1
|
Schiller NR, Almuhanna SA, Hoppe PE. UNC-82/NUAK kinase is required by myosin A, but not myosin B, to assemble and function in the thick filament arms of C. elegans striated muscle. Cytoskeleton (Hoboken) 2024; 81:753-774. [PMID: 37983932 DOI: 10.1002/cm.21807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
The mechanisms that ensure proper assembly, activity, and turnover of myosin II filaments are fundamental to a diverse range of cellular processes. In Caenorhabditis elegans striated muscle, thick filaments contain two myosins that are functionally distinct and spatially segregated. Using transgenic double mutants, we demonstrate that the ability of increased myosin A expression to restore muscle structure and movement in myosin B mutants requires UNC-82/NUAK kinase activity. Myosin B function appears unaffected in the kinase-impaired unc-82(e1220) mutant: the recessive antimorphic effects on early assembly of paramyosin and myosin A in this mutant are counteracted by increased myosin B expression and exacerbated by loss of myosin B. Using chimeric myosins and motility assays, we mapped the region of myosin A that requires UNC-82 activity to a 531-amino-acid region of the coiled-coil rod. This region includes the 264-amino-acid Region 1, which is sufficient in chimeric myosins to rescue the essential filament-initiation function of myosin A, as well as two sites that interact with myosin head domains in the Interacting Heads Motif. A specific physical interaction between myosin A and UNC-82::GFP is supported by GFP labeling of ectopic myosin A filaments but not thin filaments. We hypothesize that UNC-82 regulates assembly competence of myosin A during parallel assembly in the filament arms.
Collapse
Affiliation(s)
- NaTasha R Schiller
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
- Biology Department, Wingate University, Wingate, North Carolina, USA
| | - Sarah A Almuhanna
- Clinical Laboratory Sciences, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Pamela E Hoppe
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| |
Collapse
|
2
|
Weißenbruch K, Mayor R. Actomyosin forces in cell migration: Moving beyond cell body retraction. Bioessays 2024; 46:e2400055. [PMID: 39093597 DOI: 10.1002/bies.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
3
|
Davutoglu MG, Geyer VF, Niese L, Soltwedel JR, Zoccoler ML, Sabatino V, Haase R, Kröger N, Diez S, Poulsen N. Gliding motility of the diatom Craspedostauros australis coincides with the intracellular movement of raphid-specific myosins. Commun Biol 2024; 7:1187. [PMID: 39313522 PMCID: PMC11420354 DOI: 10.1038/s42003-024-06889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Raphid diatoms are one of the few eukaryotes capable of gliding motility, which is remarkably fast and allows for quasi-instantaneous directional reversals. Besides other mechanistic models, it has been suggested that an actomyosin system provides the force for diatom gliding. However, in vivo data on the dynamics of actin and myosin in diatoms are lacking. In this study, we demonstrate that the raphe-associated actin bundles required for diatom movement do not exhibit a directional turnover of subunits and thus their dynamics do not contribute directly to force generation. By phylogenomic analysis, we identified four raphid diatom-specific myosins in Craspedostauros australis (CaMyo51A-D) and investigated their in vivo localization and dynamics through GFP-tagging. Only CaMyo51B-D but not CaMyo51A exhibited coordinated movement during gliding, consistent with a role in force generation. The characterization of raphid diatom-specific myosins lays the foundation for unraveling the molecular mechanisms that underlie the gliding motility of diatoms.
Collapse
Affiliation(s)
- Metin G Davutoglu
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Veikko F Geyer
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Lukas Niese
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Johannes R Soltwedel
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo L Zoccoler
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Valeria Sabatino
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Robert Haase
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
4
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
5
|
Chinthalapudi K, Heissler SM. Structure, regulation, and mechanisms of nonmuscle myosin-2. Cell Mol Life Sci 2024; 81:263. [PMID: 38878079 PMCID: PMC11335295 DOI: 10.1007/s00018-024-05264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
Members of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues. This process is tightly controlled in time and space by numerous synergetic regulation mechanisms to meet cellular demands. We review how recent advances in structural biology together with elegant biophysical and cell biological approaches have contributed to our understanding of the shared and unique mechanisms of NM2 paralogs as they relate to their kinetics, regulation, assembly, and cellular function.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Nyitray L. S100A4 makes two appearances in mechanisms leading to fibrosis. J Biol Chem 2024; 300:107385. [PMID: 38759730 PMCID: PMC11190697 DOI: 10.1016/j.jbc.2024.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Non-muscle myosin 2 (NM2) is known to play an important role in myofibroblast transdifferentiation, a hallmark of fibrotic disorders. In a recent JBC article, Southern et al. demonstrate that endogenous S100A4, a calcium- and NM2-binding protein acts as a mechanoeffector in this process. Since extracellular S100A4 is also involved in fibrogenesis by triggering the inflammatory response, this small protein appears to contribute to fibrosis via at least two distinct mechanisms.
Collapse
Affiliation(s)
- László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
7
|
Verma D, Singh A, Singh J, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by non-muscle myosin II Zipper in Drosophila. Cell Mol Life Sci 2024; 81:195. [PMID: 38653877 PMCID: PMC11039529 DOI: 10.1007/s00018-024-05142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024]
Abstract
The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.
Collapse
Affiliation(s)
- Dipti Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ankita Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Jyoti Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
8
|
Billon C, Piccoli GB, de Sainte Agathe JM, Stoeva R, Derive N, Heidet L, Berrebi D, Bruneval P, Jeunemaitre X, Hureaux M. Genome-wide analysis identifies MYH11 compound heterozygous variants leading to visceral myopathy corresponding to late-onset form of megacystis-microcolon-intestinal hypoperistalsis syndrome. Mol Genet Genomics 2024; 299:44. [PMID: 38625590 DOI: 10.1007/s00438-024-02136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Megacystis-microcolon-hypoperistalsis-syndrome (MMIHS) is a rare and early-onset congenital disease characterized by massive abdominal distension due to a large non-obstructive bladder, a microcolon and decreased or absent intestinal peristalsis. While in most cases inheritance is autosomal dominant and associated with heterozygous variant in ACTG2 gene, an autosomal recessive transmission has also been described including pathogenic bialellic loss-of-function variants in MYH11. We report here a novel family with visceral myopathy related to MYH11 gene, confirmed by whole genome sequencing (WGS). WGS was performed in two siblings with unusual presentation of MMIHS and their two healthy parents. The 38 years-old brother had severe bladder dysfunction and intestinal obstruction, whereas the 30 years-old sister suffered from end-stage kidney disease with neurogenic bladder and recurrent sigmoid volvulus. WGS was completed by retrospective digestive pathological analyses. Compound heterozygous variants of MYH11 gene were identified, associating a deletion of 1.2 Mb encompassing MYH11 inherited from the father and an in-frame variant c.2578_2580del, p.Glu860del inherited from the mother. Pathology analyses of the colon and the rectum revealed structural changes which significance of which is discussed. Cardiac and vascular assessment of the mother was normal. This is the second report of a visceral myopathy corresponding to late-onset form of MMIHS related to compound heterozygosity in MYH11; with complete gene deletion and a hypomorphic allele in trans. The hypomorphic allele harbored by the mother raised the question of the risk of aortic disease in adults. This case shows the interest of WGS in deciphering complex phenotypes, allowing adapted diagnosis and genetic counselling.
Collapse
Affiliation(s)
- Clarisse Billon
- Université Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | | | - Jean-Madeleine de Sainte Agathe
- Laboratoire de Biologie Médicale MultiSites SeqOIA, Paris, France
- Département de Génétique Médicale, Groupe Hospitalier Universitaire Pitié Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Radka Stoeva
- Service de Génétique Médicale, Centre Hospitalier du Mans, Le Mans, France
| | - Nicolas Derive
- Laboratoire de Biologie Médicale MultiSites SeqOIA, Paris, France
| | - Laurence Heidet
- Centre de référence des Maladies Rénales Héréditaires de L'Enfant Et de L'Adulte, MARHEA, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
- Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Dominique Berrebi
- Université Paris Cité, Paris, France
- Service de Pathologie, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Patrick Bruneval
- Université Paris Cité, Paris, France
- Service de Cardiologie, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Xavier Jeunemaitre
- Université Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Marguerite Hureaux
- Université Paris Cité, Paris, France.
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Assistance Publique Hôpitaux de Paris, 75015, Paris, France.
- Centre de référence des Maladies Rénales Héréditaires de L'Enfant Et de L'Adulte, MARHEA, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France.
- INSERM, PARCC U970, 75015, Paris, France.
| |
Collapse
|
9
|
Chou WH, Molaei M, Wu H, Oakes PW, Beach JR, Gardel ML. Limiting pool and actin architecture controls myosin cluster sizes in adherent cells. Biophys J 2024; 123:157-171. [PMID: 38062704 PMCID: PMC10808045 DOI: 10.1016/j.bpj.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.
Collapse
Affiliation(s)
- Wen-Hung Chou
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, Illinois; Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Mehdi Molaei
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois; Department of Physics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Southern BD, Li H, Mao H, Crish JF, Grove LM, Scheraga RG, Mansoor S, Reinhardt A, Abraham S, Deshpande G, Loui A, Ivanov AI, Rosenfeld SS, Bresnick AR, Olman MA. A novel mechanoeffector role of fibroblast S100A4 in myofibroblast transdifferentiation and fibrosis. J Biol Chem 2024; 300:105530. [PMID: 38072048 PMCID: PMC10789633 DOI: 10.1016/j.jbc.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.
Collapse
Affiliation(s)
- Brian D Southern
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Haiyan Li
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongxia Mao
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - James F Crish
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lisa M Grove
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rachel G Scheraga
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sanaa Mansoor
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amanda Reinhardt
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susamma Abraham
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Lerner Research Institute Imaging Core, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alicia Loui
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrei I Ivanov
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven S Rosenfeld
- Division of Hematology/Oncology, Mayo Clinic Jacksonville, Jacksonville, Florida, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mitchell A Olman
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
11
|
Brito C, Pereira JM, Mesquita FS, Cabanes D, Sousa S. Src-Dependent NM2A Tyrosine Phosphorylation Regulates Actomyosin Remodeling. Cells 2023; 12:1871. [PMID: 37508535 PMCID: PMC10377941 DOI: 10.3390/cells12141871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Non-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that, along with actin, assembles into actomyosin filaments inside cells. NM2A is fundamental for cell adhesion and motility, playing important functions in different stages of development and during the progression of viral and bacterial infections. Phosphorylation events regulate the activity and the cellular localization of NM2A. We previously identified the tyrosine phosphorylation of residue 158 (pTyr158) in the motor domain of the NM2A heavy chain. This phosphorylation can be promoted by Listeria monocytogenes infection of epithelial cells and is dependent on Src kinase; however, its molecular role is unknown. Here, we show that the status of pTyr158 defines cytoskeletal organization, affects the assembly/disassembly of focal adhesions, and interferes with cell migration. Cells overexpressing a non-phosphorylatable NM2A variant or expressing reduced levels of Src kinase display increased stress fibers and larger focal adhesions, suggesting an altered contraction status consistent with the increased NM2A activity that we also observed. We propose NM2A pTyr158 as a novel layer of regulation of actomyosin cytoskeleton organization.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Joana M Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Francisco S Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| |
Collapse
|
12
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
13
|
Chou WH, Molaei M, Wu H, Oakes PW, Beach JR, Gardel ML. Limiting Pool and Actin Architecture Controls Myosin Cluster Sizes in Adherent Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544121. [PMID: 37333106 PMCID: PMC10274763 DOI: 10.1101/2023.06.07.544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.
Collapse
|
14
|
Plaza-Rodríguez AI, Nguyen LTS, Robinson DN, Iglesias PA. Particle-based model of mechanosensory contractility kit assembly. Biophys J 2022; 121:4600-4614. [PMID: 36273263 PMCID: PMC9748368 DOI: 10.1016/j.bpj.2022.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cell shape change processes, such as proliferation, polarization, migration, and cancer metastasis, rely on a dynamic network of macromolecules. The proper function of this network enables mechanosensation, the ability of cells to sense and respond to mechanical cues. Myosin II and cortexillin I, critical elements of the cellular mechanosensory machinery, preassemble in the cytoplasm of Dictyostelium cells into complexes that we have termed contractility kits (CKs). Two IQGAP proteins then differentially regulate the mechanoresponsiveness of the cortexillin I-myosin II elements within CKs. To investigate the mechanism of CK self-assembly and gain insight into possible molecular means for IQGAP regulation, we developed a coarse-grained excluded volume molecular model in which all protein polymers are represented by nm-sized spheres connected by spring-like links. The model is parameterized using experimentally measured parameters acquired through fluorescence cross-correlation spectroscopy and fluorescence correlation spectroscopy, which describe the interaction affinities and diffusion coefficients for individual molecular components, and which have also been validated via several orthogonal methods. Simulations of wild-type and null-mutant conditions implied that the temporal order of assembly of these kits is dominated by myosin II dimer formation and that IQGAP proteins mediate cluster growth. In addition, our simulations predicted the existence of "ambiguous" CKs that incorporate both classes of IQGAPs, and we confirmed this experimentally using fluorescence cross-correlation spectroscopy. The model serves to describe the formation of the CKs and how their assembly enables and regulates mechanosensation at the molecular level.
Collapse
Affiliation(s)
| | - Ly T S Nguyen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Electrical & Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.
| |
Collapse
|
15
|
HBXIP blocks myosin-IIA assembly by phosphorylating and interacting with NMHC-IIA in breast cancer metastasis. Acta Pharm Sin B 2022; 13:1053-1070. [PMID: 36970214 PMCID: PMC10031283 DOI: 10.1016/j.apsb.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
Tumor metastasis depends on the dynamic balance of the actomyosin cytoskeleton. As a key component of actomyosin filaments, non-muscle myosin-IIA disassembly contributes to tumor cell spreading and migration. However, its regulatory mechanism in tumor migration and invasion is poorly understood. Here, we found that oncoprotein hepatitis B X-interacting protein (HBXIP) blocked the myosin-IIA assemble state promoting breast cancer cell migration. Mechanistically, mass spectrometry analysis, co-immunoprecipitation assay and GST-pull down assay proved that HBXIP directly interacted with the assembly-competent domain (ACD) of non-muscle heavy chain myosin-IIA (NMHC-IIA). The interaction was enhanced by NMHC-IIA S1916 phosphorylation via HBXIP-recruited protein kinase PKCβII. Moreover, HBXIP induced the transcription of PRKCB, encoding PKCβII, by coactivating Sp1, and triggered PKCβII kinase activity. Interestingly, RNA sequencing and mouse metastasis model indicated that the anti-hyperlipidemic drug bezafibrate (BZF) suppressed breast cancer metastasis via inhibiting PKCβII-mediated NMHC-IIA phosphorylation in vitro and in vivo. We reveal a novel mechanism by which HBXIP promotes myosin-IIA disassembly via interacting and phosphorylating NMHC-IIA, and BZF can serve as an effective anti-metastatic drug in breast cancer.
Collapse
|
16
|
Morris T, Sue E, Geniesse C, Brieher WM, Tang VW. Synaptopodin stress fiber and contractomere at the epithelial junction. J Cell Biol 2022; 221:e202011162. [PMID: 35416930 PMCID: PMC9011326 DOI: 10.1083/jcb.202011162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and adhesion. Yet, the structural basis for force generation at the apical junction is not fully understood. Here, we describe two synaptopodin-dependent actomyosin structures that are spatially, temporally, and structurally distinct. The first structure is formed by the retrograde flow of synaptopodin initiated at the apical junction, creating a sarcomeric stress fiber that lies parallel to the apical junction. Contraction of the apical stress fiber is associated with either clustering of membrane components or shortening of junctional length. Upon junction maturation, apical stress fibers are disassembled. In mature epithelial monolayer, a motorized "contractomere" capable of "walking the junction" is formed at the junctional vertex. Actomyosin activities at the contractomere produce a compressive force evident by actin filament buckling and measurement with a new α-actinin-4 force sensor. The motility of contractomeres can adjust junctional length and change cell packing geometry during cell extrusion and intercellular movement. We propose a model of epithelial homeostasis that utilizes contractomere motility to support junction rearrangement while preserving the permeability barrier.
Collapse
Affiliation(s)
- Timothy Morris
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Eva Sue
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Caleb Geniesse
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
17
|
Kage F, Vicente-Manzanares M, McEwan BC, Kettenbach AN, Higgs HN. Myosin II proteins are required for organization of calcium-induced actin networks upstream of mitochondrial division. Mol Biol Cell 2022; 33:ar63. [PMID: 35427150 PMCID: PMC9561854 DOI: 10.1091/mbc.e22-01-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The formin INF2 polymerizes a calcium-activated cytoplasmic network of actin filaments, which we refer to as calcium-induced actin polymerization (CIA). CIA plays important roles in multiple cellular processes, including mitochondrial dynamics and vesicle transport. Here, we show that nonmuscle myosin II (NMII) is activated within 60 s of calcium stimulation and rapidly recruited to the CIA network. Knockout of any individual NMII in U2OS cells affects the organization of the CIA network, as well as three downstream effects: endoplasmic-reticulum-to-mitochondrial calcium transfer, mitochondrial Drp1 recruitment, and mitochondrial division. Interestingly, while NMIIC is the least abundant NMII in U2OS cells (>200-fold less than NMIIA and >10-fold less than NMIIB), its knockout is equally deleterious to CIA. On the basis of these results, we propose that myosin II filaments containing all three NMII heavy chains exert organizational and contractile roles in the CIA network. In addition, NMIIA knockout causes a significant decrease in myosin regulatory light chain levels, which might have additional effects.
Collapse
Affiliation(s)
- Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Miguel Vicente-Manzanares
- Centro de Investigacion del Cancer/Instituto de Biologia Molecular y Celular del Cancer, Centro Mixto Universidad de Salamanca, 37007 Salamanca, Spain
| | - Brennan C. McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| |
Collapse
|
18
|
Weißenbruch K, Fladung M, Grewe J, Baulesch L, Schwarz US, Bastmeyer M. Nonmuscle myosin IIA dynamically guides regulatory light chain phosphorylation and assembly of nonmuscle myosin IIB. Eur J Cell Biol 2022; 101:151213. [DOI: 10.1016/j.ejcb.2022.151213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
|
19
|
Kislev N, Mor-Yossef Moldovan L, Barak R, Egozi M, Benayahu D. MYH10 Governs Adipocyte Function and Adipogenesis through Its Interaction with GLUT4. Int J Mol Sci 2022; 23:ijms23042367. [PMID: 35216482 PMCID: PMC8875441 DOI: 10.3390/ijms23042367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Adipogenesis is dependent on cytoskeletal remodeling that determines and maintains cellular shape and function. Cytoskeletal proteins contribute to the filament-based network responsible for controlling the shape of adipocytes and promoting the intracellular trafficking of cellular components. Currently, the understanding of these mechanisms and their effect on differentiation and adipocyte function remains incomplete. In this study, we identified the non-muscle myosin 10 (MYH10) as a novel regulator of adipogenesis and adipocyte function through its interaction with the insulin-dependent glucose transporter 4 (GLUT4). MYH10 depletion in preadipocytes resulted in impaired adipogenesis, with knockdown cells exhibiting an absence of morphological alteration and molecular signals. MYH10 was shown in a complex with GLUT4 in adipocytes, an interaction regulated by insulin induction. The missing adipogenic capacity of MYH10 knockdown cells was restored when the cells took up GLUT4 vesicles from neighbor wildtype cells in a co-culture system. This signaling cascade is regulated by the protein kinase C ζ (PKCζ), which interacts with MYH10 to modify the localization and interaction of both GLUT4 and MYH10 in adipocytes. Overall, our study establishes MYH10 as an essential regulator of GLUT4 translocation, affecting both adipogenesis and adipocyte function, highlighting its importance in future cytoskeleton-based studies in adipocytes.
Collapse
|
20
|
Endothelial Cell Plasma Membrane Biomechanics Mediates Effects of Pro-Inflammatory Factors on Endothelial Mechanosensors: Vicious Circle Formation in Atherogenic Inflammation. MEMBRANES 2022; 12:membranes12020205. [PMID: 35207126 PMCID: PMC8877251 DOI: 10.3390/membranes12020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
Chronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.
Collapse
|
21
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|
22
|
Yildirim A, Tekpinar M, Wassenaar TA. Competing Roles of Ca 2+ and Nonmuscle Myosin IIA on the Dynamics of the Metastasis-Associated Protein S100A4. J Phys Chem B 2021; 125:10059-10071. [PMID: 34464144 DOI: 10.1021/acs.jpcb.1c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The calcium-binding protein S100A4 plays an important role in a wide range of biological processes such as cell motility, invasion, angiogenesis, survival, differentiation, contractility, and tumor metastasis and interacts with a range of partners. To understand the functional roles and interplay of S100A4 binding partners such as Ca2+ and nonmuscle myosin IIA (NMIIA), we used molecular dynamics simulations to investigate apo S100A4 and four holo S100A4 structures: S100A4 bound to Ca2+, S100A4 bound to NMIIA, S100A4 bound to Ca2+ and NMIIA, and a mutated S100A4 bound to Ca2+ and NMIIA. Our results show that two competing factors, namely, Ca2+-induced activation and NMIIA-induced inhibition, modulate the dynamics of S100A4 in a competitive manner. Moreover, Ca2+ binding results in enhanced dynamics, regulating the interactions of S100A4 with NMIIA, while NMIIA induces asymmetric dynamics between the chains of S100A4. The results also show that in the absence of Ca2+ the S100A4-NMIIA interaction is weak compared to that of between S100A4 bound to Ca2+ and NMIIA, which may offer a quick response to dropping calcium levels. In addition, certain mutations are shown to play a marked role on the dynamics of S100A4. The results described here contribute to understanding the interactions of S100A4 with NMIIA and the functional roles of Ca2+, NMIIA, and certain mutations on the dynamics of S100A4. The results of this study could be interesting for the development of inhibitors that exploit the shift of balance between the competing roles of Ca2+ and NMIIA.
Collapse
Affiliation(s)
- Ahmet Yildirim
- Department of Physics, Siirt University, Siirt 56100, Turkey
| | - Mustafa Tekpinar
- Unit of Structural Dynamics of Biological Macromolecules, Pasteur Institute, UMR 3528 CNRS, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Data Science for Life Sciences, Hanze University of Applied Sciences, Zernikeplein 11, 9747 AS Groningen, The Netherlands
| |
Collapse
|
23
|
Barvitenko N, Aslam M, Lawen A, Saldanha C, Skverchinskaya E, Uras G, Manca A, Pantaleo A. Two Motors and One Spring: Hypothetic Roles of Non-Muscle Myosin II and Submembrane Actin-Based Cytoskeleton in Cell Volume Sensing. Int J Mol Sci 2021; 22:7967. [PMID: 34360739 PMCID: PMC8347689 DOI: 10.3390/ijms22157967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.
Collapse
Affiliation(s)
| | - Muhammad Aslam
- Department of Internal Medicine I, Experimental Cardiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, 1649-028 Lisboa, Portugal;
| | | | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| |
Collapse
|
24
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
25
|
Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2021; 135:1887-1898. [PMID: 32315395 DOI: 10.1182/blood.2019003064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9-related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models. Defective proplatelet formation is considered to be the principal mechanism underlying the macrothrombocytopenia phenotype. However, MYH9-RD patient MKs may have other defects, as NMII interactions with actin filaments regulate physiological processes such as chemotaxis, cell migration, and adhesion. How MYH9-RD mutations affect MK migration and adhesion in BM or NMIIA activity and assembly prior to proplatelet production remain unanswered. NMIIA is the only NMII isoform expressed in mature MKs, permitting exploration of these questions without complicating effects of other NMII isoforms. Using mouse models of MYH9-RD (NMIIAR702C+/-GFP+/-, NMIIAD1424N+/-, and NMIIAE1841K+/-) and in vitro assays, we investigated MK distribution in BM, chemotaxis toward stromal-derived factor 1, NMIIA activity, and bipolar filament assembly. Results indicate that different MYH9-RD mutations suppressed MK migration in the BM without compromising bipolar filament formation but led to divergent adhesion phenotypes and NMIIA contractile activities depending on the mutation. We conclude that MYH9-RD mutations impair MK chemotaxis by multiple mechanisms to disrupt migration toward the vasculature, impairing proplatelet release and causing macrothrombocytopenia.
Collapse
|
26
|
Zhu F, Li W, Zhou X, Chen X, Zheng M, Cui Y, Liu X, Guo X, Zhu H. PRSS55 plays an important role in the structural differentiation and energy metabolism of sperm and is required for male fertility in mice. J Cell Mol Med 2021; 25:2040-2051. [PMID: 33417308 PMCID: PMC7882947 DOI: 10.1111/jcmm.16116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Orderly and stage‐specifically expressed proteins are essential for spermatogenesis, and proteases play a key role in protein activation and function. The present study aimed to investigate serine protease 55 (PRSS55), which was reported to play a role in sperm‐uterotubal junction (UTJ) migration and sperm‐zona pellucida (ZP) binding. We found that PRSS55 was specifically expressed in testicular spermatids and epididymal spermatozoa. By constructing knockout mice targeting all transcripts of Prss55, we demonstrated that deletion of Prss55 resulted in a serious decline of male fertility, with significantly increased sperm malformation and decreased sperm motility. In Prss55−/− mice, increased structural abnormality, including deficient “9 + 2” microtubules, damaged peripheral dense fibre, and defective mitochondrial cristae, were found in sperm. In addition, sperm showed decreased expression of electron transfer chain molecules and lower ATP contents. These could be the potential causes of the astheno/teratozoospermia phenotype of the Prss55−/− mice, and provided new evidence for the previously reported impaired sperm‐UTJ migration. Moreover, preliminary studies allowed us to speculate that PRSS55 might function by activating type II muscle myosin in the testis, which is involved in many processes requiring motivation and cytoskeleton translocation. Thus, PRSS55 is essential for the structural differentiation and energy metabolism of sperm, and might be a potential pathogenic factor in astheno/teratozoospermia. Our results provide an additional explanation for the male sterility of Prss55−/− mice, and further reveal the role of PRSS55.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Department of Pathology, The First People's Hospital of Changzhou, Changzhou, China
| | - Wen Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xinli Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Meimei Zheng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Yang S, Tiwari P, Lee KH, Sato O, Ikebe M, Padrón R, Craig R. Cryo-EM structure of the inhibited (10S) form of myosin II. Nature 2020; 588:521-525. [PMID: 33268893 PMCID: PMC7746622 DOI: 10.1038/s41586-020-3007-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023]
Abstract
Myosin II is the motor protein that enables muscle cells to contract and nonmuscle cells to move and change shape1. The molecule has two identical heads attached to an elongated tail, and can exist in two conformations: 10S and 6S, named for their sedimentation coefficients2,3. The 6S conformation has an extended tail and assembles into polymeric filaments, which pull on actin filaments to generate force and motion. In 10S myosin, the tail is folded into three segments and the heads bend back and interact with each other and the tail3-7, creating a compact conformation in which ATPase activity, actin activation and filament assembly are all highly inhibited7,8. This switched-off structure appears to function as a key energy-conserving storage molecule in muscle and nonmuscle cells9-12, which can be activated to form functional filaments as needed13-but the mechanism of its inhibition is not understood. Here we have solved the structure of smooth muscle 10S myosin by cryo-electron microscopy with sufficient resolution to enable improved understanding of the function of the head and tail regions of the molecule and of the key intramolecular contacts that cause inhibition. Our results suggest an atomic model for the off state of myosin II, for its activation and unfolding by phosphorylation, and for understanding the clustering of disease-causing mutations near sites of intramolecular interaction.
Collapse
Affiliation(s)
- Shixin Yang
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
- Cryo-EM Shared Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Prince Tiwari
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
- Massachusetts Facility for High-Resolution Electron Cryo-microscopy, University of Massachusetts Medical School, Worcester, MA, USA
| | - Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Chinowsky CR, Pinette JA, Meenderink LM, Lau KS, Tyska MJ. Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli. Mol Biol Cell 2020; 31:2803-2815. [PMID: 33026933 PMCID: PMC7851865 DOI: 10.1091/mbc.e20-09-0582] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brush border microvilli enable functions that are critical for epithelial homeostasis, including solute uptake and host defense. However, the mechanisms that regulate the assembly and morphology of these protrusions are poorly understood. The parallel actin bundles that support microvilli have their pointed-end rootlets anchored in a filamentous meshwork referred to as the "terminal web." Although classic electron microscopy studies revealed complex ultrastructure, the composition and function of the terminal web remain unclear. Here we identify nonmuscle myosin-2C (NM2C) as a component of the terminal web. NM2C is found in a dense, isotropic layer of puncta across the subapical domain, which transects the rootlets of microvillar actin bundles. Puncta are separated by ∼210 nm, the expected size of filaments formed by NM2C. In intestinal organoid cultures, the terminal web NM2C network is highly dynamic and exhibits continuous remodeling. Using pharmacological and genetic perturbations in cultured intestinal epithelial cells, we found that NM2C controls the length of growing microvilli by regulating actin turnover in a manner that requires a fully active motor domain. Our findings answer a decades-old question on the function of terminal web myosin and hold broad implications for understanding apical morphogenesis in diverse epithelial systems.
Collapse
Affiliation(s)
- Colbie R Chinowsky
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
29
|
Platenkamp A, Detmar E, Sepulveda L, Ritz A, Rogers SL, Applewhite DA. The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function. Mol Biol Cell 2020; 31:2379-2397. [PMID: 32816624 PMCID: PMC7851959 DOI: 10.1091/mbc.e20-03-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.
Collapse
Affiliation(s)
| | - Elizabeth Detmar
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Liz Sepulveda
- Department of Biology, Reed College, Portland, OR 97202
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202
| | - Stephen L Rogers
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
30
|
Kaufmann TL, Schwarz US. Electrostatic and bending energies predict staggering and splaying in nonmuscle myosin II minifilaments. PLoS Comput Biol 2020; 16:e1007801. [PMID: 32628657 PMCID: PMC7365473 DOI: 10.1371/journal.pcbi.1007801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/16/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Recent experiments with super-resolution live cell microscopy revealed that nonmuscle myosin II minifilaments are much more dynamic than formerly appreciated, often showing plastic processes such as splitting, concatenation and stacking. Here we combine sequence information, electrostatics and elasticity theory to demonstrate that the parallel staggers at 14.3, 43.2 and 72 nm have a strong tendency to splay their heads away from the minifilament, thus potentially initiating the diverse processes seen in live cells. In contrast, the straight antiparallel stagger with an overlap of 43 nm is very stable and likely initiates minifilament nucleation. Using stochastic dynamics in a newly defined energy landscape, we predict that the optimal parallel staggers between the myosin rods are obtained by a trial-and-error process in which two rods attach and re-attach at different staggers by rolling and zipping motion. The experimentally observed staggers emerge as the configurations with the largest contact times. We find that contact times increase from isoforms C to B to A, that A-B-heterodimers are surprisingly stable and that myosin 18A should incorporate into mixed filaments with a small stagger. Our findings suggest that nonmuscle myosin II minifilaments in the cell are first formed by isoform A and then convert to mixed A-B-filaments, as observed experimentally. Nonmuscle myosin II (NM2) is a non-processive molecular motor that assembles into minifilaments with a typical size of 300 nm to generate force and motion in the actin cytoskeleton. This process is essential for many cellular processes such as adhesion, migration, division and mechanosensing. Due to their small size below the resolution limit, minifilaments are a challenge for imaging with traditional light microscopy. With the advent of super-resolution microscopy, however, it has become apparent that the formation of NM2-minifilaments is much more dynamic than formerly appreciated. Modelling the electrostatic interaction between the rigid rods of the myosin monomers has confirmed the main staggers observed in experiments, but cannot explain these high dynamics. Here we complement electrostatics by elasticity theory and stochastic dynamics to show that the parallel staggers are likely to splay away from the main axis of the minifilament and that monomers attach and detach with rolling and zipping motions. Based on the sequences of the different NM2-isoforms, we predict that isoform A forms the most stable homofilaments and that A-B-heterofilaments are also very stable.
Collapse
Affiliation(s)
- Tom L. Kaufmann
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
31
|
Asensio-Juárez G, Llorente-González C, Vicente-Manzanares M. Linking the Landscape of MYH9-Related Diseases to the Molecular Mechanisms that Control Non-Muscle Myosin II-A Function in Cells. Cells 2020; 9:E1458. [PMID: 32545517 PMCID: PMC7348894 DOI: 10.3390/cells9061458] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/ or the formation of heteropolymers or co-polymers with other NMII isoforms.
Collapse
Affiliation(s)
| | | | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (G.A.-J.); (C.L.-G.)
| |
Collapse
|
32
|
Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu Rev Biochem 2020; 89:667-693. [PMID: 32169021 DOI: 10.1146/annurev-biochem-011520-105234] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suman Nag
- MyoKardia Inc., Brisbane, California 94005, USA;
| | - Annamma Spudich
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560-097, India;
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
33
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
34
|
Javier-Torrent M, Marco S, Rocandio D, Pons-Vizcarra M, Janes PW, Lackmann M, Egea J, Saura CA. Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA. eLife 2019; 8:43646. [PMID: 31577226 PMCID: PMC6774734 DOI: 10.7554/elife.43646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
EphA/ephrin signaling regulates axon growth and guidance of neurons, but whether this process occurs also independently of ephrins is unclear. We show that presenilin-1 (PS1)/γ-secretase is required for axon growth in the developing mouse brain. PS1/γ-secretase mediates axon growth by inhibiting RhoA signaling and cleaving EphA3 independently of ligand to generate an intracellular domain (ICD) fragment that reverses axon defects in PS1/γ-secretase- and EphA3-deficient hippocampal neurons. Proteomic analysis revealed that EphA3 ICD binds to non-muscle myosin IIA (NMIIA) and increases its phosphorylation (Ser1943), which promotes NMIIA filament disassembly and cytoskeleton rearrangement. PS1/γ-secretase-deficient neurons show decreased phosphorylated NMIIA and NMIIA/actin colocalization. Moreover, pharmacological NMII inhibition reverses axon retraction in PS-deficient neurons suggesting that NMIIA mediates PS/EphA3-dependent axon elongation. In conclusion, PS/γ-secretase-dependent EphA3 cleavage mediates axon growth by regulating filament assembly through RhoA signaling and NMIIA, suggesting opposite roles of EphA3 on inhibiting (ligand-dependent) and promoting (receptor processing) axon growth in developing neurons.
Collapse
Affiliation(s)
- Míriam Javier-Torrent
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Marco
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Rocandio
- Institut de Recerca Biomédica de Lleida, Universitat de Lleida, Lleida, Spain
| | - Maria Pons-Vizcarra
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Joaquim Egea
- Institut de Recerca Biomédica de Lleida, Universitat de Lleida, Lleida, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Smith AS, Pal K, Nowak RB, Demenko A, Zaninetti C, Da Costa L, Favier R, Pecci A, Fowler VM. MYH9-related disease mutations cause abnormal red blood cell morphology through increased myosin-actin binding at the membrane. Am J Hematol 2019; 94:667-677. [PMID: 30916803 PMCID: PMC6510596 DOI: 10.1002/ajh.25472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
Abstract
MYH9-related disease (MYH9-RD) is a rare, autosomal dominant disorder caused by mutations in MYH9, the gene encoding the actin-activated motor protein non-muscle myosin IIA (NMIIA). MYH9-RD patients suffer from bleeding syndromes, progressive kidney disease, deafness, and/or cataracts, but the impact of MYH9 mutations on other NMIIA-expressing tissues remains unknown. In human red blood cells (RBCs), NMIIA assembles into bipolar filaments and binds to actin filaments (F-actin) in the spectrin-F-actin membrane skeleton to control RBC biconcave disk shape and deformability. Here, we tested the effects of MYH9 mutations in different NMIIA domains (motor, coiled-coil rod, or non-helical tail) on RBC NMIIA function. We found that MYH9-RD does not cause clinically significant anemia and that patient RBCs have normal osmotic deformability as well as normal membrane skeleton composition and micron-scale distribution. However, analysis of complete blood count data and peripheral blood smears revealed reduced hemoglobin content and elongated shapes, respectively, of MYH9-RD RBCs. Patients with mutations in the NMIIA motor domain had the highest numbers of elongated RBCs. Patients with mutations in the motor domain also had elevated association of NMIIA with F-actin at the RBC membrane. Our findings support a central role for motor domain activity in NMIIA regulation of RBC shape and define a new sub-clinical phenotype of MYH9-RD.
Collapse
Affiliation(s)
- Alyson S. Smith
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Kasturi Pal
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Roberta B. Nowak
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Anastasiya Demenko
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Carlo Zaninetti
- Department of Internal Medicine, IRCCS Policlinico San
Matteo Foundation and University of Pavia, Pavia, Italy
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique,
Hôpital R. Debré, Paris F-75019, France; Université Paris 7,
Sorbonne Paris Cité, Paris F-75010, France; INSERM U1134, INTS, F-75015,
France; Laboratoire d’Excellence GR-Ex, France
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand
Trousseau Children Hospital, French Reference Center for platelet disorders, Paris,
75012, France
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San
Matteo Foundation and University of Pavia, Pavia, Italy
| | - Velia M. Fowler
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
- Department of Biological Sciences, University of Delaware, Newark, DE 19711
| |
Collapse
|
36
|
Taneja N, Burnette DT. Myosin IIA drives membrane bleb retraction. Mol Biol Cell 2019; 30:1051-1059. [PMID: 30785846 PMCID: PMC6724514 DOI: 10.1091/mbc.e18-11-0752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 01/10/2023] Open
Abstract
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Dylan T. Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
37
|
Shutova MS, Svitkina TM. Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells. BIOCHEMISTRY (MOSCOW) 2019; 83:1459-1468. [PMID: 30878021 DOI: 10.1134/s0006297918120040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various forms of cell motility critically depend on pushing, pulling, and resistance forces generated by the actin cytoskeleton. Whereas pushing forces largely depend on actin polymerization, pulling forces responsible for cell contractility and resistance forces maintaining the cell shape require interaction of actin filaments with the multivalent molecular motor myosin II. In contrast to muscle-specific myosin II paralogs, nonmuscle myosin II (NMII) functions in virtually all mammalian cells, where it executes numerous mechanical tasks. NMII is expressed in mammalian cells as a tissue-specific combination of three paralogs, NMIIA, NMIIB, and NMIIC. Despite overall similarity, these paralogs differ in their molecular properties, which allow them to play both unique and common roles. Importantly, the three paralogs can also cooperate with each other by mixing and matching their unique capabilities. Through specialization and cooperation, NMII paralogs together execute a great variety of tasks in many different cell types. Here, we focus on mammalian NMII paralogs and review novel aspects of their kinetics, regulation, and functions in cells from the perspective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cells.
Collapse
Affiliation(s)
- M S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Dasbiswas K, Hu S, Schnorrer F, Safran SA, Bershadsky AD. Ordering of myosin II filaments driven by mechanical forces: experiments and theory. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0114. [PMID: 29632266 DOI: 10.1098/rstb.2017.0114] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 12/27/2022] Open
Abstract
Myosin II filaments form ordered superstructures in both cross-striated muscle and non-muscle cells. In cross-striated muscle, myosin II (thick) filaments, actin (thin) filaments and elastic titin filaments comprise the stereotypical contractile units of muscles called sarcomeres. Linear chains of sarcomeres, called myofibrils, are aligned laterally in registry to form cross-striated muscle cells. The experimentally observed dependence of the registered organization of myofibrils on extracellular matrix elasticity has been proposed to arise from the interactions of sarcomeric contractile elements (considered as force dipoles) through the matrix. Non-muscle cells form small bipolar filaments built of less than 30 myosin II molecules. These filaments are associated in registry forming superstructures ('stacks') orthogonal to actin filament bundles. Formation of myosin II filament stacks requires the myosin II ATPase activity and function of the actin filament crosslinking, polymerizing and depolymerizing proteins. We propose that the myosin II filaments embedded into elastic, intervening actin network (IVN) function as force dipoles that interact attractively through the IVN. This is in analogy with the theoretical picture developed for myofibrils where the elastic medium is now the actin cytoskeleton itself. Myosin stack formation in non-muscle cells provides a novel mechanism for the self-organization of the actin cytoskeleton at the level of the entire cell.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Kinjal Dasbiswas
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Shiqiong Hu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Schiffhauer ES, Ren Y, Iglesias VA, Kothari P, Iglesias PA, Robinson DN. Myosin IIB assembly state determines its mechanosensitive dynamics. J Cell Biol 2019; 218:895-908. [PMID: 30655296 PMCID: PMC6400566 DOI: 10.1083/jcb.201806058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
Dynamical cell shape changes require a highly sensitive cellular system that can respond to chemical and mechanical inputs. Myosin IIs are key players in the cell's ability to react to mechanical inputs, demonstrating an ability to accumulate in response to applied stress. Here, we show that inputs that influence the ability of myosin II to assemble into filaments impact the ability of myosin to respond to stress in a predictable manner. Using mathematical modeling for Dictyostelium myosin II, we predict that myosin II mechanoresponsiveness will be biphasic with an optimum established by the percentage of myosin II assembled into bipolar filaments. In HeLa and NIH 3T3 cells, heavy chain phosphorylation of NMIIB by PKCζ, as well as expression of NMIIA, can control the ability of NMIIB to mechanorespond by influencing its assembly state. These data demonstrate that multiple inputs to the myosin II assembly state integrate at the level of myosin II to govern the cellular response to mechanical inputs.
Collapse
Affiliation(s)
- Eric S Schiffhauer
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yixin Ren
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Vicente A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Priyanka Kothari
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD .,Department of Pharmacology and Molecular Sciences School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
40
|
George Z, Omosun Y, Azenabor AA, Goldstein J, Partin J, Joseph K, Ellerson D, He Q, Eko F, McDonald MA, Reed M, Svoboda P, Stuchlik O, Pohl J, Lutter E, Bandea C, Black CM, Igietseme JU. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem Biophys Res Commun 2019; 508:421-429. [PMID: 30503337 PMCID: PMC6343654 DOI: 10.1016/j.bbrc.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.
Collapse
Affiliation(s)
- Zenas George
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Yusuf Omosun
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason Goldstein
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - James Partin
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Kahaliah Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Debra Ellerson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Qing He
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | - Francis Eko
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Matthew Reed
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pavel Svoboda
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Olga Stuchlik
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - Claudiu Bandea
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joseph U Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Semelakova M, Grauzam S, Betadthunga P, Tiedeken J, Coaxum S, Neskey DM, Rosenzweig SA. Vimentin and Non-Muscle Myosin IIA are Members of the Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in Head and Neck Squamous Cell Carcinoma Cells. Transl Oncol 2019; 12:49-61. [PMID: 30267961 PMCID: PMC6160858 DOI: 10.1016/j.tranon.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
Here we demonstrate an interaction between neural precursor cell expressed, developmentally-downregulated 9 (NEDD9) and the cytoskeletal proteins vimentin and non-muscle myosin IIA (NMIIA), based on co-immunoprecipitation and mass spectrometric sequence identification. Vimentin was constitutively phosphorylated at Ser56 but vimentin associated with NEDD9-was not phosphorylated at Ser56. In contrast, NMIIA bound to NEDD9 was phosphorylated on S1943 consistent with its function in invasion and secretion. Treatment of cells with the vimentin-targeting steroidal lactone withaferin A had no effect on vimentin turnover as previously reported, instead causing NEDD9 cleavage and cell death. The NMIIA-selective inhibitor blebbistatin induced cells to form long extensions and attenuated secretion of matrix metalloproteinases (MMPs) 2 and 9. While the site of vimentin interaction on NEDD9 was not defined, NMIIA was found to interact with NEDD9 at its substrate domain. NEDD9 interactions with vimentin and NMIIA are consistent with these proteins having roles in MMP secretion and cell invasion. These findings suggest that a better understanding of NEDD9 signaling is likely to reveal novel therapeutic targets for the prevention of invasion and metastasis.
Collapse
Affiliation(s)
- Martina Semelakova
- Institute of Biology and Ecology, Department of Cell Biology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Stèphane Grauzam
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Prabhakar Betadthunga
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Post Graduate-Studies and Research in Biotechnology, Sahydri Science College, Kuvempu University, Shimoga, Karnataka, India, 577203
| | - Jessica Tiedeken
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Sonya Coaxum
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina
| | - David M Neskey
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050.
| |
Collapse
|
42
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
43
|
Sackmann E. Viscoelasticity of single cells-from subcellular to cellular level. Semin Cell Dev Biol 2018; 93:2-15. [PMID: 30267805 DOI: 10.1016/j.semcdb.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
This review deals with insights into complex cellular structures and processes obtained by measuring viscoelastic impedances of the cell envelope and the cytoplasm by colloidal bead microrheometry. I first introduce a mechanical cell model that allows us to understand their unique ability of mechanical self-stabilization by actin microtubule crosstalk. In the second part, I show how cell movements can be driven by pulsatile or propagating solitary actin gelatin waves (SAGW) that are generated on nascent adhesion domains by logistically controlled membrane recruitment of functional proteins by electrostatic-hydrophobic forces. The global polarization of cell migration is guided by actin-microtubule crosstalk that is mediated by the Ca++ and strain-sensitive supramolecular scaffolding protein IQGAP. In the third part, I introduce the traction force microscopy as a tool to measure the forces between somatic cells and the tissue ´Here I show, how absolute values of viscoelastic impedances of the composite cell envelope can be obtained by deformation field mapping techniques. In the fourth part, it is shown how the dynamic mechanical properties of the active viscoplastic cytoplasmic space can be evaluated using colloidal beads as phantom endosomes. Separate measurements of velocity distributions of directed and random motions of phantom endosomes, yield local values of transport forces, viscosities and life times of directed motion along microtubules. The last part deals with biomimetic experiments allowing us to quantitatively evaluate the mechanical properties of passive and active actin networks on the basis of the percolation theory of gelation.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department E22, Technical University Munich, James Franck Str. 1, D85747, Garching, Germany.
| |
Collapse
|
44
|
Norwood Toro LE, Wang Y, Condeelis JS, Jones JG, Backer JM, Bresnick AR. Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis. Exp Cell Res 2018; 370:273-282. [PMID: 29953877 PMCID: PMC6117828 DOI: 10.1016/j.yexcr.2018.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022]
Abstract
Nonmuscle myosin-IIA (NMHC-IIA) heavy chain phosphorylation has gained recognition as an important feature of myosin-II regulation. In previous work, we showed that phosphorylation on S1943 promotes myosin-IIA filament disassembly in vitro and enhances EGF-stimulated lamellipod extension of breast tumor cells. However, the contribution of NMHC-IIA S1943 phosphorylation to the modulation of invasive cellular behavior and metastasis has not been examined. Stable expression of phosphomimetic (S1943E) or non-phosphorylatable (S1943A) NMHC-IIA in breast cancer cells revealed that S1943 phosphorylation enhances invadopodia function, and is critical for matrix degradation in vitro and experimental metastasis in vivo. These studies demonstrate a novel link between NMHC-IIA S1943 phosphorylation, the regulation of extracellular matrix degradation and tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Laura E Norwood Toro
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
45
|
Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664:152-167. [PMID: 29679756 PMCID: PMC5970098 DOI: 10.1016/j.gene.2018.04.048] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| | - Anna Savoia
- Department of Medical Sciences, University of Trieste, via Dell'Istria, 65/1, I-34137 Trieste, Italy; IRCCS Burlo Garofolo, via Dell'Istria, 65/1, I-34137 Trieste, Italy.
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| |
Collapse
|
46
|
Abstract
The three mammalian nonmuscle myosin 2 (NM2) monomers, like all class 2 myosin monomers, are hexamers of two identical heavy (long) chains and two pairs of light (short) chains bound to the heavy chains. The heavy chains have an N-terminal globular motor domain (head) with actin-activated ATPase activity, a lever arm (neck) to which the two light chains bind, and a coiled-coil helical tail. Monomers polymerize into bipolar filaments, with globular heads at each end separated by a bare zone, by antiparallel association of their coiled-coil tails. NM2 filaments are highly dynamic in situ, frequently disassembling and reassembling at different locations within the cell where they are essential for multiple biological functions. Therefore, it is important to understand the mechanisms of filament polymerization and depolymerization. Monomers can exist in two states: folded and unfolded. It has been thought that unfolded monomers form antiparallel dimers that assemble into bipolar filaments. We now show that polymerization in vitro proceeds from folded monomers to folded antiparallel dimers to folded antiparallel tetramers that unfold forming antiparallel bipolar tetramers. Folded dimers and tetramers then associate with the unfolded tetramer and unfold, forming a mature bipolar filament consisting of multiple unfolded tetramers with an entwined bare zone. We also demonstrate that depolymerization is essentially the reverse of the polymerization process. These results will advance our understanding of NM2 filament dynamics in situ.
Collapse
|
47
|
Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability. Proc Natl Acad Sci U S A 2018; 115:E4377-E4385. [PMID: 29610350 DOI: 10.1073/pnas.1718285115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.
Collapse
|
48
|
Shutova MS, Svitkina TM. Mammalian nonmuscle myosin II comes in three flavors. Biochem Biophys Res Commun 2018; 506:394-402. [PMID: 29550471 DOI: 10.1016/j.bbrc.2018.03.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Nonmuscle myosin II is an actin-based motor that executes numerous mechanical tasks in cells including spatiotemporal organization of the actin cytoskeleton, adhesion, migration, cytokinesis, tissue remodeling, and membrane trafficking. Nonmuscle myosin II is ubiquitously expressed in mammalian cells as a tissue-specific combination of three paralogs. Recent studies reveal novel specific aspects of their kinetics, intracellular regulation and functions. On the other hand, the three paralogs also can copolymerize and cooperate in cells. Here we review the recent advances from the prospective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cell.
Collapse
Affiliation(s)
- Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Dulyaninova NG, Ruiz PD, Gamble MJ, Backer JM, Bresnick AR. S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Mol Biol Cell 2017; 29:632-642. [PMID: 29282275 PMCID: PMC6004585 DOI: 10.1091/mbc.e17-07-0460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 01/27/2023] Open
Abstract
S100A4, a member of the S100 family of Ca2+-binding proteins, is a key regulator of cell migration and invasion. Our previous studies showed that bone marrow–derived macrophages from S100A4−/− mice exhibit defects in directional motility and chemotaxis in vitro and reduced recruitment to sites of inflammation in vivo. We now show that the loss of S100A4 produces two mechanistically distinct phenotypes with regard to macrophage invasion: a defect in matrix degradation, due to a disruption of podosome rosettes caused by myosin-IIA overassembly, and a myosin-independent increase in microtubule acetylation, which increases podosome rosette stability and is sufficient to inhibit macrophage invasion. Our studies point to S100A4 as a critical regulator of matrix degradation, whose actions converge on the dynamics and degradative functions of podosome rosettes.
Collapse
Affiliation(s)
| | - Penelope D Ruiz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
50
|
Myosin IIa is critical for cAMP-mediated endothelial secretion of von Willebrand factor. Blood 2017; 131:686-698. [PMID: 29208598 DOI: 10.1182/blood-2017-08-802140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
Nonmuscle myosin II has been implicated in regulation of von Willebrand factor (VWF) release from endothelial Weibel-Palade bodies (WPBs), but the specific role of myosin IIa isoform is poorly defined. Here, we report that myosin IIa is expressed both in primary human endothelial cells and intact mouse vessels, essential for cyclic adenosine monophosphate (cAMP)-mediated endothelial VWF secretion. Downregulation of myosin IIa by shRNAs significantly suppressed both forskolin- and epinephrine-induced VWF secretion. Endothelium-specific myosin IIa knockout mice exhibited impaired epinephrine-stimulated VWF release, prolonged bleeding time, and thrombosis. Further study showed that in resting cells, myosin IIa deficiency disrupted the peripheral localization of Rab27-positive WPBs along stress fibers; on stimulation by cAMP agonists, myosin IIa in synergy with zyxin promotes the formation of a functional actin framework, which is derived from preexisting cortical actin filaments, around WPBs, facilitating fusion and subsequent exocytosis. In summary, our findings not only identify new functions of myosin IIa in regulation of WPB positioning and the interaction between preexisting cortical actin filaments and exocytosing vesicles before fusion but also reveal myosin IIa as a physiological regulator of endothelial VWF secretion in stress-induced hemostasis and thrombosis.
Collapse
|