1
|
Nissa MU, Pinto N, Ghosh B, Banerjee A, Singh U, Goswami M, Srivastava S. Proteomic insights into extracellular matrix dynamics in the intestine of Labeo rohita during Aeromonas hydrophila infection. mSystems 2024; 9:e0024724. [PMID: 39292008 PMCID: PMC11495024 DOI: 10.1128/msystems.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
In the aquaculture sector, one of the challenges includes disease outbreaks such as bacterial infections, particularly from Aeromonas hydrophila (Ah), impacting both wild and farmed fish. In this study, we conducted a proteomic analysis of the intestinal tissue in Labeo rohita following Ah infection to elucidate the protein alterations and its implications for immune response. Our findings indicate significant dysregulation in extracellular matrix (ECM)-associated proteins during Ah infection, with increased abundance of elastin and collagen alpha-3(VI). Pathway and enrichment analysis of differentially expressed proteins highlights the involvement of ECM-related pathways, including focal adhesions, integrin cell surface interactions, and actin cytoskeleton organization. Focal adhesions, crucial for connecting intracellular actin bundles to the ECM, play a pivotal role in immune response during infections. Increased abundance of integrin alpha 1, integrin beta 1, and tetraspanin suggests their involvement in the host's response to Ah infection. Proteins associated with actin cytoskeleton reorganization, such as myosin, tropomyosin, and phosphoglucomutase, exhibit increased abundance, influencing changes in cell behavior. Additionally, upregulated proteins like LTBP1 and fibrillin-2 contribute to TGF-β signaling and focal adhesion, indicating their potential role in immune regulation. The study also identifies elevated levels of laminin, galectin 3, and tenascin-C, which interact with integrins and other ECM components, potentially influencing immune cell migration and function. These proteins, along with decorin and lumican, may act as immunomodulators, coordinating pro- and anti-inflammatory responses. ECM fragments released during pathogen invasion could serve as "danger signals," initiating pathogen clearance and tissue repair through Toll-like receptor signaling. IMPORTANCE The study underscores the critical role of the extracellular matrix (ECM) and its associated proteins in the immune response of aquatic organisms during bacterial infections like Aeromonas hydrophila. Understanding the intricate interplay between ECM alterations and immune response pathways provides crucial insights for developing effective disease control strategies in aquaculture. By identifying key proteins and pathways involved in host defense mechanisms, this research lays the groundwork for targeted interventions to mitigate the impact of bacterial infections on fish health and aquaculture production.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, India
| | - Biplab Ghosh
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anwesha Banerjee
- Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Urvi Singh
- Friedrich Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Sabir MB, Ashraf A, Saif R, Saeed M, Zafar MO. Ligand modelling of Trachyspermum ammi phytocompounds for Aeromonas hydrophila cell wall synthesis enzyme in Labeo rohita. Nat Prod Res 2024:1-13. [PMID: 39392418 DOI: 10.1080/14786419.2024.2411716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/31/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Aquaculture faces challenges from Aeromonas hydrophila, causing Motile Aeromonas Septicaemia, particularly affecting Labeo rohita (Rohu) in Pakistan. This study explores potential herbal antibacterials targeting A. hydrophila, molecular docking of Trachyspermum ammi (ajwain) phytocompounds against pathogen. The cell wall synthesis ligase, D-alanine-D-alanine ligase (PDB ID 6ll9) was processed in BIOVIA Discovery Studio and docked with 13 antibacterial phytocompounds found after QSAR analysis of T. ammi. Binding energies were calculated using PyRx to assess complex stability. ADME-TOX assessment for selected phytocompounds and parameterisation in CHARMM-GUI were performed. Docking the two best ligands with highest binding energies and ADME-TOX compliance, we found carvacrol and limonene formed most stable protein-ligand complexes, with raw and processed protein. Our findings suggest these herbal compounds can inhibit D-alanine-D-alanine ligase. These in-silico results support the potential of 'ajwain' in managing A. hydrophila, further in-vivo experiments are necessary to validate these inhibitory properties.
Collapse
Affiliation(s)
| | - Aqeela Ashraf
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | - Rashid Saif
- Department of Biotechnology, Qarshi University, Lahore, Pakistan
| | - Malaika Saeed
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | | |
Collapse
|
3
|
Fernandes DC, Eto SF, Baldassi AC, Balbuena TS, Charlie-Silva I, de Andrade Belo MA, Pizauro JM. Meningitis caused by Aeromonas hydrophila in Oreochromis niloticus: Proteomics and druggability of virulence factors. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109687. [PMID: 38866348 DOI: 10.1016/j.fsi.2024.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Meningitis caused by Gram-negative bacteria is a serious public health problem, causing morbidity and mortality in both children and adults. Here, we propose a novel experimental model using Nile tilapia (Oreochromis niloticus) to study neuroinflammation. The fish were infected with Aeromonas hydrophila, and the course of infection was monitored in the peripheral blood. Septicemia was obvious in the blood, while in the brain tissue, infection of the meninges was present. The histopathological examination showed suppurative meningitis, and the cellular immune response in the brain tissue during infection was mediated by microglia. These cells were morphologically characterized and phenotyped by MHC class II markers and CD68. The increased production of TNF-α, IL-1β and iNOS supported the infiltration of these cells during the neuroinflammatory process. In the proteomic analysis of A. hydrophila isolated from brain tissue, we found chemotactic and transport proteins, proteolytic enzymes and enzymes associated with the dismutation of nitric oxide (NO), as well as motor proteins and those responsible for cell division. After characterizing the most abundant proteins during the course of infection, we investigated the druggability index of these proteins and identified promising peptide sequences as molecular targets that are similar among bacteria. Thus, these findings deepened the understanding of the pathophysiology of meningitis caused by A. hydrophila. Moreover, through the proteomics analysis, important mechanisms and pathways used by the pathogen to subvert the host response were revealed, providing insights for the development of novel antibiotics and vaccines.
Collapse
Affiliation(s)
- Dayanne Carla Fernandes
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil.
| | - Silas Fernandes Eto
- Laboratory Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Cristina Baldassi
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Thiago Santana Balbuena
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Ives Charlie-Silva
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil
| | | | - João Martins Pizauro
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Zamparo S, Orioles M, Brocca G, Marroni F, Castellano C, Radovic S, Mandrioli L, Galeotti M, Verin R. Novel insights on microbiome dynamics during a gill disease outbreak in farmed rainbow trout (Oncorhynchus mykiss). Sci Rep 2024; 14:17791. [PMID: 39090156 PMCID: PMC11294328 DOI: 10.1038/s41598-024-68287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The generic term "Gill disease" refers to a wide range of disorders that affect the gills and severely impact salmonid aquaculture systems worldwide. In rainbow trout freshwater aquaculture, various etiological agents causing gill diseases have been described, particularly Flavobacterium and Amoeba species, but research studies suggest a more complex and multifactorial aetiology. Here, a cohort of rainbow trout affected by gill disease is monitored both through standard laboratory techniques and 16S rRNA Next-Generation Sequencing (NGS) analysis during a natural disease outbreak and subsequent antibiotic treatment with Oxytetracycline. NGS results show a clear clustering of the samples between pre- and post-treatment based on the microbial community of the gills. Interestingly, the three main pathogenic bacteria species in rainbow trout (Yersinia ruckeri, Flavobacterium psychrophilum, and Flavobacterium branchiophilum) appear to be weak descriptors of the diversity between pre-treatment and post-treatment groups. In this study, the dynamics of the gill microbiome during the outbreak and subsequent treatment are far more complex than previously reported in the literature, and environmental factors seem of the utmost importance in determining gill disease. These findings present a potential novel perspective on the diagnosis and management of gill diseases, showing the limitations of conventional laboratory methodologies in elucidating the complexity of this disease in rainbow trout. To the authors' knowledge, this work is the first to describe the microbiome of rainbow trout gills during a natural outbreak and subsequent antibiotic treatment. The results of this study suggest that NGS can play a critical role in the analysis and comprehension of gill pathology. Using NGS in future research is highly recommended to gain deeper insights into such diseases correlating gill's microbiome with other possible cofactors and establish strong prevention guidelines.
Collapse
Affiliation(s)
- Samuele Zamparo
- Azienda Agricola Erede Rossi Silvio di Rossi Niccola, 62025, Sefro, MC, Italy
| | - Massimo Orioles
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy.
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, C1A 4P3, Charlottetown, Prince Edward Island, Canada.
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Ciro Castellano
- Azienda Agricola Erede Rossi Silvio di Rossi Niccola, 62025, Sefro, MC, Italy
| | | | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy
| | - Marco Galeotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| |
Collapse
|
5
|
Mei J, Yang Q, Jiang L, Wang T, Li Y, Yu X, Wu Z. Immune protection of grass carp by oral vaccination with recombinant Bacillus methylotrophicus expressing the heterologous tolC gene. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109701. [PMID: 38878911 DOI: 10.1016/j.fsi.2024.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
In the field of aquaculture, the enhancement of animal health and disease prevention is progressively being tackled using alternatives to antibiotics, including vaccines and probiotics. This study was designed to evaluate the potential of a recombinant Bacillus methylotrophicus, engineered to express the outer membrane channel protein TolC of Aeromonas hydrophila AH3 and the green fluorescent protein GFP, as an oral vaccine. Initially, the genes encoding tolC and GFP were cloned into a prokaryotic expression system, and anti-TolC mouse antiserum was generated. Subsequently, the tolC gene was subcloned into a modified pMDGFP plasmid, which was transformed into B. methylotrophicus WM-1 for protein expression. The recombinant B. methylotrophicus BmT was then administered to grass carp via co-feeding, and its efficacy as an oral vaccine was assessed. Our findings demonstrated successful expression of the 55 kDa TolC and 28 kDa GFP proteins, and the preparation of polyclonal antibodies with high specificity. The BmT exhibited stable expression of the GFP-TolC fusion protein and excellent genetic stability. Following oral immunization, significant elevations were observed in serum-specific IgM levels and the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in grass carp. Concurrently, significant upregulation of immune-related genes, including IFN-I, IL-10, IL-1β, TNF-α, and IgT, was noted in the intestines, head kidney, and spleen of the grass carp. Colonization tests further revealed that the BmT persisted in the gut of immunized fish even after a fasting period of 7 days. Notably, oral administration of BmT enhanced the survival rate of grass carp following A. hydrophila infection. These results suggest that the oral BmT vaccine developed in this study holds promise for future applications in aquaculture.
Collapse
Affiliation(s)
- Jing Mei
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Liyan Jiang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Tao Wang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Ucieklak K, Wojtys-Tekiel S, Leroy G, Le Devendec L, Baron S, Kaszowska M. New Structure of Aeromonas salmonicida O-Polysaccharide Isolated from Ill Farmed Fish. Microorganisms 2024; 12:1575. [PMID: 39203417 PMCID: PMC11355949 DOI: 10.3390/microorganisms12081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The diversity of O-polysaccharides (O-antigens) among 28 Aeromonas salmonicida strains isolated from ill fish has been determined by using high-resolution magic angle spinning (HR MAS) NMR spectroscopy. The new O-polysaccharide has been identified in two isolates. This new structure was investigated by 1H and 13C NMR spectroscopy and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The following structure of the linear hexasaccharide repeating unit of A. salmonicida O-antigen has been established: →3)-α-L-Rhap-(1→3)-α-D-ManpNAc-(1→2)-β-D-Glcp-(1→3)-α-L-Rhap2OAc4OAc-(1→3)-β-D-ManpNAc-(1→3)-α-D-Glcp-(1→. This new A. salmonicida O-polysaccharide was detected among two isolates collected from trout and turbot fish in 2010 and 2011, respectively. Further investigations should be conducted to evaluate the distribution of this new O-polysaccharide among a larger collection of isolates, depending on their geographic origin, the species of fish, and the health status of the fish.
Collapse
Affiliation(s)
- Karolina Ucieklak
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.U.); (S.W.-T.)
| | - Sylwia Wojtys-Tekiel
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.U.); (S.W.-T.)
| | - Garance Leroy
- Laboratory of Marine Biotechnology and Chemistry, University of Western Brittany, EMR CNRS 6076, IUEM, 29000 Quimper, France
| | - Laëtitia Le Devendec
- Mycoplasmology-Bacteriology and Antimicrobial Resistance Unit Ploufragan Plouzane-Niort Laboratory (ANSES), 22440 Ploufragan, France; (L.L.D.)
| | - Sandrine Baron
- Mycoplasmology-Bacteriology and Antimicrobial Resistance Unit Ploufragan Plouzane-Niort Laboratory (ANSES), 22440 Ploufragan, France; (L.L.D.)
| | - Marta Kaszowska
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.U.); (S.W.-T.)
| |
Collapse
|
7
|
Tekedar HC, Patel F, Blom J, Griffin MJ, Waldbieser GC, Kumru S, Abdelhamed H, Dharan V, Hanson LA, Lawrence ML. Tad pili contribute to the virulence and biofilm formation of virulent Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1425624. [PMID: 39145307 PMCID: PMC11322086 DOI: 10.3389/fcimb.2024.1425624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.
Collapse
Affiliation(s)
- Hasan C. Tekedar
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Fenny Patel
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Matt J. Griffin
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
- Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS, United States
| | | | - Salih Kumru
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Vandana Dharan
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Larry A. Hanson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
8
|
Gladyshchuk O, Yoshida M, Togashi K, Sugimoto H, Suzuki K. Identification of the Csr global regulatory system mediated by small RNA decay in Aeromonas salmonicida. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38233172 DOI: 10.2323/jgam.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We investigated the presence and functionality of the carbon storage regulator (Csr) system in Aeromonas salmonicida SWSY-1.411. CsrA, an RNA-binding protein, shared 89% amino acid sequence identity with Escherichia coli CsrA. CsrB/C sRNAs exhibited a typical stem-loop structure, with more GGA motifs, which bind CsrA, than E. coli. CsrD had limited sequence identity with E. coli CsrD; however, it contained the conserved GGDEF and EAL domains. Functional analysis in E. coli demonstrated that the Csr system of A. salmonicida influences glycogen biosynthesis, biofilm formation, motility, and stability of both CsrB and CsrC sRNAs. These findings suggest that in A. salmonicida, the Csr system affects phenotypes like its E. coli counterpart. In A. salmonicida, defects in csr homologs affected biofilm formation, motility, and chitinase production. However, glycogen accumulation and protease production were unaffected. The expression of flagellar-related genes and chitinase genes was suppressed in the csrA-deficient A. salmonicida. Northern blot analysis indicated the stabilization of CsrB and CsrC in the csrD-deficient A. salmonicida. Similar to that in E. coli, the Csr system in A. salmonicida comprises the RNA-binding protein CsrA, the sRNAs CsrB and CsrC, and the sRNA decay factor CsrD. This study underscores the conservation and functionality of the Csr system and raises questions about its regulatory targets and mechanisms in A. salmonicida.
Collapse
Affiliation(s)
| | - Masaki Yoshida
- Graduate School of Science and Technology, Niigata University
| | - Koume Togashi
- Department of Agriculture, Faculty of Agriculture, Niigata University
| | - Hayuki Sugimoto
- Graduate School of Science and Technology, Niigata University
- Department of Agriculture, Faculty of Agriculture, Niigata University
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University
- Department of Agriculture, Faculty of Agriculture, Niigata University
| |
Collapse
|
9
|
Macias L, Mercado V, Olmos J. Assessment of Bacillus species capacity to protect Nile tilapia from A. hydrophila infection and improve growth performance. Front Cell Infect Microbiol 2024; 14:1354736. [PMID: 39045133 PMCID: PMC11263102 DOI: 10.3389/fcimb.2024.1354736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 07/25/2024] Open
Abstract
The present study evaluated the capacity of three Bacillus species to improve health status and growth performance of Nile Tilapia fed with high levels of soybean meal and challenged with Aeromonas hydrophila. In vitro experiments showed that β-hemolysin and metalloprotease enzymes were produced by A. hydrophila throughout the exponential growth phase. In vivo experiments showed that 107 colony-forming units (CFUs)/ml of this pathogen killed 50% of control group fishes in 13 days. To evaluate the influence of Bacillus strains on health status and growth performance in Nile Tilapia, 180 fishes (33.44 + 0.05 g) were distributed in 12 tanks of 200 L each, and animals were fed twice per day until satiety. 1) Control group without Bacillus, 2) Bacillus sp1, 3) Bacillus sp2, and 4) Bacillus sp3 groups were formulated containing 106 CFU/g. After 40 days of feeding, the fishes were intraperitoneally injected with 1 ml of A. hydrophila at 2 × 107 CFU/ml, and mortality was recorded. The results showed that cumulative mortality rate was significantly (p< 0.05) lower in the Bacillus sp1 (25%), sp2 (5%), and sp3 (15%) groups, than the control group (50%). Weight gain was also significantly better (p< 0.05) in the Bacillus sp1 (36%), sp2 (67%), and sp3 (55%) groups with respect to the control group (30%). In conclusion, functional diet formulated with high levels of soybean meal and supplemented with Bacillus sp2 could be an alternative to protect Nile tilapia cultures from A. hydrophila infections and improve fish growth performance.
Collapse
|
10
|
Zhao R, Wang J, Wang D, Wang Y, Hu G, Li S. Isolation, Identification, and Characterisation of a Novel ST2378 Aeromonas hydrophila Strain from Naturally Diseased Frogs, Rana dybowskii. Pathogens 2024; 13:552. [PMID: 39057779 PMCID: PMC11279971 DOI: 10.3390/pathogens13070552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
In 2023, Rana dybowskii exhibiting characteristic skin ulcers were found on a farm in northeastern China. Subsequently, two dominant bacteria, Aeromonas hydrophila Rd001 and Acinetobacter johnsonii Rd002, were isolated from naturally infected R. dybowskii. Experimental infection confirmed that Rd001 was the primary pathogen responsible for the disease in R. dybowskii, with a mean lethal dose (LD50) of 6.25 × 102 CFU/g. The virulence genotype of Rd001 was identified as ser+/aha+/lip+/nuc+/hlyA+/aer+/alt+/ast+/act+. Antimicrobial susceptibility testing indicated that Rd001 was sensitive to enrofloxacin, flumequine, and neomycin. MLST analysis showed that Rd001 belonged to a new sequence type of A. hydrophila, named ST2378. This study offered the first comprehensive investigation into the pathogenicity, virulence genotypes, antimicrobial resistance, and genetic traits of A. hydrophila isolated from R. dybowskii, providing a theoretical foundation for preventing and controlling A. hydrophila infections.
Collapse
Affiliation(s)
| | | | | | | | - Guo Hu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (R.Z.); (J.W.); (D.W.); (Y.W.)
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (R.Z.); (J.W.); (D.W.); (Y.W.)
| |
Collapse
|
11
|
Jayaraman S, Rajendhran N, Kannan MA, Ramasamy T. Quercetin disrupts biofilm formation and attenuates virulence of Aeromonas hydrophila. Arch Microbiol 2024; 206:326. [PMID: 38922407 DOI: 10.1007/s00203-024-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Aeromonas hydrophila poses significant health and economic challenges in aquaculture owing to its pathogenicity and prevalence. Overuse of antibiotics has led to multidrug resistance and environmental pollution, necessitating alternative strategies. This study investigated the antibacterial and antibiofilm potentials of quercetin against A. hydrophila. Efficacy was assessed using various assays, including antibacterial activity, biofilm inhibition, specific growth time, hemolysis inhibition, autoaggregation, and microscopic evaluation. Additionally, docking analysis was performed to explore potential interactions between quercetin and virulence proteins of A. hydrophila, including proaerolysin, chaperone needle-subunit complex of the type III secretion system, and alpha-pore forming toxin (PDB ID: 1PRE, 2Q1K, 6GRK). Quercetin exhibited potent antibacterial activity with 21.1 ± 1.1 mm zone of inhibition at 1.5 mg mL-1. It also demonstrated significant antibiofilm activity, reducing biofilm formation by 46.3 ± 1.3% at the MIC and attenuating autoaggregation by 55.9 ± 1.5%. Hemolysis was inhibited by 41 ± 1.8%. Microscopic analysis revealed the disintegration of the A. hydrophila biofilm matrix. Docking studies indicated active hydrogen bond interactions between quercetin and the targeted virulence proteins with the binding energy -3.2, -5.6, and -5.1 kcal mol⁻1, respectively. These results suggest that quercetin is an excellent alternative to antibiotics for combating A. hydrophila infection in aquaculture. The multifaceted efficacy of quercetin in inhibiting bacterial growth, biofilm formation, virulence factors, and autoaggregation highlights the potential for aquaculture health and sustainability. Future research should delve into the precise mechanisms of action and explore synergistic combinations with other compounds for enhanced efficacy and targeted interventions.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
12
|
Miyagi K, Shimoji N. Rapid discrimination methods for clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using the N-terminal sequence of the flaA gene and investigation of antimicrobial resistance. Lett Appl Microbiol 2024; 77:ovae052. [PMID: 38830808 DOI: 10.1093/lambio/ovae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum β-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Noriaki Shimoji
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa 901-2132, Japan
| |
Collapse
|
13
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Luo D, Dai L. A 26-year-old man with multiple organ failure caused by Aeromonas dhakensis infection: a case report and literature review. Front Med (Lausanne) 2024; 11:1289338. [PMID: 38695019 PMCID: PMC11061346 DOI: 10.3389/fmed.2024.1289338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/29/2024] [Indexed: 05/04/2024] Open
Abstract
Background Infections in humans are mainly caused by Aeromonas hydrophila, Aeromonas caviae, and Aeromonas veronii. In recent years, Aeromonas dhakensis has been recognized as widely distributed in the environment, with strong virulence. However, this bacterial infection usually does not appear in patients with pneumonia as the first symptom. Case report We report a 26-year-old man who was admitted to the hospital with community-acquired pneumonia as the first symptom and developed serious conditions such as hemolytic uremic syndrome, multiple organ dysfunction, and hemorrhagic shock within a short period. He died after 13 h of admission, and the subsequent metagenomic-next generation sequencing test confirmed the finally identified pathogen of infection as A. dhakensis. Conclusion Aeromonas is a rare pathogen identified in the diagnosis of community-acquired pneumonia. Hence, doctors need to develop their experience in identifying the difference between infections caused by pathogenic microorganisms. Medical attention is essential during the occurrence of respiratory symptoms that could be controlled by empirical drugs, such as cephalosporins or quinolones. When patients with community-acquired pneumonia present hemoptysis and multiple organ dysfunction in clinical treatment, an unusual pathogen infection should be considered, and the underlying etiology should be clarified at the earliest for timely treatment.
Collapse
Affiliation(s)
- Dan Luo
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Liwan Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Wei X, Tan H, Lobb B, Zhen W, Wu Z, Parks DH, Neufeld JD, Moreno-Hagelsieb G, Doxey AC. AnnoView enables large-scale analysis, comparison, and visualization of microbial gene neighborhoods. Brief Bioinform 2024; 25:bbae229. [PMID: 38747283 PMCID: PMC11094555 DOI: 10.1093/bib/bbae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca.
Collapse
Affiliation(s)
- Xin Wei
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Huagang Tan
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Briallen Lobb
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William Zhen
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zijing Wu
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Brisbane, Australia
| | - Josh D Neufeld
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
| | - Andrew C Doxey
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Ayoub HF, Khafagy AR, Esawy AM, El-Moaty NA, Alwutayd KM, Mansour AT, Ibrahim RA, Abdel-Moneam DA, El-Tarabili RM. Phenotypic, molecular detection, and Antibiotic Resistance Profile (MDR and XDR) of Aeromonas hydrophila isolated from Farmed Tilapia zillii and Mugil cephalus. BMC Vet Res 2024; 20:84. [PMID: 38459543 PMCID: PMC10921648 DOI: 10.1186/s12917-024-03942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and resistance genes, and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast (13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications for aquaculture and public health.
Collapse
Affiliation(s)
- Hala F Ayoub
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research (CLAR), Agricultural Research Center, Abo-Hammad, Sharqia, Abbassa, 44662, Egypt.
| | - Ahmed R Khafagy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, Egypt
| | - Aboelkair M Esawy
- Department of Microbiology, Animal Health Research Institute, Mansoura branch, Mansoura, Egypt
| | - Noura Abo El-Moaty
- Department of Microbiology, Animal Health Research Institute, Mansoura branch, Mansoura, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Fish and Animal Production and Aquaculture Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia.
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Reham A Ibrahim
- Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Dalia A Abdel-Moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
17
|
Zhao C, Qin P, Li S, Chen Z, Wang T, Liang Q, He W, Peng Z, Yang Y, Peng Z, Li Y. Exploring Aeromonas dhakensis in Aldabra giant tortoises: a debut report and genetic characterization. BMC Microbiol 2024; 24:76. [PMID: 38454361 PMCID: PMC10921707 DOI: 10.1186/s12866-024-03203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Aeromonas dhakensis (A. dhakensis) is becoming an emerging pathogen worldwide, with an increasingly significant role in animals and human health. It is a ubiquitous bacteria found in terrestrial and aquatic milieus. However, there have been few reports of reptile infections. In this study, a bacterial strain isolated from a dead Aldabra giant tortoise was identified as A. dhakensis HN-1 through clinical observation, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), and gene sequencing analysis. Subsequently, to evaluate its pathogenicity, the detection of virulence genes and mice infection experiments were performed. A. dhakensis HN-1 was found to contain seven virulence genes, including alt, ela, lip, act, aerA, fla, and hlyA. Mice infected with A. dhakensis HN-1 exhibited hemorrhage of varying degrees in multiple organs. The half-maximal lethal dose (LD50) value of A. dhakensis HN-1 for mice was estimated to be 2.05 × 107 colony forming units (CFU)/mL. The antimicrobial susceptibility test revealed that A. dhakensis HN-1 was resistant to amoxicillin, penicillin, ampicillin and erythromycin. This is the first report of A. dhakensis in Aldabra giant tortoises, expanding the currently known host spectrum. Our findings emphasize the need for One Health surveillance and extensive research to reduce the spread of A. dhakensis across the environment, humans, and animals.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shuai Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zilu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tianliang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qunchao Liang
- Henan Yinji Jiabao Amusement Park Management Co. LTD, Zhengzhou, 452376, China
| | - Weishi He
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450001, China
| | - Zeyu Peng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yurong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
18
|
Li X, Wang H, Abdelrahman H, Kelly A, Roy L, Wang L. Profiling and source tracking of the microbial populations and resistome present in fish products. Int J Food Microbiol 2024; 413:110591. [PMID: 38306774 DOI: 10.1016/j.ijfoodmicro.2024.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Microorganisms in processing environments significantly impact the quality and safety of food products and can serve as potential reservoirs for antibiotic-resistant genes, contributing to public health concerns about antimicrobial resistance (AMR). Fish processing plants represent an understudied environment for microbiome mapping. This study investigated the microbial composition, prevalence of Listeria spp., and resistome structures in three catfish processing facilities in the southeastern United States. The 16S rRNA gene sequencing revealed that the observed richness and Shannon diversity index increased significantly from fish to fillet. Beta diversity analysis showed distinct clustering of microbial communities between fish, environment, and fillet samples. Fast expectation-maximization microbial source tracking (FEAST) algorithm demonstrated that the microbiota presents in the processing environment contributed 48.2 %, 62.4 %, and 53.7 % to the microbiota present on fillet in Facility 1 (F1), F2, and F3, respectively. Food contact surfaces made larger contributions compared to the non-food contact surfaces. The linear discriminant analysis of effect size (LEfSe) identified specific microbial genera (e.g., Plesiomohas, Brochothrix, Chryseobacterium and Cetobacterium) that significantly varied between Listeria spp. positive and negative samples in all three processing plants. The metagenomic sequencing results identified 212 antimicrobial resistance genes (ARGs) belonging to 72 groups from the raw fish and fish fillet samples collected from three processing plants. Although there was a significant decrease in the overall diversity of ARGs from fish to fillet samples, the total abundance of ARGs did not change significantly (P > 0.05). ARGs associated with resistance to macrolide-lincosamide-streptogramin (MLS), cationic antimicrobial peptides, aminoglycosides, and beta-lactams were found to be enriched in the fillet samples when compared to fish samples. Results of this study highlight the profound impact of processing environment on shaping the microbial populations present on the final fish product and the need for additional strategies to mitigate AMR in fish products.
Collapse
Affiliation(s)
- Xiran Li
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hisham Abdelrahman
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Anita Kelly
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luke Roy
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
19
|
Alawam AS, Alwethaynani MS. Construction of an aerolysin-based multi-epitope vaccine against Aeromonas hydrophila: an in silico machine learning and artificial intelligence-supported approach. Front Immunol 2024; 15:1369890. [PMID: 38495891 PMCID: PMC10940347 DOI: 10.3389/fimmu.2024.1369890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Aeromonas hydrophila, a gram-negative coccobacillus bacterium, can cause various infections in humans, including septic arthritis, diarrhea (traveler's diarrhea), gastroenteritis, skin and wound infections, meningitis, fulminating septicemia, enterocolitis, peritonitis, and endocarditis. It frequently occurs in aquatic environments and readily contacts humans, leading to high infection rates. This bacterium has exhibited resistance to numerous commercial antibiotics, and no vaccine has yet been developed. Aiming to combat the alarmingly high infection rate, this study utilizes in silico techniques to design a multi-epitope vaccine (MEV) candidate against this bacterium based on its aerolysin toxin, which is the most toxic and highly conserved virulence factor among the Aeromonas species. After retrieval, aerolysin was processed for B-cell and T-cell epitope mapping. Once filtered for toxicity, antigenicity, allergenicity, and solubility, the chosen epitopes were combined with an adjuvant and specific linkers to create a vaccine construct. These linkers and the adjuvant enhance the MEV's ability to elicit robust immune responses. Analyses of the predicted and improved vaccine structure revealed that 75.5%, 19.8%, and 1.3% of its amino acids occupy the most favored, additional allowed, and generously allowed regions, respectively, while its ERRAT score reached nearly 70%. Docking simulations showed the MEV exhibiting the highest interaction and binding energies (-1,023.4 kcal/mol, -923.2 kcal/mol, and -988.3 kcal/mol) with TLR-4, MHC-I, and MHC-II receptors. Further molecular dynamics simulations demonstrated the docked complexes' remarkable stability and maximum interactions, i.e., uniform RMSD, fluctuated RMSF, and lowest binding net energy. In silico models also predict the vaccine will stimulate a variety of immunological pathways following administration. These analyses suggest the vaccine's efficacy in inducing robust immune responses against A. hydrophila. With high solubility and no predicted allergic responses or toxicity, it appears safe for administration in both healthy and A. hydrophila-infected individuals.
Collapse
Affiliation(s)
- Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maher S. Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Saudi Arabia
| |
Collapse
|
20
|
Saichuer P, Khrisanapant P, Senapin S, Rattanarojpong T, Somsoros W, Khunrae P, Sangsuriya P. Evaluate the potential use of TonB-dependent receptor protein as a subunit vaccine against Aeromonas veronii infection in Nile tilapia (Oreochromis niloticus). Protein Expr Purif 2024; 215:106412. [PMID: 38104792 DOI: 10.1016/j.pep.2023.106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A. veronii, which plays a role in the virulence factor of the organism, could be useful in terms of protective antigens for vaccine development. This study aims to evaluate the potential use of Tdr protein as a novel subunit vaccine against A. veronii infection in Nile tilapia. The Tdr gene from A. veronii was cloned into the pET28b expression vector, and the recombinant protein was subsequently produced in Escherichia coli strain BL21 (DE3). Tdr was expressed as an insoluble protein and purified by affinity chromatography. Antigenicity test indicated that this protein was recognized by serum from A. veronii infected fish. When Nile tilapia were immunized with the Tdr protein, specific antibody levels increased significantly (p-value <0.05) at 7 days post-immunization (dpi), and peaked at 21 dpi compared to antibody levels at 0 dpi. Furthermore, bacterial agglutination activity was observed in the fish serum immunized with the Tdr protein, indicating that specific antibodies in the serum can detect Tdr on the bacterial cell surface. These results suggest that Tdr protein has potential as a vaccine candidate. However, challenging tests with A.veronii in Nile tilapia needs to be investigated to thoroughly evaluate its protective efficacy for future applications.
Collapse
Affiliation(s)
- Pornpavee Saichuer
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Prit Khrisanapant
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Wasusit Somsoros
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand.
| |
Collapse
|
21
|
Yang J, Xie J, Chen H, Zhu S, Hou X, Zhang Z. Diversity and Biological Characteristics of Seed-Borne Bacteria of Achnatherum splendens. Microorganisms 2024; 12:339. [PMID: 38399743 PMCID: PMC10892246 DOI: 10.3390/microorganisms12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
As a high-quality plant resource for ecological restoration, Achnatherum splendens has strong adaptability and wide distribution. It is a constructive species of alkaline grassland in Northwest China. The close relationship between seed-borne bacteria and seeds causes a specific co-evolutionary effect which can enhance the tolerance of plants under various stresses. In this study, 272 bacterial isolates were isolated from the seeds of Achnatherum splendens in 6 different provinces of China. In total, 41 dominant strains were identified, and their motility, biofilm formation ability and antibiotic resistance were analyzed. The results showed that the bacteria of Achnatherum splendens belonged to 3 phyla and 14 genera, of which Firmicutes was the dominant phylum and Bacillus was the dominant genus. The motility and biofilm formation ability of the isolated strains were studied. It was found that there were six strains with a moving diameter greater than 8 cm. There were 16 strains with strong biofilm formation ability, among which Bacillus with biofilm formation ability was the most common, accounting for 37.5%. The analysis of antibiotic resistance showed that sulfonamides had stronger antibacterial ability to strains. Correlation analysis showed that the resistance of strains to aminoglycosides (kanamycin, amikacin, and gentamicin) was significantly positively correlated with their biofilm formation ability. This study provides fungal resources for improving the tolerance of plants under different stresses. In addition, this is the first report on the biological characteristics of bacteria in Achnatherum splendens.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.X.); (H.C.); (S.Z.); (X.H.)
| |
Collapse
|
22
|
Carusi J, Kabuki DY, de Seixas Pereira PM, Cabral L. Aeromonas spp. in drinking water and food: Occurrence, virulence potential and antimicrobial resistance. Food Res Int 2024; 175:113710. [PMID: 38128981 DOI: 10.1016/j.foodres.2023.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Aeromonas sp. is a Gram-negative, non-spore-forming, rod-shaped, oxidase-positive, facultative anaerobic bacterium and a natural contaminant found in aquatic environments. Some species can invade, colonize, and damage host cells due to the presence of virulence factors, such as flagella, elastase, hemolysins, aerolysins, adhesins, enterotoxins, phospholipases and lipases, that lead to pathogenic activities. Consequently, can cause many health disorders that range from gastrointestinal problems, enteric infections, and ulcers to hemorrhagic septicemia. Aeromonas has been isolated and identified from a variety of sources, including drinking water and ready-to-eat foods (fish, meat, fresh vegetables, dairy products, and others). Some species of this opportunistic pathogen are resistant to several commercial antibiotics, including some used as a last resort for treatment, which represents a major challenge in the clinical segment. Antimicrobial resistance can be attributed to the indiscriminate use of antibiotics by society in aquaculture and horticulture. In addition, antibiotic resistance is attributed to plasmid transfer between microorganisms and horizontal gene transfer. This review aimed to (i) verify the occurrence of Aeromonas species in water and food intended for human consumption; (ii) identify the methods used to detect Aeromonas species; (iii) report on the virulence genes carried by different species; and (iv) report on the antimicrobial resistance of this genus in the last 5 years of research. Additionally, we present the existence of Aeromonas spp. resistant to antimicrobials in food and drinking water represents a potential threat to public health.
Collapse
Affiliation(s)
- Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Pedro Marques de Seixas Pereira
- Department of Mechanical Engineering, School of Engineering, São Paulo State University Júlio de Mesquita Filho (UNESP), Ilha Solteira, SP, Brazil
| | - Lucélia Cabral
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
23
|
Savita MK, Dwivedi V, Srivastava P. Deployment of in-silico analysis to reveal the antibacterial profiles of Allium sativum against Aeromonas hydrophila. J Biomol Struct Dyn 2023:1-15. [PMID: 38116953 DOI: 10.1080/07391102.2023.2294832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/02/2023] [Indexed: 12/21/2023]
Abstract
The key challenges in aquaculture are the emergence of antimicrobial resistance in fish cultivation due to the frequent use of antibiotics. Over the past three decades, this led to a major threat in the persistence of multidrug-resistant bacteria. Aeromonas hydrophila is a Gram-negative bacterium, a common causative agent of motile bacterial septicemia in fisheries. Combining these two key factors of the presented narrative, the essential type II topoisomerase enzyme 'DNA gyrase' (encoded by the gyrA and gyrB genes) as a potential drug target in Aeromonas hydrophila was taken, retrieve its sequence from UniProtKB (Id-A0KKQ2), constructs the 3-D structure using SWISS-MODEL (in absence of the experimental structure), and performs an in-silico screening of selected drug-like compounds (25 antibacterial phytochemicals) most of which are bioactive compounds of A. sativum through molecular docking. Quercetin a derivative of A. sativum was observed as a more potent drug molecule than other studied molecules based on ligand binding energy as docking score -7.812, showed highly encouraging results, supported by a study using structural dynamics of the receptor-ligand complex for a duration of 100 ns by Molecular Dynamic Simulations and confirm binding stability with MM-GBSA calculations. This study also provides theoretical grounds for drug discovery against other pathogenic bacteria posing threats to the ecosystem. Switching to herbal products is the best way to combat the plurality of problems to avoid seen or unseen post-treatment side effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vinay Dwivedi
- Department of Biotechnology, Naraina Vidyapeeth Engineering and Management Institute, Kanpur, Uttar Pradesh, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
24
|
Bernabè G, Brun P, Pietra GD, Zatta V, Asad S, Meneghello S, Cordioli G, Lavezzo E, Valente E, Mietto S, Besutti V, Castagliuolo I. Prevalence and virulence potential of Aeromonas spp. isolated from human diarrheal samples in North East Italy. Microbiol Spectr 2023; 11:e0080723. [PMID: 37855641 PMCID: PMC10715124 DOI: 10.1128/spectrum.00807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE In this work, we demonstrate the epidemiologic relevance of the Aeromonas genus as the cause of infective diarrhea in North East Italy, both in children and adult subjects, with the significative presence of highly pathogenic strains. Aeromonas strains possess a heterogeneous armamentarium of pathogenicity factors that allows the microbe to affect a wide range of human intestinal epithelial cell processes that justify the ability to induce diarrhea through different mechanisms and cause diseases of variable severity, as observed for other gastrointestinal pathogens. However, it remains to be determined whether specific genotype(s) are associated with clinical pictures of different severity to implement the diagnostic and therapeutic approaches for this relevant enteric pathogen.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Shirin Asad
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Meneghello
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisabetta Valente
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology Unit of Padua University Hospital, Padova, Italy
| | - Sofia Mietto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Valeria Besutti
- Microbiology Unit of Padua University Hospital, Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology Unit of Padua University Hospital, Padova, Italy
| |
Collapse
|
25
|
Legario FS, Choresca CH, Grace K, Turnbull JF, Crumlish M. Identification and characterization of motile Aeromonas spp. isolated from farmed Nile tilapia (Oreochromis niloticus) in the Philippines. J Appl Microbiol 2023; 134:lxad279. [PMID: 38012120 DOI: 10.1093/jambio/lxad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
AIMS Motile Aeromonas septicaemia (MAS) caused by motile Aeromonas species is an important disease in farmed freshwater fish due to intensification of culture and improper farm practices. This study characterized and profiled motile Aeromonas species recovered from clinically sick tilapia farmed in the Philippines, with a view to identifying targeted disease prevention and control measures against MAS in farmed tilapia species. METHODS AND RESULTS Sixteen isolates from diseased farmed Nile tilapia were identified as Aeromonas veronii (n = 14), Aeromonas caviae (n = 1), and Aeromonas dhakensis (n = 1). Five biochemical profiles using API 20E were exhibited by the A. veronii strains giving an unreliable identification. A high level of agreement was observed in identifying the Aeromonas strains using 16S rRNA and rpoD gene sequencing, although the latter has a higher discriminatory value. Three or more virulence genes dominated by cytotoxic enterotoxin act and aerolysin aer were detected. Different genotypes based on virulence gene clustering suggested varied mechanisms used by Aeromonas to colonize and infect or to mutualistically co-exist with the fish. Acquired multiple antibiotic resistance was found in a single A. veronii isolate. All were susceptible to enrofloxacin, oxolinic acid, florfenicol, and chloramphenicol. Tetracycline and sulfonamide resistances and class 1 integron were detected in three A. veronii isolates. CONCLUSION Several strains of motile aeromonads, especially A. veronii, which have varied genotypes based on virulence, biochemical profile, and antibiotic resistance, are involved in MAS in natural disease outbreaks in farmed Nile tilapia in the Philippines.
Collapse
Affiliation(s)
- Francis S Legario
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
- Natural Sciences Department, Iloilo Science and Technology University, Iloilo City, 5000, The Philippines
| | - Casiano H Choresca
- National Fisheries Research and Development Institute-Fisheries Biotechnology Centre, Science City of Muñoz, 3120, The Philippines
| | - Kathryn Grace
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - James F Turnbull
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Margaret Crumlish
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| |
Collapse
|
26
|
Basak C, Chakraborty R. Gut-immunity modulation in Lepidocephalichthys guntea during Aeromonas hydrophila-infection and recovery assessed with transcriptome data. Heliyon 2023; 9:e22936. [PMID: 38130423 PMCID: PMC10735050 DOI: 10.1016/j.heliyon.2023.e22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The fish immune system, which consists of innate and adaptive immunologic processes, defends against viruses, bacteria, fungi, and parasites. The gut immunity is an integral part of the host immune system that controls immunological homeostasis, hosts' interactions with their microbiomes, and provides defence against a number of intestinal infections. Lepidocephalichthys guntea, a facultative air-breathing fish, was experimentally infected with Aeromonas hydrophila using intraperitoneal injection followed by bath challenge, and transcriptome data were used to examine the gut immune responses during disease progression and recovery from the diseased state without the use of medication. For the control or uninfected fish (FGC) and the infected fish that were kept for seven days (FGE1) and fifteen days (FGE2), separate water tanks were set up. Coding DNA sequences (CDS) for FGC and FGE1, FGC and FGE2, and FGE1 and FGE2 were analyzed for differential gene expression (DGE). The presence and expression of genes involved in the T cell receptor (TCR) signalling pathway, natural killer (NK) cell-mediated cytotoxicity pathway, and complement-mediated pathway, along with a large number of other immune-related proteins, and heat shock protein (HSPs) under various experimental conditions and its relationship to immune modulation of the fish gut was the primary focus of this study. Significant up-and-down regulation of these pathways shows that, in FGE1, the fish's innate immune system was engaged, whereas in FGE2, the majority of innate immune mechanisms were repressed, and adaptive immunity was activated. Expression of genes related to the immune system and heat-shock proteins was induced during this host's immunological response, and this information was then used to build a thorough network relating to immunity and the heat-shock response. This is the first study to examine the relationship between pathogenic bacterial infection, disease reversal, and modification of innate and adaptive immunity as well as heat shock response.
Collapse
Affiliation(s)
- Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| |
Collapse
|
27
|
Srivastava A, Tripathy S, Gutte S, Sahu C, Gurjar M, Patel SS. Ventilator-associated pneumonia due to Aeromonas hydrophila: A rare case report. Access Microbiol 2023; 5:000672.v3. [PMID: 37970092 PMCID: PMC10634497 DOI: 10.1099/acmi.0.000672.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
Introduction Aeromonas hydrophila is an opportunistic pathogen that can cause various infections, including pneumonia, in immunocompromised individuals. This case report presents a rare occurrence of ventilator-associated pneumonia (VAP) caused by Aeromonas hydrophila in an apparently non-immunocompromised patient. Case presentation The patient exhibited signs and symptoms of VAP and was successfully treated with intravenous ciprofloxacin. The discussion highlights the characteristics of Aeromonas species, its virulence factors, risk factors for infection, and antibiotic profile. Conclusion It emphasizes the need for awareness and suspicion of Aeromonas as a potential cause of VAP in ICU settings, as well as the importance of early detection and appropriate treatment for improved outcomes.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| | - Sarvodaya Tripathy
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| | - Shreyas Gutte
- Department of Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| | - Mohan Gurjar
- Department of Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| | - Sangram Singh Patel
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| |
Collapse
|
28
|
Böer T, Bengelsdorf FR, Bömeke M, Daniel R, Poehlein A. Genome-based metabolic and phylogenomic analysis of three Terrisporobacter species. PLoS One 2023; 18:e0290128. [PMID: 37816002 PMCID: PMC10564238 DOI: 10.1371/journal.pone.0290128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Acetogenic bacteria are of high interest for biotechnological applications as industrial platform organisms, however, acetogenic strains from the genus Terrisporobacter have hitherto been neglected. To date, three published type strains of the genus Terrisporobacter are only covered by draft genome sequences, and the genes and pathway responsible for acetogenesis have not been analyzed. Here, we report complete genome sequences of the bacterial type strains Terrisporobacter petrolearius JCM 19845T, Terrisporobacter mayombei DSM 6539T and Terrisporobacter glycolicus DSM 1288T. Functional annotation, KEGG pathway module reconstructions and screening for virulence factors were performed. Various species-specific vitamin, cofactor and amino acid auxotrophies were identified and a model for acetogenesis of Terrisporobacter was constructed. The complete genomes harbored a gene cluster for the reductive proline-dependent branch of the Stickland reaction located on an approximately 21 kb plasmid, which is exclusively found in the Terrisporobacter genus. Phylogenomic analysis of available Terrisporobacter genomes suggested a reclassification of most isolates as T. glycolicus into T. petrolearius.
Collapse
Affiliation(s)
- Tim Böer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Frank R. Bengelsdorf
- Institute for Molecular Biology and Biotechnology of Prokaryotes, University Ulm, Ulm, Germany
| | - Mechthild Bömeke
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Luo T, Ren X, Fan L, Guo C, Zhang B, Bi J, Guan S, Ning M. Identification of two galectin-4 proteins (PcGal4-L and PcGal4-L-CRD) and their function in AMP expression in Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109040. [PMID: 37648118 DOI: 10.1016/j.fsi.2023.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Galectins, a family of lectins that bind to β-galactoside, possess conserved carbohydrate recognition domains (CRDs) and play a crucial role in recognizing and eliminating pathogens in invertebrates. Two galectin-4 genes (PcGal4) isoforms, named PcGal4-L and PcGal4-L-CRD, were cloned from the cDNA library of Procambarus clarkia in our study. PcGal4-L contains an open reading frame (ORF, 1089 bp), which encodes a protein consisting of 362 amino acids including a single CRD and six low complexity regions. The full-length cDNA of PcGal4-L-CRD contains a 483 bp ORF that encodes a protein of 160 amino acids, with a single CRD and a low-complexity region. The difference between the two PcGal4 isoforms is that PcGal4-L has 202 additional amino acids after the CRD compared to the PcGal4-L-CRD. These two isoforms are grouped together with other galectins from crustaceans through phylogenetic analysis. Further study revealed that total PcGal4 (including PcGal4-L and PcGal4-L-CRD) was primarily expressed in the muscle, gills and intestine. The mRNA levels of total PcGal4 in gills and hemocytes were significantly induced after challenge with Aeromonas hydrophila. Both recombinant PcGal4-L and its spliced isoform, PcGal4-L-CRD, could directly bind to lipopolysaccharides, peptidoglycan and five tested microorganisms, inducing a wide spectrum of microbial agglutination. The spliced isoform PcGal4-L-CRD showed a stronger binding ability than PcGal4-L. In addition, when the PcGal4 was knockdown, transcriptions of seven antimicrobial peptides (AMPs) genes (ALF5, ALF6, ALF8, CRU1, CRU2, CRU3 and CRU4) in gills and seven AMPs genes (ALF5, ALF6, ALF8, ALF9, CRU1, CRU3 and CRU4) in hemocytes were significantly decreased. Meanwhile, the survival rate of P. clarkii decreased in the PcGal4-dsRNA group. In summary, these results indicate that PcGal4 can mediate the innate immunity in P. clarkii by bacterial recognition and agglutination, as well as regulating AMP expression, thus recognition and understanding of the functions of galectin in crustaceans in immune resistance.
Collapse
Affiliation(s)
- Tingyi Luo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xianfeng Ren
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lixia Fan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changying Guo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Bingchun Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuai Guan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
30
|
Mulia DS, Pratiwi R, Asmara W, Azzam-Sayuti M, Yasin ISM, Isnansetyo A. Isolation, genetic characterization, and virulence profiling of different Aeromonas species recovered from moribund hybrid catfish ( Clarias spp.). Vet World 2023; 16:1974-1984. [PMID: 37859968 PMCID: PMC10583882 DOI: 10.14202/vetworld.2023.1974-1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim The high diversity of Aeromonas spp. results in various pathogenicity levels. This group of bacteria causes a serious disease named motile Aeromonas septicemia (MAS) in catfish (Clarias spp.). This study aimed to characterize the species and virulence gene diversity of Aeromonas spp. isolated from diseased catfish. Materials and Methods Nine Aeromonas spp. were isolated from infected catfish cultivated in Java, Indonesia, and they were identified at the phenotypic and molecular levels (16S rDNA). The virulence genes assessed included aer/haem, alt, ast, flaA, lafA, and fstA. Results Phylogenetic analysis identified nine isolates of Aeromonas spp.: Aeromonas hydrophila (11.11%), Aeromonas caviae (11.11%), Aeromonas veronii bv. veronii (44.44%), and Aeromonas dhakensis (33.33%). Virulence genes, such as aer/haem, alt, ast, flaA, lafA, and fstA, were detected in all isolates at frequencies of approximately 100%, 66.67%, 88.89%, 100%, 55.56%, and 66.67%, respectively. This study is the first report on A. dhakensis recovered from an Indonesian catfish culture. Furthermore, our study revealed the presence of A. veronii bv veronii, a biovar that has not been reported before in Indonesia. Conclusion This finding confirms that MAS was caused by multiple species of Aeromonas, notably A. dhakensis and A. veronii bv veronii, within Indonesian fish culture. The presence of these Aeromonas species with multiple virulence genes poses a significant threat to the freshwater aquaculture industry.
Collapse
Affiliation(s)
- Dini Siswani Mulia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Purwokerto, Jl. K.H. Ahmad Dahlan, Purwokerto 53182, Indonesia
| | - Rarastoeti Pratiwi
- Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Senolowo, Yogyakarta 55281, Indonesia
| | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna, Caturtunggal, Yogyakarta 55281, Indonesia
| | - Mohamad Azzam-Sayuti
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ina Salwany Md. Yasin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Alim Isnansetyo
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281, Indonesia
| |
Collapse
|
31
|
Lee HJ, Storesund JE, Lunestad BT, Hoel S, Lerfall J, Jakobsen AN. Whole genome sequence analysis of Aeromonas spp. isolated from ready-to-eat seafood: antimicrobial resistance and virulence factors. Front Microbiol 2023; 14:1175304. [PMID: 37455746 PMCID: PMC10348363 DOI: 10.3389/fmicb.2023.1175304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Aeromonas are widespread in aquatic environments and are considered emerging pathogens in humans and animals. Multidrug resistant (MDR) Aeromonas circulating in the aquatic environment and food production chain can potentially disseminate antimicrobial resistance (AMR) to humans via the foodborne route. In this study, we aimed to investigate AMR and virulence factors of 22 Aeromonas strains isolated from ready-to-eat (RTE) seafood. A multilocus phylogenetic analysis (MLPA) using the concatenated sequences of six housekeeping genes (gyrB, rpoD, gyrA, recA, dnaJ, and dnaX) in the 22 Aeromonas genomes and average nucleotide identity (ANI) analysis revealed eight different species; A. caviae, A. dhakensis, A. hydrophila, A. media, A. rivipollensis, A. salmonicida, A. bestiarum, and A. piscicola. The presence of virulence genes, AMR genes and mobile genetic elements (MGEs) in the Aeromonas genomes was predicted using different databases. Our data showed that the genes responsible for adherence and motility (Msh type IV pili, tap type IV pili, polar flagella), type II secretion system (T2SS) and hemolysins were present in all strains, while the genes encoding enterotoxins and type VI secretion system (T6SS) including major effectors were highly prevalent. Multiple AMR genes encoding β-lactamases such as cphA and blaOXA were detected, and the distribution of those genes was species-specific. In addition, the quinolone resistance gene, qnrS2 was found in a IncQ type plasmid of the A. rivopollensis strain A539. Furthermore, we observed the co-localization of a class I integron (intl1) with two AMR genes (sul1 and aadA1), and a Tn521 transposon carrying a mercury operon in A. caviae strain SU4-2. Various MGEs including other transposons and insertion sequence (IS) elements were identified without strongly associating with detected AMR genes or virulence genes. In conclusion, Aeromonas strains in RTE seafood were potentially pathogenic, carrying several virulence-related genes. Aeromonas carrying multiple AMR genes and MGEs could potentially be involved in the dissemination and spread of AMR genes to other bacterial species residing in the same environment and possibly to humans. Considering a One-Health approach, we highlight the significance of monitoring AMR caused by Aeromonas circulating in the food chain.
Collapse
Affiliation(s)
- Hye-Jeong Lee
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia E. Storesund
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Bjørn-Tore Lunestad
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
32
|
Abdel Rahman AN, Elsheshtawy HM, Yassin EMM, Omran A, Hashem MA, Eltanahy A, Khamis T, Ismail SH, Yousefi M, Mahboub HH. Hematological, immuno-antioxidant disruptions, and genes down-regulation induced by Aeromonas veronii challenge in Clarias gariepinus: The ameliorative role of silica nanoparticles. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108842. [PMID: 37209754 DOI: 10.1016/j.fsi.2023.108842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Aeromonas veronii is a pathogenic bacterium associated with various diseases in aquaculture. However, few studies address the antibacterial activity using nanoparticles (NPs). Hence, the current study is innovative to evaluate the antibacterial efficacy of silica nanoparticles (SiNPs) against A. veronii infection in-vitro with a trial for treatment in-vivo. Primarily, we assessed the in-vitro antibacterial activity against A. veronii. Further, we investigated the hematological profile, immune-antioxidant response, and gene expression of African catfish (Clarias gariepinus) in response to SiNPs exposure and the A. veronii challenge. Fish (N = 120; weight: 90 ± 6.19 g) were distributed into four groups (30 fish/group) for a ten-days-treatment trial. The first (control) and second (SiNPs) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively. The third (A. veronii) and fourth (SiNPs + A. veronii) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively, and infected with A. veronii (1.5×107 CFU/mL). Results demonstrated that SiNPs displayed an in-vitro antibacterial activity against A. veronii with a 21 mm inhibitory zone. A. veronii infection caused a high mortality rate (56.67%) and substantial reductions in hematological indices and immune indicators [nitric oxide (NO) and immunoglobulin M (IgM)]. Additionally, marked decline in the level of antioxidants [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione content (GSH)] as well as down-regulation in the immune-related genes [interleukins (IL-1β and IL-8) and tumor necrosis factor-alpha (TNF-α)] and antioxidant-related genes [SOD1, glutathione peroxidase (GPx), and glutathione-S-transferase (GST)] were the consequences of A. veronii infection. Surprisingly, treatment of A. veronii-infected fish with SiNPs lessened the mortality rate, enhanced the blood picture, modulated the immune-antioxidant parameters, and resulted in gene up-regulation. Overall, this study encompasses the significant role of SiNPs, a new versatile tool for combating hematological, immuno-antioxidant alterations, and gene down-regulation induced by A. veronii infection and sustainable aquaculture production.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, PO Box 41522, Ismailia, Egypt
| | - Engy Mohamed Mohamed Yassin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Ahmed Omran
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, PO Box 32897, Sadat City, Menofia, Egypt
| | - Marwa Abo Hashem
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, PO Box 41522, Ismailia, Egypt
| | - Azhar Eltanahy
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO Box 12588, Egypt
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, PO Box 117198, Russian Federation
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
33
|
Kurzylewska M, Bomba A, Dworaczek K, Pękala-Safińska A, Turska-Szewczuk A. Structure and gene cluster annotation of the O-antigen of Aeromonas sobria strain K928 isolated from common carp and classified into the new Aeromonas PGO1 serogroup. Carbohydr Res 2023; 528:108809. [PMID: 37086562 DOI: 10.1016/j.carres.2023.108809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Aeromonas sobria strain K928 was isolated from a common carp during a Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreak on a Polish fish farm and classified into the new provisional PGO1 serogroup. The lipopolysaccharide of A. sobria K928 was subjected to mild acid hydrolysis, and the O-specific polysaccharide, which was isolated by gel-permeation chromatography, was studied using sugar and methylation analyses and 1H and 13C NMR spectroscopy. The following structure of the branched O-specific polysaccharide repeating unit of A. sobria K928 was established. →2)[α-D-Fucp3NRHb-(1→3)]-α-L-Rhap-(1→3)-β-L-Rhap-(1→4)-α-L-Rhap-(1→3)-β-D-FucpNAc-(1→ The O-antigen gene cluster was identified and characterized in the genome of the A. sobria K928 strain after comparison with sequences in the available databases. The composition of the O-antigen genetic region was found to be consistent with the O-polysaccharide structure, and its organization was proposed.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
34
|
Bai L, Zhang H, Zhou Y, Liang H, Chen S, Pang X, Michael GM, Zhang L, Chen L. Development of a surface plasmon resonance (SPR) assay for rapid detection of Aeromonas hydrophila. Anal Biochem 2023; 670:115151. [PMID: 37028781 DOI: 10.1016/j.ab.2023.115151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Aquaculture plays an increasingly important if not critical role in the current and future world food supply. Aeromonas hydrophila, a heterotrophic, Gram-negative, bacterium found in fresh or brackish water in warm climates poses a serious threat to the aquaculture industry in many areas, causing significant economic losses. Rapid, portable detection methods of A. hydrophila are needed for its effective control and mitigation. We have developed a surface plasmon resonance (SPR) technique to detect PCR (polymerase chain reaction) products that can replace agarose gel electrophoresis, or otherwise provide an alternative to costlier and more complicated real-time, fluorescence-based detection. The SPR method provides sensitivity comparable to gel electrophoresis, while reducing labor, cross-contamination, and test time, and employs simpler instrumentation with lower cost than real-time PCR.
Collapse
Affiliation(s)
- Linyi Bai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Hao Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, PR China
| | - Yuan Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Hongkun Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Shujun Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Xuehui Pang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250000, PR China
| | - G Mauk Michael
- Department of Engineering Technology, Division of Engineering Management and Technology, College of Engineering, Drexel University, One Drexel Plaza, 3001 Market Street, Philadelphia, PA, 19104, USA
| | - Lulu Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China.
| |
Collapse
|
35
|
The first detection of two Aeromonas strains in mice of the genus Apodemus. Sci Rep 2023; 13:4315. [PMID: 36922567 PMCID: PMC10017686 DOI: 10.1038/s41598-023-31306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Aeromonas spp. are gram-negative facultatively anaerobic bacilli recovered mainly from aquatic environments. Aeromonas spp. were reported to be associated with infections primarily in aquatic and to a lesser extent in terrestrial animals as well as in humans. Up-to-date little is known about aeromonads associated with wild animals, especially with rodents. This study reported the first isolation and characterization of two Aeromonas spp. from internal organs of apparently healthy wild rodents Apodemus uralensis and Apodemus flavicollis captured in the wild environment in the European part of Russia. Isolates were identified as A. hydrophila M-30 and A. encheleia M-2 using the multilocus sequence analysis (MLSA) approach. The isolation of the A. encheleia from rodents is the first described case. Both strains demonstrated beta-hemolytic activity towards human erythrocytes. Antimicrobial susceptibility testing showed that both Aeromonas strains were resistant and intermediate to carbapenems and piperacillin-tazobactam, which was caused by the expression of the genus-specific CphA carbapenemases. A. hydrophila M-30 also demonstrated trimethoprim resistant phenotype. This is usually caused by the carriage of the dfrA or dfrB genes in aeromonads which are frequently associated with integron class I. The latter however was absent in both isolates. Our results expand our understanding of possible aeromonad reservoirs and demonstrate the likelihood of the formation of natural foci of Aeromonas infection and a new link in the chain of the spread of antimicrobial resistance as well.
Collapse
|
36
|
Zhao J, Li Y, Huang Y, Jin L, Xu Y, Xu M, Quan C, Chen M. Heterologous expression of quorum sensing transcriptional regulator LitR and its function in virulence-related gene regulation in foodborne pathogen Aeromonas hydrophila. Mol Biol Rep 2023; 50:2049-2060. [PMID: 36542235 DOI: 10.1007/s11033-022-07866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aeromonas hydrophila is an important foodborne and zoonotic pathogen causing serious diseases. Hence, revealing the pathogenic mechanism of A. hydrophila will be of importance in the development of novel therapies. Aeromonas hydrophila litR was reported to be regulated by two quorum sensing (QS) pathways, indicating that it is involved in QS network regulation correlated with bacterial virulence. However, the function of LitR is currently not understood. Therefore, we aimed to reveal the potential regulatory mechanisms of LitR on virulence-related genes. METHODS AND RESULTS In this study, amino acid sequences analysis of LitR was conducted, providing bioinformatics evidence for its function as a potential transcriptional regulator. LitR protein was heterologous expressed, purified and its in-vitro multimeric forms were observed with gel filtration chromatography. The correlation between intracellular LitR expression level and cell density was analyzed with immunoblots. Regulation mechanisms of LitR on several important virulence-related factors were investigated with qRT-PCR, EMSA, DNase I footprinting and microscale thermophoresis binding assays, etc. Results showed that recombinant LitR protein aggregated mainly as dimer and hexamer in vitro. Intracellular expression level of LitR was positively correlated with cell density of A. hydrophila. Furthermore, LitR exhibited complicated regulation modes on virulence-related genes; it could directly bind to promoter regions of the hemolysin, serine protease and T6SS effector protein VgrG encoded genes. The promoter region of the hemolysin gene showed high binding affinity and mainly two binding sites for LitR. Different dissociation constants were obtained for LitR interaction with the hemolysin gene binding motifs I and II. Assays focusing on physiological characteristics of A. hydrophila prove that LitR positively regulated hemolytic and total extracellular protease activities. CONCLUSIONS This study investigated the function of LitR as a quorum sensing transcriptional regulator in regulation of virulence-related genes, which will help reveal the mechanisms of A. hydrophila pathogenicity. LitR could serve as a potential target for development of new antimicrobial agents from the perspective of QS regulation.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yue Li
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Huang
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Menghao Xu
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
37
|
Attéré SA, Gagné-Thivierge C, Paquet VE, Leduc GR, Vincent AT, Charette SJ. Aeromonas salmonicida isolates from Canada demonstrate wide distribution and clustering among mesophilic strains. Genome 2023; 66:108-115. [PMID: 36780641 DOI: 10.1139/gen-2022-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.
Collapse
Affiliation(s)
- Sabrina A Attéré
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Cynthia Gagné-Thivierge
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Gabrielle R Leduc
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, 2425, rue de l'Agriculture, Quebec City, QC G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
38
|
Li J, Wu Z, Hou Y, Zhang YA, Zhou Y. Fur functions as an activator of T6SS-mediated bacterial dominance and virulence in Aeromonas hydrophila. Front Microbiol 2023; 13:1099611. [PMID: 36845974 PMCID: PMC9944043 DOI: 10.3389/fmicb.2022.1099611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Aeromonas hydrophila, a ubiquitous bacterium in aquatic habitats with broad host ranges, has earned the nickname of a 'Jack-of-all-trades'. However, there is still a limited understanding of the mechanism of how this bacterium fit the competition with other species in dynamic surroundings. The type VI secretion system (T6SS) is macromolecular machinery found in Gram-negative bacteria's cell envelope that is responsible for bacterial killing and/or pathogenicity toward different host cells. In this study, the depression of A. hydrophila T6SS under iron-limiting conditions was detected. The ferric uptake regulator (Fur) was then found to act as an activator of T6SS by directly binding to the Fur box region in vipA promoter in the T6SS gene cluster. The transcription of vipA was repressed in Δfur. Moreover, the inactivation of Fur resulted in considerable defects in the interbacterial competition activity and pathogenicity of A. hydrophila in vitro and in vivo. These findings provide the first direct evidence that Fur positively regulates the expression and functional activity of T6SS in Gram-negative bacteria and will help to understand the fascinating mechanism of competitive advantage for A. hydrophila in different ecological niches.
Collapse
Affiliation(s)
- Jihong Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuting Hou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Hubei Hongshan Laboratory, Wuhan, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,*Correspondence: Yong-An Zhang,
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China,Yang Zhou,
| |
Collapse
|
39
|
Zhang D, Li W, Hu X, Huang H, Zhang X. Requiring Reconsideration of Differences of Aeromonas Infections Between Extra-Intestinal and Intestinal in Hospitalized Patients. Infect Drug Resist 2023; 16:487-497. [PMID: 36721629 PMCID: PMC9884451 DOI: 10.2147/idr.s393347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose The purpose of this study is to examine the variations between extra-intestinal and intestinal infections of Aeromonas in terms of strain types, risk factors, drug susceptibility results, and the distribution of drug resistance and virulence genes. Patients and Methods A total of 188 Aeromonas strains were identified to the species level using housekeeping genes (rpoD, gyrB, and gyrA). The risk factors for Aeromonas extra-intestinal and intestinal infection, as well as mortality, were retrospectively examined in this study. The broth microdilution method was used to investigate the antimicrobial susceptibility profiles. Touchdown polymerase chain reaction (PCR) assays and DNA sequencing were employed to confirm virulence and the presence of drug resistance genes. Results The housekeeping genes identified 188 strains into 7 species. Extra-intestinal isolates generally contained A. caviae and A. hydrophila, while intestinal were A. veronii (p=0.0001). Extra-intestinal infections (158/188) were the main type and accounted for 24/27 of all fatalities. Malignant tumors, hepatobiliary diseases, anemia, and hypoproteinemia were linked to infections. Poor results were associated with septic shock. Using the broth microdilution method, over 80% isolates were susceptible to most antimicrobials, except for ceftazidime (79.8%) and ceftriaxone (69.7%). Except for imipenem, intestinal strains were more susceptible to other medications than extra-intestinal. Using touch-down polymerase chain reaction testing and DNA sequencing, 6 strains, 31 strains, and a strain only had bla TEM, bla CphA, and bla VIM, respectively. Two Aeromonas hydrophila each possessed bla CphA+ bla CTXM-M-9, and bla CphA + bla CTX-M-1 + bla CTX-M-15-like + bla TEM; two Aeromonas caviae each possessed bla NDM + bla CTX-M-1 +bla CTX-M-15-like + bla TEM, and bla NDM + bla TEM. Thirty-four of the 42 strains mentioned above were isolated from extra-intestinal. Act, aexT, and ascF-G, were in intestinal more frequently, but alt, hlyA, ela, and lip were in extra-intestinal more frequently. Conclusion Aeromonas inside and outside intestinal differed in their clinical characteristics, drug susceptibility, drug resistance and virulence genes.
Collapse
Affiliation(s)
- Daiqin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenting Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongyu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China,Correspondence: Xiaobing Zhang, Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Tel +86-15123967161, Fax +86-23-89012742, Email
| |
Collapse
|
40
|
Complete Genomic Sequences of Two Aeromonas hydrophila Isolates Derived from Diseased Fish in South Korea. Microbiol Resour Announc 2023; 12:e0078622. [PMID: 36475732 PMCID: PMC9872674 DOI: 10.1128/mra.00786-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aeromonas hydrophila is a Gram-negative pathogen that is associated with motile aeromonad septicemia in various fish species. Here, we report the complete genomic sequences of two A. hydrophila isolates derived from diseased fish in South Korea.
Collapse
|
41
|
Ruiz de Alegría-Puig C, Fernández-Martínez M, De Malet Pintos-Fonseca A. Epidemiology of Aeromonas spp. isolated from stool in a tertiary hospital in Cantabria, Northern Spain, in the last five years. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:211-214. [PMID: 36610831 DOI: 10.1016/j.eimce.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The role of Aeromonas species in gastrointestinal disease is controversial. The aim of this study was to know the epidemiological distribution of Aeromonas spp. isolated from stool in our health area, determine the existence of diarrhea as a significant symptom, identification of existing species in our environment and association as co-pathogen. METHODS It was a retrospective descriptive study of isolates of Aeromonas spp. in feces (2016-2020). The protocol for these isolates included coproculture, identification by MALDI-TOF (Vitek-MS®, BioMerieux) and confirmation by multiplex PCR. RESULTS A total of 366 Aeromonas spp. isolates were analyzed being Aeromonas caviae the most prevalent species (289, 78.7%). A total of 58 (15.8%) co-infections were identified, being more frequent in pediatric age (49;84.5%) (p=0.01) and mostly associated with Campylobacter spp. DISCUSSION Aeromonas spp. prove to be a gastrointestinal pathogen more frequently associated with co-infections in pediatric age, evidencing its appearance especially with Campylobacter spp.
Collapse
|
42
|
Lee HJ, Tokle IF, Lunestad BT, Lerfall J, Hoel S, Jakobsen AN. The effect of food processing factors on the growth kinetics of Aeromonas strains isolated from ready-to-eat seafood. Int J Food Microbiol 2023; 384:109985. [DOI: 10.1016/j.ijfoodmicro.2022.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
43
|
Miyagi K, Shimoji N, Oshiro H, Hirai I. Differences in flaA gene sequences, swimming motility, and biofilm forming ability between clinical and environmental isolates of Aeromonas species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11740-11754. [PMID: 36098923 DOI: 10.1007/s11356-022-22871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The flagellin A gene (flaA) sequences, swimming motility, and biofilm forming ability were investigated in order to reveal the genetic and functional differences of flagella between clinical and environmental isolates of Aeromonas species. Twenty-eight clinical and 48 environmental strains of Aeromonas species isolated in Okinawa Prefecture of Japan were used in this study. The full-length flaA genes of these strains were sequenced and aligned, and a phylogenetic tree was constructed. In addition, swimming motility and biofilm forming ability were evaluated by conventional methods. Aeromonas veronii biovar sobria and A. hydrophila clearly divided into clinical and environmental strain clusters in the flaA phylogenetic classification, and the six and 13 specific amino acids respectively, of FlaA of both species were different in clinical and environmental strains. Furthermore, the flaA size of the clinical strain of A. veronii bv. sobria was mainly 909, 924, and 939 bp, and the size of A. hydrophila was 909 bp. The swimming motility of clinical isolates of both species was lower than the environmental isolates; however, the biofilm forming ability of the clinical isolates was high. Thus, the clinical isolates of A. veronii bv. sobria and A. hydrophila had different genetic and functional characteristics of flagellin than the environmental isolates. The characteristics of flagellin could serve as indicators to distinguish between clinical and environmental isolates of the both species. It may contribute to diagnosis of these diseases and the monitoring of clinical strain invasion into the natural environment.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Noriaki Shimoji
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa, 901-2132, Japan
| | - Haruna Oshiro
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa, 901-2132, Japan
| | - Itaru Hirai
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan
| |
Collapse
|
44
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Xu X, Fu H, Wan G, Huang J, Zhou Z, Rao Y, Liu L, Wen C. Prevalence and genetic diversity of Aeromonas veronii isolated from aquaculture systems in the Poyang Lake area, China. Front Microbiol 2022; 13:1042007. [PMID: 36578578 PMCID: PMC9791064 DOI: 10.3389/fmicb.2022.1042007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The area around Poyang Lake is the main aquaculture area in Jiangxi Province, China, and an important base for the supply of freshwater aquatic products. Aquaculture in the Poyang Lake area is severely threatened by diseases caused by bacterial pathogens, and Aeromonas veronii has been the main pathogen in recent years. In this paper, ERIC-PCR genotyping, virulence gene and antimicrobial resistance gene detection, and drug susceptibility tests were carried out on 46 A. veronii isolates obtained from aquaculture systems in the Poyang Lake area from 2016 to 2020. The results showed that the A. veronii strains in the Poyang Lake area had high genetic diversity, and 46 strains produced 36 ERIC genotypes. There were no geographical and temporal differences in the cluster analysis results and no dominant clones. All 13 virulence genes tested were detected, and all isolates had harbored 2 or more virulence genes, with a maximum of 12 virulence genes detected. Among the 22 antimicrobial resistance genes selected, 15 were detected; 97.8% of the isolates contained 2 or more antimicrobial resistance genes, with a maximum of 9 antimicrobial resistance genes. Drug susceptibility tests showed that some strains were resistant to a variety of traditionally effective drugs for Aeromomas, such as enrofloxacin and florfenicol. This study provides a reference for exploring the impact of aquaculture in the Poyang Lake area on public health.
Collapse
Affiliation(s)
- Xiandong Xu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China,Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Huiyun Fu
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Guoyuan Wan
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Jiangfeng Huang
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Zhiyong Zhou
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Yi Rao
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Lihui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China,*Correspondence: Chungen Wen,
| |
Collapse
|
46
|
Ramirez CAB, Carriero MM, Leomil FSC, Moro de Sousa RL, de Miranda A, Mertins O, Mathews PD. Complexation of a Polypeptide-Polyelectrolytes Bioparticle as a Biomaterial of Antibacterial Activity. Pharmaceutics 2022; 14:2746. [PMID: 36559240 PMCID: PMC9786851 DOI: 10.3390/pharmaceutics14122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The development of biomaterials to enable application of antimicrobial peptides represents a strategy of high and current interest. In this study, a bioparticle was produced by the complexation between an antimicrobial polypeptide and the biocompatible and biodegradable polysaccharides chitosan-N-arginine and alginate, giving rise to a colloidal polyelectrolytic complex of pH-responsive properties. The inclusion of the polypeptide in the bioparticle structure largely increases the binding sites of complexation during the bioparticles production, leading to its effective incorporation. After lyophilization, detailed evaluation of colloidal structure of redispersed bioparticles evidenced nano or microparticles with size, polydispersity and zeta potential dependent on pH and ionic strength, and the dependence was not withdrawn with the polypeptide inclusion. Significant increase of pore edge tension in giant vesicles evidenced effective interaction of the polypeptide-bioparticle with lipid model membrane. Antibacterial activity against Aeromonas dhakensis was effective at 0.1% and equal for the isolated polypeptide and the same complexed in bioparticle, which opens perspectives to the composite material as an applicable antibacterial system.
Collapse
Affiliation(s)
- Carlos A. B. Ramirez
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Mateus M. Carriero
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Fernanda S. C. Leomil
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Ricardo L. Moro de Sousa
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Antonio de Miranda
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Omar Mertins
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Patrick D. Mathews
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| |
Collapse
|
47
|
Dubey S, Ager-Wick E, Peng B, Evensen Ø, Sørum H, Munang’andu HM. Characterization of virulence and antimicrobial resistance genes of Aeromonas media strain SD/21-15 from marine sediments in comparison with other Aeromonas spp. Front Microbiol 2022; 13:1022639. [PMID: 36532448 PMCID: PMC9752117 DOI: 10.3389/fmicb.2022.1022639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 10/03/2023] Open
Abstract
Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla MOX-9 and bla OXA-427 β-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.
Collapse
Affiliation(s)
- Saurabh Dubey
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hetron Mweemba Munang’andu
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
48
|
First Record of the Rare Species Aeromonas lusitana from Rainbow Trout (Oncorhynchus mykiss, Walbaum): Comparative Analysis with the Existing Strains. Pathogens 2022; 11:pathogens11111299. [DOI: 10.3390/pathogens11111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The species Aeromonas lusitana was first described in 2016 with five strains recovered from untreated water and vegetables from Portugal. Since then, no further records exist of this species. During a surveillance study on the presence of Aeromonas in fish farms in Mexico, a new strain (ESV-351) of the mentioned species isolated from a rainbow trout was recovered. It was identified because it clustered phylogenetically with the type strain of A. lusitana based on the analysis of the rpoD gene sequences. In the present study, phenotypic characteristics, antimicrobial resistance profiles, and the presence of putative virulence genes of this novel strain (ESV-351) were determined in parallel to the five isolates from the original species description. Phenotypic differential characteristics exhibited by A. lusitana ESV-351 depicted an evident similarity to the characteristics exhibited by the other evaluated strains. However, the novel strain was positive for the production of indole using conventional methods, while the rest of the strains, including the type strain, were negative for its production. Furthermore, intermediate resistance to ampicillin, amoxicillin-clavulanic acid and cephalothin was detected in both the novel and the type strain. Five different virulence-related genes were detected in the novel strain and in the previously described strains, with the type strain exhibiting the highest number of virulence-related genes. In addition to this, the genome of the novel strain (ESV-351) was sequenced and compared with the genomes from the type strain (A. lusitana CECT 7828T) and other Aeromonas spp. The genomic analysis defined Aeromonas tecta as the closest species to A. lusitana with a highly similar number of predicted proteins. The genomic size, the number of protein-encoding genes and the number of different tRNAs, among other characteristics, make it possible to propose that the ESV-351 strain could potentially have the capacity to adapt to different environments. Genome comparison of the ESV-351 strain with the type strain revealed that both possess a similar sequence of the citrate synthase gene. In addition to this finding, the chromosomal region containing the citrate synthase locus of the novel strain exhibits some similarity to the chromosomal region in the genome of the A. hydrophila type strain and other known human pathogens, such as Vibrio cholerae. This could suggest a possible virulence role for the citrate synthase gene in A. lusitana (ESV-351).
Collapse
|
49
|
Grave I, Rudzate A, Nagle A, Miklasevics E, Gardovska D. Prevalence of Aeromonas spp. Infection in Pediatric Patients Hospitalized with Gastroenteritis in Latvia between 2020 and 2021. CHILDREN 2022; 9:children9111684. [PMID: 36360412 PMCID: PMC9688984 DOI: 10.3390/children9111684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Purpose: Aeromonas species are emerging human enteric pathogens. However, there is no systematic analysis of Aeromonas infection in the pediatric population in Latvia. The aim of the study was to describe potential sources, prevalence of infection, associated virulence factors and antimicrobial resistance of Aeromonas spp. isolated from fecal samples. Methods: Stool samples (n = 1360) were obtained from the Children’s Clinical University Hospital between 2020 and 2021. The target population was pediatric patients, 0 to 18 years of age, with a preliminary diagnosis of gastroenteritis. Identification was performed by Maldi-TOF, antimicrobial resistance by Vitek2 and 9 virulence factors by polymerase chain reaction (PCR). Results: Aeromonas spp. were isolated in 50 stool samples; positive findings made up 3.6% of all study cases and included four species: A. hydrophila, A. caviae, A. veronii, and A. eucrenophila. In 42% of the samples, Aeromonas spp. appeared alongside the other significant pathogens: Campylobacter jejuni, Salmonella Enteritidis, Salmonella Typhimurium, Yersinia enterocolitica, norovirus, adenovirus, and rotavirus. The study population positive for Aeromonas spp. infection contained 28 male (56%) and 22 female (44%) patients; median age was 4.56 years. The most common symptoms were: diarrhea, blood in stool, vomiting, abdominal pain, and fever. Aside from expected natural resistance, no significant antibacterial resistance was detected. The presence of multiple virulence genes was noticed in all isolates. No statistically significant correlation was found between the virulence patterns, bacterial species, and the intensity of clinical symptoms. Discussion: According to the clinical data and the results of this study Aeromonas spp. has an important role in pediatric practice and requires appropriate attention and monitoring.
Collapse
Affiliation(s)
- Irina Grave
- Riga Stradins University, LV1007 Riga, Latvia
- Children Clinical University Hospital, Bernu Kliniska Universitates Slimnica, LV1004 Riga, Latvia
- Correspondence: ; Tel.: +371-29501301
| | - Aleksandra Rudzate
- Children Clinical University Hospital, Bernu Kliniska Universitates Slimnica, LV1004 Riga, Latvia
| | - Anda Nagle
- Children Clinical University Hospital, Bernu Kliniska Universitates Slimnica, LV1004 Riga, Latvia
| | | | - Dace Gardovska
- Children Clinical University Hospital, Bernu Kliniska Universitates Slimnica, LV1004 Riga, Latvia
- Department of Paediatrics, Riga Stradins University, LV1007 Riga, Latvia
| |
Collapse
|
50
|
Xiao G, Zheng X, Li J, Yang Y, Yang J, Xiao N, Liu J, Sun Z. Contribution of the EnvZ/OmpR two-component system to growth, virulence and stress tolerance of colistin-resistant Aeromonas hydrophila. Front Microbiol 2022; 13:1032969. [PMID: 36312957 PMCID: PMC9597241 DOI: 10.3389/fmicb.2022.1032969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2024] Open
Abstract
Aeromonas hydrophila is an important zoonotic pathogen responsible for septicemia, diarrhea and gastroenteritis, and has attracted considerable attention. The EnvZ/OmpR two-component system (TCS) mediates environmental stress responses in gram-negative bacteria. We investigated the role of the TCS in A. hydrophila by comparing the characteristics of the parental (23-C-23), EnvZ/OmpR knockout (23-C-23:ΔEnvZ/OmpR), and complemented strains (23-C-23:CΔEnvZ/OmpR). Under non-stress conditions, the 23-C-23:ΔEnvZ/OmpR strain showed a significant decrease in growth rate compared to that of 23-C-23. Transcriptome and metabonomic analysis indicated that many metabolic pathways were remarkably affected in the ΔEnvZ/OmpR strain, including the TCA cycle and arginine biosynthesis. In addition, the virulence of the ΔEnvZ/OmpR strain was attenuated in a Kunming mouse model. The ΔEnvZ/OmpR strain exhibited notably reduced tolerance to environmental stresses, including high temperature, different pH conditions, oxidative stress, and high osmotic stress. The downregulated expression of genes related to cell metabolism, motility, and virulence in the ΔEnvZ/OmpR mutant strain was further validated by real-time quantitative PCR. Consequently, our data suggest that the EnvZ/OmpR TCS is required for growth, motility, virulence, and stress response in A. hydrophila, which has significant implications in the development of novel antibacterial and vaccine therapies targeting EnvZ/OmpR against A. hydrophila.
Collapse
Affiliation(s)
- Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Ning Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Junqi Liu
- Veterinary Drug Laboratory, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|