qixiang Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
45
|
Exosomal Mir-3613-3p derived from oxygen-glucose deprivation-treated brain microvascular endothelial cell promotes microglial M1 polarization. Cell Mol Biol Lett 2023; 28:18. [PMID: 36870962 PMCID: PMC9985860 DOI: 10.1186/s11658-023-00432-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Brain microvascular endothelial cell (BMEC) injury can affect neuronal survival by modulating immune responses through the microenvironment. Exosomes are important vehicles of transport between cells. However, the regulation of the subtypes of microglia by BMECs through the exosome transport of microRNAs (miRNAs) has not been established. METHODS In this study, exosomes from normal and oxygen-glucose deprivation (OGD)-cultured BMECs were collected, and differentially expressed miRNAs were analyzed. BMEC proliferation, migration, and tube formation were analyzed using MTS, transwell, and tube formation assays. M1 and M2 microglia and apoptosis were analyzed using flow cytometry. miRNA expression was analyzed using real-time polymerase chain reaction (RT-qPCR), and IL-1β, iNOS, IL-6, IL-10, and RC3H1 protein concentrations were analyzed using western blotting. RESULTS We found that miR-3613-3p was enriched in BMEC exosome by miRNA GeneChip assay and RT-qPCR analysis. miR-3613-3p knockdown enhanced cell survival, migration, and angiogenesis in the OGD-treated BMECs. In addition, BMECs secrete miR-3613-3p to transfer into microglia via exosomes, and miR-3613-3p binds to the RC3H1 3' untranslated region (UTR) to reduce RC3H1 protein levels in microglia. Exosomal miR-3613-3p promotes microglial M1 polarization by inhibiting RC3H1 protein levels. BMEC exosomal miR-3613-3p reduces neuronal survival by regulating microglial M1 polarization. CONCLUSIONS miR-3613-3p knockdown enhances BMEC functions under OGD conditions. Interfering with miR-3613-3p expression in BMSCs reduced the enrichment of miR-3613-3p in exosomes and enhanced M2 polarization of microglia, which contributed to reduced neuronal apoptosis.
Collapse
|
46
|
Zhai L, Pei H, Shen H, Guan Q, Sheng J. Mechanism of neocryptotanshinone in protecting against cerebral ischemic injury: By suppressing M1 polarization of microglial cells and promoting cerebral angiogenesis. Int Immunopharmacol 2023; 116:109815. [PMID: 36773571 DOI: 10.1016/j.intimp.2023.109815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
AIM This study explored the protective function and mechanism of neocryptotanshinone (NEO) on cerebral ischemia. METHODS Lipopolysaccharide/γ-interferon(LPS/IFN-γ)was employed to mimic the polarization of mouse microglial cells BV2. After NEO treatment, the M1 polarization level of BV2 cells was identified using flow cytometry (FCM), fluorescent cell staining and enzyme linked immunosorbent assay(ELISA). Moreover, the mouse endothelial cells bEnd.3 were applied to be the study objects, which were intervened with NEO under the hypoxic condition. Thereafter, based on in-vitro tubule formation assay and fluorescence staining, the in-vitro tubule formation ability of bEnd.3 cells was detected. By adopting middle cerebral artery occlusion(MCAO) method, we constructed the mouse model of cerebral ischemia. After NEO intervention, the pathological changes of brain tissues were identified, while CD34 expression was measured by immunohistochemical (IHC) staining, nerve injury was detected by Nissl staining, and the changes in neurological behaviors of mice were also detected. RESULTS Our results showed that NEO suppressed M1 polarization of BV2 cells, which exerted its effect through suppressing NF-κB and STAT3 signals, thereby decreasing the levels of iNOS, CD11b and inflammatory factors. NEO stimulated tubule formation in bEnd.3 cells based on the hypoxic situation, which exerted its effect through activating the Vascularendothelial growth factor-Vascular Endothelial Growth Factor Receptor 2-Notch homolog 1(VFGF-VEGFR2-Notch1) signal. Furthermore, NEO suppressed cerebral ischemia in mice and lowered the ischemic penumbra. NEO also improved the neurological behaviors of mice, increased the CD34 levels and decreased the expression of inflammatory factors. CONCLUSION NEO has well protective effect against cerebral ischemia, and its mechanisms are related to suppressing M1 polarization of microglial cells and promoting cerebral angiogenesis, which are the mechanisms of NEO in treating ischemic encephalopathy.
Collapse
Affiliation(s)
- Liping Zhai
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Heping Shen
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China.
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China.
| | - Jian Sheng
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, China.
| |
Collapse
|
47
|
Li X, Zhu Y, Wang Y, Xia X, Zheng JC. Neural stem/progenitor cell-derived extracellular vesicles: A novel therapy for neurological diseases and beyond. MedComm (Beijing) 2023; 4:e214. [PMID: 36776763 PMCID: PMC9905070 DOI: 10.1002/mco2.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
As bilayer lipid membrane vesicles secreted by neural stem/progenitor cells (NSCs), NSC-derived extracellular vesicles (NSC-EVs) have attracted growing attention for their promising potential to serve as novel therapeutic agents in treatment of neurological diseases due to their unique physicochemical characteristics and biological functions. NSC-EVs exhibit advantages such as stable physical and chemical properties, low immunogenicity, and high penetration capacity to cross blood-brain barrier to avoid predicaments of the clinical applications of NSCs that include autoimmune responses, ethical/religious concerns, and the problematic logistics of acquiring fetal tissues. More importantly, NSC-EVs inherit excellent neuroprotective and neuroregenerative potential and immunomodulatory capabilities from parent cells, and display outstanding therapeutic effects on mitigating behavioral alterations and pathological phenotypes of patients or animals with neurological diseases. In this review, we first comprehensively summarize the progress in functional research and application of NSC-EVs in different neurological diseases, including neurodegenerative diseases, acute neurological diseases, dementia/cognitive dysfunction, and peripheral diseases. Next, we provide our thoughts on current limitations/concerns as well as tremendous potential of NSC-EVs in clinical applications. Last, we discuss future directions of further investigations on NSC-EVs and their probable applications in both basic and clinical research.
Collapse
Affiliation(s)
- Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingbo Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative TherapyYangzhi Rehabilitation Hospital, Tongji UniversityShanghaiChina
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| |
Collapse
|
48
|
A Tale of Two: When Neural Stem Cells Encounter Hypoxia. Cell Mol Neurobiol 2022:10.1007/s10571-022-01293-6. [DOI: 10.1007/s10571-022-01293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
|