1
|
Arisco NJ, Peterka C, Diniz C, Singer BH, Castro MC. Ecological change increases malaria risk in the Brazilian Amazon. Proc Natl Acad Sci U S A 2024; 121:e2409583121. [PMID: 39432796 PMCID: PMC11536126 DOI: 10.1073/pnas.2409583121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Ecological change in the Brazilian Amazon is closely linked to human mobility and health. Mining, agriculture, logging, and other activities alter highly diverse ecological and demographic contexts and subsequent exposure to diseases such as malaria. Studies that have attempted to quantify the impact of deforestation on malaria in the Brazilian Amazon have produced conflicting results. However, they varied in methodology and data sources. Most importantly, all studies used annual data, neglecting the subannual seasonal dynamics of malaria. Here, we fill the knowledge gap on the subannual relationship between ecological change in the Brazilian Amazon and malaria transmission. Using the highest spatiotemporal resolution available, we estimated the effect of deforestation on malaria cases between 2003 and 2022 using a stratified Bayesian spatiotemporal hierarchical zero-inflated Poisson model fitted with the Integrated Nested Laplace Approximation. The model was also stratified by state. We found that a 1% increase in 1-mo lagged deforestation increased malaria cases in a given month and municipality by 6.3% [95% credible interval (Crl): 6.2, 6.5%]. Based on an interaction term included in the model, the effect of deforestation on malaria was even larger in areas with higher forest cover. We found that the coefficients for deforestation and mobility were highly variable when stratified by state. Our results provide detailed evidence that, on average, deforestation increases malaria transmission, but that the relationship is not spatiotemporally uniform. These results have implications for stratifying malaria control interventions based on ecological dynamics to help Brazil achieve its goal of malaria elimination by 2035.
Collapse
Affiliation(s)
- Nicholas J. Arisco
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Cassio Peterka
- Superintendência de Vigilância em Saúde do Amapá, Governo do Estado do Amapá, Macapá, AP68902-865, Brazil
| | - Cesar Diniz
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Burton H. Singer
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
2
|
da Silva Bastos A, Dos Santos NAC, Andrade AO, Pontual JDC, Araújo JE, Medeiros JF, da Silva Araújo M. Evaluation of insemination, blood feeding, and Plasmodium vivax infection effects on locomotor activity patterns of the malaria vector Anopheles darlingi (Diptera: Culicidae). Parasitol Res 2023; 123:15. [PMID: 38060049 PMCID: PMC10703739 DOI: 10.1007/s00436-023-08053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Circadian behavioral patterns in mosquitoes can be observed through their locomotor activity, which includes fundamental behaviors such as foraging, mating, and oviposition. These habits, which are fundamental to the life cycle of Anopheles mosquitoes, are closely related to pathogen transmission to humans. While rhythmic cycles of locomotor activity have been described in Anopheles species, no studies have been conducted on Anopheles darlingi species, the main malaria vector in the Amazon region. The aim of this study was to investigate how insemination status, blood meal, and Plasmodium vivax infection affect the locomotor activity of An. darlingi. The experiments were performed with 3- to 10-day-old An. darlingi females, which had been fed with 15% honey solution. These mosquitoes were obtained from the Malaria Vector Production and Infection Platform (PIVEM)/FIOCRUZ-RO. The experimental groups were divided into four categories: virgin vs. inseminated, unfed virgin vs. blood-fed virgin, unfed inseminated vs. blood-fed inseminated, and infected blood vs. uninfected blood. Locomotor activity was monitored using the Flybox equipment, capturing images that were subsequently converted into video to measure the insect activity, using PySoLo software. The periodicity and rhythmicity of mosquito locomotor activity were analyzed using MatLab® software. The locomotor activity of An. darlingi females showed a nocturnal and bimodal pattern under LD conditions. When comparing the insemination states and blood meal, there was a reduction in the locomotor activity in inseminated and blood-fed females. However, the P. vivax+ infection did not increase locomotor activity of An. darlingi species.
Collapse
Affiliation(s)
- Alessandra da Silva Bastos
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Najara Akira Costa Dos Santos
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Alice Oliveira Andrade
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo, SP, 01246-904, Brazil
| | - José Daniel Costa Pontual
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jéssica Evangelista Araújo
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen Fernandes Medeiros
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Maisa da Silva Araújo
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais-PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.
- Laboratório de Pesquisa Translacional E Clínica, Centro de Pesquisa Em Medicina Tropical, Porto Velho, Rondônia, Brazil.
| |
Collapse
|
3
|
Fonseca F, Martinez JM, Balieiro A, Orellana J, Santos JD, Filizola N. Relationship between the colours of the rivers in the Amazon and the incidence of malaria. Malar J 2023; 22:358. [PMID: 37996920 PMCID: PMC10668518 DOI: 10.1186/s12936-023-04789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Malaria is transmitted by different Anopheles species. In Brazil, the disease is concentrated in the Amazon region. Rivers play an important role in the life cycle of malaria since the vector reproduces in aquatic environments. The waters of the rivers in the Amazon have distinct chemical characteristics, which affect the colour of the water and therefore, the study analysed whether the colour of the waters of the rivers have an on influence the distribution of malaria. The goal of the study was to correlate the different colourations of the water (black, white and mixed water) and the malaria incidence in 50 municipalities of the Amazonas state, Brazil, and then test hypotheses about the characteristics of the colour of the rivers and disease incidence. METHODS This study was conducted for a period of seventeen years (2003-2019) in 50 municipalities in the state of Amazonas, Brazil. A conditionally Gaussian dynamic linear model was developed to analyse the association of malaria incidence and three types of river colour: white, black and mixed. RESULTS The analyses indicate that the distribution of malaria is related to the colouration of the rivers. The results showed that places located near black-water rivers have a higher malaria incidence when compared to places on the banks of white-water rivers. CONCLUSIONS Historically, the hydrological regime has played an important role in the dynamics of malaria in the Amazon, but little is known about the relationship between river colours and the incidence of the disease. This research was carried out in a region with hydrographic characteristics that were heterogeneous enough to allow an analysis that contrasted different colours of the rivers and covered almost the whole of the state of Amazonas. The results help to identify the places with the highest risk of malaria transmission and it is believed that they will be able to contribute to more precise planning of actions aimed at controlling the disease in the region.
Collapse
Affiliation(s)
- Fernanda Fonseca
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Amazonas, Brasil.
- Pós-Graduação em Clima e Ambiente-CLIAMB (INPA/UEA), Manaus, Amazonas, Brasil.
| | | | - Antônio Balieiro
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Jesem Orellana
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - James D Santos
- Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| | - Naziano Filizola
- Pós-Graduação em Clima e Ambiente-CLIAMB (INPA/UEA), Manaus, Amazonas, Brasil
- Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| |
Collapse
|
4
|
García-Moreno J. Zoonoses in a changing world. Bioscience 2023; 73:711-720. [PMID: 37854892 PMCID: PMC10580970 DOI: 10.1093/biosci/biad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Animals are continuously exposed to pathogens but rarely get infected, because pathogens must overcome barriers to establish successful infections. Ongoing planetary changes affect factors relevant for such infections, such as pathogen pressure and pathogen exposure. The replacement of wildlife with domestic animals shrinks the original host reservoirs, whereas expanding agricultural frontiers lead to increased contact between natural and altered ecosystems, increasing pathogen exposure and reducing the area where the original hosts can live. Climate change alters species' distributions and phenology, pathogens included, resulting in exposure to pathogens that have colonized or recolonized new areas. Globalization leads to unwilling movement of and exposure to pathogens. Because people and domestic animals are overdominant planetwide, there is increased selective pressure for pathogens to infect them. Nature conservation measures can slow down but not fully prevent spillovers. Additional and enhanced surveillance methods in potential spillover hotspots should improve early detection and allow swifter responses to emerging outbreaks.
Collapse
Affiliation(s)
- Jaime García-Moreno
- Vogelbescherming Nederland, Zeist, Netherlands
- BirdLife, the Netherlands
- ESiLi, Arnhem, the Netherlands
| |
Collapse
|
5
|
Barbosa LMC, Scarpassa VM. Bionomics and population dynamics of anopheline larvae from an area dominated by fish farming tanks in northern Brazilian Amazon. PLoS One 2023; 18:e0288983. [PMID: 37624846 PMCID: PMC10456186 DOI: 10.1371/journal.pone.0288983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND In Brazilian Amazon, deforestation and other anthropogenic activities as a consequence of human occupation have created new and artificial larval habitats for anopheline mosquitoes, providing conditions for oviposition, development and expansion of malaria vector populations. OBJECTIVES This study aimed to structurally characterize and describe the entomological and limnological parameters of Anopheles larval habitats from a malaria region in northern Brazilian Amazon. METHODS Fifty-two larval habitats were investigated in the District of Ilha de Santana, in the Brazilian state of Amapá, comprising fish farming tanks, ponds, and streams. For entomological parameters, the immature larvae were collected monthly from July 2019 to June 2020. For limnological parameters, the water samples were collected from 20 larval habitats during the sampling period. The data were analyzed using Generalized Linear Models, Multivariate analyses, and Kruskal-Wallis tests. RESULTS Fifty habitats were positive for Anopheles larvae and a total of nine species were collected. The fish farming tanks had the highest abundance of larvae compared with ponds and streams. Anopheles darlingi, Anopheles nuneztovari s.l. and Anopheles triannulatus were collected in 94% of the larval habitats and showed the highest positivity index. The degree of shade and the type of water of the breeding sites were important factors for the presence of the main malaria vector, A. darlingi. This species was the most affected by pH, total dissolved solids, electrical conductivity, and nitrate. CONCLUSIONS Our findings indicate that fish farming tanks are major contributors to vector anopheline abundance and malaria transmission. Vector control strategies focused on these habitats are urgently needed.
Collapse
Affiliation(s)
- Ledayane Mayana Costa Barbosa
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Arthropoda, Universidade Federal do Amapá, Rodovia Juscelino Kubitschek, Macapá, Amapá, Brasil
| | - Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Amazonas, Brasil
| |
Collapse
|
6
|
Gonzalez Daza W, Muylaert RL, Sobral-Souza T, Lemes Landeiro V. Malaria Risk Drivers in the Brazilian Amazon: Land Use-Land Cover Interactions and Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6497. [PMID: 37569037 PMCID: PMC10419050 DOI: 10.3390/ijerph20156497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Malaria is a prevalent disease in several tropical and subtropical regions, including Brazil, where it remains a significant public health concern. Even though there have been substantial efforts to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of cases for many years presents a significant challenge. Due to the multifaceted factors that influence the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land use/cover interactions, species richness, and number of endemic birds and amphibians. Results showed that high amphibian and bird richness and endemism correlated with a reduction in malaria risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence alone, modulated malaria risk in the period. Areas with low endemic species diversity and high human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study underscores the importance of considering the broader ecological context in malaria control efforts.
Collapse
Affiliation(s)
- William Gonzalez Daza
- Programa do Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Biociências, Av. Fernando Corrêa da Costa, 2367, Cuiabá 78060-900, MT, Brazil
| | - Renata L. Muylaert
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North 4472, New Zealand;
| | - Thadeu Sobral-Souza
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (T.S.-S.); (V.L.L.)
| | - Victor Lemes Landeiro
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (T.S.-S.); (V.L.L.)
| |
Collapse
|
7
|
Mosquera KD, Nilsson LKJ, de Oliveira MR, Rocha EM, Marinotti O, Håkansson S, Tadei WP, de Souza AQL, Terenius O. Comparative assessment of the bacterial communities associated with Anopheles darlingi immature stages and their breeding sites in the Brazilian Amazon. Parasit Vectors 2023; 16:156. [PMID: 37127597 PMCID: PMC10150499 DOI: 10.1186/s13071-023-05749-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/19/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The neotropical anopheline mosquito Anopheles darlingi is a major malaria vector in the Americas. Studies on mosquito-associated microbiota have shown that symbiotic bacteria play a major role in host biology. Mosquitoes acquire and transmit microorganisms over their life cycle. Specifically, the microbiota of immature forms is largely acquired from their aquatic environment. Therefore, our study aimed to describe the microbial communities associated with An. darlingi immature forms and their breeding sites in the Coari municipality, Brazilian Amazon. METHODS Larvae, pupae, and breeding water were collected in two different geographical locations. Samples were submitted for DNA extraction and high-throughput 16S rRNA gene sequencing was conducted. Microbial ecology analyses were performed to explore and compare the bacterial profiles of An. darlingi and their aquatic habitats. RESULTS We found lower richness and diversity in An. darlingi microbiota than in water samples, which suggests that larvae are colonized by a subset of the bacterial community present in their breeding sites. Moreover, the bacterial community composition of the immature mosquitoes and their breeding water differed according to their collection sites, i.e., the microbiota associated with An. darlingi reflected that in the aquatic habitats where they developed. The three most abundant bacterial classes across the An. darlingi samples were Betaproteobacteria, Clostridia, and Gammaproteobacteria, while across the water samples they were Gammaproteobacteria, Bacilli, and Alphaproteobacteria. CONCLUSIONS Our findings reinforce the current evidence that the environment strongly shapes the composition and diversity of mosquito microbiota. A better understanding of mosquito-microbe interactions will contribute to identifying microbial candidates impacting host fitness and disease transmission.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Louise K J Nilsson
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Marta Rodrigues de Oliveira
- Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG-BIONORTE), Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multi User Laboratory, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Sebastian Håkansson
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Wanderli P Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Antonia Queiroz Lima de Souza
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Brazil
| | - Olle Terenius
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden.
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|
8
|
Santos VS, Bridi LC, Rafael MS. Phylogenetic relationships of the supercontig of sodium channel subunit I (NaV) in 17 species of Anopheles (Diptera: Culicidae). Rev Soc Bras Med Trop 2022; 55:e07012021. [PMID: 36287479 PMCID: PMC9592096 DOI: 10.1590/0037-8682-0701-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Malaria is a global health problem and is transmitted by the Anopheles species. Due to the epidemiological importance of the genus, studies on biological, phylogenetic, and evolutionary aspects have contributed to the understanding of adaptation, vector capacity, and resistance to insecticides. The latter may result from different causes such as mutations in the gene that encodes the sodium channel (NaV). Methods: In this study, the NaV subunit I scaffold of 17 anopheline species was used to infer phylogenetic relationships of the genus Anopheles using Bayesian inference. The evolutionary phylogenetic tree of the NaV gene was aligned in the AliView program and analyzed utilizing Bayesian inference, using the software MrBayes. Results: The anophelines were grouped into five well-supported clusters: 1 - Anopheles darlingi and Anopheles albimanus; 2 - Anopheles sinensis and Anopheles atroparvus; 3 - Anopheles dirus; 4 - Anopheles minimus, Anopheles culicifacies, Anopheles funestus, Anopheles maculatus, and Anopheles stephensi; and 5 - Anopheles christyi, Anopheles epiroticus, Anopheles merus, Anopheles melas, Anopheles gambiae, Anopheles coluzzii, and Anopheles arabiensis. Conclusions: The topology confirms the phylogenetic relationships proposed in studies based on the genome of some anophelines and reflects the current taxonomy of the genus, which suggests that NaV undergoes selection pressure during the evolution of the species. These data are useful tools for inferring their ability to resist insecticides and also help in better understanding the evolutionary processes of the genus Anopheles.
Collapse
Affiliation(s)
- Valéria Silva Santos
- Instituto Nacional de Pesquisas da Amazônia, Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brasil
| | - Leticia Cegatti Bridi
- Instituto Nacional de Pesquisas da Amazônia, Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brasil
| | - Míriam Silva Rafael
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Vetores da Malária e Dengue, Manaus, AM, Brasil
| |
Collapse
|
9
|
Meireles ACA, da Silva LR, Simplício MF, de Lima AA, Rios FGF, de Menezes CA, Feitoza LHM, Julião GR. Anopheline diversity in urban and peri-urban malaria foci: comparison between alternative traps and seasonal effects in a city in the Western Brazilian Amazon. Malar J 2022; 21:258. [PMID: 36068530 PMCID: PMC9450372 DOI: 10.1186/s12936-022-04274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Continuous vector surveillance and sustainable interventions are mandatory in order to prevent anopheline proliferation (or spread to new areas) and interrupt malaria transmission. Anopheline abundance and richness were evaluated in urban and peri-urban malaria foci at a medium-sized city in the Brazilian Amazon, comparing the protected human landing catch technique (PHLC) and alternative sampling methods over different seasonal periods. Additional information was assessed for female feeding behaviour and faunal composition. METHODS Anophelines were sampled bimonthly in four urban and peri-urban sites in the city of Porto Velho, state of Rondônia, Brazil. The average number of captured mosquitoes was compared between an PHLC (gold standard), a tent trap (Gazetrap), and a barrier screen by means of generalized linear mixed models (GLMM), which also included season and environment (peri-urban/urban) as predictors. RESULTS Overall, 2962 Anopheles individuals belonging to 12 species and one complex were caught; Anopheles darlingi represented 86% of the individuals. More mosquitoes were captured in the peri-urban setting, and the urban setting was more diverse. The model estimates that significantly more anophelines were collected by PHLC than by the Screen method, and Gazetrap captured fewer individuals. However, the Screen technique yielded more blood-engorged females. The peak hours of biting activity were from 6 to 7 p.m. in urban areas and from 7 to 8 p.m. in peri-urban areas. CONCLUSIONS Although peri-urban settings presented a greater abundance of anophelines, Shannon and Simpson diversities were higher in urban sites. Each technique proved to be useful, depending on the purpose: PHLC was more effective in capturing the highest anopheline densities, Gazetrap caught the greatest number of species, and the barrier screen technique captured more engorged individuals. There was no seasonal effect on Anopheles assemblage structure; however, a more diverse fauna was caught in the transitional season. Biting activity was more intense from 6 to 8 p.m., with a predominance of An. darlingi.
Collapse
Affiliation(s)
- Anne Caroline Alves Meireles
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), BR-364, Km 9.5, Porto Velho, RO, 78900-550, Brazil. .,Laboratory of Entomology, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, 76812-245, Brazil.
| | - Lucas Rosendo da Silva
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), BR-364, Km 9.5, Porto Velho, RO, 78900-550, Brazil.,Laboratory of Entomology, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, 76812-245, Brazil.,INCT-EpiAmO - National Institute of Epidemiology of Western Amazônia, Porto Velho, RO, Brazil
| | - Marlon Ferreira Simplício
- Laboratory of Entomology, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Alzemar Alves de Lima
- Centro de Pesquisa em Medicina Tropical de Rondônia, CEPEM-RO, Porto Velho, RO, 76812-329, Brazil.,Centro Universitário São Lucas, Porto Velho, RO, 76805-846, Brazil
| | - Flávia Geovana Fontineles Rios
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), BR-364, Km 9.5, Porto Velho, RO, 78900-550, Brazil.,Laboratory of Entomology, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Carla Augusta de Menezes
- Laboratory of Entomology, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Luiz Henrique Maciel Feitoza
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), BR-364, Km 9.5, Porto Velho, RO, 78900-550, Brazil.,Laboratory of Entomology, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Genimar Rebouças Julião
- Laboratory of Entomology, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, 76812-245, Brazil.,INCT-EpiAmO - National Institute of Epidemiology of Western Amazônia, Porto Velho, RO, Brazil
| |
Collapse
|
10
|
Hydrological Scenarios and Malaria Incidence in the Amazonian Context. WATER 2022. [DOI: 10.3390/w14081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Brazil, approximately 99% of malaria cases are concentrated in the Amazon region. An acute febrile infectious disease, malaria is closely related to climatic and hydrological factors. Environmental variables such as rainfall, flow, level, and color of rivers, the latter associated with the suspended sediment concentration, are important factors that can affect the dynamics of the incidence of some infectious diseases, including malaria. This study explores the possibility that malaria incidence is influenced by precipitation, fluctuations in river levels, and suspended sediment concentration. The four studied municipalities are located in two Brazilian states (Amazonas and Pará) on the banks of rivers with different hydrological characteristics. The results suggest that precipitation and river level fluctuations modulate the seasonal pattern of the disease and evidence the existence of delayed effects of river floods on malaria incidence. The seasonality of the disease has a different influence in each municipality studied. However, municipalities close to rivers with the same characteristic color of waters (as a function of the concentration of suspended sediments) have similar responses to the disease.
Collapse
|
11
|
Cross-border malaria in the triple border region between Brazil, Venezuela and Guyana. Sci Rep 2022; 12:1200. [PMID: 35075191 PMCID: PMC8786846 DOI: 10.1038/s41598-022-05205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022] Open
Abstract
The state of Roraima, in Brazil, has recently seen an increase in the number of reported Plasmodium falciparum infections believed to be imported from neighboring countries. The objective of this study was to determine the prevalence of Plasmodium species among patients attending malaria health posts in Roraima and quantify the infections attributable to imported malaria. This cross-sectional case study was carried out between March 2016 and September 2018. Study participants were recruited as they exited the malaria health post. Information about residence, occupation and travel history was collected using a questionnaire. A dried blood spot was collected and used for malaria diagnosis by PCR. A total of 1222 patients were enrolled. Of the 80% Plasmodium positive samples, 50% were P. falciparum, 34% P. vivax, 8% mixed P. falciparum/P. vivax and 0.2% mixed P. falciparum/P. ovale infections and 8% tested positive for Plasmodium, but the species could not be identified. 80% of the malaria patients likely acquired infections in Venezuela and the remaining 20% acquired in Guyana, Brazil, Suriname and French Guyana. 50% of the study participants reported to be working in a mine. Results from this study support the hypothesis that imported malaria contribute to the bulk of malaria diagnosed in Roraima. These findings are in keeping with previous findings and should be considered when developing malaria control interventions.
Collapse
|
12
|
de Almeida NCV, Louzada J, Neves MSAS, Carvalho TM, Castro-Alves J, Silva-do-Nascimento TF, Escalante AA, Oliveira-Ferreira J. Larval habitats, species composition and distribution of malaria vectors in regions with autochthonous and imported malaria in Roraima state, Brazil. Malar J 2022; 21:13. [PMID: 35027049 PMCID: PMC8759267 DOI: 10.1186/s12936-021-04033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria control requires local action. Assessing the vector diversity and abundance provides information on the local malariogenic potential or risk of transmission. This study aimed to determine the Anopheles species composition, habitats, seasonal occurrence, and distribution in areas with autochthonous and imported malaria cases in Roraima State. Methods A longitudinal study was conducted from January 2017 to October 2018, sampling larvae and adult mosquitoes in three municipalities of Roraima State: Boa Vista, Pacaraima and São João da Baliza. These areas have different risks of malaria importation. Four to six mosquito larval habitats were selected for larval sampling at each municipality, along with two additional sites for adult mosquito collection. All larval habitats were surveyed every two months using a standardized larval sampling methodology and MosqTent for adult mosquitoes. Results A total of 544 Anopheles larvae and 1488 adult mosquitoes were collected from the three municipalities studied. Although the species abundance differed between municipalities, the larvae of Anopheles albitarsis s.l., Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were collected from all larval habitats studied while Anopheles darlingi were collected only from Boa Vista and São João da Baliza. Adults of 11 species of the genus Anopheles were collected, and the predominant species in Boa Vista was An. albitarsis (88.2%) followed by An. darlingi (6.9%), while in São João da Baliza, An. darlingi (85.6%) was the most predominant species followed by An. albitarsis s.l. (9.2%). In contrast, the most abundant species in Pacaraima was Anopheles braziliensis (62%), followed by Anopheles peryassui (18%). Overall, the majority of anophelines exhibited greater extradomicile than peridomicile-biting preference. Anopheles darlingi was the only species found indoors. Variability in biting times was observed among species and municipalities. Conclusion This study revealed the composition of anopheline species and habitats in Boa Vista, Pacaraima and São João da Baliza. The species sampled differed in their behaviour with only An. darlingi being found indoors. Anopheles darlingi appeared to be the most important vector in São João da Baliza, an area of autochthonous malaria, and An. albitarsis s.l. and An. braziliensis in areas of low transmission, although there were increasing reports of imported malaria. Understanding the diversity of vector species and their ecology is essential for designing effective vector control strategies for these municipalities. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04033-1.
Collapse
Affiliation(s)
| | - Jaime Louzada
- Universidade Federal de Roraima, Boa Vista, Roraima, Brasil
| | | | - Thiago M Carvalho
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Júlio Castro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | | | - Ananias A Escalante
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.
| |
Collapse
|
13
|
Gilkey PL, Ortiz DL, Kowalo T, Troyo A, Sirot LK. Host-Feeding Patterns of the Mosquito Assemblage at Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2058-2066. [PMID: 34224564 DOI: 10.1093/jme/tjab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 06/13/2023]
Abstract
Mosquito-borne pathogens have spread throughout tropical regions of the Western Hemisphere causing increased burden of disease in the region. Outbreaks of dengue fever, yellow fever, chikungunya, West Nile, and Zika have occurred over the past several years. Mosquito blood-feeding patterns need to be assayed to assist in determining which vertebrates could act as hosts of these mosquito-borne pathogens and which mosquito species could act as vectors. We conducted bloodmeal analyses of mosquitoes collected at Lomas Barbudal Biological Reserve, a dry tropical forest reserve in Costa Rica. Mosquitoes were collected using backpack aspirators and light, gravid, and resting traps, and then identified morphologically. Blood-fed mosquitoes underwent DNA extraction, PCR amplification, and sequencing of the vertebrate cytochrome b and cytochrome c oxidase 1 genes to identify vertebrate bloodmeal hosts. Several mosquitoes known to vector pathogens were found including Culex (Melanoconion) erraticus Dyar & Knab (Diptera: Culicidae), Cx. (Mel.) pedroi Sirivanakarn & Belkin, Aedes (Stegomyia) albopictus Skuse, Ae. (Ochlerotatus) scapularis Rondani, Ae. (Och.) serratus Theobald, and Ae. (Och.) taeniorhynchus Wiedemann. The most common bloodmeal hosts were basilisk lizards (Basiliscus vittatus) Wiegmann (Squamata: Corytophanidae) in Culex (Linnaeus) species and white-tailed deer (Odocoileus virginianus) Zimmermann (Artiodactyla: Cervidae) in Aedes (Meigen) species. These results show the diversity of mosquito species in a tropical dry deciduous forest and identify associations between mosquito vectors and potential pathogen reservoir hosts. Our study highlights the importance of understanding interactions between vector species and their hosts that could serve as predictors for the potential emergence or resurgence of mosquito-borne pathogens in Costa Rica.
Collapse
Affiliation(s)
- Patrick L Gilkey
- Department of Biology, The College of Wooster, Wooster, OH, USA
- School of Biological, Environmental, & Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Diana L Ortiz
- Biology Program, Westminster College, New Wilmington, PA, USA
| | - Tia Kowalo
- Environmental Science Program, Westminster College, New Wilmington, PA, USA
| | - Adriana Troyo
- Laboratorio de Investigación en Vectores (LIVE), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Laura K Sirot
- Department of Biology, The College of Wooster, Wooster, OH, USA
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
14
|
Codeço CT, Dal'Asta AP, Rorato AC, Lana RM, Neves TC, Andreazzi CS, Barbosa M, Escada MIS, Fernandes DA, Rodrigues DL, Reis IC, Silva-Nunes M, Gontijo AB, Coelho FC, Monteiro AMV. Epidemiology, Biodiversity, and Technological Trajectories in the Brazilian Amazon: From Malaria to COVID-19. Front Public Health 2021; 9:647754. [PMID: 34327184 PMCID: PMC8314010 DOI: 10.3389/fpubh.2021.647754] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The Amazon biome is under severe threat due to increasing deforestation rates and loss of biodiversity and ecosystem services while sustaining a high burden of neglected tropical diseases. Approximately two thirds of this biome are located within Brazilian territory. There, socio-economic and environmental landscape transformations are linked to the regional agrarian economy dynamics, which has developed into six techno-productive trajectories (TTs). These TTs are the product of the historical interaction between Peasant and Farmer and Rancher practices, technologies and rationalities. This article investigates the distribution of the dominant Brazilian Amazon TTs and their association with environmental degradation and vulnerability to neglected tropical diseases. The goal is to provide a framework for the joint debate of the local economic, environmental and health dimensions. We calculated the dominant TT for each municipality in 2017. Peasant trajectories (TT1, TT2, and TT3) are dominant in ca. fifty percent of the Amazon territory, mostly concentrated in areas covered by continuous forest where malaria is an important morbidity and mortality cause. Cattle raising trajectories are associated with higher deforestation rates. Meanwhile, Farmer and Rancher economies are becoming dominant trajectories, comprising large scale cattle and grain production. These trajectories are associated with rapid biodiversity loss and a high prevalence of neglected tropical diseases, such as leishmaniasis, Aedes-borne diseases and Chagas disease. Overall, these results defy simplistic views that the dominant development trajectory for the Amazon will optimize economic, health and environmental indicators. This approach lays the groundwork for a more integrated narrative consistent with the economic history of the Brazilian Amazon.
Collapse
Affiliation(s)
- Claudia T. Codeço
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana P. Dal'Asta
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil
| | - Ana C. Rorato
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil
| | - Raquel M. Lana
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tatiana C. Neves
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cecilia S. Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Milton Barbosa
- Ecologia Evolutiva e Biodiversidade, DGEE, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria I. S. Escada
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil
| | - Danilo A. Fernandes
- Instituto de Ciências Sociais Aplicadas e Núcleo de Altos Estudos Amazônicos, Universidade Federal do Pará, Belem, Brazil
| | - Danuzia L. Rodrigues
- Instituto de Estudos em Desenvolvimento Agrário e Regional, Universidade Federal do Sul e Sudeste do Pará, Maraba, Brazil
| | - Izabel C. Reis
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Alexandre B. Gontijo
- Laboratório de Produtos Florestais, Serviço Florestal Brasileiro, Brasília, Brazil
| | - Flavio C. Coelho
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| | - Antonio M. V. Monteiro
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil
| |
Collapse
|
15
|
Ferraguti M, Martínez-de la Puente J, Figuerola J. Ecological Effects on the Dynamics of West Nile Virus and Avian Plasmodium: The Importance of Mosquito Communities and Landscape. Viruses 2021; 13:v13071208. [PMID: 34201673 PMCID: PMC8310121 DOI: 10.3390/v13071208] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/30/2023] Open
Abstract
Humans and wildlife are at risk from certain vector-borne diseases such as malaria, dengue, and West Nile and yellow fevers. Factors linked to global change, including habitat alteration, land-use intensification, the spread of alien species, and climate change, are operating on a global scale and affect both the incidence and distribution of many vector-borne diseases. Hence, understanding the drivers that regulate the transmission of pathogens in the wild is of great importance for ecological, evolutionary, health, and economic reasons. In this literature review, we discuss the ecological factors potentially affecting the transmission of two mosquito-borne pathogens circulating naturally between birds and mosquitoes, namely, West Nile virus (WNV) and the avian malaria parasites of the genus Plasmodium. Traditionally, the study of pathogen transmission has focused only on vectors or hosts and the interactions between them, while the role of landscape has largely been ignored. However, from an ecological point of view, it is essential not only to study the interaction between each of these organisms but also to understand the environmental scenarios in which these processes take place. We describe here some of the similarities and differences in the transmission of these two pathogens and how research into both systems may facilitate a greater understanding of the dynamics of vector-borne pathogens in the wild.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, E-18071 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Jordi Figuerola
- Doñana Biological Station (EBD-CSIC), E-41092 Seville, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
16
|
Seasonality modulates the direct and indirect influences of forest cover on larval anopheline assemblages in western Amazônia. Sci Rep 2021; 11:12721. [PMID: 34135444 PMCID: PMC8208974 DOI: 10.1038/s41598-021-92217-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Serious concerns have arisen regarding urbanization processes in western Amazônia, which result in the creation of artificial habitats, promoting the colonization of malaria vectors. We used structural equation modelling to investigate direct and indirect effects of forest cover on larval habitats and anopheline assemblages in different seasons. We found 3474 larvae in the dry season and 6603 in the rainy season, totalling ten species and confirming the presence of malaria vectors across all sites. Forest cover had direct and indirect (through limnological variables) effects on the composition of larval anopheline assemblages in the rainy season. However, during the dry season, forest cover directly affected larval distribution and habitat variables (with no indirect affects). Additionally, artificial larval habitats promote ideal conditions for malaria vectors in Amazonia, mainly during the rainy season, with positive consequences for anopheline assemblages. Therefore, the application of integrated management can be carried out during both seasons. However, we suggest that the dry season is the optimal time because larval habitats are more limited, smaller in volume and more accessible for applying vector control techniques.
Collapse
|
17
|
Rafael MS, Bridi LC, Sharakhov IV, Marinotti O, Sharakhova MV, Timoshevskiy V, Guimarães-Marques GM, Santos VS, da Silva CGN, Astolfi-Filho S, Tadei WP. Physical Mapping of the Anopheles ( Nyssorhynchus) darlingi Genomic Scaffolds. INSECTS 2021; 12:insects12020164. [PMID: 33671870 PMCID: PMC7918962 DOI: 10.3390/insects12020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
The genome assembly of Anopheles darlingi consists of 2221 scaffolds (N50 = 115,072 bp) and has a size spanning 136.94 Mbp. This assembly represents one of the smallest genomes among Anopheles species. Anopheles darlingi genomic DNA fragments of ~37 Kb were cloned, end-sequenced, and used as probes for fluorescence in situ hybridization (FISH) with salivary gland polytene chromosomes. In total, we mapped nine DNA probes to scaffolds and autosomal arms. Comparative analysis of the An. darlingi scaffolds with homologous sequences of the Anopheles albimanus and Anopheles gambiae genomes identified chromosomal rearrangements among these species. Our results confirmed that physical mapping is a useful tool for anchoring genome assemblies to mosquito chromosomes.
Collapse
Affiliation(s)
- Míriam Silva Rafael
- Coordenação de Sociedade Ambiente e Saúde, Laboratório de Vetores de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Manaus, AM 69060-001, Brazil;
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiv, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69060-001, Brazil; (L.C.B.); (G.M.G.-M.); (V.S.S.)
- Correspondence: ; Tel.: +55-092-3643-3066
| | - Leticia Cegatti Bridi
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiv, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69060-001, Brazil; (L.C.B.); (G.M.G.-M.); (V.S.S.)
| | - Igor V. Sharakhov
- Department of Entomology and Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (I.V.S.); (M.V.S.); (V.T.)
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Genetics and Cell Biology, Tomsk State University, 634050 Tomsk, Russia
| | | | - Maria V. Sharakhova
- Department of Entomology and Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (I.V.S.); (M.V.S.); (V.T.)
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vladimir Timoshevskiy
- Department of Entomology and Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (I.V.S.); (M.V.S.); (V.T.)
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Giselle Moura Guimarães-Marques
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiv, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69060-001, Brazil; (L.C.B.); (G.M.G.-M.); (V.S.S.)
| | - Valéria Silva Santos
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiv, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69060-001, Brazil; (L.C.B.); (G.M.G.-M.); (V.S.S.)
| | - Carlos Gustavo Nunes da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas, Av. Rodrigo Otávio, 6.200. Coroado l, Manaus, AM 69080-900, Brazil;
| | - Spartaco Astolfi-Filho
- Laboratorio de Tecnologias de DNA, Divisão de Biotecnologia, Centro de Apoio Multidisciplinar, Universi dade Federal do Amazonas, Av. Rodrigo Otávio, 6.200. Coroado l, Manaus, AM 69080-900, Brazil;
| | - Wanderli Pedro Tadei
- Coordenação de Sociedade Ambiente e Saúde, Laboratório de Vetores de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Manaus, AM 69060-001, Brazil;
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiv, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69060-001, Brazil; (L.C.B.); (G.M.G.-M.); (V.S.S.)
| |
Collapse
|
18
|
Rocha EM, Marinotti O, Serrão DM, Correa LV, Katak RDM, de Oliveira JC, Muniz VA, de Oliveira MR, do Nascimento Neto JF, Pessoa MCF, Roque RA, da Mota AJ, Onorati P, Souza-Neto JA, Terenius O, Tadei WP. Culturable bacteria associated with Anopheles darlingi and their paratransgenesis potential. Malar J 2021; 20:40. [PMID: 33441101 PMCID: PMC7805163 DOI: 10.1186/s12936-020-03574-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background Malaria remains a major public health problem in South America, mostly in the Amazon region. Among newly proposed ways of controlling malaria transmission to humans, paratransgenesis is a promising alternative. Paratransgenesis aims to inhibit the development of parasites within the vector through the action of genetically modified bacteria. The first step towards successful paratransgenesis in the Amazon is the identification of Anopheles darlingi symbiotic bacteria, which are transmitted vertically among mosquitoes, and are not pathogenic to humans. Methods Culturable bacteria associated with An. darlingi and their breeding sites were isolated by conventional microbiological techniques. Isolated strains were transformed with a GFP expressing plasmid, pSPT-1-GFP, and reintroduced in mosquitoes by feeding. Their survival and persistence in the next generation was assessed by the isolation of fluorescent bacteria from eggs, larvae, pupae and adult homogenates. Results A total of 179 bacterial strains were isolated from samples from two locations, Coari and Manaus. The predominant genera identified in this study were Acinetobacter, Enterobacter, Klebsiella, Serratia, Bacillus, Elizabethkingia, Stenotrophomonas and Pantoea. Two isolated strains, Serratia-Adu40 and Pantoea-Ovo3, were successfully transformed with the pSPT-1-GFP plasmid and expressed GFP. The fluorescent bacteria fed to adult females were transferred to their eggs, which persisted in larvae and throughout metamorphosis, and were detected in adult mosquitoes of the next generation. Conclusion Serratia-Adu40 and Pantoea-Ovo3 are promising candidates for paratransgenesis in An. darlingi. Further research is needed to determine if these bacteria are vertically transferred in nature.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | | | | | | | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | | | | | | | | | - Rosemary Aparecida Roque
- Laboratório de Malária E Dengue, Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Brazil
| | - Adolfo Jose da Mota
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Box 7044, 750 07, Uppsala, Sweden
| | - Jayme A Souza-Neto
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multi User Laboratory, São Paulo State University (UNESP), Botucatu, Brazil
| | - Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Box 7044, 750 07, Uppsala, Sweden. .,Department of Cell and Molecular Biology, Microbiology, Uppsala University, Box 596, 751 24, Uppsala, Sweden.
| | - Wanderli Pedro Tadei
- Laboratório de Malária E Dengue, Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Brazil.
| |
Collapse
|
19
|
Nascimento DAS, Trindade FTT, Silva ADAE. Dietary Supplementation With Vitamins and Minerals Improves Larvae and Adult Rearing Conditions of Anopheles darlingi (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:71-78. [PMID: 32865210 DOI: 10.1093/jme/tjaa173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Several experiments with Anopheles darlingi Root, an important malaria vector in the Amazon region, were carried out in the laboratory, depending on the large-scale production of viable larvae and adults. Certainly, improvements in rearing conditions, including dietary requirements, can strongly affect mosquito production. In order to increase the production of this species in the laboratory, we first supplemented the regular larval diet (TetraMin Tropical Flakes) with different concentrations of vitamins and minerals and recorded several biological variables: survival and larval development time, emergence ratio, and adult longevity under a small-scale rearing condition. Second, we established an experimental design under regular lab-rearing conditions based on the concentration of vitamins and minerals that best contributed to the development of these anophelines, and evaluated the biological parameters already mentioned. Moreover, under regular rearing conditions, we recorded sex ratio, adult size, and longevity of adults fed with supplemented sucrose. The lowest concentration of vitamins (V5) and the average concentration of minerals (M3) increased larval survival and decreased larval development time compared with the control. Under regular rearing conditions, minerals provided higher larval survival and increased the longevity of adults fed with supplemented sucrose. Supplementing the regular larval diet and sucrose solutions with vitamins and minerals increased the production of immatures and the longevity of An. darlingi adults.
Collapse
Affiliation(s)
| | | | - Alexandre de Almeida E Silva
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
- Laboratório de Bioecologia de Insetos, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| |
Collapse
|
20
|
Host feeding patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Acta Trop 2021; 213:105751. [PMID: 33166514 DOI: 10.1016/j.actatropica.2020.105751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Nyssorhynchus darlingi (Root) is the dominant malaria vector in the Brazilian Amazon River basin, with additional Anophelinae Grassi species involved in local and regional transmission. Mosquito blood-feeding behavior is an essential component to define the mosquito-human contact rate and shape the transmission cycle of vector-borne diseases. However, there is little information on the host preferences and blood-feeding behavior of Anophelinae vectors in rural Amazonian landscapes. The barrier screen sampling (BSS) method was employed to sample females from 34 peridomestic habitats in 27 rural communities from 11 municipalities in the Brazilian Amazon states of Acre, Amazonas, Pará and Rondônia, from August 2015 to November 2017. Nyssorhynchus darlingi comprised 97.94% of the females collected resting on barrier screens, and DNA sequence comparison detected 9 vertebrate hosts species. The HBI index ranged from 0.03-1.00. Results revealed the plasticity of Ny. darlingi in blood-feeding on a wide range of mainly mammalian hosts. In addition, the identification of blood meal sources using silica-dried females is appropriate for studies of human malaria vectors in remote locations.
Collapse
|
21
|
Hutchings RSG, Hutchings RW, Menezes IS, Sallum MAM. Mosquitoes (Diptera: Culicidae) From the Southwestern Brazilian Amazon: Liberdade and Gregório Rivers. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1793-1811. [PMID: 32597474 DOI: 10.1093/jme/tjaa100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 06/11/2023]
Abstract
The mosquito community from remote locations toward the southern border of the Brazilian State of Amazonas, in four localities along the Liberdade and Gregório Rivers, was sampled using CDC and Malaise traps, complemented with net sweeping and immature collections. During May 2011, 190 collections yielded 13,012 mosquitoes, from 15 genera and 112 different species, together with 10 morphospecies, which may represent new undescribed taxa. Among the species collected, there are two new geographical distribution records for the State of Amazonas. Culex, the most abundant genus, also had the highest number of species. Both Aedes and Uranotaenia had the second highest number of species, although they were the second and seventh most abundant, respectively. The most abundant species were Aedes (Ochlerotatus) fulvus (Wiedemann), Aedes (Ochlerotatus) nubilus (Theobald), Culex (Culex) mollis Dyar & Knab, Nyssorhynchus (Nyssorhynchus) oswaldoi sensu lato, Culex (Melanoconion) pedroi Sirivanakarn & Belkin, and Culex (Melanoconion) gnomatos Sallum, Hutchings & Ferreira. The epidemiological implications of mosquito species are discussed and compared with other mosquito inventories from the Amazon region. These results represent the first standardized mosquito inventories of the Liberdade and Gregório Rivers, with the identification of 112 species and 10 morphospecies, within the municipalities of Ipixuna and Eirunepé, from which we have only few records in the published literature.
Collapse
Affiliation(s)
- Rosa Sá Gomes Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Roger William Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Isis Sá Menezes
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Rocha EM, Katak RDM, Campos de Oliveira J, Araujo MDS, Carlos BC, Galizi R, Tripet F, Marinotti O, Souza-Neto JA. Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Trop Med Infect Dis 2020; 5:E161. [PMID: 33092228 PMCID: PMC7709627 DOI: 10.3390/tropicalmed5040161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Maisa da Silva Araujo
- Laboratory of Medical Entomology, Oswaldo Cruz Foundation, FIOCRUZ RONDONIA, Porto Velho, RO 76812-245, Brazil;
| | - Bianca Cechetto Carlos
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Roberto Galizi
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | | | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|
23
|
Wolfarth-Couto B, Filizola N, Durieux L. Seasonal pattern of malaria cases and the relationship with hydrologic variability in the Amazonas State, Brazil. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2020; 23:e200018. [PMID: 32159628 DOI: 10.1590/1980-549720200018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Malaria is an infectious disease of high transmission in the Amazon region, but its dynamics and spatial distribution may vary depending on the interaction of environmental, socio-cultural, economic, political and health services factors. OBJECTIVE To verify the existence of malaria case patterns in consonance with the fluviometric regimes in Amazon basin. METHOD Methods of descriptive and inferential statistics were used in malaria and water level data for 35 municipalities in the Amazonas State, in the period from 2003 to 2014. RESULTS The existence of a tendency to modulate the seasonality of malaria cases due to distinct periods of rivers flooding has been demonstrated. Differences were observed in the annual hydrological variability accompanied by different patterns of malaria cases, showing a trend of remodeling of the epidemiological profile as a function of the flood pulse. CONCLUSION The study suggests the implementation of regional and local strategies considering the hydrological regimes of the Amazon basin, enabling municipal actions to attenuate the malaria in the Amazonas State.
Collapse
Affiliation(s)
- Bruna Wolfarth-Couto
- Programa de Pós-Graduação em Clima e Ambiente, Instituto Nacional de Pesquisas da Amazônia - Manaus (AM), Brasil
| | - Naziano Filizola
- Laboratório de Potamologia do Amazonas, Universidade Federal do Amazonas - Manaus (AM), Brasil
| | - Laurent Durieux
- UMR ESPACE-DEV, Institut de Recherche pour le Développement - Montpellier, France
| |
Collapse
|
24
|
Hanafi-Bojd AA, Vatandoost H, Yaghoobi-Ershadi MR. Climate Change and the Risk of Malaria Transmission in Iran. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:50-64. [PMID: 31429469 DOI: 10.1093/jme/tjz131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Indexed: 06/10/2023]
Abstract
Climate change is an important factor affecting the dynamics of the vectors population and, hence, the risk of vector-borne diseases. This study aimed to predict the environmental suitability for malaria vectors in Iran under climate change scenarios in 2030s and 2050s. Literature search was performed to find documents on the spatial distribution of Anopheles stephensi Liston, 1901, Anopheles culicifacies s.l. Giles, 1901, Anopheles fluviatilis s.l. James, 1902, Anopheles superpictus s.l. Grassi, 1899, Anopheles dthali Patton, 1905, Anopheles maculipennis s.l. Meigen, 1818, and Anopheles sacharovi Favre, 1903 (Diptera: Culicidae) published between 1970 and 2017. The bioclimatic data under three climate change scenarios (representative concentration pathway 2.6 [RCP2.6], RCP4.5, and RCP8.5) and MaxEnt model were used to predict the ecological niches for each species. Comparison between the two study periods under the three scenarios for each species revealed that RCP8.5 would reduce the area at risk for An. culicifacies s.l., An. dthali and An. superpictus s.l. in the 2050s compared to the 2030s, but the reverse will be induced by RCP2.6 and RCP4.5 scenarios. For An. fluviatilis s.l., RCP2.6 will reduce the risk areas in the 2050s, whereas an increase is expected under the two other scenarios. Moreover, all scenarios would decrease the high-risk areas of An. maculipennis s.l. in the 2050s. For An. sacharovi, RCP2.6 would increase its high-risk areas, whereas RCP4.5 and RCP8.5 would decrease its exposure. The high-risk area of An. stephensi is expected to increase under RCP8.5 in the 2030s and RCP4.5 in 2050s, but it will be almost unchanged or reduced under other scenarios.
Collapse
Affiliation(s)
- Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Minimal genetic differentiation of the malaria vector Nyssorhynchus darlingi associated with forest cover level in Amazonian Brazil. PLoS One 2019; 14:e0225005. [PMID: 31725789 PMCID: PMC6855485 DOI: 10.1371/journal.pone.0225005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
The relationship between deforestation and malaria in Amazonian Brazil is complex, and a deeper understanding of this relationship is required to inform effective control measures in this region. Here, we are particularly interested in characterizing the impact of land use and land cover change on the genetics of the major regional vector of malaria, Nyssorhynchus darlingi (Root). We used nextera-tagmented, Reductively Amplified DNA (nextRAD) genotyping-by-sequencing to genotype 164 Ny. darlingi collected from 16 collection sites with divergent forest cover levels in seven municipalities in four municipality groups that span the state of Amazonas in northwestern Amazonian Brazil: São Gabriel da Cachoeira, Presidente Figueiredo, four municipalities in the area around Cruzeiro do Sul, and Lábrea. Using a dataset of 5,561 Single Nucleotide Polymorphisms (SNPs), we investigated the genetic structure of these Ny. darlingi populations with a combination of model- and non-model-based analyses. We identified weak to moderate genetic differentiation among the four municipality groups. There was no evidence for microgeographic genetic structure of Ny. darlingi among forest cover levels within the municipality groups, indicating that there may be gene flow across areas of these municipalities with different degrees of deforestation. Additionally, we conducted an environmental association analysis using two outlier detection methods to determine whether individual SNPs were associated with forest cover level without affecting overall population genetic structure. We identified 14 outlier SNPs, and investigated functions associated with their proximal genes, which could be further characterized in future studies.
Collapse
|
26
|
Walker LJ, Selvey LA, Jardine A, Johansen CA, Lindsay MDA. Mosquito and Virus Surveillance as a Predictor of Human Ross River Virus Infection in South-West Western Australia: How Useful Is It? Am J Trop Med Hyg 2019; 99:1066-1073. [PMID: 30182918 DOI: 10.4269/ajtmh.18-0459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mosquito and virus surveillance systems are widely used in Western Australia (WA) to support public health efforts to reduce mosquito-borne disease. However, these programs are costly to maintain on a long-term basis. Therefore, we aimed to assess the validity of mosquito numbers and Ross River virus (RRV) isolates from surveillance trap sites as predictors of human RRV cases in south-west WA between 2003 and 2014. Using negative binomial regression modeling, mosquito surveillance was found to be a useful tool for predicting human RRV cases. In eight of the nine traps, when adjusted for season, there was an increased risk of RRV cases associated with elevated mosquito numbers detected 1 month before the onset of human cases for at least one quartile compared with the reference group. The most predictive urban trap sites were located near saltmarsh mosquito habitat, bushland that could sustain macropods and densely populated residential suburbs. This convergence of environments could allow enzootic transmission of RRV to spillover and infect the human population. Close proximity of urban trap sites to each other suggested these sites could be reduced. Ross River virus isolates were infrequent at some trap sites, so ceasing RRV isolation from mosquitoes at these sites or where isolates were not predictive of human cases could be considered. In future, trap sites could be reduced for routine surveillance, allowing other environments to be monitored to broaden the understanding of RRV ecology in the region. A more cost-effective and efficient surveillance program may result from these modifications.
Collapse
Affiliation(s)
- Liz J Walker
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Linda A Selvey
- Faculty of Medicine, School of Public Health, The University of Queensland, Brisbane, Australia
| | - Andrew Jardine
- Environmental Health Hazards Unit, Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health Western Australia, Perth, Australia
| | - Cheryl A Johansen
- The University of Western Australia, Nedlands, Western Australia, Australia and PathWest Laboratory Medicine Western Australia, Department of Health Western Australia, Nedlands, Australia
| | - Michael D A Lindsay
- Environmental Health Hazards Unit, Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health Western Australia, Perth, Australia
| |
Collapse
|
27
|
Jules JR, Albuquerque HG, Suárez-Mutis MC, Pereira de Oliveira SM, Gil-Santana HR, Rodrigues W, Alencar J. Species Diversity and Abundance of Anopheles (Nyssorhynchus) (Diptera: Culicidae) in Cachoeiras de Macacu Municipality, Rio de Janeiro State: An Area of the Atlantic Forest Receptive and Vulnerable to Malaria. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:849-858. [PMID: 30649408 DOI: 10.1093/jme/tjy236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 06/09/2023]
Abstract
The present study evaluated the diversity of Anopheles Meigen, 1818 belonging to the subgenus Nyssorhynchus Blanchard, 1902 in four areas of Cachoeiras de Macacu municipality, Rio de Janeiro, Brazil. The immature collections were carried out during a rainy period and a post-rainy season. During the two periods, 3,932 specimens of Anopheles (Nyssorhynchus) were collected: 562 in the rainy period (14.29%) and 3,370 in the post-rainy period (85.70%). Among 3,932 specimens collected during both periods, 489 were identified, 50 (8.89%) in the rainy period and 439 (13.02%) in the post-rainy period. Nine Anopheles species were recorded: Anopheles albitarsis Lynch Arribálzaga, 1878 s.l. (76.86%), An. braziliensis (Chagas, 1907) (17%); An. evansae (Bréthes, 1926) (8, 48%); An. triannulatus (Neiva & Pinto, 1922) s.l. (8.23%); An. oswaldoi (Peryassú, 1922) (6.43%); An. strodei Root, 1926 (5.40%); An. argyritarsis Robineau-Desvoidy, 1827 (1.54%); An. rangeli Gabaldón et al., 1940 (1.28%); and An. aquasalis Curry, 1932 (0.51%). Among them, An. albitarsis was dominant and abundant in 93.75% of the collection points. Our results show a diverse Anopheles fauna in the municipality of Cachoeiras de Macacu, with a strong association of occurrence between An. rangeli and An. oswaldoi; An. rangeli and An. evansae; An. evansae and An. oswaldoi; and An. albitarsis s.l. and An. braziliensis during the rainy period. However, there was a weak correlation in the post-rainy period, except between An. rangeli and An. oswaldoi and between An. triannulatus and An. aquasalis, which displayed a moderate linear correlation. Our results suggest that following a potential reintroduction of malaria Cachoeiras de Macacu, local transmission of Plasmodium Marchiafava & Celli, 1885 may be enhanced by the presence of nine Nyssorhynchus species (all potential malaria vectors).
Collapse
Affiliation(s)
- Jean Ricardo Jules
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | | | - William Rodrigues
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | - Jeronimo Alencar
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Baia-da-Silva DC, Brito-Sousa JD, Rodovalho SR, Peterka C, Moresco G, Lapouble OMM, Melo GCD, Sampaio VDS, Alecrim MDGC, Pimenta P, Lima JBP, Lacerda MVGD, Monteiro WM. Current vector control challenges in the fight against malaria in Brazil. Rev Soc Bras Med Trop 2019; 52:e20180542. [PMID: 30843971 DOI: 10.1590/0037-8682-0542-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 11/22/2022] Open
Abstract
In Brazil, malaria is an important public health problem first reported in 1560. Historically, fluctuations in malaria cases in Brazil are attributed to waves of economic development; construction of railroads, highways, and hydroelectric dams; and population displacement and land occupation policies. Vector control measures have been widely used with an important role in reducing malaria cases. In this review article, we reviewed the vector control measures established in the Brazilian territory and aspects associated with such measures for malaria. Although some vector control measures are routinely used in Brazil, many entomological and effectiveness information still need better evidence in endemic areas where Plasmodium vivax predominates. Herein, we outlined some of the needs and priorities for future research: a) update of the cartography of malaria vectors in Brazil, adding molecular techniques for the correct identification of species and complexes of species; b) evaluation of vector competence of anophelines in Brazil; c) strengthening of local entomology teams to perform vector control measures and interpret results; d) evaluation of vector control measures, especially use of insecticide-treated nets and long-lasting insecticidal nets, estimating their effectiveness, cost-benefit, and population acceptance; e) establishment of colonies of malaria vectors in Brazil, i.e., Anopheles darlingi, to understand parasite-vector interactions better; f) study of new vector control strategies with impacts on non-endophilic vectors; g) estimation of the impact of insecticide resistance in different geographical areas; and h) identification of the relative contribution of natural and artificial breeding sites in different epidemiological contexts for transmission.
Collapse
Affiliation(s)
- Djane Clarys Baia-da-Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - José Diego Brito-Sousa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Sheila Rodrigues Rodovalho
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Organização Pan-Americana de Saúde, Brasília, DF, Brasil
| | - Cassio Peterka
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Programa Nacional de Controle da Malária, Ministério da Saúde, Brasília, DF, Brasil
| | - Gilberto Moresco
- Programa Nacional de Controle da Malária, Ministério da Saúde, Brasília, DF, Brasil
| | - Oscar Martín Mesones Lapouble
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Organização Pan-Americana de Saúde, Brasília, DF, Brasil
| | - Gisely Cardoso de Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Vanderson de Souza Sampaio
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Fundação de Vigilância em Saúde, Manaus, AM, Brasil
| | - Maria das Graças Costa Alecrim
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Paulo Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brasil
| | | | - Marcus Vinícius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Instituto de Pesquisas Leônidas and Maria Deane, Fundação Oswaldo Cruz, Manaus, AM, Brasil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| |
Collapse
|
29
|
Scarpassa VM, Debat HJ, Alencar RB, Saraiva JF, Calvo E, Arcà B, Ribeiro JMC. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genomics 2019; 20:166. [PMID: 30832587 PMCID: PMC6399984 DOI: 10.1186/s12864-019-5545-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possibly also by positive selection on their genes leading to evasion of host immune pressure. Results In this study, we used deep mRNA sequence to uncover for the first time the sialomes of four Amazonian anophelines species (Anopheles braziliensis, A. marajorara, A. nuneztovari and A. triannulatus) and extend the knowledge of the A. darlingi sialome. Two libraries were generated from A. darlingi mosquitoes, sampled from two localities separated ~ 1100 km apart. A total of 60,016 sequences were submitted to GenBank, which will help discovery of novel pharmacologically active polypeptides and the design of specific immunological markers of mosquito exposure. Additionally, in these analyses we identified and characterized novel phasmaviruses and anpheviruses associated to the sialomes of A. triannulatus, A. marajorara and A. darlingi species. Conclusions Besides their pharmacological properties, which may be exploited for the development of new drugs (e.g. anti-thrombotics), salivary proteins of blood feeding arthropods may be turned into tools to prevent and/or better control vector borne diseases; for example, through the development of vaccines or biomarkers to evaluate human exposure to vector bites. The sialotranscriptome study reported here provided novel data on four New World anopheline species and allowed to extend our knowledge on the salivary repertoire of A. darlingi. Additionally, we discovered novel viruses following analysis of the transcriptomes, a procedure that should become standard within future RNAseq studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5545-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Humbeto Julio Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Ronildo Baiatone Alencar
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - José Ferreira Saraiva
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Rome, Italy
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
30
|
Wolfarth-Couto B, Silva RAD, Filizola N. Variability in malaria cases and the association with rainfall and rivers water levels in Amazonas State, Brazil. CAD SAUDE PUBLICA 2019; 35:e00020218. [PMID: 30758451 DOI: 10.1590/0102-311x00020218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Understanding the relations between rainfall and river water levels and malaria cases can provide important clues on modulation of the disease in the context of local climatic variability. In order to demonstrate how these relations can vary in the same endemic space, a coherence and wavelet phase analysis was performed between environmental and epidemiological variables from 2003 to 2010 for 8 municipalities (counties) in the state of Amazonas, Brazil (Barcelos, Borba, Canutama, Carauari, Coari, Eirunepé, Humaitá, and São Gabriel da Cachoeira). The results suggest significant coherences, mainly on the scale of annual variability, but scales of less than 1 year and of 2 years were also found. The analyses show that malaria cases display a peak at approximately 1 and a half months before or after peak rainfall and on average 1-4 months after peak river water levels in most of the municipalities studied. Each environmental variable displayed distinct local behavior in time and in space, suggesting that other local variables (e.g. topography) may control environmental conditions, favoring different patterns in each municipality. However, when the analyses were performed jointly it was possible to show a non-random order in these relations. Although environmental and climatic factors indicate a certain influence on malaria dynamics, surveillance, prevention, and control issues should not be overlooked, meaning that government public health interventions can mask possible relations with local hydrological and climatic conditions.
Collapse
|
31
|
Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, Prussing C, Vinetz JM, Conn JE, Moreno M, Gamboa D. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis 2019; 13:e0007105. [PMID: 30653491 PMCID: PMC6353212 DOI: 10.1371/journal.pntd.0007105] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/30/2019] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions. The most efficient malaria vector in the Latin American region is Nyssorhynchus darlingi (formerly Anopheles darlingi). In Amazonian Peru, where malaria is endemic, Ny. darlingi feeds both indoors and outdoors (endophagy, exophagy), depending on the local environment, and rests outdoors (exophily). LLINs and IRS, the most common tools employed for vector control, target endophagic and endophilic mosquitoes. Thus, they are only partially effective against Ny. darlingi. Control of the aquatic stages of vector mosquitoes, larval source management (LSM), targets the most productive breeding sites nearest to human habitation. In four riverine communities, we used drones with high-resolution imagery as a key initial step to analyze water bodies within the estimated flight range of Ny. darlingi, ~ 1 km. We found distinctive spectral profiles for water bodies that were positive versus negative for Ny. darlingi. The methodology and analysis reported here provide the basis for testing whether LSM can be combined successfully with LLINs and IRS to contribute to the elimination of transmission in malaria hotspots in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (GCE); (MM)
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Sara Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (GCE); (MM)
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
32
|
Nava A, Shimabukuro JS, Chmura AA, Luz SLB. The Impact of Global Environmental Changes on Infectious Disease Emergence with a Focus on Risks for Brazil. ILAR J 2018; 58:393-400. [PMID: 29253158 DOI: 10.1093/ilar/ilx034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/03/2023] Open
Abstract
Environmental changes have a huge impact on the emergence and reemergence of certain infectious diseases, mostly in countries with high biodiversity and serious unresolved environmental, social, and economic issues. This article summarizes the most important findings with special attention to Brazil and diseases of present public health importance in the country such as Chikungunya, dengue fever, yellow fever, Zika, hantavirus pulmonary syndrome, leptospirosis, leishmaniasis, and Chagas disease. An extensive literature review revealed a relationship between infectious diseases outbreaks and climate change events (El Niño, La Niña, heatwaves, droughts, floods, increased temperature, higher rainfall, and others) or environmental changes (habitat fragmentation, deforestation, urbanization, bushmeat consumption, and others). To avoid or control outbreaks, integrated surveillance systems and effective outreach programs are essential. Due to strong global and local influence on emergence of infectious diseases, a more holistic approach is necessary to mitigate or control them in low-income nations.
Collapse
Affiliation(s)
- Alessandra Nava
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| | - Juliana Suieko Shimabukuro
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| | - Aleksei A Chmura
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| | - Sérgio Luiz Bessa Luz
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| |
Collapse
|
33
|
Prussing C, Bickersmith SA, Moreno M, Saavedra MP, Alava F, Sallum MAM, Gamboa D, Vinetz JM, Conn JE. Nyssorhynchus dunhami: bionomics and natural infection by Plasmodium falciparum and P. vivax in the Peruvian Amazon. Mem Inst Oswaldo Cruz 2018; 113:e180380. [PMID: 30517211 PMCID: PMC6276023 DOI: 10.1590/0074-02760180380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nyssorhynchus dunhami, a member of the Nuneztovari Complex, has been collected in Brazil, Colombia, and Peru and described as zoophilic. Although to date Ny. dunhami has not been documented to be naturally infected by Plasmodium, it is frequently misidentified as other Oswaldoi subgroup species that are local or regional malaria vectors. OBJECTIVES The current study seeks to verify the morphological identification of Nuneztovari Complex species collected in the peri-Iquitos region of Amazonian Peru, to determine their Plasmodium infection status, and to describe ecological characteristics of their larval habitats. METHODS We collected Ny. nuneztovari s.l. adults in 2011-2012, and Ny. nuneztovari s.l. larvae and adults in 2016-2017. When possible, samples were identified molecularly using cytochrome c oxidase subunit I (COI) barcode sequencing. Adult Ny. nuneztovari s.l. from 2011-2012 were tested for Plasmodium using real-time PCR. Environmental characteristics associated with Ny. nuneztovari s.l. larvae-positive water bodies were evaluated. FINDINGS We collected 590 Ny. nuneztovari s.l. adults and 116 larvae from eight villages in peri-Iquitos. Of these, 191 adults and 111 larvae were identified by COI sequencing; all were Ny. dunhami. Three Ny. dunhami were infected with P. falciparum, and one with P. vivax, all collected from one village on one night. Ny. dunhami larvae were collected from natural and artificial water bodies, and their presence was positively associated with other Anophelinae larvae and amphibians, and negatively associated with people living within 250m. MAIN CONCLUSIONS Of Nuneztovari Complex species, we identified only Ny. dunhami across multiple years in eight peri-Iquitos localities. This study is, to our knowledge, the first report of natural infection of molecularly identified Ny. dunhami with Plasmodium. We advocate the use of molecular identification methods in this region to monitor Ny. dunhami and other putative secondary malaria vectors to more precisely evaluate their importance in malaria transmission.
Collapse
Affiliation(s)
- Catharine Prussing
- University at Albany, State University of New York, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
| | | | - Marta Moreno
- University of California San Diego, Department of Medicine, Division of Infectious Diseases, La Jolla, CA, USA
| | - Marlon P Saavedra
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
| | | | - Maria Anice Mureb Sallum
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, SP, Brasil
| | - Dionicia Gamboa
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Joseph M Vinetz
- University of California San Diego, Department of Medicine, Division of Infectious Diseases, La Jolla, CA, USA
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Jan E Conn
- University at Albany, State University of New York, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
34
|
Martins LMO, David MR, Maciel-de-Freitas R, Silva-do-Nascimento TF. Diversity of Anopheles mosquitoes from four landscapes in the highest endemic region of malaria transmission in Brazil. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:235-244. [PMID: 30408291 DOI: 10.1111/jvec.12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Malaria transmission in South America is overwhelmingly located in the Amazon region with limited cases outside that biome. A key factor in the mitigation of malaria transmission is the determination of vector diversity and bionomics in endemic areas. Anopheles mosquitoes were collected in four different landscapes of Cruzeiro do Sul-Acre, the current area with highest malaria transmission in Brazil. We performed adult mosquito collections every three months over two years and associated vector occurrence with local abiotic factors. A total of 1,754 Anopheles belonging to nine species were collected, but only four of them (An. albitarsis s.l. Lynch-Arribalzaga, An. braziliensis Chagas, An. peryassui Dyar and Knab, and An. triannulatus Neiva and Pinto) represented 77.1% of the total. Vector density and diversity was uneven across field sites and collection periods. Higher Anopheles abundance (54.8%) and richness were observed in a deforested palm tree area (IFC), with An. braziliensis the most frequent mosquito (40.5%). Only 7.3% of mosquitoes were collected in the SAB village, but 66.4% of them were An. darlingi and An. oswaldoi, species often regarded as primary and secondary vectors of malaria in the Amazon region. A distinct biting preference was observed between 18:00-19:40. The distance from the nearest breeding site and minimum temperature explained 41.6% of the Anopheles community composition. Our data show that the Anopheles species composition may present great variation on a microgeographic scale.
Collapse
Affiliation(s)
- L M O Martins
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Instituto Federal do Acre, Campus Cruzeiro do Sul, IFAC, Brasil
| | - M R David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - R Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - T F Silva-do-Nascimento
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| |
Collapse
|
35
|
Bourke BP, Conn JE, de Oliveira TMP, Chaves LSM, Bergo ES, Laporta GZ, Sallum MAM. Exploring malaria vector diversity on the Amazon Frontier. Malar J 2018; 17:342. [PMID: 30261932 PMCID: PMC6161421 DOI: 10.1186/s12936-018-2483-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Deforestation in the Amazon and the social vulnerability of its settler communities has been associated with increased malaria incidence. The feeding biology of the most important malaria vectors in the region, notably Nyssorhynchus darlingi, compounds efforts to control vectors and reduce transmission of what has become known as "Frontier Malaria". Exploring Anophelinae mosquito diversity is fundamental to understanding the species responsible for transmission and developing appropriate management and intervention strategies for malaria control in the Amazon River basin. METHODS This study describes Anophelinae mosquito diversity from settler communities affected by Frontier Malaria in the states of Acre, Amazonas and Rondônia by analysing COI gene data using cluster and tree-based species delimitation approaches. RESULTS In total, 270 specimens from collection sites were sequenced and these were combined with 151 reference (GenBank) sequences in the analysis to assist in species identification. Conservative estimates found that the number of species collected at these sites was between 23 (mPTP partition) and 27 (strict ABGD partition) species, up to 13 of which appeared to be new. Nyssorhynchus triannulatus and Nyssorhynchus braziliensis displayed exceptional levels of intraspecific genetic diversity but there was little to no support for putative species complex status. CONCLUSIONS This study demonstrates that Anophelinae mosquito diversity continues to be underestimated in poorly sampled areas where frontier malaria is a major public health concern. The findings will help shape future studies of vector incrimination and transmission dynamics in these areas and support efforts to develop more effective vector control and transmission reduction strategies in settler communities in the Amazon River basin.
Collapse
Affiliation(s)
- Brian P Bourke
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, 12222, USA
| | - Tatiane M P de Oliveira
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo S M Chaves
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Gabriel Z Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Maria A M Sallum
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Mastel M, Bussalleu A, Paz-Soldán VA, Salmón-Mulanovich G, Valdés-Velásquez A, Hartinger SM. Critical linkages between land use change and human health in the Amazon region: A scoping review. PLoS One 2018; 13:e0196414. [PMID: 29894479 PMCID: PMC5997329 DOI: 10.1371/journal.pone.0196414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/12/2018] [Indexed: 12/02/2022] Open
Abstract
Land use change (LUC) is a main cause of global environmental change, and is an important activity to be studied. Our research aims to examine the current state of evidence on the link between LUC and human health in the Amazon region. We conducted a scoping review of literature in two research databases, resulting in 14 papers for analysis. Our analysis demonstrated a lack of clear definitions for LUC, a wide variety of negative health effects from LUC, the lack of qualitative articles, a lack of studies exploring the potential positive health effects of LUC, and the predominance of studies coming from the Brazilian Amazon. Our study validated the prevailing idea that LUC can lead to negative health consequences, if not managed properly.
Collapse
Affiliation(s)
- Molly Mastel
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandra Bussalleu
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Valerie A. Paz-Soldán
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Gabriela Salmón-Mulanovich
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- Johns Hopkins Bloomberg School of Public Health, Baltimore, United States of America
| | - Armando Valdés-Velásquez
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stella M. Hartinger
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
Reis IC, Codeço CT, Câmara DCP, Carvajal JJ, Pereira GR, Keppeler EC, Honório NA. Diversity of Anopheles spp. (Diptera: Culicidae) in an Amazonian Urban Area. NEOTROPICAL ENTOMOLOGY 2018; 47:412-417. [PMID: 29470810 DOI: 10.1007/s13744-018-0595-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The genus Anopheles encompasses several species considered as vectors of human infecting Plasmodium. Environmental changes are responsible for behavior changes in these vectors and therefore the pattern of malaria transmission. To better understand the dynamics of malaria transmission, this study aimed at identify the species of adult anophelines found in a malaria endemic urban area of the Amazon region, Mâncio Lima, located in the Acre State Brazil. Using Shannon-type light traps installed at 11 collection points near fish ponds, a total of 116 anophelines were collected belonging to nine species. Anopheles darlingi Root 1926 and An. albitarsis s.l. Lynch-Arribalzaga 1878 were the most abundant and predominant species. Despite the low number of captured adult anophelines, the occurrence of An. darlingi throughout all urban area and the presence of secondary vectors reinforce the need of a permanent and continuous entomological surveillance.
Collapse
Affiliation(s)
- I C Reis
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil.
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil.
| | - C T Codeço
- Programa de Computação Científica -PROCC, Fiocruz, Rio de Janeiro, Brasil
| | - D C P Câmara
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| | - J J Carvajal
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| | - G R Pereira
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| | - E C Keppeler
- Centro Multidisciplinar, Univ Federal do Acre, Rio Branco, Acre, Brasil
| | - N A Honório
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| |
Collapse
|
38
|
Coutinho PEG, Candido LA, Tadei WP, da Silva Junior UL, Correa HKM. An analysis of the influence of the local effects of climatic and hydrological factors affecting new malaria cases in riverine areas along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:311. [PMID: 29700629 DOI: 10.1007/s10661-018-6677-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.
Collapse
Affiliation(s)
- Paulo Eduardo Guzzo Coutinho
- Nucleus of Research Support in Para (Núcleo de Apoio à Pesquisa no Pará (INPA/Nappa/Santarém)), National Institute of Amazon Researches (Instituto Nacional de Pesquisas da Amazônia), Rua 24 de outubro, 3289, Salé, Santarém, Pará, 68040-010, Brazil.
| | - Luiz Antonio Candido
- INPA/CAMPUS 2 (INPA/CAMPUS 2), National Institute of Amazon Researches (Instituto Nacional de Pesquisas da Amazônia), Prédio LBA, sala da Coordenação de Dinâmica Ambiental Av. André Araújo, 2936, Aleixo, Manaus, Amazonas, 69060-001, Brazil
| | - Wanderli Pedro Tadei
- INPA/CAMPUS 1 - Malaria and Dengue Laboratory (INPA/CAMPUS 1 - Laboratório de Malária e Dengue), National Institute of Amazon Researches (Instituto Nacional de Pesquisas da Amazônia), Av. André Araújo, 2936, Aleixo, Manaus, Amazonas, 69060-001, Brazil
| | - Urbano Lopes da Silva Junior
- National Center for Research and Conservation of Amazonian Biodiversity (Centro Nacional de Pesquisa e Conservação da Biodiversidade Amazônica (Cepam/ICMBio)), Chico Mendes Institute for Biodiversity Conservation (Instituto Chico Mendes de Conservação da Biodiversidade), UFAM, Campus Universitário Arthur Virgílio Filho setor sul, Av. Gal Rodrigo Otávio Jordão Ramos, 6200, Coroado, Manaus, 69077-000, Brazil
| | - Honorly Katia Mestre Correa
- Institute of Educational Science (Instituto de Ciências da Educação (ICED/UFOPA)), Federal University of Western Para (Universidade Federal do Oeste do Prá), Av. Marechal Rondon, s/n, Caranazal, Santarem, Para, 68040-070, Brazil
| |
Collapse
|
39
|
Catry T, Li Z, Roux E, Herbreteau V, Gurgel H, Mangeas M, Seyler F, Dessay N. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E468. [PMID: 29518988 PMCID: PMC5877013 DOI: 10.3390/ijerph15030468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
Abstract
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.
Collapse
Affiliation(s)
- Thibault Catry
- ESPACE-DEV, UMR 228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 34093 Montpellier, France.
| | - Zhichao Li
- Ministry of Education, Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.
| | - Emmanuel Roux
- ESPACE-DEV, UMR 228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 34093 Montpellier, France.
| | - Vincent Herbreteau
- ESPACE-DEV, UMR 228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 34093 Montpellier, France.
- ESPACE-DEV, UMR 228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), SEAS-OI, 97410 La Réunion, France.
| | - Helen Gurgel
- Department of Geography (GEA), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Morgan Mangeas
- ESPACE-DEV, UMR 228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 98848 Nouvelle-Calédonie, France.
| | - Frédérique Seyler
- ESPACE-DEV, UMR 228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 34093 Montpellier, France.
| | - Nadine Dessay
- ESPACE-DEV, UMR 228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 34093 Montpellier, France.
| |
Collapse
|
40
|
Saraiva JF, Souto RNP, Scarpassa VM. Molecular taxonomy and evolutionary relationships in the Oswaldoi-Konderi complex (Anophelinae: Anopheles: Nyssorhynchus) from the Brazilian Amazon region. PLoS One 2018; 13:e0193591. [PMID: 29505595 PMCID: PMC5837296 DOI: 10.1371/journal.pone.0193591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that Anopheles oswaldoi sensu lato comprises a cryptic species complex in South America. Anopheles konderi, which was previously raised to synonymy with An. oswaldoi, has also been suggested to form a species complex. An. oswaldoi has been incriminated as a malaria vector in some areas of the Brazilian Amazon, Colombia, Peru and Venezuela, but was not recognized as a vector in the remaining regions in its geographic distribution. The role of An. konderi as a malaria vector is unknown or has been misattributed to An. oswaldoi. The focus of this study was molecular identification to infer the evolutionary relationships and preliminarily delimit the geographic distribution of the members of these complexes in the Brazilian Amazon region. The specimens were sampled from 18 localities belonging to five states in the Brazilian Amazon and sequenced for two molecular markers: the DNA barcode region (COI gene of mitochondrial DNA) and Internal Transcribed Spacer 2 (ITS2 ribosomal DNA). COI (83 sequences) and ITS2 (27 sequences) datasets generated 43 and 10 haplotypes, respectively. Haplotype networks and phylogenetic analyses generated with the barcode region (COI gene) recovered five groups corresponding to An. oswaldoi s.s., An. oswaldoi B, An. oswaldoi A, An. konderi and An. sp. nr. konderi; all pairwise genetic distances were greater than 3%. The group represented by An. oswaldoi A exhibited three strongly supported lineages. The molecular dating indicated that the diversification process in these complexes started approximately 2.8 Mya, in the Pliocene. These findings confirm five very closely related species and present new records for these species in the Brazilian Amazon region. The paraphyly observed for the An. oswaldoi complex suggests that An. oswaldoi and An. konderi complexes may comprise a unique species complex named Oswaldoi-Konderi. Anopheles oswaldoi B may be a potential malaria vector in the extreme north of the Brazilian Amazon, whereas evidence of sympatry for the remaining species in other parts of the Brazilian Amazon (Acre, Amazonas, Pará and Rondônia) precluded identification of probable vectors in those areas.
Collapse
Affiliation(s)
- José Ferreira Saraiva
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Raimundo Nonato Picanço Souto
- Laboratório de Arthropoda, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
41
|
Marinho-e-Silva M, Sallum MAM, Rosa-Freitas MG, Lourenço-de-Oliveira R, Silva-do-Nascimento TF. Anophelines species and the receptivity and vulnerability to malaria transmission in the Pantanal wetlands, Central Brazil. Mem Inst Oswaldo Cruz 2018; 113:87-95. [PMID: 29236930 PMCID: PMC5722263 DOI: 10.1590/0074-02760170175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/12/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Studies on malaria vectors in the Pantanal biome, Central Brazil, were conducted more than half a century ago. OBJECTIVES To update anopheline records and assess receptivity and vulnerability to malaria transmission. METHODS Five-day anopheline collections were conducted bimonthly in Salobra, Mato Grosso do Sul state, for one year. Indoors, mosquitoes were collected from their resting places, while in open fields, they were captured using protected human-baited and horse-baited traps near the house and at the Miranda River margin, respectively. Hourly biting activity outdoors was also assessed. Secondary data were collected on the arrival of tourists, economic projects, and malaria cases. FINDINGS A total of 24,894 anophelines belonging to 13 species were caught. The main Brazilian malaria vector Anopheles darlingi was the predominant species, followed by An. triannulatus s.l. Hourly variation in anopheline biting showed three main peaks occurring at sunset, around midnight, and at sunrise, the first and last being the most prominent. The highest density of all species was recorded near the river margin and during the transition period between the rainy and early dry seasons. This coincides with the time of main influx of outsider workers and tourists, whose activities mostly occur in the open fields and frequently start before sunrise and last until sunset. Some of these individuals originate from neighbouring malaria-endemic countries and states, and are likely responsible for the recorded imported and introduced malaria cases. MAIN CONCLUSION Pantanal is a malaria-prone area in Brazil. Surveillance and anopheline control measures must be applied to avoid malaria re-emergence in the region.
Collapse
Affiliation(s)
- Mariana Marinho-e-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| | - Maria Anice Mureb Sallum
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, SP, Brasil
| | - Maria Goreti Rosa-Freitas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| | - Ricardo Lourenço-de-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
42
|
Tucker Lima JM, Vittor A, Rifai S, Valle D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0125. [PMID: 28438914 PMCID: PMC5413873 DOI: 10.1098/rstb.2016.0125] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Considerable interest in the relationship between biodiversity and disease has recently captured the attention of the research community, with important public policy implications. In particular, malaria in the Amazon region is often cited as an example of how forest conservation can improve public health outcomes. However, despite a growing body of literature and an increased understanding of the relationship between malaria and land use / land cover change (LULC) in Amazonia, contradictions have emerged. While some studies report that deforestation increases malaria risk, others claim the opposite. Assessing malaria risk requires examination of dynamic processes among three main components: (i) the environment (i.e. LULC and landscape transformations), (ii) vector biology (e.g. mosquito species distributions, vector activity and life cycle, plasmodium infection rates), and (iii) human populations (e.g. forest-related activity, host susceptibility, movement patterns). In this paper, we conduct a systematic literature review on malaria risk and deforestation in the Amazon focusing on these three components. We explore key features that are likely to generate these contrasting results using the reviewed articles and our own data from Brazil and Peru, and conclude with suggestions for productive avenues in future research. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.
Collapse
Affiliation(s)
- Joanna M Tucker Lima
- School of Forest Resources and Conservation, University of Florida, 408 McCarty Hall C, PO Box 110339, Gainesville, FL, USA
| | - Amy Vittor
- Department of Medicine, University of Florida, 408 McCarty Hall C, PO Box 110339, Gainesville, FL, USA
| | - Sami Rifai
- School of Forest Resources and Conservation, University of Florida, 408 McCarty Hall C, PO Box 110339, Gainesville, FL, USA
| | - Denis Valle
- School of Forest Resources and Conservation, University of Florida, 408 McCarty Hall C, PO Box 110339, Gainesville, FL, USA
| |
Collapse
|
43
|
Altamiranda-Saavedra M, Arboleda S, Parra JL, Peterson AT, Correa MM. Potential distribution of mosquito vector species in a primary malaria endemic region of Colombia. PLoS One 2017; 12:e0179093. [PMID: 28594942 PMCID: PMC5464628 DOI: 10.1371/journal.pone.0179093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Rapid transformation of natural ecosystems changes ecological conditions for important human disease vector species; therefore, an essential task is to identify and understand the variables that shape distributions of these species to optimize efforts toward control and mitigation. Ecological niche modeling was used to estimate the potential distribution and to assess hypotheses of niche similarity among the three main malaria vector species in northern Colombia: Anopheles nuneztovari, An. albimanus, and An. darlingi. Georeferenced point collection data and remotely sensed, fine-resolution satellite imagery were integrated across the Urabá -Bajo Cauca-Alto Sinú malaria endemic area using a maximum entropy algorithm. Results showed that An. nuneztovari has the widest geographic distribution, occupying almost the entire study region; this niche breadth is probably related to the ability of this species to colonize both, natural and disturbed environments. The model for An. darlingi showed that most suitable localities for this species in Bajo Cauca were along the Cauca and Nechí river. The riparian ecosystems in this region and the potential for rapid adaptation by this species to novel environments, may favor the establishment of populations of this species. Apparently, the three main Colombian Anopheles vector species in this endemic area do not occupy environments either with high seasonality, or with low seasonality and high NDVI values. Estimated overlap in geographic space between An. nuneztovari and An. albimanus indicated broad spatial and environmental similarity between these species. An. nuneztovari has a broader niche and potential distribution. Dispersal ability of these species and their ability to occupy diverse environmental situations may facilitate sympatry across many environmental and geographic contexts. These model results may be useful for the design and implementation of malaria species-specific vector control interventions optimized for this important malaria region.
Collapse
Affiliation(s)
| | - Sair Arboleda
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
44
|
Pakdad K, Hanafi-Bojd AA, Vatandoost H, Sedaghat MM, Raeisi A, Moghaddam AS, Foroushani AR. Predicting the potential distribution of main malaria vectors Anopheles stephensi, An. culicifacies s.l. and An. fluviatilis s.l. in Iran based on maximum entropy model. Acta Trop 2017; 169:93-99. [PMID: 28188765 DOI: 10.1016/j.actatropica.2017.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Abstract
Malaria is considered as a major public health problem in southern areas of Iran. The goal of this study was to predict best ecological niches of three main malaria vectors of Iran: Anopheles stephensi, Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. A databank was created which included all published data about Anopheles species of Iran from 1961 to 2015. The suitable environmental niches for the three above mentioned Anopheles species were predicted using maximum entropy model (MaxEnt). AUC (area under Roc curve) values were 0.943, 0.974 and 0.956 for An. stephensi, An. culicifacies s.l. and An. fluviatilis s.l respectively, which are considered as high potential power of model in the prediction of species niches. The biggest bioclimatic contributor for An. stephensi and An. fluviatilis s.l. was bio 15 (precipitation seasonality), 25.5% and 36.1% respectively, followed by bio 1 (annual mean temperature), 20.8% for An. stephensi and bio 4 (temperature seasonality) with 49.4% contribution for An. culicifacies s.l. This is the first step in the mapping of the country's malaria vectors. Hence, future weather situation can change the dispersal maps of Anopheles. Iran is under elimination phase of malaria, so that such spatio-temporal studies are essential and could provide guideline for decision makers for IVM strategies in problematic areas.
Collapse
|
45
|
Rodrigures MS, Batista EP, Silva AA, Costa FM, Neto VAS, Gil LHS. Change in Anopheles richness and composition in response to artificial flooding during the creation of the Jirau hydroelectric dam in Porto Velho, Brazil. Malar J 2017; 16:87. [PMID: 28228142 PMCID: PMC5322614 DOI: 10.1186/s12936-017-1738-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles mosquitoes are the only vectors of human malaria. Anopheles species use standing water as breeding sites. Human activities, like the creation of an artificial lake during the implementation of hydroelectric power plants, lead to changes in environmental characteristics and, therefore, may changes the species richness and composition of Anopheles mosquitoes. The aim of the present study was to verify whether or not there is an association between the artificial flooding resulting from the construction of the Jirau hydroelectric power plant, and the richness and composition of anophelines. METHODS Mosquitoes samples were obtained monthly from the Jirau hydroelectric power plant area located at Porto Velho, Rondônia State, using Human Landing Catch (06:00-10:00 PM). Mosquitoes collected were transported to Laboratório de Entomologia Médica FIOCRUZ-RO where they were identified until species using dichotomous key. RESULTS A total of 6347 anophelines belonging to eight different species were collected. The anophelines species richness was significantly lower during the first flooding stage. Differences in anophelines species composition were found when comparing the first flooding stage with the other stages. Furthermore, the mean number of Anopheles darlingi, the main vector of malaria in the region, increases during the first and the third flooding stages. CONCLUSIONS The continual monitoring of these vectors during the late operational phase may be useful in order to understand how anophelines will behave in this area.
Collapse
Affiliation(s)
- Moreno S. Rodrigures
- Universidade Federal de Rondônia, BR 364, Km 9.5, CEP 76800-000 Porto Velho, RO Brazil
| | - Elis P. Batista
- Universidade Federal de Mina Gerais, AV. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG Brazil
| | - Alexandre A. Silva
- Universidade Federal de Rondônia, BR 364, Km 9.5, CEP 76800-000 Porto Velho, RO Brazil
| | - Fábio M. Costa
- Energia Sustentável do Brasil, Av. Joaquim Nabuco, 3200 Areal, CEP 76801-066 Porto Velho, RO Brazil
| | - Verissimo A. S. Neto
- Energia Sustentável do Brasil, Av. Joaquim Nabuco, 3200 Areal, CEP 76801-066 Porto Velho, RO Brazil
| | - Luiz Herman S. Gil
- Instituto de Patologia em Doenças Tropicais, Rua da Beira 7671, CEP 76812-245 Porto Velho, RO Brazil
| |
Collapse
|
46
|
Angelo JR, Katsuragawa TH, Sabroza PC, de Carvalho LAS, da Silva LHP, Nobre CA. The role of spatial mobility in malaria transmission in the Brazilian Amazon: The case of Porto Velho municipality, Rondônia, Brazil (2010-2012). PLoS One 2017; 12:e0172330. [PMID: 28222159 PMCID: PMC5319790 DOI: 10.1371/journal.pone.0172330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
Background This study aims to describe the role of mobility in malaria transmission by discussing recent changes in population movements in the Brazilian Amazon and developing a flow map of disease transmission in this region. Methodology/Principal findings This study presents a descriptive analysis using an ecological approach on regional and local scales. The study location was the municipality of Porto Velho, which is the capital of Rondônia state, Brazil. Our dataset was obtained from the official health database, the population census and an environmental database. During 2000–2007 and 2007–2010, the Porto Velho municipality had an annual population growth of 1.42% and 5.07%, respectively. This population growth can be attributed to migration, which was driven by the construction of the Madeira River hydroelectric complex. From 2010 to 2012, 63,899 malaria-positive slides were reported for residents of Porto Velho municipality; 92% of the identified samples were autochthonous, and 8% were allochthonous. The flow map of patients' movements between residential areas and areas of suspected infection showed two patterns of malaria transmission: 1) commuting between residential areas and the Jirau hydropower dam reservoir, and 2) movements between urban areas and farms and resorts in rural areas. It was also observed that areas with greater occurrences of malaria were characterized by a low rate of deforestation. Conclusions The Porto Velho municipality exhibits high malaria endemicity and plays an important role in disseminating the parasite to other municipalities in the Amazon and even to non-endemic areas of the country. Migration remains an important factor for the occurrence of malaria. However, due to recent changes in human occupation of the Brazilian Amazon, characterized by intense expansion of transportation networks, commuting has also become an important factor in malaria transmission. The magnitude of this change necessitates a new model to explain malaria transmission in the Brazilian Amazon.
Collapse
Affiliation(s)
- Jussara Rafael Angelo
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz (ENSP/FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| | | | - Paulo Chagastelles Sabroza
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz (ENSP/FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | - Carlos Afonso Nobre
- Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Brasil
| |
Collapse
|
47
|
Larval habitats of Anopheles species in a rural settlement on the malaria frontier of southwest Amazon, Brazil. Acta Trop 2016; 164:243-258. [PMID: 27650959 DOI: 10.1016/j.actatropica.2016.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022]
Abstract
Rural settlements are social arrangements expanding in the Amazon region, which generate disturbances in the natural environment, thus affecting the ecology of the species of Anopheles and thus the malaria transmission. Larval habitats are important sources for maintenance of mosquito vector populations, and holding back a natural watercourse is a usual process in the establishment of rural settlements, since the formation of micro-dams represents a water resource for the new settlers. Identifying characteristics of the larval habitats that may be associated with both the presence and abundance of Anopheles vectors species in an environment under ecological transition is background for planning vector control strategies in rural areas in the Amazon. Anopheles larvae collections were performed in two major types of habitats: natural and flow-limited water collections that were constructed by holding back the original watercourse. A total of 3123 Anopheles spp. larvae were captured in three field-sampling collections. The majority of the larvae identified were taken from flow-limited water collections belonged to species of the Nyssorhynchus subgenus (92%), whereas in the natural larval habitats a fewer number of individuals belonged to the Stethomyia (5%) and Anopheles (3%) subgenera. The total of Nyssorhynchus identified (1818), 501 specimens belonged to An. darlingi, 750 to An. triannulatus and 567 for others remaining species. In addition, 1152 could not be identified to subgenus/species level, because they were either in the first-instar or damaged. The primary vector in areas of the Amazon river basin, An. darlingi, was found exclusively in man-made habitats. Statistical analysis display An. triannulatus with specialist behavior for characteristics of man-made habitats. Modifications in the natural environment facilitate the rise of larval habitats for species with epidemiological importance for malaria in the region. This study showed that man-made habitats flow-limited water collections from dry lands could be a factor associated with the increase of An. darlingi and An. triannulatus populations, and other Nyssorhynchus species as well in endemic areas of the Amazon Region.
Collapse
|
48
|
Barbosa LMC, Souto RNP, dos Anjos Ferreira RM, Scarpassa VM. Behavioral patterns, parity rate and natural infection analysis in anopheline species involved in the transmission of malaria in the northeastern Brazilian Amazon region. Acta Trop 2016; 164:216-225. [PMID: 27659096 DOI: 10.1016/j.actatropica.2016.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/06/2016] [Accepted: 09/17/2016] [Indexed: 11/24/2022]
Abstract
The characterization of behavioral patterns allows a better understanding of the transmission dynamics and the design of more effective malaria vector control strategies. This study analyzed the behavioral patterns of the Anopheles species of the Coração district situated in the northeast of the Brazilian Amazon region. The behavioral patterns of the anopheline species were measured based on the 36 collection sites of this district from December 2010 to November 2011. Collections of four hours for three consecutive nights each month and four 12-h collections, comprising two in the rainy season and two in the dry season, were performed. Furthermore, to infer the anthropophily and zoophily indexes, four additional four-hour collections were performed. The samples were also evaluated for parity rate and natural infectivity for Plasmodium spp. A total of 1689 anophelines were captured, comprising of nine species and two subgenera (Nyssorhynchus - six species, and Anopheles - three species). Anopheles darlingi was the most abundant and widely distributed species in the area, followed by A. braziliensis and A.marajoara. Anopheles darlingi and A. marajoara were the only species present in the four collections of 12-h, but only A. darlingi showed activity throughout night. Anopheles darlingi was the most anthropophilic species (AI=0.40), but the zoophily index was higher (ZI=0.60), revealing an eclectic and opportunistic behavior. Of the six most frequent species, A. nuneztovari s.l. was the most zoophilic species (ZI=1.00). All captured species showed predominance towards biting in outdoor environments. Anopheles darlingi and A. braziliensis showed multimodal biting peaks, whereas A. marajoara revealed a stable pattern, with the biting peak after sunset. Using the PCR technique, no anopheline was found infected with the malaria parasite. Since A. darlingi and A. marajoara are recognized as important vectors in this region, the district of Coração may be considered as a highly potent area for transmission of malaria, therefore, the prevention and surveillance measures should be taken constantly to prevent the same. The role of A. braziliensis as malaria vector needs to be urgently investigated.
Collapse
|
49
|
Adde A, Roux E, Mangeas M, Dessay N, Nacher M, Dusfour I, Girod R, Briolant S. Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data. PLoS One 2016; 11:e0164685. [PMID: 27749938 PMCID: PMC5066951 DOI: 10.1371/journal.pone.0164685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.
Collapse
Affiliation(s)
- Antoine Adde
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Emmanuel Roux
- UMR ESPACE-DEV, Institut de Recherche pour le Développement, Montpellier, France
| | - Morgan Mangeas
- UMR ESPACE-DEV, Institut de Recherche pour le Développement, Montpellier, France
| | - Nadine Dessay
- UMR ESPACE-DEV, Institut de Recherche pour le Développement, Montpellier, France
| | - Mathieu Nacher
- Centre d’Investigation Clinique et Epidémiologie Clinique Antilles Guyane, Centre hospitalier Andrée-Rosemon, Cayenne, French Guiana
| | - Isabelle Dusfour
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Romain Girod
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Sébastien Briolant
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
- Direction Interarmées du Service de Santé en Guyane, Cayenne, French Guiana
- Unité de Parasitologie et d’Entomologie Médicale, Institut de Recherche Biomédicale des Armées, Marseille, France
- Unité de Recherche en Maladies Infectieuses Tropicales Emergentes, Faculté de Médecine La Timone, Marseille, France
| |
Collapse
|
50
|
Siqueira AM, Mesones-Lapouble O, Marchesini P, Sampaio VDS, Brasil P, Tauil PL, Fontes CJ, Costa FTM, Daniel-Ribeiro CT, Lacerda MVG, Damasceno CP, Santelli ACS. Plasmodium vivax Landscape in Brazil: Scenario and Challenges. Am J Trop Med Hyg 2016; 95:87-96. [PMID: 27708190 PMCID: PMC5201227 DOI: 10.4269/ajtmh.16-0204] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Brazil is the largest country of Latin America, with a considerable portion of its territoritory within the malaria-endemic Amazon region in the North. Furthermore, a considerable portion of its territory is located within the Amazon region in the north. As a result, Brazil has reported half of the total malaria cases in the Americas in the last four decades. Recent progress in malaria control has been accompanied by an increasing proportion of Plasmodium vivax, underscoring a need for a better understanding of management and control of this species and associated challenges. Among these challenges, the contribution of vivax malaria relapses, earlier production of gametocytes (compared with Plasmodium falciparum), inexistent methods to diagnose hypnozoite carriers, and decreasing efficacy of available antimalarials need to be addressed. Innovative tools, strategies, and technologies are needed to achieve further progress toward sustainable malaria elimination. Further difficulties also arise from dealing with the inherent socioeconomic and environmental particularities of the Amazon region and its dynamic changes.
Collapse
Affiliation(s)
- Andre M Siqueira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Paola Marchesini
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| | - Vanderson de Souza Sampaio
- Fundação de Vigilância em Saúde, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Patricia Brasil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Pedro L Tauil
- Núcleo de Medicina Tropical, Universidade de Brasília, Brasilia, Brazil
| | | | | | | | - Marcus V G Lacerda
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Camila P Damasceno
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| | - Ana Carolina S Santelli
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| |
Collapse
|