1
|
Saengsuwan J, Brockmann L, Schuster-Amft C, Hunt KJ. Changes in heart rate variability at rest and during exercise in patients after a stroke: a feasibility study. Biomed Eng Online 2024; 23:132. [PMID: 39726043 DOI: 10.1186/s12938-024-01328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
The aim of this study was to evaluate the feasibility of using a biofeedback-enhanced robotics-assisted tilt table (RATT) to investigate time- and intensity-dependent changes in heart rate variability (HRV) at rest and during heart rate-controlled exercise in patients recovering from a stroke. Twelve patients (age 55.3 years ± 15.6 years, 7 women) completed two separate measurement sessions. The first involved familiarization and system identification to determine parameters of a feedback system for automatic control of heart rate (HR). The second comprised 14 min of rest and 21 min of active exercise during which HR was held constant using feedback control to eliminate cardiovascular drift. HR data were collected using a chest-belt HR sensor, and raw RR intervals were employed for HRV analysis during periods of rest (0-7 min and 7-14 min) and exercise (5-13 min and 13-21 min). A biofeedback-enhanced, robotics-assisted tilt table can be successfully employed to perform heart rate-controlled exercises in patients after a stroke. All HRV metrics were substantially lower during exercise compared to rest. In the rest period, HRV values during 0-7 min were lower than during 7-14 min, in line with a slight HR decrease over the entire rest period. During exercise, HRV values during 5-13 min were higher than during 13-21 min, suggesting a time-dependent HRV decrease. All HRV metrics exhibited intensity- and time-dependent changes: higher HRV at rest and decreasing HRV over time. Understanding these HRV characteristics will support the development of heart rate-controlled exercise regimens and protocols for examining HRV changes during exercise in patients.
Collapse
Affiliation(s)
- Jittima Saengsuwan
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland.
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- North-Eastern Stroke Research Group, Khon Kaen University, Khon Kaen, Thailand.
| | - Lars Brockmann
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland
| | - Corina Schuster-Amft
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Kenneth J Hunt
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland
| |
Collapse
|
2
|
Kong W, Jing X, Zeng P, Zeng B, Mo W, Yang H. The Impact of BMI on Heart Rate During Suspension Laryngoscopy Operation in Patients With Laryngeal Lesions: A Prospective Cohort Study. J Voice 2024:S0892-1997(24)00442-9. [PMID: 39721881 DOI: 10.1016/j.jvoice.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVES Suspension laryngoscopy can trigger vagal reflexes, leading to a decrease in heart rate, a phenomenon that is more common in patients with a high body mass index (BMI). This study aims to systematically evaluate the effect of BMI on heart rate during suspension laryngoscopy (SL-HR) in patients with laryngeal lesions. METHODS We employed univariate generalized linear regression and stratified analyses to assess the relationship between BMI and changes in SLHR, adjusting for confounders such as age, gender, intubation type, and depth. A generalized additive model with spline smoothing was utilized to evaluate the BMI-HR relationship, with piecewise linear regression to identify specific cutoff points. RESULTS We conducted a prospective study of 205 patients who underwent general anesthesia for suspension laryngoscopy. Multivariate linear regression analysis indicated that, after adjusting for covariates, each one-unit increase in BMI was associated with a decrease of 1.04 beats per minute in SL-HR (β = -1.04 [95% CI, -1.85 to -0.23]). Curve fitting revealed a gradual decline in SL-HR with increasing BMI, plateauing at around 60 beats per minute. The decrease in SL-HR became more pronounced as BMI approached 30 kg/m², with further analysis revealing an inflection point at a BMI of 28.8 kg/m², where each additional unit of BMI correlated with a 6.5 beats per minute decrease in heart rate (β = -6.5 [95% CI, -10.1 to -2.8], P < 0.001). CONCLUSIONS Patients with high BMI are more prone to vagal reflexes during suspension laryngoscopy, resulting in significant reductions in heart rate, especially when BMI exceeds 28.8 kg/m². Therefore, close monitoring of heart rate changes is crucial in this patient demographic, along with considering prophylactic anticholinergic agents to mitigate vagal reflex effects.
Collapse
Affiliation(s)
- Weili Kong
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingtao Jing
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pinfu Zeng
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Zeng
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Mo
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Chakraborty G, Joshi B, Ahire K, Patra C. Tributyl phosphate inhibits neurogenesis and motor functions during embryonic development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107203. [PMID: 39667268 DOI: 10.1016/j.aquatox.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Tributyl phosphate (TBP), an organophosphate ester (OPE), is heavily used as a solvent in chemical industries, a plasticizer, and to extract radioactive molecules. Thus, widespread uses of TBP in industrialized countries led to the release of TBP and its metabolites, dibutyl phosphate (DBP) and monobutyl phosphate (MBP), in the environment and were detected in human samples. Accumulating these OPEs over time in humans and aquatic animals may develop toxicological effects. The reports also say TBP passes through the mother-fetal transmission route and may affect embryonic development. However, the impact of TBP and its metabolites on vertebrate development has been poorly studied. Ex-utero development, high fecundity, and optical transparency make the zebrafish a preferred model for toxicological evaluation. Thus, we aim to explore the toxic effects of TBP and its metabolites on aquatic animals using zebrafish as a model organism. Embryos in the chorion were incubated in 10-60 µM test chemicals from 6 to 48 h post fertilization (hpf), and analyzed the adverse effects on embryos. Our study found that 10-20 µM TBP inhibits neural growth, resulting in decreased spontaneous movement frequency and locomotive behavior without altering the overall embryonic growth and muscle functions. In contrast, DBP-treated embryos showed increased spontaneous movement frequency without changing the motor neuron growth and locomotive behavior. Further, in higher concentrations, TBP is teratogenic, and DBP is lethal to the embryos. Altogether, we found that TBP inhibits neurogenesis and motor behavior; however, its metabolite DBP is neuroexcitatory in zebrafish embryos.
Collapse
Affiliation(s)
- Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India
| | - Bhagyashri Joshi
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India
| | - Kedar Ahire
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India.
| |
Collapse
|
4
|
Ge Y, Nash MS, Winnik WM, Bruno M, Padgett WT, Grindstaff RD, Hazari MS, Farraj AK. Proteomics Reveals Divergent Cardiac Inflammatory and Metabolic Responses After Inhalation of Ambient Particulate Matter With or Without Ozone. Cardiovasc Toxicol 2024; 24:1348-1363. [PMID: 39397197 DOI: 10.1007/s12012-024-09931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Inhalation of ambient particulate matter (PM) and ozone (O3) has been associated with increased cardiovascular morbidity and mortality. However, the interactive effects of PM and O3 on cardiac dysfunction and disease have not been thoroughly examined, especially at a proteomic level. The purpose of this study was to identify and compare proteome changes in spontaneously hypertensive (SH) rats co-exposed to concentrated ambient particulates (CAPs) and O3, with a focus on investigating inflammatory and metabolic pathways, which are the two major ones implicated in the pathophysiology of cardiac dysfunction. For this, we measured and compared changes in expression status of 9 critical pro- and anti-inflammatory cytokines using multiplexed ELISA and 450 metabolic proteins involved in ATP production, oxidative phosphorylation, cytoskeletal organization, and stress response using two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) in cardiac tissue of SH rats exposed to CAPs alone, O3 alone, and CAPs + O3. Proteomic expression profiling revealed that CAPs alone, O3 alone, and CAPs + O3 differentially altered protein expression patterns, and utilized divergent mechanisms to affect inflammatory and metabolic pathways and responses. Ingenuity Pathway Analysis (IPA) of the proteomic data demonstrated that the metabolic protein network centered by gap junction alpha-1 protein (GJA 1) was interconnected with the inflammatory cytokine network centered by nuclear factor kappa beta (NF-kB) potentially suggesting inflammation-induced alterations in metabolic pathways, or vice versa, collectively contributing to the development of cardiac dysfunction in response to CAPs and O3 exposure. These findings may enhance understanding of the pathophysiology of cardiac dysfunction induced by air pollution and provide testable hypotheses regarding mechanisms of action.
Collapse
Affiliation(s)
- Yue Ge
- The Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, 27711, USA.
| | - Maliha S Nash
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Witold M Winnik
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Maribel Bruno
- The Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - William T Padgett
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Rachel D Grindstaff
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Mehdi S Hazari
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Aimen K Farraj
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| |
Collapse
|
5
|
Paydar JA, Parekh D, Sheldon RS. Neurally Mediated Syncope Associated With Neck Sarcoma. Can J Cardiol 2024; 40:2455-2457. [PMID: 39151560 DOI: 10.1016/j.cjca.2024.08.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Affiliation(s)
- John A Paydar
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dwip Parekh
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robert S Sheldon
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Chang MC, Peng CL, Chen CT, Shih YH, Chen JH, Tai YJ, Chiang YC. Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1563. [PMID: 39770405 PMCID: PMC11676292 DOI: 10.3390/ph17121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
Iodine-123 metaiodobenzylguanidine (I-123 MIBG) is a crucial radiopharmaceutical widely used in nuclear medicine for its diagnostic capabilities in both cardiology and oncology. This review aims to present a comprehensive evaluation of the clinical applications of I-123 MIBG, focusing on its use in diagnosing and managing various diseases. In cardiology, I-123 MIBG has proven invaluable in assessing cardiac sympathetic innervation, particularly in patients with heart failure, where it provides prognostic information that guides treatment strategies. In oncology, I-123 MIBG is primarily utilized for imaging neuroendocrine tumors, such as neuroblastoma and pheochromocytoma, where it offers high specificity and sensitivity in the detection of adrenergic tissue. Additionally, its role in neurology, specifically in differentiating between Parkinson's disease, dementia, and Lewy body dementia, has become increasingly significant due to its ability to identify postganglionic sympathetic dysfunction. Despite its established clinical utility, the use of I-123 MIBG is not without limitations, including variability in imaging protocols and interpretation challenges. This review will explore these issues and discuss emerging alternatives, while also highlighting areas where I-123 MIBG continues to be a gold standard. By synthesizing the current research, this article aims to provide a clear understanding of the strengths, limitations, and prospects of I-123 MIBG in clinical practice.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Cheng-Liang Peng
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Chun-Tang Chen
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Ying-Hsia Shih
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Jyun-Hong Chen
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Yi-Jou Tai
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 302058, Taiwan
| |
Collapse
|
7
|
Evans AJ, Li YL. Remodeling of the Intracardiac Ganglia During the Development of Cardiovascular Autonomic Dysfunction in Type 2 Diabetes: Molecular Mechanisms and Therapeutics. Int J Mol Sci 2024; 25:12464. [PMID: 39596529 PMCID: PMC11594459 DOI: 10.3390/ijms252212464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity. Diminished cardiac parasympathetic tone can lead to cardiac arrhythmia-related sudden cardiac death, which accounts for 50% of CVD-related deaths in T2DM patients. Regulation of cardiovascular parasympathetic activity is integrated by neural circuitry at multiple levels including afferent, central, and efferent components. Efferent control of cardiac parasympathetic autonomic tone is mediated through the activity of preganglionic parasympathetic neurons located in the cardiac extensions of the vagus nerve that signals to postganglionic parasympathetic neurons located in the intracardiac ganglia (ICG) on the heart. Postganglionic parasympathetic neurons exert local control on the heart, independent of higher brain centers, through the release of neurotransmitters, such as acetylcholine. Structural and functional alterations in cardiac parasympathetic postganglionic neurons contribute to the withdrawal of cardiac parasympathetic tone, resulting in arrhythmogenesis and sudden cardiac death. This review provides an overview of the remodeling of parasympathetic postganglionic neurons in the ICG, and potential mechanisms contributing to the withdrawal of cardiac parasympathetic tone, ventricular arrhythmogenesis, and sudden cardiac death in T2DM. Improving cardiac parasympathetic tone could be a therapeutic avenue to reduce malignant ventricular arrhythmia and sudden cardiac death, increasing both the lifespan and improving quality of life of T2DM patients.
Collapse
Affiliation(s)
- Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Rodrigues DF, Neves VR, Montarroyos UR, Dos Santos WJ, de Farias ICV, Filho DCS. Association of heart rate variability with cardiorespiratory fitness and muscle strength in patients after hospitalization for COVID-19: An analytical cross-sectional study. Clinics (Sao Paulo) 2024; 79:100534. [PMID: 39566371 PMCID: PMC11617900 DOI: 10.1016/j.clinsp.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION Patients with a moderate to severe clinical condition of COVID-19 who need hospitalization may have dysfunction in Cardiac Autonomic Control (CAC) and functional capacity. OBJECTIVE To assess the association of HRV with cardiorespiratory fitness and respiratory and peripheral muscle strength in patients after hospitalization for COVID-19. METHOD Cross-sectional study with individuals > 18-years old, post-hospitalization for COVID-19, with a positive RT-PCR test. Data on clinical condition and hospital admission were collected, and parameters of respiratory and peripheral muscle strength and functional capacity were evaluated with the 6-Minute Walk Test (6MWT). CAC was assessed by analyzing (Heart Rate Variability) HRV in the time (SDNN, RMSSD) and frequency domains (HF, LF, HF/LF ratio). Pearson correlation was performed between HRV measures and functional parameters. RESULTS The results showed low HRV in study participants, with positive correlations between 6MWT and RMSSD and between SDNN and HF power and negative correlations between Heart Rate and the LF/HF ratio. On the other hand, respiratory and peripheral muscle strength correlated positively with parameters that represent sympathetic nervous system expression (LF nu and LF power) and negatively with the LF/HF ratio. However, changes in HRV parameters were not associated with disease severity. CONCLUSION The dysautonomia of COVID-19 patients was correlated with functional sequelae, though not associated with disease severity parameters. There was low HRV, with low vagal expression, and imbalance in sympathetic/parasympathetic modulation in the study group.
Collapse
Affiliation(s)
- Daniele Ferreira Rodrigues
- Health Sciences Postgraduate Program at the Universidade de Pernambuco (UPE), Recife, PE, Brazil; Hospital das Clínicas da Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil.
| | - Victor Ribeiro Neves
- Functional Rehabilitation and Performance Postgraduate Program at the Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
9
|
Chen X, Zhong X, Huang GN. Heart regeneration from the whole-organism perspective to single-cell resolution. NPJ Regen Med 2024; 9:34. [PMID: 39548113 PMCID: PMC11568173 DOI: 10.1038/s41536-024-00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cardiac regenerative potential in the animal kingdom displays striking divergence across ontogeny and phylogeny. Here we discuss several fundamental questions in heart regeneration and provide both a holistic view of heart regeneration in the organism as a whole, as well as a single-cell perspective on intercellular communication among diverse cardiac cell populations. We hope to provide valuable insights that advance our understanding of organ regeneration and future therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaochen Zhong
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Lopes Soares L, Portes AMO, Costa SFF, Leite LB, Natali AJ. Autonomic Dysregulation in Pulmonary Hypertension: Role of Physical Exercise. Hypertension 2024; 81:2228-2236. [PMID: 39234679 DOI: 10.1161/hypertensionaha.124.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pulmonary hypertension (PH) is a rare and severe condition characterized by increased pressure in the pulmonary circulation, often resulting in right ventricular failure and death. The autonomic nervous system (ANS) plays a crucial role in the cardiovascular and pulmonary controls. Dysfunction of ANS has been implicated in the pathogenesis of cardiopulmonary diseases. Conversely, dysfunctions in ANS can arise from these diseases, impacting cardiac and pulmonary autonomic functions and contributing to disease progression. The complex interaction between ANS dysfunction and PH plays a crucial role in the disease progression, making it essential to explore interventions that modulate ANS, such as physical exercise, to improve the treatment and prognosis of patients with PH. This review addresses autonomic dysfunctions found in PH and their implications for the cardiopulmonary system. Furthermore, we discuss how physical exercise, a significant modulator of ANS, may contribute to the prognosis of PH. Drawing from evidence of aerobic and resistance exercise training in patients and experimental models of PH, potential cardiovascular benefits of exercise are presented. Finally, we highlight emerging therapeutic targets and perspectives to better cope with the complex condition. A comprehensive understanding of the interaction between ANS and PH, coupled with targeted physical exercise interventions, may pave the way for innovative therapeutic strategies and significantly improve the treatment and prognosis of vulnerable patients.
Collapse
Affiliation(s)
- Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | | | | | - Luciano Bernardes Leite
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| |
Collapse
|
11
|
Morris CJ, Rolf MG, Starnes L, Villar IC, Pointon A, Kimko H, Di Veroli GY. Modelling hemodynamics regulation in rats and dogs to facilitate drugs safety risk assessment. Front Pharmacol 2024; 15:1402462. [PMID: 39534082 PMCID: PMC11555398 DOI: 10.3389/fphar.2024.1402462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceutical companies routinely screen compounds for hemodynamics related safety risk. In vitro secondary pharmacology is initially used to prioritize compounds while in vivo studies are later used to quantify and translate risk to humans. This strategy has shown limitations but could be improved via the incorporation of molecular findings in the animal-based toxicological risk assessment. The aim of this study is to develop a mathematical model for rat and dog species that can integrate secondary pharmacology modulation and therefore facilitate the overall pre-clinical safety translation assessment. Following an extensive literature review, we built two separate models recapitulating known regulation processes in dogs and rats. We describe the resulting models and show that they can reproduce a variety of interventions in both species. We also show that the models can incorporate the mechanisms of action of a pre-defined list of 50 pharmacological mechanisms whose modulation predict results consistent with known pharmacology. In conclusion, a mechanistic model of hemodynamics regulations in rat and dog species has been developed to support mechanism-based safety translation in drug discovery and development.
Collapse
Affiliation(s)
- Christopher J. Morris
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael G. Rolf
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Starnes
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inmaculada C. Villar
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giovanni Y. Di Veroli
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
12
|
van Es VAA, de Lathauwer ILJ, Kemps HMC, Handjaras G, Betta M. Remote Monitoring of Sympathovagal Imbalance During Sleep and Its Implications in Cardiovascular Risk Assessment: A Systematic Review. Bioengineering (Basel) 2024; 11:1045. [PMID: 39451420 PMCID: PMC11504514 DOI: 10.3390/bioengineering11101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Nocturnal sympathetic overdrive is an early indicator of cardiovascular (CV) disease, emphasizing the importance of reliable remote patient monitoring (RPM) for autonomic function during sleep. To be effective, RPM systems must be accurate, non-intrusive, and cost-effective. This review evaluates non-invasive technologies, metrics, and algorithms for tracking nocturnal autonomic nervous system (ANS) activity, assessing their CV relevance and feasibility for integration into RPM systems. A systematic search identified 18 relevant studies from an initial pool of 169 publications, with data extracted on study design, population characteristics, technology types, and CV implications. Modalities reviewed include electrodes (e.g., electroencephalography (EEG), electrocardiography (ECG), polysomnography (PSG)), optical sensors (e.g., photoplethysmography (PPG), peripheral arterial tone (PAT)), ballistocardiography (BCG), cameras, radars, and accelerometers. Heart rate variability (HRV) and blood pressure (BP) emerged as the most promising metrics for RPM, offering a comprehensive view of ANS function and vascular health during sleep. While electrodes provide precise HRV data, they remain intrusive, whereas optical sensors such as PPG demonstrate potential for multimodal monitoring, including HRV, SpO2, and estimates of arterial stiffness and BP. Non-intrusive methods like BCG and cameras are promising for heart and respiratory rate estimation, but less suitable for continuous HRV monitoring. In conclusion, HRV and BP are the most viable metrics for RPM, with PPG-based systems offering significant promise for non-intrusive, continuous monitoring of multiple modalities. Further research is needed to enhance accuracy, feasibility, and validation against direct measures of autonomic function, such as microneurography.
Collapse
Affiliation(s)
- Valerie A. A. van Es
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| | - Ignace L. J. de Lathauwer
- Department of Cardiology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| | - Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| |
Collapse
|
13
|
Plain B, Pielage H, Zekveld AA, Richter M, Bhuiyan TA, van de Ven SRB, Kramer SE. Incorporating Virtual Reality Agents During a Dichotic Speech Reception Task: Insights From the Heart. Ear Hear 2024:00003446-990000000-00354. [PMID: 39565283 DOI: 10.1097/aud.0000000000001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
OBJECTIVES Listening effort is moderated by not only task difficulty, but also success importance. In real communication scenarios, success importance varies based upon the social context. However, in the laboratory, it can be challenging to manipulate social context without compromising experimental control. Outside of hearing sciences, studies have applied virtual reality (VR) to incorporate social context in a controlled and repeatable manner. Several of these studies have demonstrated that social manipulations in VR can reliably elicit changes in cardiovascular measures. Here, we investigated the effect of adding VR agents to a speech reception task, while measuring from the cardiovascular system. DESIGN Twenty-eight, normally hearing participants undertook a dichotic speech reception task. Sentences in stationary noise were presented dichotically, that is, different sentences presented simultaneously to each ear. Participants were tasked to either repeat one of the sentences (single-sentence condition) or both of the sentences (dual-sentence condition). The task was conducted under two VR conditions: (1) in the presence of agents, who provided sporadic performance feedback and (2) in the presence of nonagent controls, without any feedback given. Alongside task performance, we quantified changes in cardiovascular measures, relative to pretask baselines: heart rate variability, pre-ejection period, heart rate, and blood pressure. After each condition, participants rated their subjective effort, difficulty, performance, and engagement. RESULTS Performance and the subjective perception of performance were lower, while subjective effort and difficulty were higher, in the dual-sentence condition, compared with the single-sentence condition. Heart rate was the only cardiovascular measure that was sensitive to the experimental manipulations. Contrary to our expectations, heart rate increased in the nonagent control conditions, compared with the agent conditions. An exploratory analysis revealed heart rate fluctuations within a trial: heart rate was higher during the first 6 sec of the trial (reflecting the presentence masking noise and the sentence presentation) in the dual-sentence condition, compared with the single-sentence condition. CONCLUSIONS This study was the first to incorporate VR agents who provided performance feedback during a dichotic speech reception task. Our results suggest that the VR agents did not increase success importance, which could be attributed to a lack of realism of the agents. We also demonstrated that the cardiovascular response to experimental manipulations may differ depending on the data window selected for analysis.
Collapse
Affiliation(s)
- Bethany Plain
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
- Eriksholm Research Centre, Snekkersten, Denmark
| | - Hidde Pielage
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
- Eriksholm Research Centre, Snekkersten, Denmark
| | - Adriana A Zekveld
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Michael Richter
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Sjors R B van de Ven
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sophia E Kramer
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Singh A, Kishore PS, Khan S. From Microbes to Myocardium: A Comprehensive Review of the Impact of the Gut-Brain Axis on Cardiovascular Disease. Cureus 2024; 16:e70877. [PMID: 39497887 PMCID: PMC11533101 DOI: 10.7759/cureus.70877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide despite advances in medical research and therapeutics. Emerging evidence suggests a significant role of the gut-brain axis, a complex communication network involving the gut microbiota, central nervous system, and cardiovascular system, in modulating cardiovascular health. The gut microbiota influences systemic inflammation, neurohumoral pathways, and metabolic processes, which are critical in the pathogenesis of CVD. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various cardiovascular conditions, including hypertension, atherosclerosis, and heart failure. This comprehensive review aims to elucidate the intricate relationship between the gut microbiome, brain, and cardiovascular system, highlighting the mechanisms by which gut-derived signals affect cardiovascular function. Key microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), and their impact on vascular health and blood pressure regulation are discussed. Furthermore, the review explores potential therapeutic strategies targeting the gut-brain axis, including probiotics, prebiotics, dietary modifications, and pharmacological interventions, to improve cardiovascular outcomes. Despite promising findings, the field faces challenges such as individual variability in microbiome composition, complexities in gut-brain interactions, and the need for robust clinical trials to establish causality. Addressing these challenges through interdisciplinary research could pave the way for innovative, personalized therapeutic approaches. This review provides a comprehensive understanding of the gut-brain-cardiovascular axis, underscoring its potential as a novel target for preventing and treating CVD.
Collapse
Affiliation(s)
- Akhilesh Singh
- Emergency Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Sharleen Khan
- Ophthalmology, Heritage Institute of Medical Sciences, Varanasi, IND
| |
Collapse
|
15
|
Gołaś A, Pietraszewski P, Roczniok R, Terbalyan A, Maszczyk A, Opaliński R, Zając A. Effects of an 8-week pre-season targeted training on sprinting performance, agility and lower limb muscular asymmetries in elite soccer players. Biol Sport 2024; 41:69-76. [PMID: 39416490 PMCID: PMC11474991 DOI: 10.5114/biolsport.2024.134754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 01/13/2024] [Indexed: 10/19/2024] Open
Abstract
The purpose of this study was to determine the effects of an 8 week targeted training program on speed, agility, and muscle asymmetries in soccer players. 32 elite soccer players were recruited for the study. Their age, body mass, and body height were 25.8 ± 7.3 years, 77.4 ± 11.1 kg, and 177.5 ± 9.8 cm, respectively. After the warm-up, participants performed two maximum 30 m sprints with a 5-minute rest interval between trials. After the linear sprint test, performed two repetitions of the COD randomized ZigZag test. The tests were performed at the beginning and at the end of the pre-season, which lasted for 8 weeks. EMG was measured bilaterally from the quadriceps, hamstrings, and gluteal muscles with shorts made of knitted fabric similar to elastic clothes. Athletes in the experimental group performed sport-specific targeted strength training based on movement patterns 4 times per week (Monday, Tuesday, Thursday, and Friday). The training included 6 bodyweight exercises (Bird Dog, Single-Leg Glute Bridge, Dead Bug, Side Plank, Reverse Lunge, and Clamshell), performed unilaterally in 5 sets of 10 repetitions of each exercise. The load progression included an additional set in each successive week of the experiment. The data analysis showed significant improvement in 5 m and 30 m sprints after applying the 8-week targeted training protocol. A statistically significant improvement in performance was also observed after the 8-week training period in case of COD, while the speed deficit also decreased significantly. The greatest improvements were observed during the COD test. As a result of repeated COD training over a period of 8 weeks, its technique was improved. Implementation of training methods, which target specific aspects of soccer in the pre-season training routines can improve key motor abilities for that sports discipline. A comprehensive training approach including speed, agility, and resistance training based on specific movement patterns should be applied by strength and conditioning practitioners in soccer teams to achieve peak physical performance and reduce injury risk due to the partial elimination of muscular asymmetries.
Collapse
Affiliation(s)
- Artur Gołaś
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | | | - Robert Roczniok
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Artur Terbalyan
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adam Maszczyk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | | | - Adam Zając
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
16
|
Prathumsap N, Ongnok B, Khuanjing T, Arinno A, Maneechote C, Chunchai T, Arunsak B, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Muscarinic and nicotinic receptors stimulation by vagus nerve stimulation ameliorates trastuzumab-induced cardiotoxicity via reducing programmed cell death in rats. Toxicol Appl Pharmacol 2024; 491:117074. [PMID: 39168189 DOI: 10.1016/j.taap.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Despite its efficacy in human epidermal growth factor receptor 2 positive cancer treatment, trastuzumab-induced cardiotoxicity (TIC) has become a growing concern. Due to the lack of cardiomyocyte regeneration and proliferation in adult heart, cell death significantly contributes to cardiovascular diseases. Cardiac autonomic modulation by vagus nerve stimulation (VNS) has shown cardioprotective effects in several heart disease models, while the effects of VNS and its underlying mechanisms against TIC have not been found. Forty adult male Wistar rats were divided into 5 groups: (i) control without VNS (CSham) group, (ii) trastuzumab (4 mg/kg/day, i.p.) without VNS (TSham) group, (iii) trastuzumab + VNS (TVNS) group, (iv) trastuzumab + VNS + mAChR blocker (atropine; 1 mg/kg/day, ip, TVNS + Atro) group, and (v) trastuzumab + VNS + nAChR blocker (mecamylamine; 7.5 mg/kg/day, ip, TVNS + Mec) group. Our results showed that trastuzumab induced cardiac dysfunction by increasing autonomic dysfunction, mitochondrial dysfunction/dynamics imbalance, and cardiomyocyte death including apoptosis, autophagic deficiency, pyroptosis, and ferroptosis, which were notably alleviated by VNS. However, mAChR and nAChR blockers significantly inhibited the beneficial effects of VNS on cardiac autonomic dysfunction, mitochondrial dysfunction, cardiomyocyte apoptosis, pyroptosis, and ferroptosis. Only nAChR could counteract the protective effects of VNS on cardiac mitochondrial dynamics imbalance and autophagy insufficiency. Therefore, VNS prevented TIC by rebalancing autonomic activity, ameliorating mitochondrial dysfunction and cardiomyocyte death through mAChR and nAChR activation. The current study provides a novel perspective elucidating the potential treatment of VNS, thus also offering other pharmacological therapeutic promises in TIC patients.
Collapse
MESH Headings
- Animals
- Vagus Nerve Stimulation/methods
- Male
- Rats, Wistar
- Cardiotoxicity
- Rats
- Trastuzumab/toxicity
- Trastuzumab/pharmacology
- Apoptosis/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Receptors, Muscarinic/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Nicotinic/metabolism
- Receptors, Nicotinic/drug effects
- Nicotinic Antagonists/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/toxicity
- Vagus Nerve/drug effects
Collapse
Affiliation(s)
- Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
17
|
Oh H, Cho AR, Jeon JH, Suh E, Moon J, Cho BH, Lee YK. Association between resting heart rate and low natural killer cell activity: a cross-sectional study. Front Immunol 2024; 15:1465953. [PMID: 39399484 PMCID: PMC11466811 DOI: 10.3389/fimmu.2024.1465953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Resting heart rate (RHR), a simple physiological indicator, has been demonstrated to be associated with inflammation and even metabolic disorders. This study aimed to investigate whether RHR is associated with natural killer cell activity (NKA) in a large population of healthy adults using a novel assay to measure NKA. This cross-sectional study included 7,500 subjects in the final analysis. NKA was estimated by measuring the amount of interferon-gamma (IFN-γ) released by activated natural killer cells; low NKA was defined as IFN-γ level <500 pg/mL. Subjects were categorized into four groups according to RHR as follows: C1 (≤ 60 bpm), C2 (60-70 bpm), C3 (70-80 bpm), and C4 (≥ 80 bpm). Individuals with higher RHR exhibited poorer metabolic and inflammatory profiles, with the prevalence of low NKA being highest in the highest RHR category. Compared with C1 as reference, the fully adjusted odd ratios (ORs) [95% confidence intervals (CIs)] for low NKA were significantly higher in C3 (OR: 1.37, 95% CI: 1.08-1.75) and C4 (OR: 1.55, 95% CI: 1.20-2.00). In addition, RHR was shown to exert indirect effects on NKA upon consideration of the mediation effect of serum cortisol in path analysis. Our findings confirm a significant link between elevated RHR and low NKA, and suggest the usefulness of RHR, a simple indicator reflecting increased sympathetic nervous system activity and stress, in predicting reduced immune function.
Collapse
Affiliation(s)
- Hyoju Oh
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - A-Ra Cho
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Hwan Jeon
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Eunkyung Suh
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Junhyung Moon
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Baek Hwan Cho
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Yun-Kyong Lee
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Arroyo-Carmona RE, Mitre-Velasco Y, Martinez-Laguna Y, Torres-Jácome J, Albarado-Ibañez A. A maternal diet high in carbohydrates causes bradyarrhythmias and changes in heart rate variability in the offspring sex-dependent in mice. Lab Anim Res 2024; 40:34. [PMID: 39334462 PMCID: PMC11428337 DOI: 10.1186/s42826-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Maternal obesity prepregnancy, as well as gestational overweight produced by high-sucrose diet, could be evolved to the cardiometabolic diseases in offspring during adulthood. Until then, the cardiometabolic diseases were ignored that have been presented or inherited in the offspring for overnutrition were ignored, depend on gender. We proposed that maternal prepregnancy obesity in CD1 mice, as well as gestational overweight produced by a high sucrose diet, develop to cardiometabolic disease in offspring and even if gender. For detection of the cardiometabolic diseases in a Murine model with a high sucrose diet (HSD), the time series formed by the RR intervals taken from lead I of the ECG has used the corresponding Poincare plot. The heart rate variability was characterized by the standard deviation of width and length SD1, SD2 respectively of the Poincare plot and the SD1/SD2 correlation index in addition was calculated between to gender and body weight. RESULTS A maternal diet was based high sucrose diet and produced overweight on progeny in both sexes, but the cardiac arrhythmias depended on gender. Other results were due to the chronic effect of high sucrose diet in offspring with this intrauterine ambiance that contributes to changes in HRV, arrhythmias, and sinus pauses, also these phenomena were observed just in the male mice offspring with high sucrose diet during adulthood. CONCLUSIONS We propose, that the arrhythmias originated from fetal programming due to the maternal diet in mice model and produced alterations in the offspring female more than in the male, probably due to hormones.
Collapse
Affiliation(s)
- Rosa Elena Arroyo-Carmona
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Benemérita Universidad Autónoma de Puebla, Senda Química, Cd Universitaria, Jardines de San Manuel, Heroica Puebla de Zaragoza, 72570, México
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México
| | - Yareth Mitre-Velasco
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México
| | - Ygnacio Martinez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Heroica Puebla de Zaragoza, México
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México
| | - Alondra Albarado-Ibañez
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México.
| |
Collapse
|
19
|
Tetsuka H, Gobbi S, Hatanaka T, Pirrami L, Shin SR. Wirelessly steerable bioelectronic neuromuscular robots adapting neurocardiac junctions. Sci Robot 2024; 9:eado0051. [PMID: 39321274 DOI: 10.1126/scirobotics.ado0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Biological motions of native muscle tissues rely on the nervous system to interface movement with the surrounding environment. The neural innervation of muscles, crucial for regulating movement, is the fundamental infrastructure for swiftly responding to changes in body tissue requirements. This study introduces a bioelectronic neuromuscular robot integrated with the motor nervous system through electrical synapses to evoke cardiac muscle activities and steer robotic motion. Serving as an artificial brain and wirelessly regulating selective neural activation to initiate robot fin motion, a wireless frequency multiplexing bioelectronic device is used to control the robot. Frequency multiplexing bioelectronics enables the control of the robot locomotion speed and direction by modulating the flapping of the robot fins through the wireless motor innervation of cardiac muscles. The robots demonstrated an average locomotion speed of ~0.52 ± 0.22 millimeters per second, fin-flapping frequency up to 2.0 hertz, and turning locomotion path curvature of ~0.11 ± 0.04 radians per millimeter. These systems will contribute to the expansion of biohybrid machines into the brain-to-motor frontier for developing autonomous biohybrid systems capable of advanced adaptive motor control and learning.
Collapse
Affiliation(s)
- Hiroyuki Tetsuka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, MA 02139, USA
- Research Strategy Office, Toyota Research Institute of North America, Toyota Motor North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105, USA
| | - Samuele Gobbi
- iPrint Institute, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg 1700, Switzerland
| | - Takaaki Hatanaka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, MA 02139, USA
- Research Strategy Office, Toyota Research Institute of North America, Toyota Motor North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105, USA
| | - Lorenzo Pirrami
- iPrint Institute, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg 1700, Switzerland
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Wu G, Ma T, Hancock CE, Gonzalez S, Aryal B, Vaz S, Chan G, Palarca-Wong M, Allen N, Chung CI, Shu X, Liu Q. Opposing GPCR signaling programs protein intake setpoint in Drosophila. Cell 2024; 187:5376-5392.e17. [PMID: 39197448 PMCID: PMC11437785 DOI: 10.1016/j.cell.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tianji Ma
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clare E Hancock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Santiago Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Binod Aryal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Vaz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Chan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madison Palarca-Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
21
|
Daradas A, Kulthinee S, Promsrisuk T, Kesornwanichwattana P, Thaingkrathok P, Pongampai S, Kongjaidee P, Seeja N, Poomvanicha M, Chotimol P. Cardiovascular and Ocular Parameter Alterations in Response to Cold Pressor Test in Young Adults. Diagnostics (Basel) 2024; 14:2010. [PMID: 39335689 PMCID: PMC11431278 DOI: 10.3390/diagnostics14182010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The sympathetic nervous responses to cold stress are known; however, concurrent cardiovascular and ocular parameter alterations in the responses are poorly characterized. The aim of this study was to examine the influence of the cold pressor test (CPT) on cardiovascular and ocular parameters in young adult subjects. There was a total of 86 participants. The CPT was conducted by submerging each participant's left hand in cold water (3-5 °C) for 3 min. During the CPT, systolic blood pressure, diastolic blood pressure, mean arterial pressure (MAP), and heart rate were found to be significantly increased compared to the baseline and significantly decreased compared to recovery, including the mean of the standard deviations of all normal-to-normal intervals (SDNN). In the recovery phase, the SDNN continued to decrease statistically significantly compared to the baseline and the CPT. Furthermore, the findings of this study show that the CPT impacted intra-ocular pressure (IOP), ACD, and pupil size parameters. There was a positive correlation between the MAP and IOP in both eyes during the CPT. The cold stress stimulates a sympathetic response, leading to an increase in the MAP. The pupil size increased in response to the CPT in both eyes, indicating that ocular function was increased in response to the CPT in young adults compared to baseline. In conclusion, our results suggest that in young adults, cardiovascular and ocular parameters respond to the sympathetic nervous system during the CPT.
Collapse
Affiliation(s)
- Adithep Daradas
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Interdisciplinary Health and Data Sciences Research Unit (IHaDS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supaporn Kulthinee
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tichanon Promsrisuk
- Division of Physiology, School of Medical Science, University of Phayao, Phayao 56000, Thailand
| | - Pemika Kesornwanichwattana
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Phimchanok Thaingkrathok
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sureeporn Pongampai
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Pongnugoon Kongjaidee
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Interdisciplinary Health and Data Sciences Research Unit (IHaDS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nutthakan Seeja
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Interdisciplinary Health and Data Sciences Research Unit (IHaDS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Montatip Poomvanicha
- Interdisciplinary Health and Data Sciences Research Unit (IHaDS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Phatiwat Chotimol
- Interdisciplinary Health and Data Sciences Research Unit (IHaDS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
22
|
Wu HF, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2024. [PMID: 39235952 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Charlotte Hamilton
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Harrison Porritt
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
23
|
Matsusue A, Takayama M, Tani N, Waters B, Kashiwagi M, Kubo SI, Ishikawa T. Association between serum catecholamine levels and VNTR polymorphism in the promoter region of the monoamine oxidase A gene in forensic autopsy cases. Leg Med (Tokyo) 2024; 70:102469. [PMID: 38870841 DOI: 10.1016/j.legalmed.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Monoamine oxidase A (MAOA) catalyzes oxidative deamination of catecholamines. A functional variable number tandem repeat (VNTR) polymorphism in the promoter region of the MAOA gene has been previously reported. In the present study, we measured serum adrenaline (Adr), noradrenaline (Nad), and dopamine (DA) levels in 90 male and 34 female Japanese autopsy cases in which amphetamines or psychotropic drugs were not detected.We examined the frequencies of MAOA-uVNTR alleles in these cases and investigated the effects of the MAOA-uVNTR polymorphism on serum Adr, Nad, and DA levels. Evaluation indicated no significant association between MAOA-uVNTR polymorphism and serum Adr, Nad, or DA levels in males, although a significant association between MAOA-uVNTR polymorphism and serum Adr and DA levels were observed in females. Females with the 3/3 genotype had higher serum Adr and DA levels than those with a 4-repeat allele (3/4 and 4/4 genotypes) (p = 0.048 and 0.020, respectively). There was no significant association between MAOA-uVNTR |