1
|
Girona J, Guardiola M, Barroso E, García-Altares M, Ibarretxe D, Plana N, Ribalta J, Amigó N, Correig X, Vázquez-Carrera M, Masana L, Rodríguez-Calvo R. GDF15 Circulating Levels Are Associated with Metabolic-Associated Liver Injury and Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2025; 26:2039. [PMID: 40076667 PMCID: PMC11900571 DOI: 10.3390/ijms26052039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
There is growing evidence linking growth differentiation factor 15 (GDF15) to both metabolic dysfunction-associated steatotic liver disease (MASLD) and cardiovascular (CV) risk. Nevertheless, the potential relationship between circulating levels of GDF15 and key features of MASLD being predisposed to atherosclerotic CV disease is not fully unveiled. The aim of this study was to deepen into the role of circulating GDF15 levels on metabolic-associated liver injury and atherosclerotic CV disease. We determined the serum GDF15 levels in 156 participants of a metabolic patient-based cohort, and cross-sectionally explored its associations with liver injury and an advanced atherosclerotic lipoprotein profile assessed by nuclear magnetic resonance (1H-NMR). Additionally, we prospectively evaluated the association between GDF15 levels at baseline and incident atherosclerotic CV disease after a 10-year follow-up. GDF15 was related to liver injury and inflammatory hallmarks, and it increased the likelihood for liver steatosis independently of confounding factors. Likewise, GDF15 was positively associated with an atherogenic profile, particularly with the number of very-low-density lipoproteins (VLDL) particles and its cholesterol and triglyceride content, and with an indicator of subclinical atherosclerosis (i.e., carotid intima-media thickness (cIMT)). The baseline serum GDF15 levels were higher in the patients with atherosclerotic CV disease (10.6%) after a 10-year follow-up than in the individuals without CV disease. Altogether, this study provides new insights into the role of GDF15 in both MASLD and CV disease.
Collapse
Affiliation(s)
- Josefa Girona
- Research Unit on Lipids and Atherosclerosis, University Rovira i Virgili, 43201 Reus, Spain; (J.G.); (M.G.); (D.I.); (N.P.); (J.R.); (L.M.)
- Vascular Medicine and Metabolism Unit, “Sant Joan de Reus” University Hospital, 43204 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
| | - Montse Guardiola
- Research Unit on Lipids and Atherosclerosis, University Rovira i Virgili, 43201 Reus, Spain; (J.G.); (M.G.); (D.I.); (N.P.); (J.R.); (L.M.)
- Vascular Medicine and Metabolism Unit, “Sant Joan de Reus” University Hospital, 43204 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
| | - Emma Barroso
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Barcelona, Spain
| | - María García-Altares
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Daiana Ibarretxe
- Research Unit on Lipids and Atherosclerosis, University Rovira i Virgili, 43201 Reus, Spain; (J.G.); (M.G.); (D.I.); (N.P.); (J.R.); (L.M.)
- Vascular Medicine and Metabolism Unit, “Sant Joan de Reus” University Hospital, 43204 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
| | - Núria Plana
- Research Unit on Lipids and Atherosclerosis, University Rovira i Virgili, 43201 Reus, Spain; (J.G.); (M.G.); (D.I.); (N.P.); (J.R.); (L.M.)
- Vascular Medicine and Metabolism Unit, “Sant Joan de Reus” University Hospital, 43204 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
| | - Josep Ribalta
- Research Unit on Lipids and Atherosclerosis, University Rovira i Virgili, 43201 Reus, Spain; (J.G.); (M.G.); (D.I.); (N.P.); (J.R.); (L.M.)
- Vascular Medicine and Metabolism Unit, “Sant Joan de Reus” University Hospital, 43204 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
| | - Núria Amigó
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), University Rovira i Virgili, 43007 Tarragona, Spain
- Biosfer Teslab, 43201 Reus, Spain
- Department of Basic Medical Sciences, University Rovira i Virgili, 43201 Reus, Spain
| | - Xavier Correig
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Manuel Vázquez-Carrera
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Barcelona, Spain
| | - Lluís Masana
- Research Unit on Lipids and Atherosclerosis, University Rovira i Virgili, 43201 Reus, Spain; (J.G.); (M.G.); (D.I.); (N.P.); (J.R.); (L.M.)
- Vascular Medicine and Metabolism Unit, “Sant Joan de Reus” University Hospital, 43204 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
| | - Ricardo Rodríguez-Calvo
- Research Unit on Lipids and Atherosclerosis, University Rovira i Virgili, 43201 Reus, Spain; (J.G.); (M.G.); (D.I.); (N.P.); (J.R.); (L.M.)
- Vascular Medicine and Metabolism Unit, “Sant Joan de Reus” University Hospital, 43204 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), 43007 Tarragona, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.); (M.G.-A.); (X.C.); (M.V.-C.)
| |
Collapse
|
2
|
Di Santo A, Tarchi L, Villa G, Castellini G, Ricca V, Squecco R, Papini AM, Real-Fernandez F, Rovero P. GDF15 Analogues Acting as GFRAL Ligands. ChemMedChem 2025:e202400961. [PMID: 39907315 DOI: 10.1002/cmdc.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Growth differentiation factor 15 (GDF15) is a TGF-β superfamily member involved in diverse physiological and pathological processes. It is expressed in various tissues and its circulating levels rise during exercise, aging, pregnancy, and conditions such as cancer, cardiovascular disease, and infections. The biological activities of GDF15, including anorexia and cachexia, are primarily mediated through the GFRAL receptor, localized in the brainstem and functioning via RET co-receptor recruitment. This signaling is crucial for energy homeostasis and nausea induction. Recent studies suggest a broader GFRAL distribution, potentially explaining GDF15's distinct roles. These findings sparked interest in leveraging GDF15-GFRAL pathways for therapeutic development. Two primary strategies include GDF15 analogues as GFRAL agonists for obesity treatment and GDF15-derived peptides as antagonists to counteract cancer-induced cachexia and related disorders. This review highlights advancements in understanding GDF15-GFRAL signaling and its implications, summarizing bioactive GDF15-derived molecules, their pharmacological applications, and offering insights into novel treatment avenues for GDF15-associated conditions.
Collapse
Affiliation(s)
- Andrea Di Santo
- Department of Neuroscience, Psychology, Pharmacology and Infant Health, Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of, Florence, Via Ugo Schiff, 6, Sesto Fiorentino, FI, 50019, Italy
| | - Livio Tarchi
- Department of Health Science, Psychiatry Unit, University of Florence, Largo Brambilla 3, Florence, FI, 50134, Italy
| | - Gianluca Villa
- Department of Health Science, Anesthesiology Unit, University of Florence, Largo Brambilla 3, Florence, FI, 50134, Italy
| | - Giovanni Castellini
- Department of Health Science, Psychiatry Unit, University of Florence, Largo Brambilla 3, Florence, FI, 50134, Italy
| | - Valdo Ricca
- Department of Health Science, Psychiatry Unit, University of Florence, Largo Brambilla 3, Florence, FI, 50134, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale Morgagni 63, Florence, FI, 50134, Italy
| | - Anna Maria Papini
- Department of Chemistry "Ugo Schiff", Interdepartmental Research, Unit of Peptide and Protein Chemistry and Biology, University of, Florence, via della Lastruccia, 3-13, Sesto Fiorentino, FI, 50019, Italy
| | - Feliciana Real-Fernandez
- Institute of Chemistry of Organometallic Compounds -, National, Research Council of Italy (ICCOM-CNR), Via Madonna del Piano, 10, Sesto Fiorentino, FI, 50019, Florence, Italy
| | - Paolo Rovero
- Department of Neuroscience, Psychology, Pharmacology and Infant Health, Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of, Florence, Via Ugo Schiff, 6, Sesto Fiorentino, FI, 50019, Italy
| |
Collapse
|
3
|
Monzo L, Jarolim P, Borlaug BA, Benes J, Jurcova I, Jenca D, Kroupova K, Wohlfahrt P, Kotrc M, Melenovsky V. Growth Differentiation Factor-15 Is Associated With Congestion-Related Anorexia and Weight Loss in Advanced Heart Failure. JACC. HEART FAILURE 2025; 13:315-329. [PMID: 39797849 DOI: 10.1016/j.jchf.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is a pleiotropic cytokine that is associated with appetite-suppressing effects and weight loss in patients with malignancy. OBJECTIVES This study aims to investigate the relationships between GDF-15 levels, anorexia, cachexia, and clinical outcomes in patients with advanced heart failure with reduced ejection fraction (HFrEF). METHODS In this observational, retrospective analysis, a total of 344 patients with advanced HFrEF (age 58 ± 10 years, 85% male, 67% NYHA functional class III), underwent clinical and echocardiographic examination, body composition evaluation by skinfolds and dual-energy x-ray absorptiometry, circulating metabolite assessment, Minnesota Living with Heart Failure Questionnaire, and right heart catheterization. RESULTS The median GDF-15 level was 1,503 ng/L (Q1-Q3: 955-2,332 ng/L) (reference range: <1,200 ng/L). Higher GDF-15 levels were associated with more prevalent anorexia and cachexia. Patients with higher GDF-15 had increased circulating free fatty acids and beta-hydroxybutyrate, lower albumin, cholesterol, and insulin/glucagon ratio, consistent with a catabolic state. Patients with higher GDF-15 had worse congestion and more severe right ventricular dysfunction. In multivariable Cox analysis, elevated GDF-15 was independently associated with risk of the combined endpoint of death, urgent transplantation, or left ventricular assist device implantation, even after adjusting for coexisting anorexia and cachexia (T3 vs T1 HR: 2.31 [95% CI: 1.47-3.66]; P < 0.001). CONCLUSIONS In patients with advanced HFrEF, elevated circulating GDF-15 levels are associated with a higher prevalence of anorexia and cachexia, right ventricular dysfunction, and congestion, as well as an independently increased risk of adverse events. Further studies are warranted to determine whether therapies altering GDF-15 signaling pathways can affect metabolic status and clinical outcomes in advanced HFrEF.
Collapse
Affiliation(s)
- Luca Monzo
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic; Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Department of Pathology, Boston, Massachusetts, USA
| | - Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Jan Benes
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ivana Jurcova
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Dominik Jenca
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Katerina Kroupova
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Peter Wohlfahrt
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Martin Kotrc
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic.
| |
Collapse
|
4
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Jin C, Jiang P, Zhang Z, Han Y, Wen X, Zheng L, Kuang W, Lian J, Yu G, Qian X, Ren Y, Lu M, Xu L, Chen W, Chen J, Zhou Y, Xin J, Wang B, Jin X, Qian P, Yang Y. Single-cell RNA sequencing reveals the pro-inflammatory roles of liver-resident Th1-like cells in primary biliary cholangitis. Nat Commun 2024; 15:8690. [PMID: 39375367 PMCID: PMC11458754 DOI: 10.1038/s41467-024-53104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by multilineage immune dysregulation, which subsequently causes inflammation, fibrosis, and even cirrhosis of liver. Due to the limitation of traditional assays, the local hepatic immunopathogenesis of PBC has not been fully characterized. Here, we utilize single-cell RNA sequencing technology to depict the immune cell landscape and decipher the molecular mechanisms of PBC patients. We reveal that cholangiocytes and hepatic stellate cells are involved in liver inflammation and fibrosis. Moreover, Kupffer cells show increased levels of inflammatory factors and decreased scavenger function related genes, while T cells exhibit enhanced levels of inflammatory factors and reduced cytotoxicity related genes. Interestingly, we identify a liver-resident Th1-like population with JAK-STAT activation in the livers of both PBC patients and murine PBC model. Finally, blocking the JAK-STAT pathway alleviates the liver inflammation and eliminates the liver-resident Th1-like cells in the murine PBC model. In conclusion, our comprehensive single-cell transcriptome profiling expands the understanding of pathological mechanisms of PBC and provides potential targets for the treatment of PBC in patients.
Collapse
Affiliation(s)
- Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Kuang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yue Ren
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaomiao Lu
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Xu
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixin Chen
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiyang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Zhou
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xi Jin
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Li Y, Zhang J, Chen S, Ke Y, Li Y, Chen Y. Growth differentiation factor 15: Emerging role in liver diseases. Cytokine 2024; 182:156727. [PMID: 39111112 DOI: 10.1016/j.cyto.2024.156727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
Growth differentiation factor 15 (GDF15) is a cell stress-response cytokine within the transforming growth factor-β (TGFβ) superfamily. It is known to exert diverse effects on many metabolic pathways through its receptor GFRAL, which is expressed in the hindbrain, and transduces signals through the downstream receptor tyrosine kinase Ret. Since the liver is the core organ of metabolism, summarizing the functions of GDF15 is highly important. In this review, we assessed the relevant literature regarding the main metabolic, inflammatory, fibrogenic, tumorigenic and other effects of GDF15 on different liver diseases, including Metabolic dysfunction-associated steatotic liver disease(MASLD), alcohol and drug-induced liver injury, as well as autoimmune and viral hepatitis, with a particular focus on the pathogenesis of MASLD progression from hepatic steatosis to MASH, liver fibrosis and even hepatocellular carcinoma (HCC). Finally, we discuss the prospects of the clinical application potential of GDF15 along with its research and development progress. With better knowledge of GDF15, increasing in-depth research will lead to a new era in the field of liver diseases.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shurong Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yini Ke
- Department of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
7
|
Löffler F, Garlichs JC, Uehlein S, Löffler L, Leitolf H, Terkamp C, Bauersachs J, Westhoff-Bleck M. Vitamin D deficiency and secondary hyperparathyroidism in adult Fontan patients. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 17:100521. [PMID: 39711772 PMCID: PMC11658070 DOI: 10.1016/j.ijcchd.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 12/24/2024] Open
Abstract
Background The prevalence of vitamin D deficiency and secondary hyperparathyroidism (sHPT) in adult Fontan patients remains unstudied, and the role of vitamin D and parathyroid hormone (PTH) levels in assessing heart and circulatory failure in these patients is unclear. Methods We compared vitamin D deficiency and sHPT prevalence in adult Fontan patients (n = 35; mean age 33 ± 7.5 years) to adults with mild congenital heart disease (ACHD, n = 14). We analyzed associations between laboratory measurements, patient characteristics, and clinical events. Findings Vitamin D deficiency was highly prevalent in both Fontan patients and ACHD controls (76.5 % vs. 71.4 %, p = 0.726). sHPT was exclusively present in Fontan patients (31.4 %). PTH levels correlated with NYHA class (r = 0.412), O2 saturation (r = -0.39), systemic ventricular function (r = 0.465), and NT-proBNP levels (r = 0.742). 25-hydroxyvitamin D showed an inverse correlation with NYHA class and systemic ventricular function (both r ≤ -0.38). Fontan patients with sHPT had a higher incidence of prior hospitalization for worsening heart failure and atrial arrhythmias compared to Fontan patients without HPT or ACHD controls. (Hospitalization: Fontan with HPT vs. Fontan without HPT: OR 5.46 [95 % CI 1.25-23.86], p = 0.021; arrhythmia: Fontan with HPT vs. Fontan without HPT: OR 1.96 [95 % CI 1.13-3.4], p = 0.035; ACHD: OR 11.45 [95 % CI 1.7-77.28], p=<0.001). PTH showed significant correlation with inflammatory markers, particularly with GDF-15 (r = 0.8). Conclusion Our study is the first to demonstrate a high prevalence of vitamin D deficiency and sHPT in adult Fontan patients. As PTH strongly correlates with heart failure severity, it seems to be a promising biomarker in Fontan patients.
Collapse
Affiliation(s)
- Friederike Löffler
- Medizinische Hochschule Hannover, Department of Cardiology and Angiology, Hannover, Germany
| | | | - Sabrina Uehlein
- Medizinische Hochschule Hannover, Department of Cardiology and Angiology, Hannover, Germany
| | - Lena Löffler
- Medizinische Hochschule Hannover, Department of Cardiology and Angiology, Hannover, Germany
| | - Holger Leitolf
- Medizinische Hochschule Hannover, Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover, Germany
| | - Christoph Terkamp
- Medizinische Hochschule Hannover, Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover, Germany
| | - Johann Bauersachs
- Medizinische Hochschule Hannover, Department of Cardiology and Angiology, Hannover, Germany
| | | |
Collapse
|
8
|
Min SH, Kang GM, Park JW, Kim MS. Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Med J 2024; 65:55-69. [PMID: 38288646 PMCID: PMC10827639 DOI: 10.3349/ymj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Jae Woo Park
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea.
| |
Collapse
|
9
|
Alexopoulou F, Buch-Månson N, Pedersen SL, Vrang N, Fink LN, Strømgaard K. Identification of GDF15 peptide fragments inhibiting GFRAL receptor signaling. Peptides 2023; 168:171063. [PMID: 37495041 DOI: 10.1016/j.peptides.2023.171063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Growth differentiation factor 15 (GDF15) is believed to be a major causative factor for cancer-induced cachexia. Recent elucidation of the central circuits involved in GDF15 function and its signaling through the glial cell-derived neurotrophic factor family receptor α-like (GFRAL) has prompted the interest of targeting the GDF15-GFRAL signaling for energy homeostasis and body weight regulation. Here, we applied advanced peptide technologies to identify GDF15 peptide fragments inhibiting GFRAL signaling. SPOT peptide arrays revealed binding of GDF15 C-terminal peptide fragments to the extracellular domain of GFRAL. Parallel solid-phase peptide synthesis allowed for generation of complementary GDF15 peptide libraries and their subsequent functional evaluation in cells expressing the GFRAL/RET receptor complex. We identified a series of C-terminal fragments of GDF15 inhibiting GFRAL activity in the micromolar range. These novel GFRAL peptide inhibitors could serve as valuable tools for further development of peptide therapeutics towards the treatment of cachexia and other wasting disorders.
Collapse
Affiliation(s)
- Flora Alexopoulou
- Gubra Aps, Hørsholm, DK-2970 Hørsholm, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | - Niels Vrang
- Gubra Aps, Hørsholm, DK-2970 Hørsholm, Denmark
| | | | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Ha NB, Seetharaman S, Kent DS, Yao F, Shui AM, Huang CY, Walston J, Lai JC. Serum and plasma protein biomarkers associated with frailty in patients with cirrhosis. Liver Transpl 2023; 29:1089-1099. [PMID: 36932707 PMCID: PMC10509322 DOI: 10.1097/lvt.0000000000000128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
Frailty, a clinical phenotype of decreased physiological reserve, is a strong determinant of adverse health outcomes in patients with cirrhosis. The only cirrhosis-specific frailty metric is the Liver Frailty Index (LFI), which must be administered in person and may not be feasible for every clinical scenario. We sought to discover candidate serum/plasma protein biomarkers that could differentiate frail from robust patients with cirrhosis. A total of 140 adults with cirrhosis awaiting liver transplantation in the ambulatory setting with LFI assessments and available serum/plasma samples were included. We selected 70 pairs of patients on opposite ends of the frailty spectrum (LFI>4.4 for frail and LFI<3.2 for robust) who were matched by age, sex, etiology, HCC, and Model for End-Stage Liver Disease-Sodium. Twenty-five biomarkers with biologically plausible associations with frailty were analyzed using ELISA by a single laboratory. Conditional logistic regression was used to examine their association with frailty. Of the 25 biomarkers analyzed, we identified 7 proteins that were differentially expressed between frail and robust patients. We observed differences in 6 of the 7 proteins in the expected direction: (a) higher median values in frail versus robust with growth differentiation factor-15 (3682 vs. 2249 pg/mL), IL-6 (17.4 vs. 6.4 pg/mL), TNF-alpha receptor 1 (2062 vs. 1627 pg/mL), leucine-rich alpha-2 glycoprotein (44.0 vs. 38.6 μg/mL), and myostatin (4066 vs. 6006 ng/mL) and (b) lower median values in frail versus robust with alpha-2-Heremans-Schmid glycoprotein (0.11 vs. 0.13 mg/mL) and free total testosterone (1.2 vs. 2.4 ng/mL). These biomarkers represent inflammatory, musculoskeletal, and endocrine/metabolic systems, reflecting the multiple physiological derangements observed in frailty. These data lay the foundation for confirmatory work and development of a laboratory frailty index for patients with cirrhosis to improve diagnosis and prognostication.
Collapse
Affiliation(s)
- Nghiem B. Ha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Srilakshmi Seetharaman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Dorothea S. Kent
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Frederick Yao
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Amy M. Shui
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Chiung-Yu Huang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Jeremy Walston
- Division of Geriatric Medicine, Department of Medicine, John Hopkins Medicine, Baltimore, MD, USA
| | - Jennifer C. Lai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Miyaue N, Yabe H, Nagai M. Serum GDF-15 Levels in Patients with Parkinson's Disease, Progressive Supranuclear Palsy, and Multiple System Atrophy. Neurol Int 2023; 15:1044-1051. [PMID: 37755357 PMCID: PMC10535128 DOI: 10.3390/neurolint15030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Serum growth differentiation factor 15 (GDF-15) levels are elevated in patients with Parkinson's disease (PD) and may help differentiate these patients from healthy individuals. We aimed to clarify whether serum GDF-15 levels can help differentiate PD from atypical parkinsonian syndromes and determine the association between serum GDF-15 levels and clinical parameters. We prospectively enrolled 46, 15, and 12 patients with PD, progressive supranuclear palsy (PSP), and multiple system atrophy (MSA), respectively. The serum GDF-15 level in patients with PD (1394.67 ± 558.46 pg/mL) did not differ significantly from that in patients with PSP (1491.27 ± 620.78 pg/mL; p = 0.573) but was significantly higher than that in patients with MSA (978.42 ± 334.66 pg/mL; p = 0.017). Serum GDF-15 levels were positively correlated with age in patients with PD (r = 0.458; p = 0.001); PSP (r = 0.565; p = 0.028); and MSA (r = 0.708; p = 0.010). After accounting for age differences, serum GDF-15 levels did not differ significantly between patients with PD and MSA (p = 0.114). Thus, age has a strong influence on serum GDF-15 levels, which may not differ significantly between patients with PD and atypical parkinsonian syndromes such as PSP and MSA.
Collapse
Affiliation(s)
- Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, Ehime University, Tohon 791-0295, Ehime, Japan;
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama 791-8026, Ehime, Japan;
| | - Hayato Yabe
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama 791-8026, Ehime, Japan;
| | - Masahiro Nagai
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, Ehime University, Tohon 791-0295, Ehime, Japan;
| |
Collapse
|
12
|
Chen SR, Li ZQ, Xu J, Ding MY, Shan YM, Cheng YC, Zhang GX, Sun YW, Wang YQ, Wang Y. Celastrol attenuates hepatitis C virus translation and inflammatory response in mice by suppressing heat shock protein 90β. Acta Pharmacol Sin 2023; 44:1637-1648. [PMID: 36882503 PMCID: PMC10374583 DOI: 10.1038/s41401-023-01067-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/18/2023] [Indexed: 03/09/2023]
Abstract
Hepatitis C virus (HCV) infection is one of the major factors to trigger a sustained hepatic inflammatory response and hence hepatocellular carcinoma (HCC), but direct-acting-antiviral (DAAs) was not efficient to suppress HCC development. Heat shock protein 90 kDa (HSP90) is highly abundant in different types of cancers, and especially controls protein translation, endoplasmic reticulum stress, and viral replication. In this study we investigated the correlation between the expression levels of HSP90 isoforms and inflammatory response marker NLRP3 in different types of HCC patients as well as the effect of a natural product celastrol in suppression of HCV translation and associated inflammatory response in vivo. We identified that the expression level of HSP90β isoform was correlated with that of NLRP3 in the liver tissues of HCV positive HCC patients (R2 = 0.3867, P < 0.0101), but not in hepatitis B virus-associated HCC or cirrhosis patients. We demonstrated that celastrol (3, 10, 30 μM) dose-dependently suppressed the ATPase activity of both HSP90α and HSP90β, while its anti-HCV activity was dependent on the Ala47 residue in the ATPase pocket of HSP90β. Celastrol (200 nM) halted HCV internal ribosomal entry site (IRES)-mediated translation at the initial step by disrupting the association between HSP90β and 4EBP1. The inhibitory activity of celastrol on HCV RNA-dependent RNA polymerase (RdRp)-triggered inflammatory response also depended on the Ala47 residue of HSP90β. Intravenous injection of adenovirus expressing HCV NS5B (pAde-NS5B) in mice induced severe hepatic inflammatory response characterized by significantly increased infiltration of immune cells and hepatic expression level of Nlrp3, which was dose-dependently ameliorated by pretreatment with celastrol (0.2, 0.5 mg/kg, i.p.). This study reveals a fundamental role of HSP90β in governing HCV IRES-mediated translation as well as hepatic inflammation, and celastrol as a novel inhibitor of HCV translation and associated inflammation by specifically targeting HSP90β, which could be developed as a lead for the treatment of HSP90β positive HCV-associated HCC.
Collapse
Affiliation(s)
- Shao-Ru Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Zheng-Qing Li
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mo-Yu Ding
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Ya-Ming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University, New Haven, CT, 06510, USA
| | - Gao-Xiao Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Ye-Wei Sun
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Yu-Qiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
- Guangzhou Magpie Pharmaceuticals Co., Ltd., Guangzhou International Business Incubator, Guangzhou, 510663, China
| | - Ying Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China.
- Minister of Education Science Center for Precision Oncology, University of Macau, Macao SAR, China.
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Xie B, Murali A, Vandevender AM, Chen J, Silva AG, Bello FM, Chuan B, Bahudhanapati H, Sipula I, Dedousis N, Shah FA, O'Donnell CP, Alder JK, Jurczak MJ. Hepatocyte-derived GDF15 suppresses feeding and improves insulin sensitivity in obese mice. iScience 2022; 25:105569. [PMID: 36465107 PMCID: PMC9708916 DOI: 10.1016/j.isci.2022.105569] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a stress-induced secreted protein whose circulating levels are increased in the context of obesity. Recombinant GDF15 reduces body weight and improves glycemia in obese models, which is largely attributed to the central action of GDF15 to suppress feeding and reduce body weight. Despite these advances in knowledge, the tissue-specific sites of GDF15 production during obesity are unknown, and the effects of modulating circulating GDF15 levels on insulin sensitivity have not been evaluated directly. Here, we demonstrate that hepatocyte Gdf15 expression is sufficient for changes in circulating levels of GDF15 during obesity and that restoring Gdf15 expression specifically in hepatocytes of Gdf15 knockout mice results in marked improvements in hyperinsulinemia, hepatic insulin sensitivity, and to a lesser extent peripheral insulin sensitivity. These data support that liver hepatocytes are the primary source of circulating GDF15 in obesity.
Collapse
Affiliation(s)
- Bingxian Xie
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anjana Murali
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amber M Vandevender
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey Chen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Agustin Gil Silva
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fiona M Bello
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Byron Chuan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nikolaos Dedousis
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher P O'Donnell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan K Alder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Sabatier JM, Saad HM, Batiha GES. The Potential Role of Growth Differentiation Factor 15 in COVID-19: A Corollary Subjective Effect or Not? Diagnostics (Basel) 2022; 12:diagnostics12092051. [PMID: 36140453 PMCID: PMC9497461 DOI: 10.3390/diagnostics12092051] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is primarily caused by various forms of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants. COVID-19 is characterized by hyperinflammation, oxidative stress, multi-organ injury (MOI)-like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Different biomarkers are used in the assessment of COVID-19 severity including D-dimer, ferritin, lactate dehydrogenase (LDH), and hypoxia-inducible factor (HIF). Interestingly, growth differentiation factor 15 (GDF15) has recently become a potential biomarker correlated with the COVID-19 severity. Thus, this critical review aimed to determine the critical association between GDF15 and COVID-19. The perfect function of GDF15 remains not well-recognized; nevertheless, it plays a vital role in controlling cell growth, apoptosis and inflammatory activation. Furthermore, GDF15 may act as anti-inflammatory and pro-inflammatory signaling in diverse cardiovascular complications. Furthermore, the release of GDF15 is activated by various growth factors and cytokines including macrophage colony-stimulating factor (M-CSF), angiotensin II (AngII) and p53. Therefore, higher expression of GDF15 in COVID-19 might a compensatory mechanism to stabilize and counteract dysregulated inflammatory reactions. In conclusion, GDF15 is an anti-inflammatory cytokine that could be associated with the COVID-19 severity. Increased GDF15 could be a compensatory mechanism against hyperinflammation and exaggerated immune response in the COVID-19. Experimental, preclinical and large-scale clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad P.O. Box 14022, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad P.O. Box 14022, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, F-44007 Nantes, France
- LabEx Ion Channels, Science & Therapeutics, Université de Nice Sophia-Antipolis, F-06560 Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université, CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh 51744, Egypt
- Correspondence: (H.M.S.); (G.E.-S.B.)
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (H.M.S.); (G.E.-S.B.)
| |
Collapse
|
16
|
Luther J, Vannier AG, Schaefer EA, Goodman RP. The circulating proteomic signature of alcohol-associated liver disease. JCI Insight 2022; 7:e159775. [PMID: 35866482 PMCID: PMC9431701 DOI: 10.1172/jci.insight.159775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite being a leading cause of advanced liver disease, alcohol-associated liver disease (ALD) has no effective medical therapies. The circulating proteome, which comprises proteins secreted by different cells and tissues in the context of normal physiological function or in the setting of disease and illness, represents an attractive target for uncovering novel biology related to the pathogenesis of ALD. In this work, we used the aptamer-based SomaScan proteomics platform to quantify the relative concentration of over 1300 proteins in a well-characterized cohort of patients with the spectrum of ALD. We found a distinct circulating proteomic signature that correlated with ALD severity, including over 600 proteins that differed significantly between ALD stages, many of which have not previously been associated with ALD to our knowledge. Notably, certain proteins that were markedly dysregulated in patients with alcohol-associated hepatitis were also altered, to a lesser degree, in patients with subclinical ALD and may represent early biomarkers for disease progression. Taken together, our work highlights the vast and distinct changes in the circulating proteome across the wide spectrum of ALD, identifies potentially novel biomarkers and therapeutic targets, and provides a proteomic resource atlas for ALD researchers and clinicians.
Collapse
|
17
|
Wang Y, Chen C, Chen J, Sang T, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol 2022; 52:102322. [PMID: 35504134 PMCID: PMC9079118 DOI: 10.1016/j.redox.2022.102322] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress-mediated inflammasome activation play critical roles in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), or growth differentiation factor-15 (GDF15), is associated with many biological processes and diseases, including NAFLD. However, the role of NAG-1/GDF15 in regulating oxidative stress and whether this process is associated with absent in melanoma 2 (AIM2) inflammasome activation in NAFLD are unknown. In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Overexpression of NAG-1/GDF15 in transgenic (Tg) mice significantly alleviated HFD-induced obesity and hepatic steatosis, improved lipid homeostasis, enhanced fatty acid β-oxidation and lipolysis, inhibited fatty acid synthesis and uptake, and inhibited AIM2 inflammasome activation and the secretion of IL-18 and IL-1β, as compared to their wild-type (WT) littermates without reducing food intake. Furthermore, NAG-1/GDF15 overexpression attenuated FFA-induced triglyceride (TG) accumulation, lipid metabolism deregulation, and AIM2 inflammasome activation in hepatic steatotic cells, while knockdown of NAG-1/GDF15 demonstrated opposite effects. Moreover, NAG-1/GDF15 overexpression inhibited HFD- and FFA-induced oxidative stress and mitochondrial damage which in turn reduced double-strand DNA (dsDNA) release into the cytosol, while NAG-1/GDF15 siRNA showed opposite effects. The reduced ROS production and dsDNA release may be responsible for attenuated AIM2 activation by NAG-1/GDF15 upon fatty acid overload. In conclusion, our results provide evidence that other than regulating lipid homeostasis, NAG-1/GDF15 protects against hepatic steatosis through a novel mechanism via suppressing oxidative stress, mitochondrial damage, dsDNA release, and AIM2 inflammasome activation. NAG-1/GDF15 is downregulated in human steatotic liver and FFA-induced liver cells. NAG-1/GDF15 inhibits hepatic steatosis and improves lipid homeostasis. AIM2 inflammasome is activated in steatosis models and is inhibited by NAG-1/GDF15. NAG-1/GDF15 reduces oxidative stress and mitochondrial damage in steatosis models. NAG-1/GDF15 inhibits mitochondrial dsDNA release and thus inhibits AIM2 activation.
Collapse
|
18
|
Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022; 13:820350. [PMID: 35251002 PMCID: PMC8888851 DOI: 10.3389/fimmu.2022.820350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-β superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Carolina Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
19
|
Galuppo B, Agazzi C, Pierpont B, Chick J, Li Z, Caprio S, Santoro N. Growth differentiation factor 15 (GDF15) is associated with non-alcoholic fatty liver disease (NAFLD) in youth with overweight or obesity. Nutr Diabetes 2022; 12:9. [PMID: 35194014 PMCID: PMC8863897 DOI: 10.1038/s41387-022-00187-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Growth differentiation factor 15 (GDF15) has been associated with food intake and weight regulation in response to metabolic stress. In animal models, it has been noted that it may play a role in the progression of non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease in children. DESIGN In the current study, we explored the association of circulating plasma concentrations of GDF15 with NAFLD in youth with overweight/obesity, and whether changes in plasma concentrations in GDF15 parallel the changes in intrahepatic fat content (HFF%) over time. METHODS Plasma GDF15 concentrations were measured by ELISA in 175 youth with overweight/obesity who underwent an oral glucose tolerance test (OGTT) and magnetic resonance imaging (MRI) to assess intrahepatic, visceral, and subcutaneous fat. Baseline fasting GDF15 concentrations were measured in twenty-two overweight/obese youth who progressed (n = 11) or regressed (n = 11) in HFF% by more than 30% of original over a 2-year period. RESULTS Youth with NAFLD had significantly higher plasma concentrations of GDF15 than those without NAFLD, independent of age, sex, ethnicity, BMI z-score (BMIz), and visceral fat (P = 0.002). During the OGTT, there was a decline in plasma GDF15 concentrations from 0 to 60 min, but GDF15 concentrations returned to basal levels by the end of the study. There was a statistically significant association between change in HFF% and change in GDF15 (P = 0.008; r2 = 0.288) over ~2 years of follow-up. CONCLUSIONS These data suggest that plasma GDF15 concentrations change with change in intrahepatic fat content in youth with overweight/obesity and may serve as a biomarker for NAFLD in children.
Collapse
Affiliation(s)
- Brittany Galuppo
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Cristiana Agazzi
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Bridget Pierpont
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Chick
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Zhongyao Li
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Nicola Santoro
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.
- Department of Medicine and Health Sciences, "V. Tiberio," University of Molise, Campobasso, Italy.
| |
Collapse
|
20
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
21
|
Riley LG, Nafisinia M, Menezes MJ, Nambiar R, Williams A, Barnes EH, Selvanathan A, Lichkus K, Bratkovic D, Yaplito-Lee J, Bhattacharya K, Ellaway C, Kava M, Balasubramaniam S, Christodoulou J. FGF21 outperforms GDF15 as a diagnostic biomarker of mitochondrial disease in children. Mol Genet Metab 2022; 135:63-71. [PMID: 34991945 DOI: 10.1016/j.ymgme.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022]
Abstract
Several studies have shown serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) levels are elevated in patients with mitochondrial disease (MD) where myopathy is a feature. In this study we investigated the utility of FGF21 and GDF15 as biomarkers for MD in a phenotypically and genotypically diverse pediatric cohort with suspected MD against a panel of healthy controls and non-mitochondrial disease controls with some overlapping clinical features. Serum was collected from 56 children with MD, 104 children with non-mitochondrial disease (27 neuromuscular, 26 cardiac, 21 hepatic, 30 renal) and 30 pediatric controls. Serum FGF21 and GDF15 concentrations were measured using ELISA, and their ability to detect MD was determined. Median FGF21 and GDF15 serum concentrations were elevated 17-fold and 3-fold respectively in pediatric MD patients compared to the healthy control group. Non-mitochondrial disease controls had elevated serum GDF15 concentrations while FGF21 concentrations were in the normal range. Elevation of GDF15 in a range of non-mitochondrial pediatric disorders limits its use as a MD biomarker. FGF21 was elevated in MD patients with a spectrum of clinical phenotypes, including those without myopathy. Serum FGF21 had an area under the receiver operating characteristic curve of 0.87, indicating good ability to discriminate between pediatric MD and healthy and non-mitochondrial disease controls. Triaging of pediatric MD patients by clinical phenotyping and serum FGF21 testing, followed by massively parallel sequencing, may enable more rapid diagnosis of pediatric MD.
Collapse
Affiliation(s)
- Lisa G Riley
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Rare Diseases Functional Genomics, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Michael Nafisinia
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Storr Liver Centre, Sydney, NSW, Australia
| | - Minal J Menezes
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia
| | - Reta Nambiar
- Immunopathology Laboratory, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Andrew Williams
- Immunopathology Laboratory, The Children's Hospital at Westmead, Sydney, NSW, Australia; Central Clinical School, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Kate Lichkus
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Drago Bratkovic
- Metabolic Clinic, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Joy Yaplito-Lee
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Carolyn Ellaway
- Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Maina Kava
- Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia; Department of Neurology, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Abou Zaghla HMA, El Sebai AA, Ahmed OA, Ahmed AF, Saab AAR. Growth differentiation factor 15: an emerging diagnostic biomarker of liver fibrosis in chronic hepatitis C patients. EGYPTIAN LIVER JOURNAL 2021; 11:6. [PMID: 34777864 PMCID: PMC7814860 DOI: 10.1186/s43066-021-00075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Chronic liver disease and cirrhosis are of the major health concern worldwide. Assessment of liver fibrosis is necessary to determine disease severity and prognosis at the time of presentation to determine suitable treatment. Liver biopsy is considered as standard golden method in diagnosis of liver fibrosis. However, this procedure is invasive; thus, multiple laboratory and radiologic tests are used to help determination of the degree of fibrosis. Growth differentiation factor 15 (GDF-15) is a pleiotropic cytokine involved in regulating inflammatory and apoptotic pathways. It is suggested that GDF-15 plays an important role in pathogenesis of liver fibrosis. In this study, we aimed to evaluate efficiency of growth differentiation factor 15 in diagnosing liver fibrosis. The study was a case-control study conducted on 55 chronic HCV patients recruited from hepatitis C virus clinic at Faculty of Medicine Ain Shams Research Institute (MASRI), and 30 healthy subjects age- and sex-matched. The patients were classified into three subgroups according to the degree of liver fibrosis assessed by fibro-scan. Serum concentration of GDF-15 was determined by enzyme-linked immunosorbent assay. Results Our results revealed a highly significant statistical rise in GDF-15 levels among studied chronic HCV patients with liver fibrosis when compared to the control group (p < 0.01). Furthermore, there was a significant positive correlation between the degree of fibrosis assessed by fibro-scan and GDF-15 serum levels. Levels of GDF-15 were significantly higher in patients with mild degree of fibrosis (patients’ subgroup І) when compared with the controls’ group (p < 0.01) suggesting the role of this marker in early detection of liver fibrosis. A statistically significant increase in serum GDF-15 levels was noticed among patients with advanced fibrosis “subgroup ІІІ” compared to those with mild fibrosis “subgroup І” (p < 0.05). The diagnostic sensitivity and specificity of GDF-15 were 96.7%, 98.2%, respectively at a cut-off value of 150 ng/L for discrimination between patients’ and controls’ groups. Conclusion Growth differentiation factor 15 could be a potential marker of liver fibrosis especially in early detection as its levels were significantly higher in patients’ group with liver fibrosis than controls’ group and there was a significant positive correlation between the degree of liver fibrosis and GDF-15 serum levels.
Collapse
|
23
|
Bilson J, Scorletti E, Bindels LB, Afolabi PR, Targher G, Calder PC, Sethi JK, Byrne CD. Growth differentiation factor-15 and the association between type 2 diabetes and liver fibrosis in NAFLD. Nutr Diabetes 2021; 11:32. [PMID: 34663793 PMCID: PMC8523689 DOI: 10.1038/s41387-021-00170-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a strong risk factor for liver fibrosis in non-alcoholic fatty liver disease (NAFLD). It remains uncertain why T2DM increases the risk of liver fibrosis. It has been suggested that growth differentiation factor-15 (GDF-15) concentrations increase the risk of liver fibrosis. We aimed to investigate (a) whether GDF-15 concentrations were associated with liver fibrosis and involved in the relationship between T2DM and liver fibrosis and (b) what factors linked with T2DM are associated with increased GDF-15 concentrations. Methods Ninety-nine patients with NAFLD (61% men, 42.4% T2DM) were studied. Serum GDF-15 concentrations were measured by electro-chemiluminescence immunoassay. Vibration-controlled transient elastography (VCTE)-validated thresholds were used to assess liver fibrosis. Regression modelling, receiver operator characteristic curve analysis and Sobel test statistics were used to test associations, risk predictors and the involvement of GDF-15 in the relationship between T2DM and liver fibrosis, respectively. Results Patients with NAFLD and T2DM (n = 42) had higher serum GDF-15 concentrations [mean (SD): 1271.0 (902.1) vs. 640.3 (332.5) pg/ml, p < 0.0001], and a higher proportion had VCTE assessed ≥F2 fibrosis (48.8 vs. 23.2%, p = 0.01) than those without T2DM. GDF-15 was independently associated with liver fibrosis (p = 0.001), and GDF-15 was the most important single factor predicting ≥F2 or ≥F3 fibrosis (≥F2 fibrosis AUROC 0.75, (95% CI 0.63–0.86), p < 0.001, with sensitivity, specificity, positive predictive (PPV) and negative predictive (NPV) values of 56.3%, 86.9%, 69.2% and 79.1%, respectively). GDF-15 was involved in the association between T2DM and ≥F2 fibrosis (Sobel test statistic 2.90, p = 0.004). Other factors associated with T2DM explained 60% of the variance in GDF-15 concentrations (p < 0.0001). HbA1c concentrations alone explained 30% of the variance (p < 0.0001). Conclusions GDF-15 concentrations are a predictor of liver fibrosis and potentially involved in the association between T2DM and liver fibrosis in NAFLD. HbA1c concentrations explain a large proportion of the variance in GDF-15 concentrations.
Collapse
Affiliation(s)
- Josh Bilson
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Eleonora Scorletti
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.,Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Paul R Afolabi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jaswinder K Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK. .,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK.
| | - Christopher D Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK. .,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.
| |
Collapse
|
24
|
Chang E, Chang JS, Kong ID, Baik SK, Kim MY, Park KS. Multidimensional Biomarker Analysis Including Mitochondrial Stress Indicators for Nonalcoholic Fatty Liver Disease. Gut Liver 2021; 16:171-189. [PMID: 34420934 PMCID: PMC8924798 DOI: 10.5009/gnl210106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is accompanied by a complex and multifactorial pathogenesis with sequential progressions from inflammation to fibrosis and then to cancer. This heterogeneity interferes with the development of precise diagnostic and prognostic strategies for NAFLD. The current approach for the diagnosis of simple steatosis, steatohepatitis, and cirrhosis mainly consists of ultrasonography, magnetic resonance imaging, elastography, and various serological analyses. However, individual dry and wet biomarkers have limitations demanding an integrative approach for the assessment of disease progression. Here, we review diagnostic strategies for simple steatosis, steatohepatitis and hepatic fibrosis, followed by potential biomarkers associated with fat accumulation and mitochondrial stress. For mitochondrial stress indicators, we focused on fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), angiopoietin-related growth factor and mitochondrial-derived peptides. Each biomarker may not strongly indicate the severity of steatosis or steatohepatitis. Instead, multidimensional analysis of different groups of biomarkers based on pathogenic mechanisms may provide decisive diagnostic/prognostic information to develop a therapeutic plan for patients with NAFLD. For this purpose, mitochondrial stress indicators, such as FGF21 or GDF15, could be an important component in the multiplexed and contextual interpretation of NAFLD. Further validation of the integrative evaluation of mitochondrial stress indicators combined with other biomarkers is needed in the diagnosis/prognosis of NAFLD.
Collapse
Affiliation(s)
- Eunha Chang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Seung Chang
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Deok Kong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
25
|
Rittig N, Aagaard NK, Sundelin E, Villadsen GE, Sandahl TD, Holst JJ, Hartmann B, Brøsen K, Grønbaek H, Jessen N. Metformin Stimulates Intestinal Glycolysis and Lactate Release: A single-Dose Study of Metformin in Patients With Intrahepatic Portosystemic Stent. Clin Pharmacol Ther 2021; 110:1329-1336. [PMID: 34331316 DOI: 10.1002/cpt.2382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/21/2021] [Indexed: 11/06/2022]
Abstract
The pharmacodynamic effects of metformin remain elusive, but several lines of evidence suggest a critical role of direct effects in the gastrointestinal (GI) tract. We investigated if metformin stimulates intestinal glucose metabolism and lactate release in the prehepatic circulation. We included eight patients with transjugular intrahepatic portosytemic stent in an open label study. Portal and arterialized peripheral blood was obtained before and 90 minutes after ingestion of 1,000 mg metformin. Metformin increased lactate concentrations by 23% (95% confidence interval (CI): 6-40) after 90 minutes in the portal vein. The plasma concentration of glucose, insulin, and C-peptide was higher in the portal vein compared with arterialized blood (P < 0.05, all) and was lowered at both sampling sites following metformin ingestion (P < 0.01, all). Plasma concentration of GLP-1 was 20% (95% CI: 2-38) higher in the portal vein at baseline and metformin increased the concentration with 11% (1.5 pM, P = 0.05). The median concentration of growth differentiation factor 15 was 10% (95% CI: 1-19) higher in the portal vein compared with arterialized blood. Ninety minutes after metformin administration, the median portal vein concentration increased to around 3,000 ng/mL with a mean portal/arterial ratio of 1.5 (95% CI: 1.2-1.8). Non-targeted metabolomics showed that metformin acutely affected benzoate-hippurate metabolism. A single-dose of metformin directly affects substrate metabolism in the upper GI tract in humans with direct stimulation of nonoxidative glucose metabolism. These data suggest glucose lowering effects of metformin can be intrinsically linked with the GI tract without hepatic uptake of the drug.
Collapse
Affiliation(s)
- Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark.,Department and Laboratories of Diabetes and Hormone diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Niels K Aagaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Elias Sundelin
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark.,Department and Laboratories of Diabetes and Hormone diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Gerda E Villadsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Thomas D Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kim Brøsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Health, University of Southern Denmark, Odense, Denmark
| | - Henning Grønbaek
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
26
|
Ye S, Chen Y, Lou X, Ye X, Yang X. Association of macrophage inhibitory factor -1 polymorphisms with antiviral efficacy of type 1b chronic hepatitis C. Mol Cell Biochem 2021; 476:2439-2447. [PMID: 33604810 PMCID: PMC8119258 DOI: 10.1007/s11010-021-04097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
The expression of macrophage inhibitory factor-1 (MIC-1) increases in patients with chronic hepatitis C (CHC), but whether MIC-1 level and its polymorphism affect the antiviral efficacy of CHC has not yet been reported. The present study aimed to investigate the association between MIC-1 polymorphism and antiviral efficacy in patients with CHC genotype 1b (CHC 1b). A total of 171 patients with CHC1b were recruited. The polymorphisms of rs1059369 and rs1059519 in MIC-1 were detected by DNA sequencing. All patients received a standard dose of polyethylene glycol interferon + ribavirin (PR regimen), and divided into response, nonresponse, sustained virological response (SVR), and non-sustained virological response (NSVR) groups based on HCV RNA levels. The genotype distribution of the two single nucleotide polymorphisms (SNPs) did not differ between the response and nonresponse groups, SVR and non-SVR groups. However, the level of MIC-1 was positively correlated with ALT, AST, PIIINP, CIV, and HCV RNA (P < 0.05). Compared to before treatment, the level of MIC-1 in plasma was significantly decrease in the response group but not in the non-responsive group. Our results suggest that the level of MIC-1 in CHC1b is correlated with liver cell injury, liver fibrosis index, and viral load. However, the polymorphism of rs1059369 and rs1059519 may have negligible impact in expression of MIC-1 and efficacy of antiviral therapy in CHC patient.
Collapse
Affiliation(s)
- Songdao Ye
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoting Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanmei Ye
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xunjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
27
|
Gonzalez E, Azkargorta M, Garcia-Vallicrosa C, Prieto-Elordui J, Elortza F, Blanco-Sampascual S, Falcon-Perez JM. Could protein content of Urinary Extracellular Vesicles be useful to detect Cirrhosis in Alcoholic Liver Disease? Int J Biol Sci 2021; 17:1864-1877. [PMID: 34131392 PMCID: PMC8193259 DOI: 10.7150/ijbs.59725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol abuse has a high impact on the mortality and morbidity related to a great number of diseases and is responsible for the development of alcoholic liver disease (ALD). It remains challenging to detect and evaluate its severity, which is crucial for prognosis. In this work, we studied if urinary EVs (uEVs) could serve in diagnose and evaluate cirrhosis in ALD. To this purpose, uEVs characterization by cryo-electron microscopy (Cryo-EM), Nanoparticle Tracking Analysis (NTA) and Western blotting (WB) was performed in a cohort of 21 controls and 21 cirrhotic patients. Then, proteomics of uEVs was carried out in a second cohort of 6 controls and 8 patients in order to identify new putative biomarkers for cirrhosis in ALD. Interestingly, uEVs concentration, size and protein composition were altered in cirrhotic patients. From a total of 1304 proteins identified in uEVs, 90 of them were found to be altered in cirrhotic patients. The results suggest that uEVs could be considered as a tool and a supplier of new biomarkers for cirrhosis in ALD, whose application would be especially relevant in chronic patients. Yet, further research is necessary to obtain more relevant result in clinical terms.
Collapse
Affiliation(s)
- Esperanza Gonzalez
- Exosomes Laboratory. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Clara Garcia-Vallicrosa
- Exosomes Laboratory. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Felix Elortza
- Proteomics Platform. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Juan Manuel Falcon-Perez
- Exosomes Laboratory. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| |
Collapse
|
28
|
Tavenier J, Andersen O, Nehlin JO, Petersen J. Longitudinal course of GDF15 levels before acute hospitalization and death in the general population. GeroScience 2021; 43:1835-1849. [PMID: 33763774 DOI: 10.1007/s11357-021-00359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022] Open
Abstract
Growth differentiation 15 (GDF15) is a potential novel biomarker of biological aging. To separate the effects of chronological age and birth cohort from biological age, longitudinal studies investigating the associations of GDF15 levels with adverse health outcomes are needed. We investigated changes in GDF15 levels over 10 years in an age-stratified sample of the general population and their relation to the risk of acute hospitalization and death. Serum levels of GDF15 were measured three times in 5-year intervals in 2176 participants aged 30, 40, 50, or 60 years from the Danish population-based DAN-MONICA cohort. We assessed the association of single and repeated GDF15 measurements with the risk of non-traumatic acute hospitalizations. We tested whether changes in GDF15 levels over 10 years differed according to the frequency of hospitalizations within 2 years or survival within 20 years, after the last GDF15 measurement. The change in GDF15 levels over time was dependent on age and sex. Higher GDF15 levels and a greater increase in GDF15 levels were associated with an increased risk of acute hospitalization in adjusted Cox regression analyses. Participants with more frequent admissions within 2 years, and those who died within 20 years, after the last GDF15 measurement already had elevated GDF15 levels at baseline and experienced greater increases in GDF15 levels during the study. The change in GDF15 levels was associated with changes in C-reactive protein and biomarkers of kidney, liver, and cardiac function. Monitoring of GDF15 starting in middle-aged could be valuable for the prediction of adverse health outcomes.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, DK-2650, Hvidovre, Denmark.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, DK-2650, Hvidovre, Denmark.,Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, DK-2650, Hvidovre, Denmark
| | - Janne Petersen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, DK-2650, Hvidovre, Denmark.,Center for Clinical Research and Prevention, Copenhagen University Hospital, Nordre Fasanvej 57, 2000, Frederiksberg, Denmark.,Section of Biostatistics, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| |
Collapse
|
29
|
Ahmed DS, Isnard S, Lin J, Routy B, Routy JP. GDF15/GFRAL Pathway as a Metabolic Signature for Cachexia in Patients with Cancer. J Cancer 2021; 12:1125-1132. [PMID: 33442410 PMCID: PMC7797663 DOI: 10.7150/jca.50376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cachexia is a metabolic mutiny that directly reduces life expectancy in chronic conditions such as cancer. The underlying mechanisms associated with cachexia involve inflammation, metabolism, and anorexia. Therefore, the need to identify cachexia biomarkers is warranted to better understand catabolism change and assess various therapeutic interventions. Among inflammatory proteins, growth differentiation factor-15 (GDF15), an atypical transforming growth factor-beta (TGF-β) superfamily member, emerges as a stress-related hormone. In inflammatory conditions, cardiovascular diseases, and cancer, GDF15 is a biomarker for disease outcome. GDF15 is also implicated in energy homeostasis, body weight regulation, and plays a distinct role in cachexia. The recent discovery of its receptor, glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL), sheds light on its metabolic function. Herein, we critically review the mechanisms involving GDF15 in cancer cachexia and discuss therapeutic interventions to improve outcomes in people living with cancer.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Bertrand Routy
- Division of Hémato-oncologie, Centre hospitalier de l'Université de Montréal
- Centre de recherche du Centre hospitalier de l'Université de Montréal
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
30
|
Kim KH, Lee MS. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim Biophys Acta Gen Subj 2020; 1865:129834. [PMID: 33358864 DOI: 10.1016/j.bbagen.2020.129834] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/15/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mitochondria is a key organelle for energy production and cellular adaptive response to intracellular and extracellular stresses. Mitochondrial stress can be evoked by various stimuli such as metabolic stressors or pathogen infection, which may lead to expression of 'mitokines' such as growth differentiation factor 15 (GDF15). SCOPE OF REVIEW This review summarizes the mechanism of GDF15 expression in response to organelle stress such as mitochondrial stress, and covers pathophysiological conditions or diseases that are associated with elevated GDF15 level. This review also illustrates the in vivo role of GDF15 expression in those stress conditions or diseases, and a potential of GDF15 as a therapeutic agent against metabolic disorders such as NASH. MAJOR CONCLUSIONS Mitochondrial unfolded protein response (UPRmt) is a critical process to recover from mitochondrial stress. UPRmt can induce expression of secretory proteins that can exert systemic effects (mitokines) as well as mitochondrial chaperons. GDF15 can have either protective or detrimental systemic effects in response to mitochondrial stresses, suggesting its role as a mitokine. Mounting evidence shows that GDF15 is also induced by stresses of organelles other than mitochondria such as endoplasmic reticulum (ER). GDF15 level is increased in serum or tissue of mice and human subjects with metabolic diseases such as obesity or NASH. GDF15 can modulate metabolic features of those diseases. GENERAL SIGNIFICANCE GDF15 play a role as an integrated stress response (ISR) beyond mitochondrial stress response. GDF15 is involved in the pathogenesis of metabolic diseases such as NASH, and also could be a candidate for therapeutic agent against those diseases.
Collapse
Affiliation(s)
- Kook Hwan Kim
- GI Innovatioin, Inc., Tera Tower, Songpa-daero 167, Songpa-gu, Seoul 05855, South Korea.
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Dept. of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
31
|
Abstract
GDF15 is a cell activation and stress response cytokine of the glial cell line-derived neurotrophic factor family within the TGF-β superfamily. It acts through a recently identified orphan member of the GFRα family called GFRAL and signals through the Ret coreceptor. Cell stress and disease lead to elevated GDF15 serum levels, causing anorexia, weight loss, and alterations to metabolism, largely by actions on regions of the hindbrain. These changes restore homeostasis and, in the case of obesity, cause a reduction in adiposity. In some diseases, such as advanced cancer, serum GDF15 levels can rise by as much as 10-100-fold, leading to an anorexia-cachexia syndrome, which is often fatal. This review discusses how GDF15 regulates appetite and metabolism, the role it plays in resistance to obesity, and how this impacts diseases such as diabetes, nonalcoholic fatty liver disease, and anorexia-cachexia syndrome. It also discusses potential therapeutic applications of targeting the GDF15-GFRAL pathway and lastly suggests some potential unifying hypotheses for its biological role.
Collapse
Affiliation(s)
- Samuel N Breit
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - David A Brown
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; .,New South Wales Health Pathology, Institute of Clinical Pathology Research, and Westmead Institute for Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Vicky Wang-Wei Tsai
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; ,
| |
Collapse
|
32
|
Yang XJ, Wang XO, Chen Y, Ye SD. Associations of content and gene polymorphism of macrophage inhibitory factor-1 and chronic hepatitis C virus infection. World J Gastroenterol 2020; 26:6378-6390. [PMID: 33244199 PMCID: PMC7656212 DOI: 10.3748/wjg.v26.i41.6378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The expression of macrophage inhibitory factor-1 (MIC-1) is increased in peripheral blood of patients with chronic hepatitis and liver cirrhosis. However, whether MIC-1 gene polymorphism is correlated with relevant diseases is not yet reported.
AIM To explore the correlation between gene polymorphism in MIC-1 exon region and chronic hepatitis C virus (HCV) infection.
METHODS This case-control study enrolled 178 patients with chronic hepatitis C (CHC) in the case group, and 82 healthy subjects from the same region who had passed the screening examination comprised the control group. The genotypes of rs1059369 and rs1059519 loci in the MIC-1 gene exon were detected by DNA sequencing. Also, the MIC-1 level, liver function metrics, liver fibrosis metrics, and HCV RNA load were determined. Univariate analysis was used to compare the differences and correlations between the two groups with respect to these parameters. Multivariate logistic regression was used to analyze the independent relevant factors of CHC.
RESULTS The plasma MIC-1 level in the CHC group was higher than that in the control group (P < 0.05), and it was significantly positively correlated with alanine aminotransferase, aspartate aminotransferase (AST), type III procollagen N-terminal peptide (known as PIIINP), type IV collagen, and HCV RNA (P < 0.05), whereas negatively correlated with total protein and albumin (P < 0.05). The genotype and allele frequency distribution at the rs1059519 locus differed between the two groups (P < 0.05). The allele frequency maintained significant difference after Bonferroni correction (Pc < 0.05). Logistic multiple regression showed that AST, PIIINP, MIC-1, and genotype GG at the rs1059519 locus were independent relevant factors of CHC (P < 0.05). Linkage disequilibrium (LD) was found between rs1059369 and rs1059519 loci, and significant difference was detected in the distribution of haplotype A-C between the CHC and control groups (P < 0.05). Meanwhile, we found the MIC-1 level trend to increase among rs1059519 genotypes (P = 0.006) and the level of MIC-1 in GG genotype to be significantly higher than CC genotype (P = 0.009, after Bonferroni correction).
CONCLUSION Plasma MIC-1 level was increased in CHC patients and correlated with liver cell damage, liver fibrosis metrics, and viral load. The polymorphism at the MIC-1 gene rs1059519 locus was correlated with HCV infection, and associated with the plasma MIC-1 level. G allele and GG genotype may be an important susceptible factor for CHC.
Collapse
Affiliation(s)
- Xun-Jun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Xiao-Ou Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Yao Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, Zhejiang Province, China
| | - Song-Dao Ye
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| |
Collapse
|
33
|
Association between Circulating Growth Differentiation Factor 15 and Cirrhotic Primary Biliary Cholangitis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5162541. [PMID: 33178828 PMCID: PMC7644315 DOI: 10.1155/2020/5162541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Primary biliary cholangitis (PBC) is a common condition that usually shows a progressive course towards cirrhosis without adequate treatment. Growth differentiation factor 15 (GDF15) plays multiple roles in various pathological conditions. The overall role of circulating GDF15 in cirrhotic PBC requires further investigation. Twenty patients with cirrhotic PBC, 26 with non-cirrhotic PBC, and 10 healthy subjects were enrolled between 2014 and 2018, and the serum levels of GDF15 were measured via enzyme immunoassay. The correlations between serum GDF15, weight, biochemical parameters, and the prognosis were analysed. Serum levels of GDF15 were significantly higher in cirrhotic PBC patients than in non-cirrhotic PBC patients or healthy controls (p = 0.009 and p < 0.001, respectively). The circulating GDF15 levels strongly correlated with weight changes (r = −0.541, p = 0.0138), albumin (r = −0.775, p < 0.0001), direct bilirubin (r = −0.786, p < 0.0001), total bile acids (r = 0.585, p = 0.007), and C-reactive protein (r = 0.718, p = 0.0005). Moreover, circulating GDF15 levels strongly correlated with the Mayo risk score (r = 0.685, p = 0.0009) and Model for End-stage Liver Disease score (r = 0.687, p = 0.0008). Determined by the area under the receiver operating characteristic curves, the overall diagnostic accuracies of GDF15 were as follows: cirrhosis = 0.725 (>3646.55 pg/mL, sensitivity: 70.0%, specificity: 69.2%), decompensated cirrhosis = 0.956 (>4073.30 pg/mL, sensitivity: 84.62%, specificity: 100%), and cirrhotic biochemical non-responders = 0.835 (>3479.20 pg/mL, sensitivity: 71.43%, specificity: 92.31%). GDF15 may be a useful and integrated biochemical marker to evaluate not only the disease severity and prognosis but also the nutrition and response to treatment of cirrhotic PBC patients, and its overall performance is satisfactory. Therapy targeting GDF15 is likely to benefit cirrhotic PBC patients and is worth further research.
Collapse
|
34
|
Increased Growth Differentiation Factor 15 in Patients with Hypoleptinemia-Associated Lipodystrophy. Int J Mol Sci 2020; 21:ijms21197214. [PMID: 33003626 PMCID: PMC7582938 DOI: 10.3390/ijms21197214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
Objective. Similar to obesity, lipodystrophy (LD) causes adipose tissue dysfunction and severe metabolic complications. Growth differentiation factor 15 (GDF15) belongs to the transforming growth factor β superfamily and is dysregulated in metabolic disease including obesity and diabetes mellitus. Circulating levels in LD and the impact of leptin treatment have not been investigated so far. Material and Methods. GDF15 serum levels were quantified in 60 LD patients without human immunodeficiency virus infection and 60 controls matched for age, gender, and body mass index. The impact of metreleptin treatment on circulating GDF15 was assessed in a subgroup of patients. GDF15 mRNA expression was determined in metabolic tissues of leptin-deficient lipodystrophic aP2-nSREBP1c-Tg mice, obese ob/ob mice, and control C57Bl6 mice. Results. Median GDF15 serum concentrations were significantly higher in LD patients (819 ng/L) as compared to the control group (415 ng/L) (p < 0.001). In multiple linear regression analysis, an independent and positive association remained between GDF15 on one hand and age, patient group, hemoglobin A1c, triglycerides, and C-reactive protein on the other hand. Moreover, there was an independent negative association between GFD15 and estimated glomerular filtration rate. Circulating GDF15 was not significantly affected by metreleptin treatment in LD patients. Gdf15 was upregulated in leptin-deficient lipodystrophic mice as compared to controls. Moreover, Gdf15 mRNA expression was downregulated by leptin treatment in lipodystrophic and obese animals. Conclusions. Serum concentrations of GDF15 are elevated in LD patients and independently associated with markers of metabolic dysfunction. Gdf15 expression is higher in lipodystrophic mice and downregulated by leptin treatment.
Collapse
|
35
|
Kim K, Kim KH. Targeting of Secretory Proteins as a Therapeutic Strategy for Treatment of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2020; 21:ijms21072296. [PMID: 32225108 PMCID: PMC7177791 DOI: 10.3390/ijms21072296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is defined as a progressive form of nonalcoholic fatty liver disease (NAFLD) and is a common chronic liver disease that causes significant worldwide morbidity and mortality, and has no approved pharmacotherapy. Nevertheless, growing understanding of the molecular mechanisms underlying the development and progression of NASH has suggested multiple potential therapeutic targets and strategies to treat this disease. Here, we review this progress, with emphasis on the functional role of secretory proteins in the development and progression of NASH, in addition to the change of expression of various secretory proteins in mouse NASH models and human NASH subjects. We also highlight secretory protein-based therapeutic approaches that influence obesity-associated insulin resistance, liver steatosis, inflammation, and fibrosis, as well as the gut–liver and adipose–liver axes in the treatment of NASH.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea
- Correspondence: (K.K.); (K.H.K.)
| | - Kook Hwan Kim
- Metabolic Diseases Research Center, GI Cell, Inc., B-1014, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul 05855, Korea
- Correspondence: (K.K.); (K.H.K.)
| |
Collapse
|
36
|
Tsygankova PG, Itkis YS, Krylova TD, Kurkina MV, Bychkov IO, Ilyushkina AA, Zabnenkova VV, Mikhaylova SV, Pechatnikova NL, Sheremet NL, Zakharova EY. Plasma FGF-21 and GDF-15 are elevated in different inherited metabolic diseases and are not diagnostic for mitochondrial disorders. J Inherit Metab Dis 2019; 42:918-933. [PMID: 31260105 DOI: 10.1002/jimd.12142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Recently, the plasma cytokines FGF-21 and GDF-15 were described as cellular metabolic regulators. They share an endocrine function and are highly expressed in the liver under stress and during starvation. Several studies found that these markers have high sensitivity and specificity for the diagnosis of mitochondrial diseases, especially those with prominent muscular involvement. In our study, we aimed to determine whether these markers could help distinguish mitochondrial diseases from other groups of inherited diseases. We measured plasma FGF-21 and GDF-15 concentrations in 122 patients with genetically confirmed primary mitochondrial disease and 127 patients with non-mitochondrial inherited diseases. Although GDF-15 showed better analytical characteristics (sensitivity = 0.66, specificity = 0.64, area under the curve [AUC] = 0.88) compared to FGF-21 (sensitivity = 0.51, specificity = 0.76, AUC = 0.78) in the pediatric group of mitochondrial diseases, both markers were also elevated in a variety of non-mitochondrial diseases, especially those with liver involvement (Gaucher disease, galactosemia, glycogenosis types 1a, 1b, 9), organic acidurias and some leukodystrophies. Thus, the overall positive and negative predictive values were not acceptable for these measurements to be used as diagnostic tests for mitochondrial diseases (FGF-21 positive predictive value [PPV] = 34%, negative predictive value [NPV] = 73%; GDF-15 PPV = 47%, NPV = 28%). We suggest that FGF-21 and GDF-15 increase in patients with metabolic diseases with metabolic or oxidative stress and inflammation.
Collapse
Affiliation(s)
- Polina G Tsygankova
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| | - Yulia S Itkis
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana D Krylova
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| | - Marina V Kurkina
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| | - Igor O Bychkov
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| | - Aleksandra A Ilyushkina
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| | - Viktoria V Zabnenkova
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| | | | - Natalia L Pechatnikova
- Center for Orphan Diseases, Morozov Municipal Children's Hospital of Moscow City Public Health Department, Moscow, Russia
| | - Natalia L Sheremet
- Department of Retina and Optic Nerve Diseases, Research Institute of Eye Diseases, Moscow, Russia
| | - Ekaterina Y Zakharova
- Laboratory of Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
- Laboratory of DNA-Diagnostic, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
37
|
Zhang Y, Jiang M, Nouraie M, Roth MG, Tabib T, Winters S, Chen X, Sembrat J, Chu Y, Cardenes N, Tuder RM, Herzog EL, Ryu C, Rojas M, Lafyatis R, Gibson KF, McDyer JF, Kass DJ, Alder JK. GDF15 is an epithelial-derived biomarker of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L510-L521. [PMID: 31432710 PMCID: PMC6842909 DOI: 10.1152/ajplung.00062.2019] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and devastating of the interstitial lung diseases. Epithelial dysfunction is thought to play a prominent role in disease pathology, and we sought to characterize secreted signals that may contribute to disease pathology. Transcriptional profiling of senescent type II alveolar epithelial cells from mice with epithelial-specific telomere dysfunction identified the transforming growth factor-β family member, growth and differentiation factor 15 (Gdf15), as the most significantly upregulated secreted protein. Gdf15 expression is induced in response to telomere dysfunction and bleomycin challenge in mice. Gdf15 mRNA is expressed by lung epithelial cells, and protein can be detected in peripheral blood and bronchoalveolar lavage following bleomycin challenge in mice. In patients with IPF, GDF15 mRNA expression in lung tissue is significantly increased and correlates with pulmonary function. Single-cell RNA sequencing of human lungs identifies epithelial cells as the primary source of GDF15, and circulating concentrations of GDF15 are markedly elevated and correlate with disease severity and survival in multiple independent cohorts. Our findings suggest that GDF15 is an epithelial-derived secreted protein that may be a useful biomarker of epithelial stress and identifies IPF patients with poor outcomes.
Collapse
Affiliation(s)
- Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mao Jiang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark G Roth
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Spencer Winters
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoping Chen
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Sembrat
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yanxia Chu
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nayra Cardenes
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado.,Yale ILD Center of Excellence, Yale University, New Haven, Connecticut
| | - Erica L Herzog
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Changwan Ryu
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mauricio Rojas
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kevin F Gibson
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan K Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Desmedt S, Desmedt V, De Vos L, Delanghe JR, Speeckaert R, Speeckaert MM. Growth differentiation factor 15: A novel biomarker with high clinical potential. Crit Rev Clin Lab Sci 2019; 56:333-350. [PMID: 31076013 DOI: 10.1080/10408363.2019.1615034] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Valérie Desmedt
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Leen De Vos
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation Flanders, Brussels, Belgium
| |
Collapse
|
39
|
Shimada K, Mitchison TJ. Unsupervised identification of disease states from high-dimensional physiological and histopathological profiles. Mol Syst Biol 2019; 15:e8636. [PMID: 30782979 PMCID: PMC6380462 DOI: 10.15252/msb.20188636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
The liver and kidney in mammals play central roles in protecting the organism from xenobiotics and are at high risk of xenobiotic-induced injury. Xenobiotic-induced tissue injury has been extensively studied from both classical histopathological and biochemical perspectives. Here, we introduce a machine-learning approach to analyze toxicological response. Unsupervised characterization of physiological and histological changes in a large toxicogenomic dataset revealed nine discrete toxin-induced disease states, some of which correspond to known pathology, but others were novel. Analysis of dynamics revealed transitions between disease states at constant toxin exposure, mostly toward decreased pathology, implying induction of tolerance. Tolerance correlated with induction of known xenobiotic defense genes and decrease of novel ferroptosis sensitivity biomarkers, suggesting ferroptosis as a druggable driver of tissue pathophysiology. Lastly, mechanism of body weight decrease, a known primary marker for xenobiotic toxicity, was investigated. Combined analysis of food consumption, body weight, and molecular biomarkers indicated that organ injury promotes cachexia by whole-body signaling through Gdf15 and Igf1, suggesting strategies for therapeutic intervention that may be broadly relevant to human disease.
Collapse
Affiliation(s)
- Kenichi Shimada
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Timothy J Mitchison
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Santos TPS, Pereira MDM, Schinoni MI, Sampaio GP, Aras R, Atta MLS, Atta AM. Atherogenic cytokines and chemokines in chronic hepatitis C are not associated with the presence of cardiovascular diseases. Cytokine 2019; 115:24-31. [PMID: 30771700 DOI: 10.1016/j.cyto.2018.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
There appears to be an associative link between chronic hepatitis C (CHC) and cardiovascular diseases (CVDs). However, the exact nature of the relationship between CHC and CVDs has not been elucidated. We investigated the presence of CVDs and the clinical and laboratory alterations associated with these diseases in CHC patients. Twenty-six CHC patients, 35 individuals with atherosclerosis (Athero) and 27 healthy individuals were examined for risk factors for CVD, lipid profile, atherogenic risk indexes, and insulin resistance (IR). Cardiac biomarkers and the chemokines and cytokines involved in atherosclerosis were also evaluated. A higher prevalence of prior acute myocardial infarction was found in the Athero group. Most CHC patients were infected with the hepatitis C virus genotype 1 and exhibited either no hepatic fibrosis or a mild to moderate liver fibrosis. The apolipoprotein B/apolipoprotein A-I and triglyceride/high-density lipoprotein cholesterol ratios and C-reactive protein levels were lower in CHC patients than in the Athero group. Further, IR was elevated in the CHC group and associated with the waist circumference. High GDF-15 levels were observed in the CHC group, which were inversely correlated with APOB levels. Peripheral blood mononuclear cells from CHC patients produced more IFN-γ, TNF-α and IL-6 than CAD PBMC but the production of IL-10 and IL-1β was similar. CHC and CAD groups presented similar levels of IL-8, MCP-1 and LAP-TGF-β1. Increased IR, elevated levels of GDF-15, and high production of atherogenic cytokines can be observed in Brazilian CHC patients without association with diabetes and clinical manifestation of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Roque Aras
- Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Brazil
| | - Maria Luiza Sousa Atta
- Faculdade de Farmácia, Laboratório de Pesquisa em Imunologia, Universidade Federal da Bahia, Brazil
| | - Ajax M Atta
- Faculdade de Farmácia, Laboratório de Pesquisa em Imunologia, Universidade Federal da Bahia, Brazil.
| |
Collapse
|
41
|
Bellan M, Castello LM, Pirisi M. Candidate Biomarkers of Liver Fibrosis: A Concise, Pathophysiology-oriented Review. J Clin Transl Hepatol 2018; 6:317-325. [PMID: 30271745 PMCID: PMC6160308 DOI: 10.14218/jcth.2018.00006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Repair of sustained liver injury results in fibrosis (i.e. the accumulation of extracellular matrix proteins), and ultimately the complete distortion of parenchymal architecture of the liver, which we call cirrhosis. Detecting and staging of fibrosis is thus a mainstay in the management of chronic liver diseases, since many clinically relevant decisions, such as starting treatment and/or monitoring for complications including hepatocellular carcinoma, may depend on it. The gold standard for fibrosis staging is liver biopsy, the role of which, however, is questioned nowadays because of cost, hazards and poor acceptance by patients. On the other hand, imaging techniques and/or measurement of direct and indirect serum markers have not proved to be completely satisfactory under all circumstances as alternatives to liver biopsy. Making progress in this field is now more crucial than ever, since treatments for established fibrosis appear on the horizon. Fine dissection of the pathways involved in the pathophysiology of liver diseases has put forward several novel candidate biomarkers of liver fibrosis, such as growth arrest-specific6, Mac-2-binding protein, osteopontin, placental growth factor, growth/differentiation factor 15 and hepatocyte growth factor. All molecules have been suggested to have potential to complement or substitute methods currently used to stage liver diseases. Here, we review the pros and cons for their use in this setting.
Collapse
Affiliation(s)
- Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, “Sant’Andrea Hospital”, Vercelli, Italy
- IRCAD, Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
- *Correspondence to: Mattia Bellan, Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, Novara (NO) 28100, Italy. Tel: +39-321-3733966, Fax: +39-321-3733361, E-mail:
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Emergency Medicine Department, “AOU Maggiore della Carità”, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, “AOU Maggiore della Carità, Novara, Italy
| |
Collapse
|
42
|
The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab 2018; 28:353-368. [PMID: 30184485 DOI: 10.1016/j.cmet.2018.07.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MIC-1/GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFb) superfamily, with no close relatives. It acts via a recently identified receptor called glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which is a distant orphan member of the GDNF receptor family that signals through the tyrosine kinase receptor Ret. MIC-1/GDF15 expression and serum levels rise in response to many stimuli that initiate cell stress and as part of a wide variety of disease processes, most prominently cancer and cardiovascular disease. The best documented actions of MIC-1/GDF15 are on regulation of energy homeostasis. When MIC-1/GDF15 serum levels are substantially elevated in diseases like cancer, it subverts a physiological pathway of appetite regulation to induce an anorexia/cachexia syndrome initiated by its actions on hindbrain neurons. These effects make it a potential target for the treatment of both obesity and anorexia/cachexia syndromes, disorders lacking any highly effective, readily accessible therapies.
Collapse
|
43
|
Kuang Z, Huang R, Yang Z, Lv Z, Chen X, Xu F, Yi YH, Wu J, Huang RP. Quantitative screening of serum protein biomarkers by reverse phase protein arrays. Oncotarget 2018; 9:32624-32641. [PMID: 30220970 PMCID: PMC6135697 DOI: 10.18632/oncotarget.25976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/19/2018] [Indexed: 12/28/2022] Open
Abstract
Screening biomarkers in serum samples for different diseases has always been of great interest because it presents an early, reliable, and, most importantly, noninvasive means of diagnosis and prognosis. Reverse phase protein arrays (RPPAs) are a high-throughput platform that can measure single or limited sets of proteins from thousands of patients' samples in parallel. They have been widely used for detection of signaling molecules involved in diseases, especially cancers, and related regulation pathways in cell lysates. However, this approach has been difficult to adapt to serum samples. Previously, we developed a sensitive method called the enhanced protein array to quantitatively measure serum protein levels from large numbers of patient samples. Here, we further refine the technology on several fronts: 1. simplifying the experimental procedure; 2. optimizing multiple parameters to make the assay more robust, including the support matrix, signal reporting method, background control, and antibody validation; and 3. establishing a method for more accurate quantification. Using this technology, we quantitatively measured the expression levels of 10 proteins: alpha-fetoprotein (AFP), beta 2 microglobulin (B2M), Carcinoma Antigen 15-3(CA15-3), Carcinoembryonic antigen (CEA), golgi protein 73 (GP73), Growth differentiation factor 15 (GDF15), Human Epididymis Protein 4 (HE4), Insulin Like Growth Factor Binding Protein 2 (IGFBP2), osteopontin (OPN) and Beta-type platelet-derived growth factor receptor (PDGFRB) from serum samples of 132 hepatocellular carcinoma (HCC) patients and 78 healthy volunteers. We found that 6 protein expression levels are significantly increased in HCC patients. Statistical and bioinformatical analysis has revealed decent accuracy rates of individual proteins, ranging from 0.617 (B2M) to 0.908 (AFP) as diagnostic biomarkers to distinguish HCC from healthy controls. The combination of these 6 proteins as a specific HCC signature yielded a higher accuracy of 0.923 using linear discriminant analysis (LDA), logistic regression (LR), random forest (RF) and support vector machine (SVM) predictive model analyses. Our work reveals promise for using reverse phase protein arrays for biomarker discovery and validation in serum samples.
Collapse
Affiliation(s)
- Zhizhou Kuang
- RayBiotech Inc, Guangzhou, China.,RayBiotech Inc, Parkway Lane, Norcross, GA, USA
| | - Ruochun Huang
- RayBiotech Inc, Guangzhou, China.,RayBiotech Inc, Parkway Lane, Norcross, GA, USA
| | - Zhimin Yang
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | | | - Xinyan Chen
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu-Hua Yi
- RayBiotech Inc, Guangzhou, China.,South China Biochip Research Center, Guangzhou, China
| | - Jian Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Pan Huang
- RayBiotech Inc, Guangzhou, China.,RayBiotech Inc, Parkway Lane, Norcross, GA, USA.,South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
44
|
Benkheil M, Paeshuyse J, Neyts J, Van Haele M, Roskams T, Liekens S. HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis. Biochem Pharmacol 2018; 155:305-315. [PMID: 30012461 DOI: 10.1016/j.bcp.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
HCV is a major risk factor for hepatocellular carcinoma (HCC). HCC development in chronically infected HCV patients has until now been attributed to persistent inflammation and interference of viral proteins with host cell signaling. Since activation of the epidermal growth factor receptor (EGFR) presents a crucial step in HCV entry, we aimed at investigating whether EGFR signaling may contribute to the pathogenesis of HCV-related HCC. By applying microarray analysis, we generated a gene expression signature for secreted proteins in HCV-infected hepatoma cells. This gene signature was enriched for inflammatory and angiogenic processes; both crucially involved in HCC development. RT-qPCR analysis, conducted on the entire list of upregulated genes, confirmed induction of 11 genes (AREG, IL8, CCL20, CSF1, GDF15, IGFBP1, VNN3, THBS1 and PAI-1) in a virus titer- and replication-dependent manner. EGFR activation in hepatoma cells largely mimicked the gene signature seen in the infectious HCV model. Further, the EGFR-ERK pathway, but not Akt signaling, was responsible for this gene expression profile. Finally, microarray analysis conducted on clinical data from the GEO database, revealed that our validated gene expression profile is significantly represented in livers of patients with HCV-related liver pathogenesis (cirrhosis and HCC) compared to healthy livers. Taken together, our data indicate that persistent activation of EGFR-ERK signaling in chronically infected HCV patients may induce a specific pro-inflammatory and pro-angiogenic signature that presents a new mechanism by which HCV can promote liver cancer pathogenesis. A better understanding of the key factors in HCV-related oncogenesis, may efficiently direct HCC drug development.
Collapse
Affiliation(s)
- Mohammed Benkheil
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium.
| | - Jan Paeshuyse
- Division Animal and Human Health Engineering, Department of Biosystems (BIOSYST), University of Leuven (KU Leuven), Belgium
| | - Johan Neyts
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| | - Matthias Van Haele
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), Belgium
| | - Tania Roskams
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), Belgium
| | - Sandra Liekens
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| |
Collapse
|
45
|
Li M, Song K, Huang X, Fu S, Zeng Q. GDF‑15 prevents LPS and D‑galactosamine‑induced inflammation and acute liver injury in mice. Int J Mol Med 2018; 42:1756-1764. [PMID: 29956733 DOI: 10.3892/ijmm.2018.3747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/22/2018] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor‑15 (GDF‑15) is a transforming growth factor (TGF)‑β superfamily member with a poorly characterized biological activity, speculated to be implicated in several diseases. The present study aimed to determine whether GDF‑15 participates in sepsis‑induced acute liver injury in mice. Lipopolysaccharide (LPS) and D‑galactosamine (D‑GalN) were administered to mice to induce acute liver injury. Survival of mice, histological changes in liver tissue, and levels of inflammatory biomarkers in serum and liver tissue were evaluated following treatment with GDF‑15. The underlying mechanism was investigated by western blotting, ELISA, flow cytometry, and reverse transcription‑quantitative polymerase chain reaction using Kupffer cells. The results demonstrated that GDF‑15 prevented LPS/D‑GalN‑induced death, increase in inflammatory cell infiltration and serum alanine aminotransferase and aspartate aminotransferase activities. In addition, GDF‑15 treatment reduced the production of hepatic malondialdehyde and myeloperoxidase, and attenuated the increase of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α, and IL‑1β expression in serum and liver tissue, accompanied by inducible nitric oxide synthase (iNOS) inactivation in the liver. Similar changes in the expression of inflammatory cytokines, IL‑6, TNF‑α and IL‑1β, and iNOS activation were observed in the Kupffer cells. Further mechanistic experiments revealed that GDF‑15 effectively protected against LPS‑induced nuclear factor (NF)‑κB pathway activation by regulating TGFβ‑activated kinase 1 (TAK1) phosphorylation in Kupffer cells. In conclusion, GDF‑15 reduced the activation of pro‑inflammatory factors, and prevented LPS‑induced liver injury, most likely by disrupting TAK1 phosphorylation, and consequently inhibiting the activation of the NF‑κB pathway in the liver.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xiaowen Huang
- Department of Pediatrics, Boai Hospital of Zhongshan City, Zhongshan, Guangdong 528400, P.R. China
| | - Simao Fu
- Department of Pediatrics, Boai Hospital of Zhongshan City, Zhongshan, Guangdong 528400, P.R. China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
46
|
Kim KH, Kim SH, Han DH, Jo YS, Lee YH, Lee MS. Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Sci Rep 2018; 8:6789. [PMID: 29717162 PMCID: PMC5931608 DOI: 10.1038/s41598-018-25098-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/04/2018] [Indexed: 02/08/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is an endocrine hormone belonging to the TGFβ superfamily member. GDF15 administration or GDF15 overexpression has been reported to have anti-obesity and anti-diabetic effects. Although non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is frequently associated with obesity and insulin resistance, the functional role of endogenous GDF15 and therapeutic effect of GDF15 overexpression in NASH and related metabolic deterioration have not been evaluated. Here, we found that GDF15 expression was increased in the livers of NASH animal models and human subjects with NASH. Elevated expression of GDF15 was due to diet-induced hepatic endoplasmic reticulum (ER) stress. Gdf15-knockout mice exhibited aggravated NASH phenotypes such as increased steatosis, hepatic inflammation, fibrosis, liver injury, and metabolic deterioration. Furthermore, GDF15 directly suppressed expression of fibrosis-related genes and osteopontin (OPN), contributing factors for NASH-related fibrosis, in hepatic stellate cells in vitro and in the liver of mice in vivo. Finally, we found that GDF15-transgenic mice showed attenuation of NASH phenotypes and metabolic deterioration. Therefore, our results suggest that induction of endogenous GDF15 is a compensatory mechanism to protect against the progression of NASH and that GDF15 could be an attractive therapeutic candidate for treatment of NASH and NASH-related metabolic deterioration.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Seong Hun Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young Suk Jo
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Myung-Shik Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
47
|
Li D, Zhang H, Zhong Y. Hepatic GDF15 is regulated by CHOP of the unfolded protein response and alleviates NAFLD progression in obese mice. Biochem Biophys Res Commun 2018; 498:388-394. [DOI: 10.1016/j.bbrc.2017.08.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 10/19/2022]
|
48
|
Zhang M, Sun W, Qian J, Tang Y. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid β-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol 2018; 16:87-96. [PMID: 29482168 PMCID: PMC5952356 DOI: 10.1016/j.redox.2018.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 02/05/2023] Open
Abstract
Liver coordinates a series of metabolic adaptations to maintain systemic energy balance and provide adequate nutrients for critical organs, tissues and cells during starvation. However, the mediator(s) implicated in orchestrating these fasting-induced adaptive responses and the underlying molecular mechanisms are still obscure. Here we show that hepatic growth differentiation factor 15 (GDF15) is regulated by IRE1α-XBP1s branch and promotes hepatic fatty acids β-oxidation and ketogenesis upon fasting. GDF15 expression was exacerbated in liver of mice subjected to long-term fasted or ketogenic diet feeding. Abrogation of hepatic Gdf15 dramatically attenuated hepatic β-oxidation and ketogenesis in fasted mice or mice with STZ-initiated type I diabetes. Further study revealed that XBP1s activated Gdf15 transcription via binding to its promoter. Elevated GDF15 in liver reduced lipid accumulation and impaired NALFD development in obese mice through enhancing fatty acids oxidation in liver. Therefore, our results demonstrate a novel and critical role of hepatic GDF15 activated by IRE1α-XBP1s branch in regulating adaptive responses of liver upon starvation stress. GDF15 is augmented in livers of mice subjected to fasting or ketogenic diet feeding. XBP1s activates the transcription of Gdf15 via binding to its promoter. Abrogation of hepatic Gdf15 impairs fatty acid β-oxidation and ketogenesis. Inhibition of hepatic Gdf15 attenuates ketoacidosis of diabetic mice. Ectopic expression of hepatic GDF15 alleviates obese-induced NAFLD development.
Collapse
Affiliation(s)
- Meiyuan Zhang
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Weilan Sun
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jin Qian
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Yan Tang
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China.
| |
Collapse
|
49
|
Significance of growth differentiation factor 15 in chronic HCV patients. J Genet Eng Biotechnol 2017; 15:403-407. [PMID: 30647678 PMCID: PMC6296607 DOI: 10.1016/j.jgeb.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
Abstract
Background and objective: Hepatitis C virus is the most common cause of chronic liver disease in Egypt. This work aims to assess the use of the simple and noninvasive biomarker Serum Growth differentiation Factor 15 (GDF-15), along with Alpha Fetoprotein (AFP) and Ferritin for the diagnosis of advanced liver disease in chronic hepatitis C patients. Subjects and methods: This study was conducted on 60 patients, who were recruited from the National Liver and Tropical Diseases Institute, Cairo, Egypt, who were suffering from early & advanced liver cirrhosis and chronic active hepatitis. Twenty cases of healthy subjects served as controls. Serum (GDF-15), (AFP), Ferritin and Hepatitis markers were measured by ELISA method. Measurement of different liver enzyme activity was done by the kinetic methods. Results: Data analysis revealed significant increase in serum levels of GDF15 in patients with Hepatocellular carcinoma (HCC) and Liver Cirrhosis (LC) compared to the healthy subjects. These results were parallel to those of serum levels of AFP, which also demonstrated significant increase in all patients groups as compared to normal control. A moderate increase in the GDF15 level was detected in the patients with chronic hepatitis C (CHC) compared to normal healthy subjects. Conclusion: This study demonstrated that GDF15 and AFP detection can help in the diagnosis and prediction of complications associated with CHC including liver cirrhosis and HCC. Also GDF15 can be used as a satisfactory serum marker of HCC and LC.
Collapse
|
50
|
Prystupa A, Kiciński P, Luchowska-Kocot D, Błażewicz A, Niedziałek J, Mizerski G, Jojczuk M, Ochal A, Sak JJ, Załuska W. Association between Serum Selenium Concentrations and Levels of Proinflammatory and Profibrotic Cytokines-Interleukin-6 and Growth Differentiation Factor-15, in Patients with Alcoholic Liver Cirrhosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040437. [PMID: 28430124 PMCID: PMC5409638 DOI: 10.3390/ijerph14040437] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/14/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
According to some authors, serum selenium levels are strongly associated with the severity of liver diseases, including liver cirrhosis. The aim of this study was to determine the relationship between the concentration of selenium and pro-inflammatory and profibrotic cytokines—interleukin-6 (IL-6) and growth differentiation factor 15 (GDF-15) in patients with alcoholic liver cirrhosis. The parameters studied were determined in the serum of 99 patients with alcoholic liver cirrhosis divided based on the severity of disease according to the Child-Turcotte-Pugh criteria. In patients with liver cirrhosis, the serum selenium concentration was statistically lower, whereas serum IL-6 and GDF-15 concentrations were higher than those in the control group. Moreover, the concentration of selenium negatively correlated with the levels of GDF-15 and IL-6. The above results may indicate a role of selenium deficiency in the pathogenesis and progression of alcoholic liver disease.
Collapse
Affiliation(s)
- Andrzej Prystupa
- Department of Internal Medicine, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland.
| | - Paweł Kiciński
- Department of Family Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland.
| | - Dorota Luchowska-Kocot
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland.
| | - Anna Błażewicz
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland.
| | - Jarosław Niedziałek
- Individual Medical Practice, Lublin, Ludwika Hirszfelda 5/11, 20-092 Lublin, Poland.
| | - Grzegorz Mizerski
- Department of Family Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland.
| | - Mariusz Jojczuk
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland.
| | - Andrzej Ochal
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland.
| | - Jarosław J Sak
- Department of Ethics and Human Philosophy, Medical University of Lublin, Staszica 4/6 (Collegium Maximum), 20-059 Lublin, Poland.
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| |
Collapse
|