1
|
Brandolini M, Ingletto L, Dirani G, Zannoli S, Lapusneanu AM, Guerra M, De Pascali AM, Lelli D, Defilippo F, Lavazza A, Calzolari M, Dottori M, Dionisi L, Colosimo C, Gatti G, Marzucco A, Montanari MS, Grumiro L, Cricca M, Scagliarini A, Sambri V. Development of a novel amplicon based whole-genome sequencing framework for improved surveillance of Toscana virus. Commun Biol 2025; 8:714. [PMID: 40341306 PMCID: PMC12062441 DOI: 10.1038/s42003-025-08159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Toscana virus (TOSV), a Phlebovirus transmitted by sandflies, is a leading cause of aseptic meningitis in the Mediterranean region. Despite its clinical significance, underreporting and limited availability of complete genomic data hinder a thorough understanding of its genetic diversity and evolution. This study presents a novel amplicon-based whole-genome sequencing (WGS) method using Illumina library preparation kits and proprietary software to optimize workflows and enhance bioinformatic analyses. Primers targeting TOSV lineage A genomes were designed with PrimalScheme to generate 400 bp amplicons, incorporating degenerate bases to improve coverage. Library preparation utilized Illumina Microbial Amplicon Prep (iMAP) kits, followed by de novo assembly using BaseSpace DRAGEN Targeted Microbial software. The method's sensitivity was tested on viral propagates at various RNA concentrations (104 to 10 copies/μL), demonstrating robust performance at concentrations above 102 copies/μL. Validation on high-titre viral propagates (n = 7), low-titre clinical samples (n = 15), and phlebotomine pools (n = 5) confirmed its reproducibility and ability to comprehensively cover coding regions. Cerebrospinal fluid samples yielded the most consistent results compared to urine and sandfly pools. This innovative WGS approach represents a significant advancement in TOSV genomic surveillance, enabling large-scale studies of its genetic diversity and evolutionary dynamics, which are critical for improving diagnostics and public health strategies.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy.
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Ludovica Ingletto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
| | | | - Massimiliano Guerra
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
| | - Alessandra Mistral De Pascali
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), Brescia, Italy
| | - Francesco Defilippo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), Brescia, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), Brescia, Italy
| | - Laura Dionisi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Claudia Colosimo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giulia Gatti
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Anna Marzucco
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
| | - Maria Sofia Montanari
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Laura Grumiro
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Scagliarini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Jancarova M, Polanska N, Thiesson A, Arnaud F, Stejskalova M, Rehbergerova M, Kohl A, Viginier B, Volf P, Ratinier M. Susceptibility of diverse sand fly species to Toscana virus. PLoS Negl Trop Dis 2025; 19:e0013031. [PMID: 40315233 PMCID: PMC12047804 DOI: 10.1371/journal.pntd.0013031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
Toscana virus (TOSV) is an emerging but neglected human pathogen currently circulating around the Mediterranean basin including North Africa. Human illness ranges from asymptomatic or mild flu-like syndromes to severe neurological diseases such as meningitis or meningoencephalitis. Despite its significant impact, understanding of TOSV transmission and epidemiology remains limited. Sand flies (Diptera: Phlebotominae), specifically Phlebotomus perniciosus and Phlebotomus perfiliewi, are believed to be the primary vectors of TOSV. However, the spread of TOSV to new geographical areas and its detection in other sand fly species suggest that additional species play a role in the circulation and transmission of this virus. This study investigated the vector competence of four sand fly species - P. tobbi, P. sergenti, P. papatasi, and Sergentomyia schwetzi - for two TOSV strains: 1500590 (TOSV A lineage) and MRS20104319501 (TOSV B lineage). Sand flies were orally challenged with TOSV via bloodmeals. None of the tested species showed susceptibility to the TOSV A strain. However, for TOSV B strain, P. tobbi demonstrated a high potential as a new vector, exhibiting high infection and dissemination rates. P. sergenti also showed some susceptibility to TOSV B, with the virus dissemination observed in all infected females. These finding suggests that P. tobbi and P. sergenti are new potential vectors for TOSV B. Given that P. tobbi and P. sergenti are the primary vectors of human leishmaniases in the Balkans, Turkey and Middle East, their susceptibility to TOSV could have significant epidemiological consequences. On the other hand, P. papatasi and S. schwetzi appeared refractory to TOSV B infection. Refractoriness of P. papatasi, a highly anthropophilic species distributed from the Mediterranean to the Middle East and India, suggests that this species does not contribute to TOSV circulation.
Collapse
Affiliation(s)
- Magdalena Jancarova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikola Polanska
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Adrien Thiesson
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Marketa Stejskalova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marketa Rehbergerova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Barbara Viginier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Petr Volf
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| |
Collapse
|
3
|
Ayhan N, Eldin C, Charrel R. Toscana virus: A comprehensive review of 1381 cases showing an emerging threat in the Mediterranean regions. J Infect 2025; 90:106415. [PMID: 39828129 DOI: 10.1016/j.jinf.2025.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Toscana virus (TOSV) is a sand fly-borne phlebovirus causing central nervous system (CNS) infection in Mediterranean countries, during summer season. However, clinical aspects of the disease caused by this virus are poorly known by clinicians, so that its prevalence is probably underestimated due to a lack of diagnosis. STUDY DESIGN The data was gathered from all available case series and retrospective studies identifying TOSV as the causative viral agent. The informations of age, sex, clinical characteristics, laboratory findings, imaging results and clinical outcomes of TOSV infection were recorded and analyzed. RESULTS A total of 95 articles including TOSV infections resulting in a total of 1381 cases, were analyzed. Our findings indicate that TOSV affects individuals across various age groups, with a median age of 44.45 years. A notable disparity in infection rates between genders, with men being significantly more likely to present symptoms due to TOSV than women, with a sex ratio of 2.0. The clinical presentation of TOSV infection encompasses a range of symptoms, including fever, headache, retro-orbital pain, neurological and muscular manifestations with less common reports of cutaneous and gastrointestinal symptoms. To date, six fatalities have been attributed to TOSV infections, with a median age of 76 years. Diagnostic evaluation of TOSV infections often involves the analysis of cerebrospinal fluid, where findings may include an elevated white blood cell count. CONCLUSIONS These findings underscore the diverse clinical manifestations of TOSV infections including flu like symtomps. TOSV is an emerging infectious threat that warrants inclusion in the diagnostic protocols for patients presenting with CNS, particularly within the Mediterranean basin or for those with recent travel history to endemic regions during warmer months when sand flies are actively circulating.
Collapse
Affiliation(s)
- Nazli Ayhan
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France; Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France.
| | - Carole Eldin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France; Laboratoire des Infections Virales Aigues et Tropicales, Pole des Maladies Infectieuses, AP-HM Hopitaux Universitaires de Marseille, France.
| | - Remi Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France; Laboratoire des Infections Virales Aigues et Tropicales, Pole des Maladies Infectieuses, AP-HM Hopitaux Universitaires de Marseille, France; Le Service de Prévention du Risque Infectieux (LESPRI), CLIN AP-HM Hôpitaux Universitaires de Marseille, France.
| |
Collapse
|
4
|
Trifonova I, Ngoc K, Gladnishka T, Panayotova E, Taseva E, Ivanova V, Vladimirova I, Kuteva E, Christova I. Prevalence of Toscana Virus Antibodies in Residents of Bulgaria: A Nationwide Study Following the Pandemic of COVID-19. Vector Borne Zoonotic Dis 2025; 25:142-147. [PMID: 39388109 DOI: 10.1089/vbz.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Introduction: Toscana virus (TOSV) is an arthropod-borne virus transmitted by sandflies and is mainly found in countries around the Mediterranean basin. In this article, we present the findings of a seroprevalence study on TOSV in Bulgaria. We aim to assess the current epidemiological situation regarding TOSV in the country and raise clinical awareness. Methods: Serum samples (n = 1892) were collected in December 2023. Serological tests were performed using a commercial anti-TOSV ELISA kit. Results: Specific immunoglobulin G (IgG) antibodies were detected in 6.4% (121/1892) of the participants. A significantly higher seropositivity rate was found in the age group over 65 years compared with the age groups 18-29 and 40-64 (11.8% vs. 3.9% vs. 3.4%), as well as in males compared with females (8.0% vs. 5.3%). The seroprevalence rates in districts ranged from 0% to 18.5%. Higher seropositivity was found in the southern and northern regions. Conclusions: The seroprevalence rate of TOSV in Bulgaria, found in this study, is a significant decrease compared with the seropositivity rate of 24.5% reported in the country in 2018. The reasons for this are unknown and could possibly be related to the COVID-19 pandemic and the constantly changing environmental conditions. There is also a possibility that the higher seropositivity detected in 2018 together with the rise in clinical cases reported from endemic countries around that time might have been due to an unrecognized TOSV outbreak taking place in this period. Continued clinical awareness and surveillance are necessary for recognition and management of potential cases of TOSV neuroinfection, especially during summer.
Collapse
Affiliation(s)
- Iva Trifonova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Kim Ngoc
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Teodora Gladnishka
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Elitsa Panayotova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Evgenia Taseva
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Vladislava Ivanova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iva Vladimirova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Eleonora Kuteva
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iva Christova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
5
|
Fotakis EA, Di Maggio E, Del Manso M, Mateo-Urdiales A, Petrone D, Fabiani M, Perego G, Bella A, Bongiorno G, Bernardini I, Di Luca M, Venturi G, Fortuna C, Giannitelli S, Ferraro F, Maraglino F, Pezzotti P, Palamara AT, Riccardo F. Human neuroinvasive Toscana virus infections in Italy from 2016 to 2023: Increased incidence in 2022 and 2023. Euro Surveill 2025; 30:2400203. [PMID: 39819339 PMCID: PMC11740290 DOI: 10.2807/1560-7917.es.2025.30.2.2400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 01/19/2025] Open
Abstract
BackgroundToscana virus (TOSV) is transmitted to humans through bites of infected sand flies. Neuroinvasive TOSV infections are leading causes of meningitis/encephalitis in southern Europe and notifiable in Italy since 2016. In 2022-23, Italy experienced extreme climate anomalies and a concomitant increase in mosquito and tick-borne disease transmission.AimTo identify the spatiotemporal distribution and risk groups of neuroinvasive TOSV infections in Italy in 2022-23 vs 2016-21.MethodsWe retrospectively described all autochthonous, laboratory-confirmed neuroinvasive TOSV cases notified to the national surveillance system in 2016-23 using frequencies, proportions, incidences and incidence risk ratios (IRRs) with 95% CIs, stratified by year, sex, age, region/autonomous province (AP) of infection/exposure and infection/exposure municipality by urbanisation level.ResultsIn 2022-23, 276 cases were notified (average annual incidence: 2.34/1,000,000 population) vs 331 cases in 2016-21 (0.92/1,000,000), with increased incidence extending into September. In 2022-23, infections were acquired in 12/21 regions/APs, predominantly in Emilia Romagna (57.6%; 159/276) as in 2016-21, including four regions/APs with no local infections in 2016-21. Similar to 2016-21, during 2022-23 residence in rural municipalities (vs urban), male sex, working age (19-67 years) and age > 67 years (vs ≤ 18 years) were identified as risk factors with IRRs of 2.89 (95% CI: 2.01-4.17), 2.17 (95% CI: 1.66-2.84), 5.31 (95% CI: 2.81-10.0) and 5.06 (95% CI: 2.59-9.86), respectively.ConclusionItaly experienced a nearly 2.6-fold increase in neuroinvasive TOSV incidence in 2022-23 vs 2016-21. Raising public awareness on risk factors and personal protection measures may enhance prevention efforts.
Collapse
Affiliation(s)
- Emmanouil Alexandros Fotakis
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Elisa Di Maggio
- Hygiene Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Martina Del Manso
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Daniele Petrone
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Massimo Fabiani
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Giulia Perego
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università Vita-Salute San Raffaele, Milan, Italy
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Antonino Bella
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Gioia Bongiorno
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Ilaria Bernardini
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Giulietta Venturi
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Claudia Fortuna
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Federica Ferraro
- Ministry of Health, Directorate-General for Health Prevention, Rome, Italy
| | | | - Patrizio Pezzotti
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Flavia Riccardo
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
6
|
Hong XG, Zhang MQ, Tang F, Song SH, Wang JY, Hu ZY, Liu LM, Zhang XA, Sun Y, Fang LQ, Liu W. Epidemiology and Ecology of Toscana Virus Infection and Its Global Risk Distribution. Viruses 2024; 17:15. [PMID: 39861803 PMCID: PMC11768567 DOI: 10.3390/v17010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Toscana virus (TOSV), a member of the Phlebovirus genus transmitted by sandflies, is acknowledged for its capacity to cause neurological infections and is widely distributed across Mediterranean countries. The potential geographic distribution and risk to the human population remained obscure due to its neglected nature. We searched PubMed and Web of Science for articles published between 1 January 1971 and 30 June 2023 to extract data on TOSV detection in vectors, vertebrates and humans, clinical information of human patients, as well as the occurrence of two identified sandfly vectors for TOSV. We further predicted the global distribution of the two sandfly vectors, based on which the global risk of TOSV was projected, after incorporating the environmental, ecoclimatic, biological, and socioeconomic factors. A total of 1342 unique studies were retrieved, among which 389 met the selection criteria and were included for data extraction. TOSV infections were documented in 10 sandfly species and 14 species of vertebrates, as well as causing a total of 7571 human infections. The occurrence probabilities of two sandfly vectors have demonstrated the greatest contributions to the potential distribution of TOSV infection risk. This study provides a comprehensive overview of global TOSV distribution and potential risk zones. Future surveillance and intervention programs should prioritize high-risk areas based on updated quantitative analyses.
Collapse
Affiliation(s)
- Xue-Geng Hong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
- The 960th Hospital of the PLA Joint Logistics Support Force, Jinan 250031, China
| | - Mei-Qi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
| | - Fang Tang
- Institute of Medical Prevention and Control of Public Health Emergencies, Characteristic Medical Center of the Chinese People’s Armed Police Force, Beijing 102613, China;
| | - Si-Hui Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
| | - Jia-Yi Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
| | - Zhen-Yu Hu
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China;
| | - Li-Ming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China;
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (X.-G.H.); (M.-Q.Z.); (S.-H.S.); (J.-Y.W.); (X.-A.Z.); (Y.S.)
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China;
| |
Collapse
|
7
|
Keskek Turk Y, Ergunay K, Kohl A, Hughes J, McKimmie CS. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. J Gen Virol 2024; 105:002045. [PMID: 39508743 PMCID: PMC11542635 DOI: 10.1099/jgv.0.002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Toscana virus (TOSV) is an emerging arthropod-borne virus (arbovirus) of medical importance that is increasing its range across much of the Mediterranean Basin, Europe and the Middle East. Transmitted by Phlebotomus spp. sand flies, it is the most clinically relevant sand fly-borne phlebovirus. Initially isolated in the Tuscany region of Central Italy, it has now been detected in multiple countries that surround this geographical area. Infection of the vertebrate host can cause fever and neurological disease, following the dissemination of the virus to the brain. The prevalence is high in some regions, with a notable percentage of individuals showing seroconversion. TOSV can be a leading cause of acute meningitis and encephalitis (AME) during the summer months. In this comprehensive review, we will focus on several key topics. We discuss how TOSV has spread to establish outbreaks of infection in both humans and animals around the Mediterranean and the wider region. Clinical aspects of TOSV infection in humans are described, along with the best standards in diagnosis. Finally, we focus our discussion on the role of the sand fly vector, describing their biology, vector competency, implications for putative vertebrate reservoirs, the effect of the climate emergency on sand fly distribution and the putative role that sand fly-derived salivary factors may have on modulating host susceptibility to TOSV infection.
Collapse
Affiliation(s)
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, USA
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Clive S. McKimmie
- Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| |
Collapse
|
8
|
Laroche L, Bañuls AL, Charrel R, Fontaine A, Ayhan N, Prudhomme J. Sand flies and Toscana virus: Intra-vector infection dynamics and impact on Phlebotomus perniciosus life-history traits. PLoS Negl Trop Dis 2024; 18:e0012509. [PMID: 39321202 PMCID: PMC11458028 DOI: 10.1371/journal.pntd.0012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/07/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Toscana virus (TOSV) is a leading cause of summer viral meningitis in Southern Europe (Central Italy, south of France, Spain and Portugal) and can cause severe neurological cases. Within the Mediterranean basin, it is transmitted by hematophagous sand flies belonging to the Phlebotomus genus. Despite the identification of the primary TOSV vectors, the viral developmental cycle in vector species remains largely unknown. Limited research has been conducted on transmission dynamics and the vector competence and vectorial capacity of the principal TOSV vector, Phlebotomus perniciosus. In this context, we investigated the intra-vector TOSV infection dynamics in Ph. perniciosus, as well as its impact on the vector life history traits. Female sand flies were experimentally infected with TOSV through an artificial blood meal. Systemic dissemination of the virus was observed approximately three days post-infection, potentially resulting in a short extrinsic incubation period. Moreover, the study revealed a longer hatching time for eggs laid by infected females. This research brought additional experimental insights regarding the vector competence of Ph. perniciosus but also provided the first insight into TOSV developmental cycle and its impact on the vector. These findings prompt further exploration of TOSV transmission dynamics, raise new hypotheses on the virus transmission and highlight the importance of follow-up studies.
Collapse
Affiliation(s)
- Lison Laroche
- MIVEGEC, Université de Montpellier – IRD – CNRS, Centre IRD, Montpellier, France
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne-Laure Bañuls
- MIVEGEC, Université de Montpellier – IRD – CNRS, Centre IRD, Montpellier, France
| | - Rémi Charrel
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Albin Fontaine
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Unité de virologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Nazli Ayhan
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Marseille, France
| | - Jorian Prudhomme
- MIVEGEC, Université de Montpellier – IRD – CNRS, Centre IRD, Montpellier, France
- Université de Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement Travail), UMR_S 1085, Rennes, France
| |
Collapse
|
9
|
Prudhomme J, Depaquit J, Robert-Gangneux F. Phlebotomine sand fly distribution and abundance in France: A systematic review. Parasite 2024; 31:45. [PMID: 39109982 PMCID: PMC11305120 DOI: 10.1051/parasite/2024045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Global changes in climate are contributing to modified Phlebotomine sand fly presence and activity, and the distribution of the pathogens they transmit (e.g., Leishmania and Phlebovirus), and are leading to their possible extension toward northern France. To predict the evolution of these pathogens and control their spread, it is essential to identify and characterize the presence and abundance of potential vectors. However, there are no recent publications describing sand fly species distribution in France. Consequently, we carried out a systematic review to provide distribution and abundance maps over time, along with a simplified dichotomous key for species in France. The review adhered to PRISMA guidelines, resulting in 172 relevant capture reports from 168 studies out of the 2646 documents retrieved, of which 552 were read and 228 analyzed. Seven species were recorded and categorized into three groups based on their abundance: low abundance species, abundant but little-studied species, and abundant vector species. Sand flies are certainly present throughout France but there is a greater diversity of species in the Mediterranean region. Phlebotomus perniciosus and Ph. ariasi are the most abundant and widely distributed species, playing a role as vectors of Leishmania. Sergentomyia minuta, though very abundant, remains under-studied, highlighting the need for further research. Phlebotomus papatasi, Ph. perfiliewi, Ph. sergenti, and Ph. mascittii are present in low numbers and are less documented, limiting understanding of their potential role as vectors. This work provides the necessary basis for comparison of field data generated in the future.
Collapse
Affiliation(s)
- Jorian Prudhomme
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR_S 1085 35000 Rennes France
| | - Jérôme Depaquit
- Université de Reims Champagne-Ardenne, Faculté de Pharmacie, UR EpidémioSurveillance et Circulation de Parasites dans les Environnements (ESCAPE), and ANSES, USC Pathogènes-Environnement-Toxoplasme-Arthropodes-Réservoirs-bioDiversité (PETARD) Reims France
- Centre Hospitalo-Universitaire, Laboratoire de Parasitologie-Mycologie 51092 Reims France
| | - Florence Robert-Gangneux
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR_S 1085 35000 Rennes France
| |
Collapse
|
10
|
Amaro F, Vilares A, Martins S, Reis T, Osório HC, Alves MJ, Gargaté MJ. Co-Circulation of Leishmania Parasites and Phleboviruses in a Population of Sand Flies Collected in the South of Portugal. Trop Med Infect Dis 2023; 9:3. [PMID: 38276633 PMCID: PMC10821132 DOI: 10.3390/tropicalmed9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
In the Old World, phlebotomine sand flies from the genus Phlebotomus are implicated in the transmission of Leishmania spp. parasites (Kinetoplastida: Trypanosomatidae) and viruses belonging to the genus Phlebovirus (Bunyavirales: Phenuiviridae). Two of the five sand fly species known to occur in Portugal, Phlebotomus perniciosus and Ph. ariasi, the former being the most ubiquitous, are recognized vectors of Leishmania infantum, which causes visceral leishmaniasis, the most prevalent form of leishmaniasis in the country. Phlebotomus perniciosus is also the vector of the neurotropic Toscana virus, which can cause aseptic meningitis. Entomological surveillance is essential to provide fundamental data about the presence of vectors and the pathogens they can carry. As such, and given the lack of data in Portugal, an entomological survey took place in the Algarve, the southernmost region of the country, from May to October 2018. Polymerase chain reaction assays were performed in order to detect the presence of the above-mentioned pathogens in sand fly pools. Not only were both Leishmania parasites and phleboviruses detected during this study, but more importantly, it was the first time their co-circulation was verified in the same sand fly population collected in Portugal.
Collapse
Affiliation(s)
- Fátima Amaro
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, No. 5, 2965-575 Águas de Moura, Portugal; (H.C.O.); (M.J.A.)
- Environment and Infectious Diseases Research Group, Environmental Health Institute, 1649-028 Lisboa, Portugal
- Centre for Animal Science Studies (CECA), University of Porto, 4050-453 Porto, Portugal
| | - Anabela Vilares
- National Reference Laboratory of Parasitic and Fungal Infections, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; (A.V.); (S.M.); (T.R.); (M.J.G.)
| | - Susana Martins
- National Reference Laboratory of Parasitic and Fungal Infections, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; (A.V.); (S.M.); (T.R.); (M.J.G.)
| | - Tânia Reis
- National Reference Laboratory of Parasitic and Fungal Infections, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; (A.V.); (S.M.); (T.R.); (M.J.G.)
| | - Hugo Costa Osório
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, No. 5, 2965-575 Águas de Moura, Portugal; (H.C.O.); (M.J.A.)
- Environment and Infectious Diseases Research Group, Environmental Health Institute, 1649-028 Lisboa, Portugal
| | - Maria João Alves
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, No. 5, 2965-575 Águas de Moura, Portugal; (H.C.O.); (M.J.A.)
- Environment and Infectious Diseases Research Group, Environmental Health Institute, 1649-028 Lisboa, Portugal
- Centre for Animal Science Studies (CECA), University of Porto, 4050-453 Porto, Portugal
| | - Maria João Gargaté
- National Reference Laboratory of Parasitic and Fungal Infections, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; (A.V.); (S.M.); (T.R.); (M.J.G.)
| |
Collapse
|
11
|
Sellali S, Lafri I, Ayhan N, Medrouh B, Messahel NE, Lafri M, Charrel R, Bitam I. Neutralizing based seroprevalence study of Toscana virus in livestock from Algeria. Comp Immunol Microbiol Infect Dis 2023; 103:102075. [PMID: 37922744 DOI: 10.1016/j.cimid.2023.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
Toscana virus is a sandfly-borne human pathogen belonging to Phlebovirus genus into Phenuiviridae family. It is emerging in north Africa posing a complex threat to public health. TOSV is heavily affecting sandfly-exposed people in northern Algeria. A larger distribution has recently been stated in Algeria by using dog sera. Dog exposure to TOSV was repeatedly identified in north Algeria, with 4.56% lately detected to possess respective neutralizing antibodies. However, evidence for TOSV has only been observed in dogs among various species of domestic animals. Therefore, we attempted to assess sera from 221 livestock comprising cattle, sheep, goats, rabbits and horses, to identify the presence of TOSV neutralizing antibodies. The study was conducted during 2017, in 11 areas from the governorates of Blida, Medea, Algiers, Tipaza, Ain Defla, Tissemsilt in the north center, and Setif, Mila, Tizi Ouzou, Jijel in the northeast of Algeria. Positive results were obtained in 14.6% (12/82) cattle, 17.18% (11/64) sheep, 15% (3/20) horses and 3.33% (1/30) goats, whereas rabbits remained negative. Positive samples originated mainly from the north centre, with new areas being first-ever detected. The seroprevalence was noticed to be very strongly related to sample origin (p < 0.01). Females (OR=4.09) were observed to be more likely infected. Our findings represent a further proof of TOSV circulation in Algeria. Moreover, they revealed a potential role of livestock (p = 0.00731) in its natural cycle. This fact emphasize how important is to elucidate the exact contribution of livestock to the epidemiology of sandfly-borne phleboviruses, and their impact on public health.
Collapse
Affiliation(s)
- Sabrina Sellali
- Institut des Sciences Vétérinaires, Université Blida 1, Blida, Algeria; Laboraoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Institut des Sciences Vétérinaires Université Blida 1, Blida, Algeria
| | - Ismail Lafri
- Institut des Sciences Vétérinaires, Université Blida 1, Blida, Algeria; Laboraoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Institut des Sciences Vétérinaires Université Blida 1, Blida, Algeria
| | - Nazli Ayhan
- Unité des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Bachir Medrouh
- Center of Research in Agro-pastoralism, Djelfa 17000, Algeria
| | | | - Mohamed Lafri
- Institut des Sciences Vétérinaires, Université Blida 1, Blida, Algeria; Laboraoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Institut des Sciences Vétérinaires Université Blida 1, Blida, Algeria
| | - Remi Charrel
- Unité des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Idir Bitam
- Center of Research in Agro-pastoralism, Djelfa 17000, Algeria.
| |
Collapse
|
12
|
Al-Tawfiq JA, Hedrich N, Lovey T, Gautret P, Schlagenhauf P. Infectious disease risks at the Rugby World Cup 2023 in France - Beware of Aedes and co! New Microbes New Infect 2023; 54:101178. [PMID: 37849621 PMCID: PMC10577580 DOI: 10.1016/j.nmni.2023.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Affiliation(s)
- Jaffar A Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Nadja Hedrich
- Institute for Epidemiology, Biostatistics and Prevention, Department of Public and Global Health, University of Zürich, Switzerland
| | - Thibault Lovey
- Institute for Epidemiology, Biostatistics and Prevention, Department of Public and Global Health, University of Zürich, Switzerland
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Patricia Schlagenhauf
- WHO Collaborating Centre for Travellers' Health, Institute for Epidemiology, Biostatistics and Prevention, Department of Public and Global Health, MilMedBiol Competence Centre, University of Zürich, Switzerland
| |
Collapse
|
13
|
Benbetka C, Hachid A, Benallal KE, Khardine FA, Ayhan N, Bouredjoul N, Boulehbal WM, Bellila D, Khaldi A, Charrel R. Epidemiology, Isolation, and Genetic Characterization of Toscana Virus in Algerian Patients Displaying Neurological Infection, 2016-2018. IJID REGIONS 2023; 7:193-198. [PMID: 37123383 PMCID: PMC10131063 DOI: 10.1016/j.ijregi.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023]
Abstract
Purpose The current study reports the results of the diagnosis of neuro-invasive Toscana virus (TOSV) infection in Algeria between 2016 and 2018 and describes the first isolation of TOSV strain from human samples in North Africa. Materiel and methods Cerebrospinal fluid (CSF) and sera samples were obtained from 720 hospitalized patients displaying neurological infection symptoms of unknown etiology, of which 604 were screened for TOSV. The diagnosis was performed by serological and/or RT-PCR tests. In addition, TOSV was isolated in vivo and in vitro from CSF and genetically characterized. Results 23 cases of TOSV neurological infections were detected. Cases were located in 11 Wilayas (administrative provinces), mainly in northern Algeria. In addition, we report the isolation of TOSV strain belonging to lineage A from human samples with its complete coding sequence. Conclusion Even though the number of infections is probably underestimated, TOSV is endemic in Algeria, with several cases of neuro-invasive diseases in humans recorded each year. Therefore, the diagnosis of TOSV should be included in the differential diagnosis of neurological diseases, especially aseptic meningitis, during the period of activity of the phlebotomine vector. Further studies are required to measure precisely the nationwide prevalence of TOSV in Algeria.
Collapse
Affiliation(s)
- Chahrazed Benbetka
- Laboratory of Arboviruses and Emerging Viruses, Institut Pasteur of Algeria, 16000, Algiers, Algeria
- Department of Immunology, Béni-Messous Teaching Hospital, University of Algiers, 16000, Algiers, Algeria
- Faculty of Pharmacy, University of Algiers 1, 16000, Algiers, Algeria
- Co-first authors.
| | - Aissam Hachid
- Laboratory of Arboviruses and Emerging Viruses, Institut Pasteur of Algeria, 16000, Algiers, Algeria
- Faculty of Pharmacy, University of Algiers 1, 16000, Algiers, Algeria
- Co-first authors.
| | - Kamal Eddine Benallal
- Laboratory of Parasitic Eco-epidemiology and Population Genetics, Institut Pasteur of Algeria, 16000, Algiers, Algeria
| | - Fayez Ahmed Khardine
- Laboratory of Arboviruses and Emerging Viruses, Institut Pasteur of Algeria, 16000, Algiers, Algeria
| | - Nazli Ayhan
- Unité des Virus Emergents, UVE: Aix Marseille Université, IRD 190, Inserm 1207, AP-HM Hôpitaux Universitaires de Marseille, 13005, Marseille, France
| | - Nesrine Bouredjoul
- Laboratory of Arboviruses and Emerging Viruses, Institut Pasteur of Algeria, 16000, Algiers, Algeria
| | | | - Djamila Bellila
- Faculty of Natural Sciences, University of Algiers 1, 16000, Algiers, Algeria
| | - Aldjia Khaldi
- Laboratory of Arboviruses and Emerging Viruses, Institut Pasteur of Algeria, 16000, Algiers, Algeria
- Faculty of Pharmacy, University of Algiers 1, 16000, Algiers, Algeria
| | - Rémi Charrel
- Unité des Virus Emergents, UVE: Aix Marseille Université, IRD 190, Inserm 1207, AP-HM Hôpitaux Universitaires de Marseille, 13005, Marseille, France
| |
Collapse
|
14
|
Laroche L, Ayhan N, Charrel R, Bañuls AL, Prudhomme J. Persistence of Toscana virus in sugar and blood meals of phlebotomine sand flies: epidemiological and experimental consequences. Sci Rep 2023; 13:5608. [PMID: 37019992 PMCID: PMC10076283 DOI: 10.1038/s41598-023-32431-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Many virological studies have tested the persistence of enveloped RNA viruses in various environmental and laboratory conditions and shown their short-term persistence. In this article, we analyzed Toscana virus (TOSV) infectivity, a pathogenic sandfly-borne phlebovirus, in two different conditions: in the sugar meal and blood meal of sand flies. Our results showed that TOSV RNA was detectable up to 15 days in sugar solution at 26 °C and up to 6 h in blood at 37 °C. Moreover, TOSV remains infective for 7 days in sugar solution and for minimum 6 h in rabbit blood. TOSV has shown persistent infectivity/viability under different conditions, which may have important epidemiological consequences. These results strengthen new hypotheses about the TOSV natural cycle, such as the possibility of horizontal transmission between sand flies through infected sugar meal.
Collapse
Affiliation(s)
- Lison Laroche
- UMR MIVEGEC, Université de Montpellier - IRD 224 - CNRS 5290, 911 Avenue Agropolis, 34394, Montpellier, France.
| | - Nazli Ayhan
- UVE, Aix Marseille Université - IRD 190 - Inserm 1207 - AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Rémi Charrel
- UVE, Aix Marseille Université - IRD 190 - Inserm 1207 - AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Anne-Laure Bañuls
- UMR MIVEGEC, Université de Montpellier - IRD 224 - CNRS 5290, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Jorian Prudhomme
- UMR MIVEGEC, Université de Montpellier - IRD 224 - CNRS 5290, 911 Avenue Agropolis, 34394, Montpellier, France
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
15
|
Alexander AJT, Salvemini M, Sreenu VB, Hughes J, Telleria EL, Ratinier M, Arnaud F, Volf P, Brennan B, Varjak M, Kohl A. Characterisation of the antiviral RNA interference response to Toscana virus in sand fly cells. PLoS Pathog 2023; 19:e1011283. [PMID: 36996243 PMCID: PMC10112792 DOI: 10.1371/journal.ppat.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/18/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Toscana virus (TOSV) (Bunyavirales, Phenuiviridae, Phlebovirus, Toscana phlebovirus) and other related human pathogenic arboviruses are transmitted by phlebotomine sand flies. TOSV has been reported in nations bordering the Mediterranean Sea among other regions. Infection can result in febrile illness as well as meningitis and encephalitis. Understanding vector-arbovirus interactions is crucial to improving our knowledge of how arboviruses spread, and in this context, immune responses that control viral replication play a significant role. Extensive research has been conducted on mosquito vector immunity against arboviruses, with RNA interference (RNAi) and specifically the exogenous siRNA (exo-siRNA) pathway playing a critical role. However, the antiviral immunity of phlebotomine sand flies is less well understood. Here we were able to show that the exo-siRNA pathway is active in a Phlebotomus papatasi-derived cell line. Following TOSV infection, distinctive 21 nucleotide virus-derived small interfering RNAs (vsiRNAs) were detected. We also identified the exo-siRNA effector Ago2 in this cell line, and silencing its expression rendered the exo-siRNA pathway largely inactive. Thus, our data show that this pathway is active as an antiviral response against a sand fly transmitted bunyavirus, TOSV.
Collapse
Affiliation(s)
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Italy
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Erich L. Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon1, EPHE, PSL Research University, Lyon, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon1, EPHE, PSL Research University, Lyon, France
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margus Varjak
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
16
|
Rossi B, Barreca F, Benvenuto D, Braccialarghe N, Campogiani L, Lodi A, Aguglia C, Cavasio RA, Giacalone ML, Kontogiannis D, Moccione M, Malagnino V, Andreoni M, Sarmati L, Iannetta M. Human Arboviral Infections in Italy: Past, Current, and Future Challenges. Viruses 2023; 15:v15020368. [PMID: 36851582 PMCID: PMC9963149 DOI: 10.3390/v15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Arboviruses represent a public health concern in many European countries, including Italy, mostly because they can infect humans, causing potentially severe emergent or re-emergent diseases, with epidemic outbreaks and the introduction of endemic circulation of new species previously confined to tropical and sub-tropical regions. In this review, we summarize the Italian epidemiology of arboviral infection over the past 10 years, describing both endemic and imported arboviral infections, vector distribution, and the influence of climate change on vector ecology. Strengthening surveillance systems at a national and international level is highly recommended to be prepared to face potential threats due to arbovirus diffusion.
Collapse
Affiliation(s)
- Benedetta Rossi
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Filippo Barreca
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Benvenuto
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Neva Braccialarghe
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Campogiani
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Camilla Aguglia
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | | | - Maria Laura Giacalone
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitra Kontogiannis
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Moccione
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Vincenzo Malagnino
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Cioni G, Fedeli A, Bellandi G, Squillante R, Zuccotti M, Buffini G. Atypical presentation of West Nile encephalitis. ITALIAN JOURNAL OF MEDICINE 2023. [DOI: 10.4081/itjm.2022.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
West Nile virus (WNV) causes both sporadic infection and outbreaks that may be associated with severe neurologic involvement. The infection is transmitted to humans mainly by mosquito bites, and the virus is preserved in a cycle in which birds are the main host. The typical involvement of the central nervous system is completely indistinguishable from meningitis and encephalitis related to other pathogens.
In this report we described the atypical presentation of a WNV meningoencephalitis in a 81-y.o. female patient, showing psychiatric manifestations at the onset. Anamnestic information was essential to progress to the correct diagnosis. Targeted search for the causative agent of meningoencephalitis was perfected after learning that the patient lived in an area adjacent to a nature reserve.
Collapse
|
18
|
Sellali S, Lafri I, Hachid A, Ayhan N, Benbetka C, Medrouh B, Messahel NE, El Amine Bekara M, Lafri M, Charrel RN, Bitam I. Presence of the sandfly-borne phlebovirus (Toscana virus) in different bio-geographical regions of Algeria demonstrated by a microneutralisation-based seroprevalence study in owned dogs. Comp Immunol Microbiol Infect Dis 2022; 88:101861. [DOI: 10.1016/j.cimid.2022.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
|
19
|
Sandfly-Borne Phleboviruses in Portugal: Four and Still Counting. Viruses 2022; 14:v14081768. [PMID: 36016390 PMCID: PMC9413822 DOI: 10.3390/v14081768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
According to ICTV, there are currently 66 known phlebovirus species. More than 40 of these viruses were isolated or detected in phlebotomine sandflies and some of them are known pathogens. In Portugal, information about sandfly-borne phleboviruses is scarce and scattered sandfly-borne diseases are neglected and often not considered in differential diagnoses. The main objective of this work was to gather the existing information and to raise awareness about the circulating phleboviruses in this country. To date, Massilia and Alcube phleboviruses have been isolated from sandflies in southern Portugal. Human infections with Toscana and Sicilian phleboviruses have been reported, as well as seroprevalence in cats and dogs. More studies are needed in order to understand if the viruses isolated during the entomological surveys have an impact on human health and to fully understand the real importance of the already recognized pathogens in our country.
Collapse
|
20
|
Jacob S, Kapadia R, Soule T, Luo H, Schellenberg KL, Douville RN, Pfeffer G. Neuromuscular Complications of SARS-CoV-2 and Other Viral Infections. Front Neurol 2022; 13:914411. [PMID: 35812094 PMCID: PMC9263266 DOI: 10.3389/fneur.2022.914411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
In this article we review complications to the peripheral nervous system that occur as a consequence of viral infections, with a special focus on complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We discuss neuromuscular complications in three broad categories; the direct consequences of viral infection, autoimmune neuromuscular disorders provoked by viral infections, and chronic neurodegenerative conditions which have been associated with viral infections. We also include discussion of neuromuscular disorders that are treated by immunomodulatory therapies, and how this affects patient susceptibility in the current context of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is associated with direct consequences to the peripheral nervous system via presumed direct viral injury (dysgeusia/anosmia, myalgias/rhabdomyolysis, and potentially mononeuritis multiplex) and autoimmunity (Guillain Barré syndrome and variants). It has important implications for people receiving immunomodulatory therapies who may be at greater risk of severe outcomes from COVID-19. Thus far, chronic post-COVID syndromes (a.k.a: long COVID) also include possible involvement of the neuromuscular system. Whether we may observe neuromuscular degenerative conditions in the longer term will be an important question to monitor in future studies.
Collapse
Affiliation(s)
- Sarah Jacob
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronak Kapadia
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyler Soule
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kerri L. Schellenberg
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Renée N. Douville
- Division of Neurodegenerative Disorders, Department of Biology, Albrechtsen St. Boniface Research Centre, University of Winnipeg, Winnipeg, MB, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Alberta Child Health Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Daoudi M, Calzolari M, Boussaa S, Bonilauri P, Torri D, Romeo G, Lelli D, Lavazza A, Hafidi M, Dottori M, Boumezzough A. Identification of Toscana Virus in Natural Population of Sand flies (Diptera: Psychodidae) from Moroccan Leishmaniasis foci. J Infect Public Health 2022; 15:406-411. [DOI: 10.1016/j.jiph.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022] Open
|
22
|
Dersch R, Sophocleous A, Cadar D, Emmerich P, Schmidt-Chanasit J, Rauer S. Toscana virus encephalitis in Southwest Germany: a retrospective study. BMC Neurol 2021; 21:495. [PMID: 34937553 PMCID: PMC8693482 DOI: 10.1186/s12883-021-02528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022] Open
Abstract
Background Toscana virus (TOSV) is an arthropod-borne virus transmitted by phlebotomine sandflies (Phlebotomus sp.) widespread throughout the Mediterranean having the potential to cause meningoencephalitis in humans. In Germany, the vectors of TOSV are introduced recently and become endemic especially in Southwestern Germany. As TOSV is not investigated regularly in patients with meningoencephalitis, cases of TOSV-neuroinvasive disease may remain mostly undetected. Methods We conducted a retrospective cohort study on patients with meningoencephalitis without identification of a causal pathogen from 2006 to 2016. Serologic assessment for anti-TOSV-IgG and IgM was performed on serum and CSF. Demographic, clinical and CSF data from TOSV-positive patients were compared to a cohort of patients with meningoencephalitis due to enterovirus. Informed consent was obtained from all included patients. Results We found 138 patients with meningoencephalitis without identified causal pathogen. From 98 of these patients CSF and serum was available for further testing. Additionally, we included 27 patients with meningoencephalitis due to enterovirus. We identified two patients with serological confirmed TOSV-neuroinvasive disease (TOSV-IgM and IgG positive, 2%) and two patients with possible TOSV-neuroinvasive disease (isolated TOSV-IgM positive, 2%). Overall, TOSV-neuroinvasive was detected in 4% of our cases with suspected viral meningoencephalitis. None of them had a history of recent travel to an endemic area. Conclusions We found cases of TOSV-neuroinvasive disease in our German cohort of patients with meningoencephalitis. As no recent history of travel to an endemic area was reported, it remains probable that these cases resemble autochthonous infections, albeit we cannot draw conclusions regarding the origin of the respective vectors. TOSV could be considered in patients with meningoencephalitis in Germany.
Collapse
Affiliation(s)
- R Dersch
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| | - A Sophocleous
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - D Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - P Emmerich
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - J Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148, Hamburg, Germany
| | - S Rauer
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
23
|
Laroche L, Jourdain F, Ayhan N, Bañuls AL, Charrel R, Prudhomme J. Incubation Period for Neuroinvasive Toscana Virus Infections. Emerg Infect Dis 2021; 27:3147-3150. [PMID: 34808074 PMCID: PMC8632186 DOI: 10.3201/eid2712.203172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toscana virus (TOSV) is an emerging pathogen in the Mediterranean area and is neuroinvasive in its most severe form. Basic knowledge on TOSV biology is limited. We conducted a systematic review on travel-related infections to estimate the TOSV incubation period. We estimated the incubation period at 12.1 days.
Collapse
|
24
|
Identification of a Neutralizing Epitope on TOSV Gn Glycoprotein. Vaccines (Basel) 2021; 9:vaccines9080924. [PMID: 34452049 PMCID: PMC8402642 DOI: 10.3390/vaccines9080924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging and re-emerging viral infections have been an important public health problem in recent years. We focused our attention on Toscana virus (TOSV), an emergent neurotropic negative-strand RNA virus of the Phenuiviridae family. The mechanisms of protection against phlebovirus natural infection are not known; however, it is supposed that a virus-neutralizing antibody response against viral glycoproteins would be useful to block the first stages of infection. By using an improved memory B cell immortalization method, we obtained a panel of human mAbs which reacted with TOSV antigens. We identified three epitopes of TOSV Gn glycoproteins by neutralizing mAbs using synthetic peptide arrays on membrane support (SPOT synthesis). These epitopes, separated in primary structure, might be exposed near one another as a conformational epitope in their native structure. In vivo studies were conducted to evaluate the humoral response elicited in mice immunized with the identified peptides. The results underlined the hypothesis that the first two peptides located in the NH2 terminus could form a conformational epitope, while the third, located near the transmembrane sequence in the carboxyl terminus, was necessary to strengthen neutralizing activity. Our results emphasize the importance of identifying neutralizing epitopes shared among the various phleboviruses, which could be exploited for the development of a potential epitope-based diagnostic assay or a polyvalent protective vaccine against different phleboviruses.
Collapse
|
25
|
Sanbonmatsu-Gámez S, Pedrosa-Corral I, Navarro-Marí JM, Pérez-Ruiz M. Update in Diagnostics of Toscana Virus Infection in a Hyperendemic Region (Southern Spain). Viruses 2021; 13:v13081438. [PMID: 34452304 PMCID: PMC8402649 DOI: 10.3390/v13081438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
The sandfly fever Toscana virus (TOSV, genus Phlebovirus, family Phenuiviridae) is endemic in Mediterranean countries. In Spain, phylogenetic studies of TOSV strains demonstrated that a genotype, different from the Italian, was circulating. This update reports 107 cases of TOSV neurological infection detected in Andalusia from 1988 to 2020, by viral culture, serology and/or RT-PCR. Most cases were located in Granada province, a hyperendemic region. TOSV neurological infection may be underdiagnosed since few laboratories include this virus in their portfolio. This work presents a reliable automated method, validated for the detection of the main viruses involved in acute meningitis and encephalitis, including the arboviruses TOSV and West Nile virus. This assay solves the need for multiple molecular platforms for different viruses and thus, improves the time to results for these syndromes, which require a rapid and efficient diagnostic approach.
Collapse
Affiliation(s)
- Sara Sanbonmatsu-Gámez
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (S.S.-G.); (I.P.-C.); (J.M.N.-M.)
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
| | - Irene Pedrosa-Corral
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (S.S.-G.); (I.P.-C.); (J.M.N.-M.)
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
| | - José María Navarro-Marí
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (S.S.-G.); (I.P.-C.); (J.M.N.-M.)
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
| | - Mercedes Pérez-Ruiz
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
- Servicio de Microbiología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Correspondence:
| |
Collapse
|
26
|
Popescu CP, Cotar AI, Dinu S, Zaharia M, Tardei G, Ceausu E, Badescu D, Ruta S, Ceianu CS, Florescu SA. Emergence of Toscana Virus, Romania, 2017-2018. Emerg Infect Dis 2021; 27:1482-1485. [PMID: 33900182 PMCID: PMC8084517 DOI: 10.3201/eid2705.204598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a series of severe neuroinvasive infections caused by Toscana virus, identified by real-time reverse transcription PCR testing, in 8 hospitalized patients in Bucharest, Romania, during the summer seasons of 2017 and 2018. Of 8 patients, 5 died. Sequencing showed that the circulating virus belonged to lineage A.
Collapse
|
27
|
Thirion L, Pezzi L, Pedrosa-Corral I, Sanbonmatsu-Gamez S, Lamballerie XD, Falchi A, Perez-Ruiz M, Charrel RN. Evaluation of a Trio Toscana Virus Real-Time RT-PCR Assay Targeting Three Genomic Regions within Nucleoprotein Gene. Pathogens 2021; 10:pathogens10030254. [PMID: 33668339 PMCID: PMC7996202 DOI: 10.3390/pathogens10030254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Toscana virus (TOSV) can cause central nervous system infections in both residents of and travelers to Mediterranean countries. Data mining identified three real-time RT-qPCR assays for detecting TOSV RNA targeting non-overlapping regions in the nucleoprotein gene. Here, they were combined to create a multi-region assay named Trio TOSV RT-qPCR consisting of six primers and three probes. In this study, (i) we evaluated in silico the three RT-qPCR assays available in the literature for TOSV detection, (ii) we combined the three systems to create the Trio TOSV RT-qPCR, (iii) we assessed the specificity and sensitivity of the three monoplex assays versus the Trio TOSV RT-qPCR assay, and (iv) we compared the performance of the Trio TOSV RT-qPCR assay with one of the reference monoplex assays on clinical samples. In conclusion, the Trio TOSV RT-qPCR assay performs equally or better than the three monoplex assays; therefore, it provides a robust assay that can be used for both research and diagnostic purposes.
Collapse
Affiliation(s)
- Laurence Thirion
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13005 Marseille, France; (L.T.); (L.P.); (X.D.L.)
| | - Laura Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13005 Marseille, France; (L.T.); (L.P.); (X.D.L.)
- UR7310, Laboratoire de Virologie, Université de Corse-Inserm, 20250 Corte, France;
| | - Irene Pedrosa-Corral
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain; (I.P.-C.); (S.S.-G.); (M.P.-R.)
| | - Sara Sanbonmatsu-Gamez
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain; (I.P.-C.); (S.S.-G.); (M.P.-R.)
| | - Xavier De Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13005 Marseille, France; (L.T.); (L.P.); (X.D.L.)
| | - Alessandra Falchi
- UR7310, Laboratoire de Virologie, Université de Corse-Inserm, 20250 Corte, France;
| | - Mercedes Perez-Ruiz
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain; (I.P.-C.); (S.S.-G.); (M.P.-R.)
| | - Remi N. Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13005 Marseille, France; (L.T.); (L.P.); (X.D.L.)
- Correspondence:
| |
Collapse
|
28
|
A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021; 13:v13020314. [PMID: 33670641 PMCID: PMC7922539 DOI: 10.3390/v13020314] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.
Collapse
|
29
|
Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, Du J, Zhou S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang J, Jiang J, Xu X, Zhou H, Yang F, Irwin DM, Morand S, Daszak P, Wang J, Jin Q. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. MICROBIOME 2021; 9:18. [PMID: 33478588 PMCID: PMC7818139 DOI: 10.1186/s40168-020-00965-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND As the largest group of mammalian species, which are also widely distributed all over the world, rodents are the natural reservoirs for many diverse zoonotic viruses. A comprehensive understanding of the core virome of diverse rodents should therefore assist in efforts to reduce the risk of future emergence or re-emergence of rodent-borne zoonotic pathogens. RESULTS This study aimed to describe the viral range that could be detected in the lungs of rodents from Mainland Southeast Asia. Lung samples were collected from 3284 rodents and insectivores of the orders Rodentia, Scandentia, and Eulipotyphla in eighteen provinces of Thailand, Lao PDR, and Cambodia throughout 2006-2018. Meta-transcriptomic analysis was used to outline the unique spectral characteristics of the mammalian viruses within these lungs and the ecological and genetic imprints of the novel viruses. Many mammalian- or arthropod-related viruses from distinct evolutionary lineages were reported for the first time in these species, and viruses related to known pathogens were characterized for their genomic and evolutionary characteristics, host species, and locations. CONCLUSIONS These results expand our understanding of the core viromes of rodents and insectivores from Mainland Southeast Asia and suggest that a high diversity of viruses remains to be found in rodent species of this area. These findings, combined with our previous virome data from China, increase our knowledge of the viral community in wildlife and arthropod vectors in emerging disease hotspots of East and Southeast Asia. Video abstract.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | - Alice Latinne
- EcoHealth Alliance, New York, NY, USA
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Vietnam
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lilin Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Mingxing Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | | | | | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jinyong Jiang
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Xiang Xu
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Serge Morand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
30
|
Autochthonous Transmission of West Nile Virus by a New Vector in Iran, Vector-Host Interaction Modeling and Virulence Gene Determinants. Viruses 2020; 12:v12121449. [PMID: 33339336 PMCID: PMC7766443 DOI: 10.3390/v12121449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Using molecular techniques and bioinformatics tools, we studied the vector-host interactions and the molecular epidemiology of West Nile virus (WNV) in western Iran. Mosquitoes were collected during 2017 and 2018. DNA typing assays were used to study vector-host interactions. Mosquitoes were screened by RT-PCR for the genomes of five virus families. WNV-positive samples were fully sequenced and evolutionary tree and molecular architecture were constructed by Geneious software and SWISS-MODEL workspace, respectively. A total of 5028 mosquito specimens were collected and identified. The most prevalent species was Culex (Cx.) pipiens complex (57.3%). Analysis of the blood-feeding preferences of blood-fed mosquitoes revealed six mammalian and one bird species as hosts. One mosquito pool containing non-blood-fed Cx. theileri and one blood-fed Culex pipiens pipiens (Cpp.) biotype pipiens were positive for WNV. A phylogram indicated that the obtained WNV sequences belonged to lineage 2, subclade 2 g. Several amino acid substitutions suspected as virulence markers were observed in the Iranian WNV strains. The three-dimensional structural homology model of the E-protein identified hot spot domains known to facilitate virus invasion and neurotropism. The recent detection of WNV lineage 2 in mosquitoes from several regions of Iran in consecutive years suggests that the virus is established in the country.
Collapse
|
31
|
Clinical, Virological, and Immunological Findings in Patients with Toscana Neuroinvasive Disease in Croatia: Report of Three Cases. Trop Med Infect Dis 2020; 5:tropicalmed5030144. [PMID: 32937866 PMCID: PMC7557803 DOI: 10.3390/tropicalmed5030144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne virus, transmitted to humans by phlebotomine sandflies. Although the majority of infections are asymptomatic, neuroinvasive disease may occur. We report three cases of neuroinvasive TOSV infection detected in Croatia. Two patients aged 21 and 54 years presented with meningitis, while a 22-year old patient presented with meningoencephalitis and right-sided brachial plexitis. Cerebrospinal fluid (CSF), serum, and urine samples were collected and tested for neuroinvasive arboviruses: tick-borne encephalitis, West Nile, Usutu, TOSV, Tahyna, and Bhanja virus. In addition, CSF and serum samples were tested for the anti-viral cytokine response. High titers of TOSV IgM (1000–3200) and IgG (3200−10,000) antibodies in serum samples confirmed TOSV infection. Antibodies to other phleboviruses (sandfly fever Sicilian/Naples/Cyprus virus) were negative. CSF samples showed high concentrations of interleukin 6 (IL-6; range 162.32−2683.90 pg/mL), interferon gamma (IFN-γ; range 110.12−1568.07 pg/mL), and IL-10 (range 28.08−858.91 pg/mL), while significantly lower cytokine production was observed in serum. Two patients recovered fully. The patient with a brachial plexitis improved significantly at discharge. The presented cases highlight the need of increasing awareness of a TOSV as a possible cause of aseptic meningitis/meningoencephalitis during summer months. Association of TOSV and brachial plexitis with long-term sequelae detected in one patient indicates the possibility of more severe disease, even in young patients.
Collapse
|
32
|
Epidemiology of Toscana virus in South Tuscany over the years 2011-2019. J Clin Virol 2020; 128:104452. [PMID: 32474372 DOI: 10.1016/j.jcv.2020.104452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Toscana virus (TOSV) is a Phlebovirus transmitted to humans by phlebotomines and represent an etiological agent of acute aseptic meningitis (AAM) in countries where the virus is endemic, including Italy. Incidence of TOSV infections is closely associated with the geographical distribution of the phlebotomine vectors which in turn is affected by climate changes that determine survival and spread. As a result, TOSV infections show a seasonal trend with a peak of incidence in summer months. OBJECTIVES To measure the prevalence of TOSV infections in AAM patients in central Italy and evaluate the climate changes in phlebotomine vectors ecology and virus propagation. STUDY DESIGN One thousand and seventy-three cerebrospinal fluid samples (CSFs), collected from patients with suspected viral meningitis, were collected over nine years (2011-2019) during the May to October period and tested for viruses most commonly associated with AAM. Serum samples addressed to the Microbiology and Virology Unit of "S. Maria delle Scotte" Hospital for confirmation acute TOSV infection (n = 324) were tested for TOSV-specific IgM and IgG. RESULTS Among the CSF samples, 1.3% were positive for Enteroviruses; 0.9% for Varicella zoster virus, 1.9% for Herpes simplex virus type-1/2 and 4.6% for TOSV. Serum IgM analyses disclosed TOSV-specific IgM in 27.1% of sera suggesting the predominant involvement of TOSV in neuroinvasive infections. CONCLUSIONS This data confirms the predominant role of TOSV as causative agent of AAM during the summer time in endemic countries. Moreover, climate changes affecting phlebotomine vectors persistence, reproduction and activity could be involved in the cyclic nature of TOSV infection reported during the last nine years.
Collapse
|
33
|
Development of a Reverse Genetics System for Toscana Virus (Lineage A). Viruses 2020; 12:v12040411. [PMID: 32272808 PMCID: PMC7232365 DOI: 10.3390/v12040411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590, a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination with other sequence information to construct functional cDNA plasmids encoding the viral L, M, and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference genome, which, when corrected, restored functionality to the polymerase L and made it possible to recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system. Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing reporter genes instead of NSs. The availability of such a system assists investigating questions that require genetic manipulation of the viral genome, such as investigations into replication and tropism, and beyond these fundamental aspects, also the development of novel vaccine design strategies.
Collapse
|
34
|
Morini S, Calzolari M, Rossini G, Pascarelli N, Porcellini A, Randi V, Re MC, Albieri A, Bonilauri P, Bellini R, Ayhan N, Charrel R, Varani S. Detection of Specific Antibodies against Toscana Virus among Blood Donors in Northeastern Italy and Correlation with Sand Fly Abundance in 2014. Microorganisms 2020; 8:145. [PMID: 31973058 PMCID: PMC7074719 DOI: 10.3390/microorganisms8020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/16/2019] [Indexed: 11/16/2022] Open
Abstract
Toscana virus (TOSV) is a Phlebovirus transmitted by phlebotomine sand flies and is an important etiological agent of summer meningitis in the Mediterranean basin. Since TOSV infection is often asymptomatic, we evaluated the seroprevalence in blood donors (BDs) in the Bologna and Ferrara provinces (Northeastern Italy)-the areas with the highest and lowest numbers of TOSV neuroinvasive cases in the region, respectively. A total of 1208 serum samples from BDs were collected in April-June 2014 and evaluated for the presence of specific TOSV-IgG by ELISA. The IgG-reactive samples were confirmed by indirect immunofluorescence assay (IIF) and by microneutralization test (MN). Serum samples were defined as positive for anti-TOSV IgG when reactive by ELISA and by at least one second-level test; TOSV seroprevalence was 6.8% in the Bologna province, while no circulation of TOSV was detected in the Ferrara province. Sand fly abundance in 2014 was also estimated by a geographic information system using a generalized linear model applied to a series of explanatory variables. TOSV seroprevalence rate was strongly associated with the sand fly abundance index in each municipality, pointing out the strong association between sand fly abundance and human exposure to TOSV.
Collapse
Affiliation(s)
- Silvia Morini
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (S.M.); (G.R.)
| | - Mattia Calzolari
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini” (IZLER), 42124 Reggio Emilia, Italy; (M.C.); (P.B.)
| | - Giada Rossini
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (S.M.); (G.R.)
| | - Nadia Pascarelli
- Centro Regionale Sangue Emilia-Romagna, Maggiore Hospital, 40133 Bologna, Italy; (N.P.); (A.P.); (V.R.)
| | - Andrea Porcellini
- Centro Regionale Sangue Emilia-Romagna, Maggiore Hospital, 40133 Bologna, Italy; (N.P.); (A.P.); (V.R.)
| | - Vanda Randi
- Centro Regionale Sangue Emilia-Romagna, Maggiore Hospital, 40133 Bologna, Italy; (N.P.); (A.P.); (V.R.)
| | - Maria Carla Re
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (S.M.); (G.R.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Alessandro Albieri
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente ‘G. Nicoli’, 40014 Crevalcore, Italy; (A.A.); (R.B.)
| | - Paolo Bonilauri
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini” (IZLER), 42124 Reggio Emilia, Italy; (M.C.); (P.B.)
| | - Romeo Bellini
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente ‘G. Nicoli’, 40014 Crevalcore, Italy; (A.A.); (R.B.)
| | - Nazli Ayhan
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13005 Marseille, France; (N.A.); (R.C.)
| | - Remi Charrel
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13005 Marseille, France; (N.A.); (R.C.)
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (S.M.); (G.R.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
35
|
Ayhan N, Prudhomme J, Laroche L, Bañuls AL, Charrel RN. Broader Geographical Distribution of Toscana Virus in the Mediterranean Region Suggests the Existence of Larger Varieties of Sand Fly Vectors. Microorganisms 2020; 8:microorganisms8010114. [PMID: 31947561 PMCID: PMC7022675 DOI: 10.3390/microorganisms8010114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Toscana virus (TOSV) is endemic in the Mediterranean basin, where it is transmitted by sand flies. TOSV can infect humans and cause febrile illness as well as neuroinvasive infections affecting the central and peripheral nervous systems. Although TOSV is a significant human pathogen, it remains neglected and there are consequently many gaps of knowledge. Recent seroepidemiology studies and case reports showed that TOSV’s geographic distribution is much wider than was assumed a decade ago. The apparent extension of the TOSV circulation area raises the question of the sandfly species that are able to transmit the virus in natural conditions. Phlebotomus (Ph.)perniciosus and Ph. perfiliewi were historically identified as competent species. Recent results suggest that other species of sand flies could be competent for TOSV maintenance and transmission. Here we organize current knowledge in entomology, epidemiology, and virology supporting the possible existence of additional phlebotomine species such as Ph. longicuspis, Ph. sergenti, Ph. tobbi, Ph. neglectus, and Sergentomyia minuta in TOSV maintenance. We also highlight some of the knowledge gaps to be addressed in future studies.
Collapse
Affiliation(s)
- Nazli Ayhan
- Unité des Virus Emergents (Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13005 Marseille, France;
- Unité de Virologie EA7310 Bioscope, Université de Corse Pasquale Paoli (UCPP), 20250 Corte, France
- Correspondence: (N.A.); (J.P.); Tel.: +33-782-202794 (N.A.); +33-621-504351 (J.P.)
| | - Jorian Prudhomme
- UMR MIVEGEC (IRD—CNRS—Université de Montpellier), 911 avenue Agropolis, F34394 Montpellier, France; (L.L.); (A.-L.B.)
- Correspondence: (N.A.); (J.P.); Tel.: +33-782-202794 (N.A.); +33-621-504351 (J.P.)
| | - Lison Laroche
- UMR MIVEGEC (IRD—CNRS—Université de Montpellier), 911 avenue Agropolis, F34394 Montpellier, France; (L.L.); (A.-L.B.)
| | - Anne-Laure Bañuls
- UMR MIVEGEC (IRD—CNRS—Université de Montpellier), 911 avenue Agropolis, F34394 Montpellier, France; (L.L.); (A.-L.B.)
| | - Remi N. Charrel
- Unité des Virus Emergents (Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13005 Marseille, France;
| |
Collapse
|
36
|
An update on Toscana virus distribution, genetics, medical and diagnostic aspects. Clin Microbiol Infect 2020; 26:1017-1023. [PMID: 31904562 DOI: 10.1016/j.cmi.2019.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Toscana virus is an arbovirus transmitted by sand flies within the Mediterranean area where it can cause febrile illness and neuroinvasive infections during the seasonal circulation period of the vector. Although it is an important cause of meningitis and encephalitis, it remains a neglected virus with limited published data, as demonstrated by <250 peer-reviewed articles since the 1970s. OBJECTIVE The last review article on Toscana virus was published in 2012. The aim was to compile peer-reviewed articles to provide an updated review highlighting recent findings to complement previous review articles. SOURCES PubMed database was searched using the 'Toscana virus' keyword from 2010 to present. A total of 152 articles were retrieved and identified studies were assessed for novel information on virus genetics, and geographic and medical aspects compared with existing knowledge reported in previous review articles. CONTENT Studies addressing medical, veterinary and entomological aspects have provided evidence that Toscana virus is present in North Africa, in the Balkan Peninsula, and in most of the Mediterranean islands. Besides the two previously recognized genetic lineages, a novel evolutionary lineage has been identified in the Balkan Peninsula. Co-circulation of two genetic lineages has been demonstrated in France, in Turkey and in Croatia. In addition to meningitis and meningo-encephalitis, which have been reported for 40 years, various neuroinvasive forms have been recently reported such as Guillain-Barré syndrome, hydrocephalus, myositis, fasciitis, polymyeloradiculopathy, deafness and facial paralysis. IMPLICATION Because it is endemic in countries bordering the Mediterranean, physicians should include Toscana virus in the differential diagnosis of patients presenting with febrile illness and/or neurological manifestations.
Collapse
|
37
|
Endy TP. Viral Febrile Illnesses and Emerging Pathogens. HUNTER'S TROPICAL MEDICINE AND EMERGING INFECTIOUS DISEASES 2020. [PMCID: PMC7151808 DOI: 10.1016/b978-0-323-55512-8.00036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging or emerged diseases and viral pathogens are responsible historically and currently for large epidemics, global pandemics, and significant morbidity and mortality. Our civilization will continue to face the emergence of new pathogens and viruses: viruses will continue to evolve and adapt to new environments at a high rate; our population continues to grow through birth rate, land development, and migration; climate change will continue to increase the vector burden and spread and change the migratory pattern of animals; and our societal mobility will continue to increase through rapid transportation. The clinical evaluation of the febrile patient with a potential emerging viral pathogen involves documenting the likelihood for an infection by a detailed travel history, calculation of an incubation time by exposure, and an understanding of the disease progression though the clinical illness, which drives the differential diagnosis and the type of diagnostics ordered. Ultimately, the proper identification and diagnosis of a patient with a viral febrile illness due to an emerging pathogen will elicit the appropriate precautions to protect health care providers and communities, deliver appropriate therapeutic interventions, and initiate a targeted public health response. The majority of emerging diseases are caused by viruses, with many that are transmitted by insect vectors or are zoonotic. RNA viruses in particular have high mutation rates and can evolve rapidly in new and changing environments. This, in combination with societal factors, climate change, and rapid travel, has increased the number of epidemics from emerging pathogens in the last several decades. Understanding the travel history, incubation time of potential viruses, and the clinical presentation by illness day is essential in making the right diagnosis and identifying the infecting virus.
Collapse
|
38
|
Circulation of Toscana Virus in a Sample Population of Corsica, France. Viruses 2019; 11:v11090817. [PMID: 31487870 PMCID: PMC6784206 DOI: 10.3390/v11090817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 12/27/2022] Open
Abstract
Sandfly-borne phleboviruses pathogenic to humans, such as Toscana virus (TOSV) and Sandfly Fever Sicilian virus (SFSV), are endemic in the Mediterranean region. In France, several autochthonous cases of TOSV infection have been described, causing either meningitis or encephalitis. The aim of the present study was to investigate the seroprevalence of TOSV and SFSV antibodies in a healthy population from Corsica. In this cross-sectional study, participants were enrolled (i) from a medical staff at the University of Corsica and (ii) from general practitioners of the Corsican Sentinelles Network. The seroprevalence study was based on a virus microneutralization assay. A total of 240 sera were tested. Altogether, 54 sera (22.5%) were confirmed positive for TOSV antibodies, whereas none were positive for SFSV (0/240). The residential district of participants was significantly associated with TOSV seropositivity (p value = 0.005). The rate of the seropositivity against TOSV in our study suggests that the Corsican population is well exposed to the TOSV. These results encourage the implementation of a systematic surveillance system including entomological, microbiological, and medical aspects for the collection of better information on the diseases that are associated with phleboviruses in Corsica and beyond in the regions where these viruses are present.
Collapse
|
39
|
Christova I, Panayotova E, Trifonova I, Taseva E, Gladnishka T, Ivanova V. Serologic evidence of widespread Toscana virus infection in Bulgaria. J Infect Public Health 2019; 13:164-166. [PMID: 31401037 DOI: 10.1016/j.jiph.2019.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Toscana virus (TOSV) is an emerging sandfly-borne virus that is endemic in Mediterranean countries. METHODS In order to detect TOSV circulation among the human population of Bulgaria, serum samples from 459 apparently healthy adult individuals, residing in19 out of 28 districts in the country, were tested for the presence of IgG antibodies to TOSV. RESULTS An overall seroprevalence rate of 24.4% was observed, ranging from 4.4% to 53.5% in the districts. Rates were highest in persons over 60 years of age and residing in the southern districts. CONCLUSION The results of the first TOSV seroprevalence study in Bulgaria revealed that infection is widespread. Physicians should be aware of the virus circulation during summer and consider the diagnosis in cases of febrile illness, meningitis or meningoencephalitis.
Collapse
Affiliation(s)
- Iva Christova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria.
| | - Elitsa Panayotova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iva Trifonova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Evgenia Taseva
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | | |
Collapse
|
40
|
Rauch J, Zammarchi L, Corti G, Bartoloni A, Schlaphof A, Schmidt-Chanasit J, Tappe D. Serum cytokine and chemokine changes during Toscana virus meningitis. Med Microbiol Immunol 2019; 208:727-730. [PMID: 30976912 DOI: 10.1007/s00430-019-00611-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/05/2019] [Indexed: 10/27/2022]
Abstract
Toscana virus is an important arbovirus causing meningitis and meningoencephalitis in countries around the Mediterranean Sea. While the clinical syndrome and laboratory diagnostic procedures have been well described, less is known about the immune response in Toscana virus meningitis and a possible use of cytokine and chemokine changes for the clinical follow-up of patients. We here characterized serum cytokine and chemokine profiles from 37 patients during the acute and convalescent phase of the infection. Only few serum cytokine/chemokine changes were detected during Toscana virus meningitis. Markedly increased concentrations of IP-10, interferon-α, IL-22, and eotaxin were found in the acute phase. Levels of interferon-α, IL-22, and eotaxin remained elevated in the convalescent phase, but decreased concentrations of GM-CSF were detected.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Giampaolo Corti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Alexander Schlaphof
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.,German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| |
Collapse
|
41
|
Experimental Infection of Sand Flies by Massilia Virus and Viral Transmission by Co-Feeding on Sugar Meal. Viruses 2019; 11:v11040332. [PMID: 30970559 PMCID: PMC6520868 DOI: 10.3390/v11040332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Massilia virus (MASV) is a phlebovirus isolated from Phlebotomus perniciosus in various regions of southwestern Europe. It is closely related to human pathogens such as Toscana virus and sandfly fever Naples virus. The natural cycle of phleboviruses is poorly understood. Indeed, experimental studies demonstrate that transovarial and sexual transmission are not efficient enough for the maintenance of the virus in nature and to date there is no convincing evidence that a species of vertebrates is the reservoir of the virus. Here, we studied various transmission routes of MASV taking advantage of experimental colonies representing different species of sand flies. Methodology/Principal findings: In P. perniciosus, four sources of infection were compared: (i) Virus-seeded larval food to the first instar larvae (L1), or (ii) to the fourth instar larvae (L4), (iii) virus-seeded blood meal to adult females, and (iv) virus-seeded sugar meal to adults of both sexes. From 875 adults emerged from infected L1 and L4, only three were positive. In females infected by bloodmeal the infection rate was high before defecation, then it decreased drastically; MASV RNA was detected in only 5 out of 27 post-defecation. Surprisingly, the most efficient route of infection was observed after intake of virus-seeded sugar meal: 72% of females (79/110) and 52% of males (51/99) were found to be MASV RNA-positive. In addition, MASV-infected sandflies regurgitated virus particules into the sugar drop and MASV RNA was detectable in this drop for at least 24 h after regurgitation. MASV RNA was detected in about one third of the P. perniciosus exposed to this sugar drop contaminated by regurgitation. Sugar meal infection was also tested with six other species of sand flies. In males, there were no significant differences in infection rates when compared to P. perniciosus. In females, most species tested showed high infection rate at the beginning but then significant gradual decrease in infection rate during the experiment. Conclusions/Significance: We present the first description of arboviral infection of a dipteran vector using sugar meal. In all seven sand fly species tested, MASV was detected for two weeks post-infection. Our results showed that MASV can be transmitted between P. perniciosus either through co-feeding or via an infected sugar source such as plant sap. These newly described routes of horizontal transmission may play an important role in the circulation of phleboviruses in nature.
Collapse
|
42
|
Billioud G, Tryfonos C, Richter J. The Prevalence of Antibodies against Sandfly Fever Viruses and West Nile Virus in Cyprus. J Arthropod Borne Dis 2019; 13:116-125. [PMID: 31346541 PMCID: PMC6643013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/02/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Sandfly fever is an incapacitating disease caused by sandfly-borne Phleboviruses that can lead to meningitis, encephalitis or meningoencephalitis. West Nile virus (WNV), a mosquito-borne Flavivirus, can induce neuroinvasive disease manifested by meningitis, encephalitis or acute flaccid paralysis. Both vectors are endemic in Cyprus and very active during summer. The aims of this study were to determine first the prevalence of sandfly fever viruses (SFV) and WNV infections in Cyprus and second, to investigate their role in central nervous system (CNS) infections. METHODS For the prevalence study, 327 sera collected in 2013 and 2014 were tested for anti-SFV and anti-WNV IgG using indirect immunofluorescence assay and ELISA, respectively. In order to investigate a possible role of SFV and WNV in CNS infections, 127 sera of patients presenting symptoms of SFV or WNV infections were screened for IgM specific to SFV and WNV. RESULTS The overall anti-SFV IgG seroprevalence was 28% and was increasing with age (P< 0.01). The seroprevalence rate for anti-WNV IgG in Cyprus was 5%. Concerning the role of SFVs in CNS infections, anti-SFV IgM was detected in 8 out of 127 sera from selected patients presenting relevant symptoms of infections during vector's active period. In addition, anti-WNV IgM were detected in 17 out of the 127 patients with compatible symptoms. CONCLUSION The findings confirm the presence of sandfly fever and WNV in Cyprus and should, therefore, be considered in the differential diagnosis of patients with febrile illness/meningitis.
Collapse
Affiliation(s)
| | | | - Jan Richter
- Corresponding author: Dr Jan Richter, E-mail:
| |
Collapse
|
43
|
Laroche M, Bérenger JM, Delaunay P, Charrel R, Pradines B, Berger F, Ranque S, Bitam I, Davoust B, Raoult D, Parola P. Medical Entomology: A Reemerging Field of Research to Better Understand Vector-Borne Infectious Diseases. Clin Infect Dis 2018; 65:S30-S38. [PMID: 28859353 DOI: 10.1093/cid/cix463] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the last decade, the Chikungunya and Zika virus outbreaks have turned public attention to the possibility of the expansion of vector-borne infectious diseases worldwide. Medical entomology is focused on the study of arthropods involved in human health. We review here some of the research approaches taken by the medical entomology team of the University Hospital Institute (UHI) Méditerranée Infection of Marseille, France, with the support of recent or representative studies. We propose our approaches to technical innovations in arthropod identification and the detection of microorganisms in arthropods, the use of arthropods as epidemiological or diagnostic tools, entomological investigations around clinical cases or within specific populations, and how we have developed experimental models to decipher the interactions between arthropods, microorganisms, and humans.
Collapse
Affiliation(s)
- Maureen Laroche
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Jean-Michel Bérenger
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis
| | - Remi Charrel
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille Université, IRD 190, Inserm 1207, EHESP), AP-HM, IHU Méditerranée Infection
| | - Bruno Pradines
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille ( AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille.,Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées.,Centre National de Référence du Paludisme
| | - Franck Berger
- GSBDD Marseille-Aubagne, Centre d'épidémiologie et de santé publique des armées, Marseille, France
| | - Stéphane Ranque
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interactions Génomes, Faculté des Sciences Biologiques Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Algeria
| | - Bernard Davoust
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Didier Raoult
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Philippe Parola
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| |
Collapse
|
44
|
Remoli ME, Fiorentini C, Marchi A, Di Renzi S, Vonesch N, Peri MV, Bastianini L, Rossi S, Bartoccini G, Kuttappasery ML, Ciufolini MG, Tomao P. Seroprevalence survey of arboviruses in workers from Tuscany, Italy. LA MEDICINA DEL LAVORO 2018; 109:125-131. [PMID: 29701628 PMCID: PMC7682178 DOI: 10.23749/mdl.v109i2.5024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
Background: Arthropod-borne viruses (Arbovirus) play an important role among emerging and re-emerging infectious diseases and in the spreading of infections in new geographic areas. Although some arboviral infections may be asymptomatic or mild flu-like illnesses, many occur as severe forms of meningitis and meningoencephalitis. Objectives: To assess whether arboviral infections may be associated with occupational risk, in a population of agricultural and forestry workers potentially at high risk for arthropods bite and sting. Methods: A seroprevalence survey for arboviruses belonging to the genera Flaviviruses (West Nile, Tick-borne encephalitis and Usutu viruses) and Phlebovirus (Toscana virus) was carried out in Grosseto province (Tuscany, Italy). One hundred and one serum samples of occupationally exposed workers and 100 serum samples of not exposed workers were analyzed using commercial and home-made serological assays. Serological data were obtained in 2012 and analyzed according to demographic characteristics, recollection of insect-bites, and time spent in outdoor activities. Results: A total seropositivity of 10% (21/201) was observed for Toscana virus. No difference in seroprevalence for Toscana virus was observed among the exposed (10/101) versus the not exposed (11/100) workers. No seropositivity for West Nile, Usutu and Tick-borne encephalitis viruses was detected. Conclusions: Although circulation of Toscana virus is recognized in the study area, our results did not reveal a higher risk for workers exposed to arthropods bite and sting. Health surveillance programs remain useful to monitor the potential emergence of arboviruses.
Collapse
Affiliation(s)
- Maria Elena Remoli
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Cristiano Fiorentini
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Antonella Marchi
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Simona Di Renzi
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Nicoletta Vonesch
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Maria Vittoria Peri
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Lucia Bastianini
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Sonia Rossi
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Giulia Bartoccini
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Maya Lissa Kuttappasery
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Maria Grazia Ciufolini
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Paola Tomao
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| |
Collapse
|
45
|
Amroun A, Priet S, Querat G. Toscana virus cap-snatching and initiation of transcription. J Gen Virol 2017; 98:2676-2688. [PMID: 29022865 DOI: 10.1099/jgv.0.000941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne phlebovirus within the family Phenuiviridae in the order Bunyavirales. It seems to be an important agent of human meningoencephalitis in the warm season in the Mediterranean area. Because the polymerase of Bunyavirales lacks a capping activity, it cleaves short-capped RNA leaders derived from the host cell, and uses them to initiate viral mRNA synthesis. To determine the size and nucleotide composition of the host-derived RNA leaders, and to elucidate the first steps of TOSV transcription initiation, we performed a high-throughput sequencing of the 5' end of TOSV mRNAs in infected cells at different times post-infection. Our results indicated that the viral polymerase cleaved the host-capped RNA leaders within a window of 11-16 nucleotides. A single population of cellular mRNAs could be cleaved at different sites to prime the synthesis of several viral mRNA species. The majority of the mRNA resulted from direct priming, but we observed mRNAs resulting from several rounds of prime-and-realign events. Our data suggest that the different rounds of the prime-and-realign mechanism result from the blocking of the template strand in a static position in the active site, leading to the slippage of the nascent strand by two nucleotides when the growing duplex is sorted out from the active site. To minimize this rate-limiting step, TOSV polymerase cleaves preferentially capped RNA leaders after GC, so as to greatly reduce the number of cycles of priming and realignment, and facilitate the separation of the growing duplex.
Collapse
Affiliation(s)
- Abdennour Amroun
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Stéphane Priet
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Gilles Querat
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
46
|
Rota E, Morelli N, Immovilli P, De Mitri P, Guidetti D. Guillain-Barré-like axonal polyneuropathy associated with Toscana virus infection: A case report. Medicine (Baltimore) 2017; 96:e8081. [PMID: 28930847 PMCID: PMC5617714 DOI: 10.1097/md.0000000000008081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Numerous cases of post-infectious Guillain-Barré syndrome (GBS) have been reported in the literature. Toscana virus (TOSV) is an arthropod-borne emerging pathogen in the Mediterranean area. PATIENT CONCERNS A 40-year-old male patient was admitted to hospital for acute facial weakness, associated to numbness paraesthesias at lower and upper limbs. The neurological examination revealed facial diplegia and reduced tendon reflexes. The nerve conduction studies documented an acute motor and sensory axonal neuropathy (AMSAN); the lumbar puncture detected albuminocytologic dissociation. Serology for human immunodeficiency virus (HIV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), mumps, and Borrelia was negative, as was cerebrospinal fluid (CSF) polymerase chain reaction assay for Herpes virus, Borrelia, Mycoplasma pneumoniae, Cryptococcus, and Mycobacterium tubercolosis. Positivity for TOSV IgG antibodies was found on both CSF and serum; the patient remembered being recently exposed to mosquitoes. DIAGNOSES The AMSAN subtype of GBS, subsequent to a TOSV infection, was diagnosed. INTERVENTIONS The patient was treated with plasma-exchange with complete clinical recovery, but a relapse occurred 9 months later, when the nerve conduction studies confirmed the presence of an AMSAN, which benefited from oral steroids. OUTCOMES A good clinical recovery was achieved after treatments. LESSONS This is the first case, to the best of our knowledge, of a TOSV infection associated to a peripheral neuropathy mimicking a GBS syndrome, both clinically and electrophysiologically. The clinical spectrum of TOSV neurological complications seems to be wider than previously known: this should be taken into account by the scientific community and public health institutions.
Collapse
Affiliation(s)
- Eugenia Rota
- Neurology Unit, Guglielmo da Saliceto Hospital, Piacenza
- Neurology Unit, San Giacomo Hospital, Novi Ligure, Alessandria, Italy
| | - Nicola Morelli
- Neurology Unit, Guglielmo da Saliceto Hospital, Piacenza
| | | | - Paola De Mitri
- Neurology Unit, Guglielmo da Saliceto Hospital, Piacenza
| | | |
Collapse
|
47
|
Toscana virus meningo-encephalitis: an important differential diagnosis for elderly travellers returning from Mediterranean countries. BMC Geriatr 2017; 17:193. [PMID: 28851278 PMCID: PMC5575909 DOI: 10.1186/s12877-017-0593-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/21/2017] [Indexed: 11/29/2022] Open
Abstract
Background Elderly patients have a long list of differentials for causes of acute confusion and altered consciousness levels, including infectious agents. In addition, elderly, retired patients often have more time to travel for tourism, particularly to exotic, warmer locations. Mediterranean countries such as Spain and Italy are popular holiday destinations for British and other tourists, especially during the winter months. However, these warm climates allow insect vectors to proliferate, increasing the risk of exposure to endemic vectorborne viral infections whilst on vacation. Such infections may not be routinely considered by geriatric medical teams. Case presentation An 87-year old gentleman presented with a three-day history of worsening confusion, lethargy, ataxia, and fevers following a trip to Spain, where he may have sustained a sandfly bite. By the time of admission, he had a reduced GCS, was hallucinating, and was incontinent of urine and faeces, though blood pressure and heart rate were normal. He also appeared hyperaesthetic, and found even capillary blood sugar testing extremely painful. He had no history of cognitive defect or other neurological conditions. He had been previously independently active, with frequent trips to Spain where he maintained a holiday home. He probably sustained a sandfly bite during this most recent trip, whilst cleaning out a shed. Acute and convalescent sera demonstrated IgG antibodies to Toscana virus at extremely high titres of ≥1:10,000 by immunofluorescence assay, though no Toscana virus RNA was detectable in these sera by the time of presentation. Conclusions Toscana virus should be included in the differential diagnosis of any patients presenting with meningo-encephalitis who have recently returned from a Mediterranean country. Testing for Toscana virus infection is performed by serological testing on acute/convalescent paired sera, and/or a polymerase chain reaction (PCR) assay on blood or cerebrospinal fluid (CSF) if presenting within 5 days of illness onset. Making a diagnosis of Toscana virus meningitis/encephalitis (where no other pathogen is detected) has additional clinical utility in reducing or preventing unnecessary use of antibiotics, as well as reassuring the patient and family that generally, this illness is generally self-limiting and full recovery within a few weeks is expected, as in the case reported here.
Collapse
|
48
|
Hacioglu S, Dincer E, Isler CT, Karapinar Z, Ataseven VS, Ozkul A, Ergunay K. A Snapshot Avian Surveillance Reveals West Nile Virus and Evidence of Wild Birds Participating in Toscana Virus Circulation. Vector Borne Zoonotic Dis 2017; 17:698-708. [PMID: 28832259 DOI: 10.1089/vbz.2017.2138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Birds are involved in the epidemiology of several vector-borne viruses, as amplification hosts for viruses, dissemination vehicles for the vectors, and sources of emerging strains in cross-species transmission. Turkey provides diverse habitats for a variety of wild birds and is located along major bird migration routes. This study was undertaken to provide a cross-sectional screening of avian specimens for a spectrum of vector-borne viruses. MATERIALS AND METHODS The specimens were collected in Hatay province, in the Mediterranean coast of the Anatolian peninsula, located in the convergence zone of the known migration routes. Generic PCR assays were used for the detection of members of Nairovirus, Flavivirus, and Phlebovirus genera of Flaviviridae and Bunyaviridae families. The circulating viruses were characterized via sequencing and selected specimens were inoculated onto Vero cell lines for virus isolation. RESULTS AND DISCUSSION Specimens from 72 wild birds belonging in 8 orders and 14 species were collected. A total of 158 specimens that comprise 32 sera (20.3%) from 7 species and 126 tissues (79.7%) from 14 species were screened. Eight specimens (8/158, 5%), obtained from 4 individuals (4/72, 5.5%), were positive. West Nile virus (WNV) lineage 1 sequences were characterized in the spleen, heart, and kidney tissues from a lesser spotted eagle (Clanga pomarina), which distinctly clustered from sequences previously identified in Turkey. Toscana virus (TOSV) genotype A and B sequences were identified in brain and kidney tissues from a greater flamingo (Phoenicopterus roseus), a great white pelican (Pelecanus onocrotalus), and a black stork (Ciconia nigra), without successful virus isolation. Partial amino acid sequences of the viral nucleocapsid protein revealed previously unreported substitutions. This study documents the involvement of avians in WNV dispersion in Anatolia as well in TOSV life cycle.
Collapse
Affiliation(s)
- Sabri Hacioglu
- 1 Department of Virology, Faculty of Veterinary Medicine, Ankara University , Ankara, Turkey
| | - Ender Dincer
- 2 Advanced Technology Education, Research and Application Center, Mersin University , Mersin, Turkey
| | - Cafer Tayer Isler
- 3 Department of Surgery, Faculty of Veterinary Medicine, Mustafa Kemal University , Hatay, Turkey
| | - Zeynep Karapinar
- 4 Department of Virology, Faculty of Veterinary Medicine, Yuzuncu Yıl University , Van, Turkey
| | - Veysel Soydal Ataseven
- 5 Department of Virology, Faculty of Veterinary Medicine, Mustafa Kemal University , Hatay, Turkey
| | - Aykut Ozkul
- 1 Department of Virology, Faculty of Veterinary Medicine, Ankara University , Ankara, Turkey
| | - Koray Ergunay
- 6 Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University , Ankara, Turkey
| |
Collapse
|
49
|
Baklouti A, Goulet A, Lichière J, Canard B, Charrel RN, Ferron F, Coutard B, Papageorgiou N. Toscana virus nucleoprotein oligomer organization observed in solution. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:650-659. [PMID: 28777080 DOI: 10.1107/s2059798317008774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/12/2017] [Indexed: 11/10/2022]
Abstract
Toscana virus (TOSV) is an arthropod-borne virus belonging to the Phlebovirus genus within the Bunyaviridae family. As in other bunyaviruses, the genome of TOSV is made up of three RNA segments. They are encapsidated by the nucleoprotein (N), which also plays an essential role in virus replication. To date, crystallographic structures of phlebovirus N have systematically revealed closed-ring organizations which do not fully match the filamentous organization of the ribonucleoprotein (RNP) complex observed by electron microscopy. In order to further bridge the gap between crystallographic data on N and observations of the RNP by electron microscopy, the structural organization of recombinant TOSV N was investigated by an integrative approach combining X-ray diffraction crystallography, transmission electron microscopy, small-angle X-ray scattering, size-exclusion chromatography and multi-angle laser light scattering. It was found that in solution TOSV N forms open oligomers consistent with the encapsidation mechanism of phlebovirus RNA.
Collapse
Affiliation(s)
- Amal Baklouti
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France
| | - Julie Lichière
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France
| | - Rémi N Charrel
- Emergence des Pathologies Virales (EPV), Aix-Marseille Université, UMR_D 190 IRD French Institute of Research for Development, U1207 INSERM, EHESP French School of Public Health, Marseille, France; IHU Méditerranée Infection, APHM Public Hospital Samsos of Marseille, Marseille, France
| | - François Ferron
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France
| | - Bruno Coutard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France
| | - Nicolas Papageorgiou
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France
| |
Collapse
|
50
|
Mansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging Tick-Borne Viruses in the Twenty-First Century. Front Cell Infect Microbiol 2017; 7:298. [PMID: 28744449 PMCID: PMC5504652 DOI: 10.3389/fcimb.2017.00298] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified.
Collapse
Affiliation(s)
- Karen L Mansfield
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Institute of Infection and Global Health, University of LiverpoolLiverpool, United Kingdom
| | - Lv Jizhou
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Chinese Academy of Inspection and QuarantineBeijing, China
| | - L Paul Phipps
- Animal and Plant Health AgencyAddlestone, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Faculty of Health and Medicine, University of SurreyGuildford, United Kingdom
| |
Collapse
|