1
|
Fleming JK, Sullivan RM, Alfego D, Leach NT, Richman TJ, Rafalko J. A strategy to increase identification of patients with Familial Hypercholesterolemia: Application of the Simon Broome lipid criteria in a large-scale retrospective analysis. Am J Prev Cardiol 2025; 21:100930. [PMID: 39896055 PMCID: PMC11787606 DOI: 10.1016/j.ajpc.2025.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Introduction Familial Hypercholesterolemia (FH) is a primarily autosomal dominant condition characterized by markedly elevated low-density lipoprotein-cholesterol (LDL-c) and an increased risk of atherosclerosis and cardiovascular disease (CVD). Though early identification and treatment are crucial to optimizing outcomes, few laboratory strategies exist to detect FH. Methods All lipid tests for total cholesterol (TC) and LDL-c ordered through a large nation-wide network of medical laboratories in the United States (US) from 2018 - 2022 were retrospectively evaluated using a decision tree algorithm based on Simon Broome lipid criteria. If thresholds were met, results were classified as "possible FH" or as "no lipid evidence of FH" if not met. Results The review of 121,141,307 lipid panels and associated genetic tests from 58,400,105 patients resulted in 1,843,966 (3.2 %) that were classified as "possible FH". Overall, the mean TC was higher in females than males, particularly in those ≥16 years. LDL-c in the "no lipid evidence of FH" cohort increased year-over-year; LDL-c was stable or decreased in the "possible FH" cohort. Despite the large number of patients classified with "possible FH", very few (0.02 %) matched patients had genetic testing. Conclusion A laboratory-developed algorithm using Simon Broome lipid criteria can help identify patients who may benefit from additional FH evaluation. While critical, testing hyperlipidemic children for FH is grossly underutilized, as is genetic testing for FH. Diagnostic laboratories are uniquely positioned to bring FH to the attention of clinicians, with the goal of earlier diagnosis, cascade testing, and appropriate treatment.
Collapse
Affiliation(s)
- James K. Fleming
- Office of the Chief Scientific Officer, Labcorp, 4374 Nire Valley Drive, Burlington, NC 27215, United States
| | | | - David Alfego
- Center of Excellence for Data Science, AI and Bioinformatics, Labcorp, United States
| | - Natalia T. Leach
- Molecular Genetics and Cytogenetics, Women's Health and Genetics, Labcorp, United States
| | - Tamara J. Richman
- Strategic Initiatives Management, Office of the Chief Scientific Officer, Labcorp, United States
| | - Jill Rafalko
- Office of the Chief Scientific Officer, Labcorp, 4374 Nire Valley Drive, Burlington, NC 27215, United States
| |
Collapse
|
2
|
Ferch M, Galli L, Fellinger P, Baumgartner-Parzer S, Sunder-Plassmann R, Krychtiuk K, Kautzky-Willer A, Speidl W, Winhofer Y. Performance of LDL-C only compared to the Dutch Lipid Clinic Network Score for screening of familial hypercholesterolaemia: the Austrian experience and literature review. Eur J Prev Cardiol 2025; 32:249-258. [PMID: 39535057 DOI: 10.1093/eurjpc/zwae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
AIMS Familial hypercholesterolaemia (FH) is a severely underdiagnosed, inherited disease, causing dyslipidaemia and premature atherosclerotic cardiovascular disease. In order to facilitate screening in a broad clinical spectrum, we aimed to analyse the current yield of routine genetic diagnostics for FH and to evaluate the performance of the Dutch Lipid Clinic Network Score (DLCNS) compared to a single value, the off-treatment LDL-cholesterol exceeding 190 mg/dL. METHODS AND RESULTS We investigated all patients that underwent molecular genotyping routinely performed for FH over a 4-year period in two Austrian specialist lipid clinics. Variants reported in FH-causing genes including LDLR, APOB, PCSK9, LDLRAP, and APOE were collected and classified. For clinical classification, the DLCNS was calculated retrospectively and compared to the original scores documented in patient charts. Additionally, a literature review on comparisons of DLCNS to LDL-C was performed. Of 469 patients tested, 21.3% had a disease-causing variant. A median of 3 out of 8 (excluding genotyping results and LDL-C) DLCNS criteria were unavailable. DLCNS was documented in 48% of cases, with significant discrepancies compared to retrospective scoring (P < 0.001). DLCNS did not outperform off-treatment LDL-C alone (Δ = 0.006; P = 0.660), analogously to several reports identified in the literature. A single cut-off of 190 mg/dL LDL-C compared to DLCNS ≥ 6 showed excellent sensitivity (84.9% vs. 53.8%) and acceptable specificity (39.0% vs. 84.1%). CONCLUSION Missing criteria and severe discrepancies observed between retrospective and on-site scoring by treating physicians were highly prevalent, confirming limited utility of DLCNS in clinical routine and warranting a single off-treatment LDL-C cut-off of 190 mg/dL for enhanced index-case identification.
Collapse
Affiliation(s)
- Moritz Ferch
- Division of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Lukas Galli
- Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Paul Fellinger
- Division of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Division of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Raute Sunder-Plassmann
- Department for Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Konstantin Krychtiuk
- Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Walter Speidl
- Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Yvonne Winhofer
- Division of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
3
|
Clerc A, Togni M, Cook S. Call for a consensual definition of dyslipidemia in coronary angiography trials. Front Cardiovasc Med 2025; 12:1506149. [PMID: 39974594 PMCID: PMC11836034 DOI: 10.3389/fcvm.2025.1506149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Dyslipidemia is extensively analyzed in clinical trials investigating its role as a risk factor for coronary artery disease (CAD). However, its definition varies vastly among studies, leading to different attributions to the variable dyslipidemia. The objectives of this study are to verify the hypothesis of a lack of a consensual definition of dyslipidemia in coronary angiography studies and to propose a consensual definition of dyslipidemia, considering the influence of each serum lipid parameter on mortality. A systematic search of coronary angiography studies focusing on dyslipidemia was conducted. We listed definitions and their references in the 258 articles the research found. Out of the 258 articles retrieved in the search, 52 studies (20%) provided a definition of dyslipidemia, and 20 (8%) mentioned the source. We identified 39 different definitions. To mitigate misinterpretations of cardiovascular risk factors, we propose the use of the "lipid triad" components to define dyslipidemia: LDL-cholesterol >3.0 mmol/L for primary prevention and >2.6 mmol/L or >1.4 mmol/L for secondary prevention in patients over/under 75 years old, respectively; or HDL-cholesterol <1.3 mmol/L (women) and <1.0 mmol/L (men); or triglycerides >1.7 mmol/L.
Collapse
|
4
|
Ravi A, Koyama S, Cho SMJ, Haidermota S, Hornsby W, Ellinor PT, Natarajan P. Genetic Predisposition to Low-Density Lipoprotein Cholesterol and Incident Type 2 Diabetes. JAMA Cardiol 2025:2828728. [PMID: 39813027 DOI: 10.1001/jamacardio.2024.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Importance Treatment to lower high levels of low-density lipoprotein cholesterol (LDL-C) reduces incident coronary artery disease (CAD) risk but modestly increases the risk for incident type 2 diabetes (T2D). The extent to which genetic factors across the cholesterol spectrum are associated with incident T2D is not well understood. Objective To investigate the association of genetic predisposition to increased LDL-C levels with incident T2D risk. Design, Setting, and Participants In this large prospective, population-based cohort study, UK Biobank participants who underwent whole-exome sequencing and genome-wide genotyping were included. Participants were separated into 7 groups with familial hypercholesterolemia (FH), predicted loss of function (pLOF) in APOB or PCSK9 variants, and LDL-C polygenic risk score (PRS) quintiles. Data were collected between 2006 and 2010, with a median follow-up of 13.7 (IQR, 12.9-14.5) years. Data were analyzed from March 1 to November 1, 2024. Exposures LDL-C level, LDL-C PRS, FH, or pLOF variant status. Main Outcomes and Measures Cox proportional hazards regression models adjusted for age, sex, genotyping array, lipid-lowering medication use, and the first 10 genetic principal components were fitted to assess the association between LDL-C genetic factors and incident T2D and CAD risks. Results Among the 361 082 participants, mean (SD) age was 56.8 (8.0) years, 194 751 (53.9%) were female, and mean (SD) baseline LDL-C level was 138.0 (33.6) mg/dL. During the follow-up period, 22 619 (6.3%) participants developed incident T2D and 17 966 (5.0%) developed incident CAD. The hazard ratio for incident T2D was lowest in the FH group (0.65; 95% CI, 0.54-0.77), while the highest risk was in the pLOF group (1.48; 95% CI, 1.18-1.86). The association between LDL-C PRS and incident T2D was 0.72 (95% CI, 0.66-0.79) for very high LDL-C PRS, 0.87 (95% CI, 0.84-0.90) for high LDL-C PRS, 1.13 (95% CI, 1.09-1.17) for low LDL-C PRS, and 1.26 (95% CI, 1.15-1.38) for very low LDL-C PRS. CAD risk increased directly with the LDL-C PRS. Conclusions and Relevance In this cohort study, LDL-C and T2D risks were inversely associated across genetic mechanisms for LDL-C variation. Further elucidation of the mechanisms associating low LDL-C risk with increased risk of T2D is warranted.
Collapse
Affiliation(s)
- Akshaya Ravi
- Program of Medical and Population Genetics, Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Satoshi Koyama
- Program of Medical and Population Genetics, Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - So Mi Jemma Cho
- Program of Medical and Population Genetics, Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sara Haidermota
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Whitney Hornsby
- Program of Medical and Population Genetics, Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Pradeep Natarajan
- Program of Medical and Population Genetics, Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
5
|
Takeji Y, Tada H, Takamura M, Tomura A, Harada-Shiba M. Prevalence and Clinical Characteristics of Familial Hypercholesterolemia in Patients with Acute Coronary Syndrome according to the Current Japanese Guidelines: Insight from the EXPLORE-J study. J Atheroscler Thromb 2025; 32:23-33. [PMID: 38960631 PMCID: PMC11706976 DOI: 10.5551/jat.64972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Little data exists for evaluating the prevalence and patient characteristics of familial hypercholesterolemia (FH) according to the latest 2022 guidelines for FH published by the Japan Atherosclerosis Society (JAS), which revised the Achilles tendon thickness (ATT) threshold from 9.0 mm in both sexes to 8.0 mm in men and 7.5 mm in women. This study used a nationwide registry of patients with acute coronary syndrome (ACS) to evaluate the prevalence of FH according to the latest diagnostic criteria for FH and to investigate the application of Achilles tendon imaging in the diagnosis of FH.A previous prospective observational study at 59 Japanese centers involving consecutive patients with ACS who were managed between April 2015 and August 8, 2016 was conducted to explore lipid management and persistent risk in patients hospitalized for ACS (EXPLORE-J). The study population consisted of 1,944 EXPLORE-J enrollees. RESULTS According to the diagnostic criteria for FH in the 2022 JAS guidelines, the prevalence of probable or definite was among patients with ACS was 6.6% (127/1944). Among patients with premature ACS (male, age <55 years; female, age <65 years), the prevalence of FH was 10.1% (43/427). The mean ages were of the probable FH and definite FH groups were 59.9 and 61.0 years, respectively, while the mean age of the possible-or-unlikely FH group was 66.4 years (significantly older). Relative to the possible-or-unlikely FH group, the low-density lipoprotein cholesterol (LDL-C) levels were similar in the probable FH group and and significantly higher in the definite FH group. CONCLUSIONS The prevalence of FH was considerably higher than previously reported, especially for patients with premature ACS. The age and LDL-C levels of the patients in the probable FH and definite FH groups were similar.
Collapse
Affiliation(s)
- Yasuaki Takeji
- Department of Cardiology, Kanazawa University of Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hayato Tada
- Department of Cardiology, Kanazawa University of Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiology, Kanazawa University of Graduate School of Medical Sciences, Kanazawa, Japan
| | | | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
6
|
Ogura M. Exploration Continues. J Atheroscler Thromb 2025; 32:20-22. [PMID: 39322569 PMCID: PMC11706966 DOI: 10.5551/jat.ed271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Affiliation(s)
- Masatsune Ogura
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| |
Collapse
|
7
|
Li L, Zhao S, Leng Z, Chen S, Shi Y, Shi L, Li J, Mao K, Tang H, Meng B, Wang Y, Shang G, Liu H. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head. Ann Med 2024; 56:2416070. [PMID: 39529511 PMCID: PMC11559024 DOI: 10.1080/07853890.2024.2416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging. OBJECTIVES The objectives of this review were to examine the pathological mechanisms of SONFH, summarize related markers of SONFH, and identify areas for future studies. METHODS We reviewed studies on pathological mechanisms and related markers of SONFH and discussed the relationship between them, as well as clinical applications and the outlook of potential markers. RESULTS The pathological mechanisms of SONFH included decreased osteogenesis, lipid accumulation, increased intraosseous pressure, and microcirculation disruption. Differential proteomics and genomics play crucial roles in the occurrence, progression, and outcome of SONFH, providing novel insights into SONFH. Additionally, the biological functions of mesenchymal stem cells (MSCs) and exosomes (Exos) in SONFH have attracted increasing attention. CONCLUSIONS The pathological mechanisms of SONFH are complex. The related markers mentioned in the current review can predict the occurrence and progression of SONFH, which will help provide effective early clinical prevention and treatment strategies for SONFH.
Collapse
Affiliation(s)
- Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangkun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keya Mao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Michikura M, Ogura M, Matsuki K, Yamaoka M, Makino H, Harada-Shiba M. Risk Assessment for Cardiovascular Events using Achilles Tendon Thickness and Softness and Intima-Media Thickness in Familial Hypercholesterolemia. J Atheroscler Thromb 2024; 31:1607-1619. [PMID: 38811234 PMCID: PMC11537786 DOI: 10.5551/jat.64766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
AIMS This was a retrospective cohort study that aimed to determine cutoff values for major adverse cardiovascular events (MACEs) in patients with heterozygous FH (HeFH) for Achilles tendon (AT) thickness (ATT) measured by ultrasonography (US-ATT) and radiography (Xp-ATT), AT softness, and intima-media thickness of carotid artery (C-IMT), and to examine the effectiveness of these values as well as AT calcification as indexes in assessing risk for MACEs. METHODS The subjects were 391 clinically diagnosed HeFH patients. Kaplan-Meier curves were drawn based on the threshold values for the individual indexes calculated from ROC curves, and multivariate analysis was used to examine whether they were predictors of the development of MACEs. RESULTS The median observation period was 1,239 days (700-1,827 days). Twenty-one subjects (5%) had MACEs during the observation period. The cutoff values for MACEs for US-ATT were 9.9 mm in males and 7.1 mm in females, and those for C-IMT were 1.6 mm in males and 1.5 mm in females. Subjects were classified into two groups according to whether they were above or below the cutoff values and presence of calcification, and we compared MACE rates between them. MACE rates were significantly increased in groups with AT thickening determined by ultrasonography (P<0.001), AT softening (P<0.001), presence of calcification in AT (P=0.016) and greater C-IMT (P<0.001). However, classification according to Xp-ATT revealed no significant difference in MACE rate (P=0.112). CONCLUSIONS These thresholds and examination for AT calcification will help in risk assessment for patients in Japanese FH practice and encourage stricter and more comprehensive management for patients who exceed the thresholds.
Collapse
Affiliation(s)
- Masahito Michikura
- Department of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masatsune Ogura
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Makoto Yamaoka
- Department of Central Laboratory, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Hisashi Makino
- Department of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
9
|
Hu YN, Wu M, Yu HP, Wu QY, Chen Y, Zhang JH, Ruan DD, Zhang YP, Zou J, Zhang L, Lin XF, Fang ZT, Liao LS, Lin F, Li H, Luo JW. Analysis of low-density lipoprotein receptor gene mutations in a family with familial hypercholesterolemia. PLoS One 2024; 19:e0310547. [PMID: 39392848 PMCID: PMC11469539 DOI: 10.1371/journal.pone.0310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a common monogenic autosomal dominant disorder, primarily mainly caused by pathogenic mutations in the low-density lipoprotein receptor (LDLR) gene. Through phenotypic-genetic linkage analysis, two LDLR pathogenic mutations were identified in FH families: c.G1027A (p.Gly343Ser) and c.G1879A (p.Ala627Thr). MATERIALS AND METHODS Whole exome sequencing was conducted on the proband with familial hypercholesterolemia to identify the target gene and screen for potential pathogenic mutations. The suspicious responsible mutation sites in 14 family members were analyzed using Sanger sequencing to assess genotype-phenotype correlations. Mutant and wild type plasmids were constructed and transfected into HEK293T cells to evaluate LDLR mRNA and protein expression. In parallel, bioinformatics tools were employed to predict structural and functional changes in the mutant LDLR. RESULTS Immunofluorescence analysis revealed no significant difference in the intracellular localization of the p.Gly343Ser mutation, whereas protein expression of the p.Ala627Thr mutation was decreased and predominantly localized in the cytoplasm. Western blotting has showed that protein expression levels of the mutant variants were markedly declined in both cell lysates and supernatants. Enzyme linked immunosorbent assay has demonstrated that LDLR protein levels in the supernatant of cell culture medium was not significant different from those of the wild-type group. However, LDLR protein levels in the cell lysate of both the Gly343Ser and Ala627Thr variants groups were significantly lower than those in the wild-type group. Bioinformatic predictions further suggested that these mutations may affect post-translational modifications of the protein, providing additional insight into the mechanisms underlying the observed reduction in protein expression. CONCLUSIONS In this study, we identified two heterozygous pathogenic variants in the LDLR gene, c.G1027A (p.Gly343Ser) and c.G1879A (p.Ala627Thr), in a family with familial hypercholesterolemia. We also conducted preliminary investigations into the mechanisms by which these mutations contribute to disease pathology.
Collapse
Affiliation(s)
- Ya-nan Hu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Min Wu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Hong-ping Yu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qiu-yan Wu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ying Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-Hui Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Dan-dan Ruan
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yan-ping Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jing Zou
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xin-fu Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Pediatrics department, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-ting Fang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Oncology and Vascular Intervention, Fujian Provincial Hospital, Fuzhou, China
| | - Li-Sheng Liao
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Fan Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
10
|
Rogozik J, Rokicki JK, Grabowski M, Główczyńska R. Gene Mutation in Patients with Familial Hypercholesterolemia and Response to Alirocumab Treatment-A Single-Centre Analysis. J Clin Med 2024; 13:5615. [PMID: 39337102 PMCID: PMC11433266 DOI: 10.3390/jcm13185615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder characterized by significantly elevated levels of low-density lipoprotein (LDL) cholesterol, which plays a major role in the progression of atherosclerosis and leads to a heightened risk of premature atherosclerotic cardiovascular disease. Methods: We have carried out an observational study on a group of 17 patients treated at the Outpatient Lipid Clinic from 2019 to 2024. Result: The most frequent mutation observed was found in the LDL receptor (LDLR) gene, which was identified in ten patients (58.8%). Five patients were identified to have a mutation in the apolipoprotein B (APOB) gene, whereas two patients had two points mutations, one in the LDLR, and the other in the APOB gene. The average age of patients with LDLR mutation was 54.8 (12.3); for APOB mutation it was 61.4 (9.3) and for patients with two points mutation it was 61.5 (14.8). The study results showed that at Week 12, individuals with LDLR-defective heterozygotes who were given alirocumab 150 mg every two weeks experienced a 63.0% reduction in LDL cholesterol levels. On the other hand, individuals with APOB heterozygotes experienced a 59% reduction in LDL cholesterol levels. However, in patients with double heterozygous for mutations in LDLR and APOB genes, there was a hyporesponsiveness to alirocumab, and the reduction in LDL-C was only by 23% in two individuals. Conclusions: In patients with a single mutation, there was a greater response to treatment with alirocumab in contrast to patients with double heterozygous mutation, who did not respond to treatment with PCSK9 inhibitors.
Collapse
Affiliation(s)
- Joanna Rogozik
- 1st Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Kosma Rokicki
- 1st Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Renata Główczyńska
- 1st Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Rogozik J, Grabowski M, Główczyńska R. Challenges in the management of familial hypercholesterolemia: a case report. Front Cardiovasc Med 2024; 11:1417432. [PMID: 39359642 PMCID: PMC11445751 DOI: 10.3389/fcvm.2024.1417432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Background Familial hypercholesterolemia (FH) is a serious genetic condition that results in abnormally high levels of low-density lipoprotein cholesterol (LDL-C) in the bloodstream, significantly increasing the risk of early onset of cardiovascular disease. The heterozygous form of FH (HeFH) is widespread, affecting around 1 in 500 people worldwide. Case report In this clinical report, we present the case of a patient who suffers from HeFH due to a mutation in the LDL receptor (LDLR) gene. A woman exhibited intolerance to statin therapy and did not attain adequate reduction in low-density lipoprotein cholesterol (LDL-C) levels on ezetimibe monotherapy. Genetic testing confirmed the presence of a pathogenic variant for FH with the deletion of exons 7-14. The administration of alirocumab (a dose of 150 mg sc) as the primary therapy did not exhibit the desired therapeutic outcome. Consequently, the patient was given inclisiran therapy (a dose of 284 mg sc), which significantly reduced LDL cholesterol levels after 3 months of treatment and during the 1-year follow-up. Conclusion Inclisiran therapy has shown promising results for individuals with HeFH who experience statin intolerance. This therapy works by using a small interfering RNA (siRNA) to target the mRNA of proprotein convertase subtilisin/kexin type 9 (PCSK9), which leads to a significant reduction of LDL-C levels. This approach can be an alternative for patients without significant reductions in LDL-C levels with PCSK9 inhibitor therapy. For HeFH patients with limited treatment options due to statin intolerance and genetic mutations, inclisiran can represent a promising therapeutic option.
Collapse
Affiliation(s)
- Joanna Rogozik
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
12
|
Tada H, Nohara A, Usui S, Sakata K, Kawashiri MA, Takamura M. Validation of physical examinations of tendon xanthomas and changes in the cutoff values of Achilles tendon thickness on radiography in the clinical criteria of heterozygous familial hypercholesterolemia in Japan. J Clin Lipidol 2024; 18:e825-e831. [PMID: 39278773 DOI: 10.1016/j.jacl.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND The 2022 Japan Atherosclerosis Society familial hypercholesterolemia (FH) clinical criteria were modified. In particular, the cutoff value of Achilles tendon thickness (ATT) on radiography was changed from ≥9 mm in both sexes to ≥8.0 mm in men and ≥7.5 mm in women. METHODS A total of 872 patients with FH were retrospectively reviewed. Patients were categorized by an ATT of <7.5/8.0 mm (group 1), ≥7.5/8.0 and <9.0 mm (group 2, new group with FH by ATT), and ≥9 mm (group 3). RESULTS In total, 492 patients fell into group 1, 102 in group 2, and 263 in group 3, and 14.0%, 55.9%, and 79.8% of patients in groups 1, 2, and 3, respectively, were positive for a FH mutation. Further, among patients with low-density lipoprotein cholesterol >180 mg/dL, 37.3%, 77.3%, and 86.5% of patients had a FH mutation in groups 1, 2, and 3, respectively. The proportion of patients with protein-truncating mutation (3.8%, 16.7%, and 53.2%, respectively) differed significantly across groups 1 through 3, respectively. Interestingly, only a very small proportion of the patients in groups 2 and 3 had palpable xanthomas (3.0% and 14.4% respectively). CONCLUSIONS This study validates the new radiographic ATT criteria, since the vast majority of patients in the intermediate ATT category had true FH, as shown by positive genetic testing, whereas the old ATT criteria left them with just a deferred diagnosis of FH. In addition, use of physical examination alone for the presence of tendon xanthoma may lead to underdiagnosis of FH.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (Drs Tada, Usui, Sakata, and Takamura).
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan (Dr Nohara)
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (Drs Tada, Usui, Sakata, and Takamura)
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (Drs Tada, Usui, Sakata, and Takamura)
| | - Masa-Aki Kawashiri
- Department of Internal Medicine, Kaga Medical Center, Kaga, Japan (Dr Kawashiri)
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (Drs Tada, Usui, Sakata, and Takamura)
| |
Collapse
|
13
|
Saotome M, Maekawa Y. A Japanese Woman with Polygenic Familial Hypercholesteremia Who Exhibited Trivial Atherosclerosis. Intern Med 2024; 63:2111-2112. [PMID: 39085091 PMCID: PMC11358748 DOI: 10.2169/internalmedicine.3089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 08/02/2024] Open
Affiliation(s)
- Masao Saotome
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
14
|
Fu HY, Matsunaga K, Inoue T, Tani R, Funatsuki K, Iwase T, Kondo S, Nishioka K, Ito S, Sasaki T, Yokota I, Hoshikawa Y, Yokoyama K, Fujisawa T, Kawashiri MA, Tada H, Takamura M, Kusaka T, Minamino T. Improved Efficiency of the Clinical Diagnostic Criteria for Familial Hypercholesterolemia in Children: A Comparison of the Japan Atherosclerosis Society Guidelines of 2017 and 2022. J Atheroscler Thromb 2024; 31:1048-1057. [PMID: 38311417 PMCID: PMC11224690 DOI: 10.5551/jat.64513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein cholesterol (LDL-C) levels, which increases the risk of premature coronary artery disease. Early detection and treatment are vital, especially in children. To improve FH diagnosis in children, the Japan Atherosclerosis Society (JAS) released new guidelines in July 2022. This study assessed and compared the sensitivity and specificity of the clinical diagnostic criteria from the JAS pediatric FH guidelines of 2017 and 2022. METHODS From September 2020 to March 2023, 69 children with elevated plasma LDL-C levels (≥ 140 mg/dL) were included in a pediatric FH screening project in Kagawa. The children were evaluated using genetic testing alongside the clinical diagnostic criteria from the JAS pediatric FH guidelines of 2017 and 2022. RESULTS Using the JAS pediatric FH 2017 criteria, eight children were diagnosed as FH-positive and 61 children as FH-negative. The JAS pediatric FH 2022 criteria identified 15 children with definite FH, 31 with probable FH, and 23 with possible FH. Genetic testing detected FH pathogenic variants in 24 children. The sensitivity and specificity for the JAS pediatric FH 2017 criteria were 0.292 and 0.978, respectively. For the JAS pediatric FH 2022 criteria, the sensitivity was 0.542 for definite FH with a specificity of 0.956, and 0.917 for probable FH with a specificity of 0.467. CONCLUSION The clinical diagnostic criteria of the JAS pediatric FH 2022 guidelines demonstrated improved diagnostic efficiency compared with those of 2017, as evidenced by the increased sensitivity while preserving specificity.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tomoko Inoue
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ryosuke Tani
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kenzo Funatsuki
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Iwase
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sonoko Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsufumi Nishioka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shigeru Ito
- Department of Pediatrics, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Tsuyoshi Sasaki
- Department of Pediatrics, Mitoyo General Hospital, Kagawa, Japan
| | - Ichiro Yokota
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, National Hospital Organization Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Yoichi Hoshikawa
- Department of Health and Welfare, Kagawa Prefectural Government, Kagawa, Japan
| | - Katsunori Yokoyama
- Department of Health and Welfare, Kagawa Prefectural Government, Kagawa, Japan
| | | | - Masa-aki Kawashiri
- Department of Cardiology, Kaga Medical Center, Kaga, Japan
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
15
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
16
|
Guan H, Zhang G, Li Q, Lian J, Dong Z, Zhu L, Xiao K. Surgical Treatment of Multiple Large Tuberous and Tendinous Xanthoma Secondary to Familial Hypercholesterolaemia: A Case Report. Clin Cosmet Investig Dermatol 2024; 17:961-966. [PMID: 38707607 PMCID: PMC11067942 DOI: 10.2147/ccid.s445163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Xanthomas are well-circumscribed skin lesions that are commonly seen in patients with familial hypercholesterolemia (FH). The aim of this report is to present a rare case of multiple large tuberous and tendinous xanthomas. A 17-year-old female patient in this report presented with multiple asymptomatic and papulo-nodular masses in both sides of palms, elbows, buttocks, knees, and Achilles tendons. Surgical removal of the masses was carried out in combination with lipid-lowering therapy. A following up of 3 months showed all wounds were healing well, and no recurrence of masses was observed. Therefore, for patients with xanthomas related with familial hypercholesterolaemia, lipid-lowering therapy has reportedly reduced the size of masses, but surgical treatment may be essential for large xanthomas caused pain or limitation of daily activities.
Collapse
Affiliation(s)
- Haonan Guan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Qiqi Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Jie Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhaoyang Dong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Kaiyan Xiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Kobayashi J, Minamizuka T, Tada H, Yokote K. Familial hypercholesterolemia with special focus on Japan. Clin Chim Acta 2024; 556:117847. [PMID: 38417778 DOI: 10.1016/j.cca.2024.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Familial hypercholesterolemia (FH) is an inherited disorder characterized by increased low-density lipoprotein LDL) cholesterol and atherosclerotic cardiovascular disease. Although initial genetic analysis linked FH to LDL receptor mutations, subsequent work demonstrated that a gain-of-function mutation in the proprotein convertase subtilisin/kexin type 9 (PCSK9), which causes LDL-R degradation, was shown to be the cause of FH. In this review, we describe the history of research on FH, its clinical phenotyping and genotyping and advances in treatment with special focus on Japan.
Collapse
Affiliation(s)
- Junji Kobayashi
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University; Department of Clinical Laboratory Science, Graduate School of Medical Sciences, Kanazawa University.
| | - Takuya Minamizuka
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| | - Koutaro Yokote
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University
| |
Collapse
|
18
|
Kotani K, Sakane N, Gugliucci A. Effect of pitavastatin treatment on PON1 lactonase activity in patients with hypercholesterolaemia. Arch Med Sci Atheroscler Dis 2024; 9:e16-e17. [PMID: 38434942 PMCID: PMC10905260 DOI: 10.5114/amsad/178105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 03/05/2024] Open
Affiliation(s)
- Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke City, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, National Hospital Organization Kyoto Medical Centre, Kyoto-City, Japan
| | - Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University, California, United States
| |
Collapse
|
19
|
Dharmayat KI, Vallejo-Vaz AJ, Stevens CA, Brandts JM, Lyons AR, Groselj U, Abifadel M, Aguilar-Salinas CA, Alhabib K, Alkhnifsawi M, Almahmeed W, Alnouri F, Alonso R, Al-Rasadi K, Ashavaid TF, Banach M, Béliard S, Binder C, Bourbon M, Chlebus K, Corral P, Cruz D, Descamps OS, Drogari E, Durst R, Ezhov MV, Genest J, Harada-Shiba M, Holven KB, Humphries SE, Khovidhunkit W, Lalic K, Laufs U, Liberopoulos E, Roeters van Lennep J, Lima-Martinez MM, Lin J, Maher V, März W, Miserez AR, Mitchenko O, Nawawi H, Panayiotou AG, Paragh G, Postadzhiyan A, Reda A, Reiner Ž, Reyes X, Sadiq F, Sahebkar A, Schunkert H, Shek AB, Stroes E, Su TC, Subramaniam T, Susekov A, Vázquez Cárdenas A, Huong Truong T, Tselepis AD, Vohnout B, Wang L, Yamashita S, Al-Sarraf A, Al-Sayed N, Davletov K, Dwiputra B, Gaita D, Kayikcioglu M, Latkovskis G, Marais AD, Thushara Matthias A, Mirrakhimov E, Nordestgaard BG, Petrulioniene Z, Pojskic B, Sadoh W, Tilney M, Tomlinson B, Tybjærg-Hansen A, Viigimaa M, Catapano AL, Freiberger T, Hovingh GK, Mata P, Soran H, Raal F, Watts GF, Schreier L, Bañares V, Greber-Platzer S, Baumgartner-Kaut M, de Gier C, Dieplinger H, Höllerl F, Innerhofer R, Karall D, Lischka J, Ludvik B, Mäser M, Scholl-Bürgi S, Thajer A, Toplak H, Demeure F, Mertens A, Balligand JL, Stephenne X, Sokal E, Petrov I, Goudev A, Nikolov F, Tisheva S, Yotov Y, Tzvetkov I, Hegele RA, Gaudet D, Brunham L, Ruel I, McCrindle B, Cuevas A, Perica D, Symeonides P, Trogkanis E, Kostis A, Ioannou A, Mouzarou A, Georgiou A, Stylianou A, Miltiadous G, Iacovides P, Deltas C, Vrablik M, Urbanova Z, Jesina P, Tichy L, Hyanek J, Dvorakova J, Cepova J, Sykora J, Buresova K, Pipek M, Pistkova E, Bartkova I, S|ulakova A, Toukalkova L, Spenerova M, Maly J, Benn M, Bendary A, Elbahry A, Ferrières J, Ferrieres D, Peretti N, Bruckert E, Gallo A, Valero R, Mourre F, Aouchiche K, Reynaud R, Tounian P, Lemale J, Boccara F, Moulin P, Charrières S, Di Filippo M, Cariou B, Paillard F, Dourmap C, Pradignac A, Verges B, Simoneau I, Farnier M, Cottin Y, Yelnik C, Hankard R, Schiele F, Durlach V, Sultan A, Carrié A, Rabès JP, Sanin V, Schmieder RS, Ates S, Rizos CV, Skoumas I, Tziomalos K, Rallidis L, Kotsis V, Doumas M, Skalidis E, Kolovou G, Kolovou V, Garoufi A, Koutagiar I, Polychronopoulos G, Kiouri E, Antza C, Zacharis E, Attilakos A, Sfikas G, Koumaras C, Anagnostis P, Anastasiou G, Liamis G, Adamidis PS, Milionis H, Lambadiari V, Stabouli S, Filippatos T, Mollaki V, Tsaroumi A, Lamari F, Proyias P, Harangi M, Reddy LL, Shah SAV, Ponde CK, Dalal JJ, Sawhney JP, Verma IC, Hosseini S, Jamialahmadi T, Alareedh M, Shaghee F, Rhadi SH, Abduljalal M, Alfil S, Kareem H, Cohen H, Leitersdorf E, Schurr D, Shpitzen S, Arca M, Averna M, Bertolini S, Calandra S, Tarugi P, Casula M, Galimberti F, Gazzotti M, Olmastroni E, Sarzani R, Ferri C, Repetti E, Giorgino F, Suppressa P, Bossi AC, Borghi C, Muntoni S, Cipollone F, Scicali R, Pujia A, Passaro A, Berteotti M, Pecchioli V, Pisciotta L, Mandraffino G, Pellegatta F, Mombelli G, Branchi A, Fiorenza AM, Pederiva C, Werba JP, Parati G, Nascimbeni F, Iughetti L, Fortunato G, Cavallaro R, Iannuzzo G, Calabrò P, Cefalù AB, Capra ME, Zambon A, Pirro M, Sbrana F, Trenti C, Minicocci I, Federici M, Del Ben M, Buonuomo PS, Moffa S, Pipolo A, Citroni N, Guardamagna O, Lia S, Benso A, Biolo GB, Maroni L, Lupi A, Bonanni L, Rinaldi E, Zenti MG, Masuda D, Mahfouz L, Jambart S, Ayoub C, Ghaleb Y, Kasim NAM, Nor NSM, Al-Khateeb A, Kadir SHSA, Chua YA, Razman AZ, Nazli SA, Ranai NM, Latif AZA, Torres MTM, Mehta R, Martagon AJ, Ramirez GAG, Antonio-Villa NE, Vargas-Vazquez A, Elias-Lopez D, Retana GG, Encinas BR, Macıas JJC, Zazueta AR, Alvarado RM, Portano JDM, Lopez HA, Sauque-Reyna L, Gomez Herrera LG, Simental Mendia LE, Aguilar HG, Cooremans ER, Aparicio BP, Zubieta VM, Gonzalez PAC, Ferreira-Hermosillo A, Portilla NC, Dominguez GJ, Garcia AYR, Arriaga Cazares HE, Gonzalez Gonzalez JR, Mendez Valencia CV, Padilla Padilla FG, Prado RM, De los Rios Ibarra MO, Arjona Villica~na RD, Acevedo Rivera KJ, Carrera RA, Alvarez JA, Amezcua Martinez JC, Barrera Bustillo MDLR, Vargas GC, Chacon RC, Figueroa Andrade MH, Ortega AF, Alcala HG, Garcia de Leon LE, Guzman BG, Gardu~no Garcia JJ, Garnica Cuellar JC, Gomez Cruz JR, Garcia AH, Holguin Almada JR, Herrera UJ, Sobrevilla FL, Rodriguez EM, Sibaja CM, Medrano Rodriguez AB, Morales Oyervides JC, Perez Vazquez DI, Reyes Rodriguez EA, Osorio MLR, Saucedo JR, Tamayo MT, Valdez Talavera LA, Vera Arroyo LE, Zepeda Carrillo EA, Galema-Boers A, Weigman A, Bogsrud MP, Malik M, Shah S, Khan SA, Rana MA, Batool H, Starostecka E, Konopka A, Lewek J, Bielecka-Dąbrowa A, Gach A, Jóźwiak J, Pajkowski M, Romanowska-Kocejko M, Żarczyńska-Buchowiecka M, Hellmann M, Chmara M, Wasąg B, Parczewska A, Gilis-Malinowska N, Borowiec-Wolna J, Stróżyk A, Michalska-Grzonkowska A, Chlebus I, Kleinschmidt M, Wojtecka A, Zdrojewski T, Myśliwiec M, Hennig M, Medeiros AM, Alves AC, Almeida AF, Lopes A, Guerra A, Bilhoto C, Simões F, Silva F, Lobarinhas G, Gama G, Palma I, Salgado JM, Matos LD, Moura MD, Virtuoso MJ, Tavares M, Ferreira P, Pais P, Garcia P, Coelho R, Ribeiro R, Correia S, Sadykova D, Slastnikova E, Alammari D, Mawlawi HA, Alsahari A, Khudary AA, Alrowaily NL, Rajkovic N, Popovic L, Singh S, Rasulic I, Petakov A, Lalic NM, Peng FK, Vasanwala RF, Venkatesh SA, Raslova K, Fabryova L, Nociar J, Šaligova J, Potočňáková L, Kozárová M, Varga T, Kadurova M, Debreova M, Novodvorsky P, Gonova K, Klabnik A, Buganova I, Battelino T, Bizjan BJ, Debeljak M, Kovac J, Mlinaric M, Molk N, Sikonja J, Sustar U, Podkrajsek KT, Muñiz-Grijalvo O, Díaz-Díaz JL, de Andrés R, Fuentes-Jiménez F, Blom D, Miserez EB, Shipton JL, Ganokroj P, Futema M, Ramaswami U, Alieva RB, Fozilov KG, Khoshimov SU, Nizamov UI, Abdullaeva GJ, Kan LE, Abdullaev AA, Zakirova DV, Do DL, Nguyen MNT, Kim NT, Le TT, Le HA, Santos R, Ray KK. Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study. Lancet 2024; 403:55-66. [PMID: 38101429 DOI: 10.1016/s0140-6736(23)01842-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. METHODS For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. FINDINGS Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. INTERPRETATION Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. FUNDING Pfizer, Amgen, Merck Sharp & Dohme, Sanofi-Aventis, Daiichi Sankyo, and Regeneron.
Collapse
|
20
|
Rogozik J, Główczyńska R, Grabowski M. Genetic backgrounds and diagnosis of familial hypercholesterolemia. Clin Genet 2024; 105:3-12. [PMID: 37849044 DOI: 10.1111/cge.14435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Lipid disorders play a critical role in the intricate development of atherosclerosis and its clinical consequences, such as coronary heart disease and stroke. These disorders are responsible for a significant number of deaths in many adult populations worldwide. Familial hypercholesterolemia (FH) is a genetic disorder that causes extremely high levels of LDL cholesterol. The most common mutations occur in genes responsible for low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). While genetic testing is a dependable method for diagnosing the disease, it may not detect primary mutations in 20%-40% of FH cases.
Collapse
Affiliation(s)
- Joanna Rogozik
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Renata Główczyńska
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Meng R, Wei Q, Zhou J, Zhang B, Li C, Shen M. A systematic review of cost-effectiveness analysis of different screening strategies for familial hypercholesterolemia. J Clin Lipidol 2024; 18:e21-e32. [PMID: 37980172 DOI: 10.1016/j.jacl.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
AIMS Diagnosis rate of familial hypercholesterolemia (FH) remained less than 10 % globally and the economic evaluation results of different FH screening strategies varied. This study aimed to systematically review the methodology and results of cost effectiveness analysis (CEA) of FH screening, which will provide evidence support for health-related decision-making. METHODS The Medline/PubMed, Embase, Cochrane Library, Web of science, National Health Service Economic Evaluation Database (NHSEED) and CEA Registry databases were electronically searched to collect full economic evaluation from the establishment of the databases to June 30, 2022. The quality of included studies was evaluated by the Consolidated Health Economic Evaluation Reporting Standards statement 2022 (CHEERS 2022) checklist. RESULTS Among 232 retrieved studies, 18 economic evaluations were included and all of them are from developed countries, with an average quality score of 0.73. The decision tree model and/or Markov model were constructed by thirteen articles (72 %). Twelve studies (67 %) adopted the healthcare perspective and the lifetime horizon to compare the costs and health outcome of different screening strategies. The results of eight studies indicated that cascade screening was a cost-effective strategy compared with no screening, which was more pronounced in younger adults. Universal screening in young adults aged 16 years or 18-40 years (n=3) and in children aged 1-2 years combined with reverse cascade screening (n=3) are both cost-effective. The probability of being cost-effective for cascade screening (n=6) and universal screening (n=1) of young aged 18-40 years were greater than 95 %. CONCLUSIONS Our review demonstrated the economic advantages of cascade screening, universal screening of young adults, and universal screening of newborns combined with reverse cascade screening. Further health economic evaluation is needed in children and in low- and middle-income countries.
Collapse
Affiliation(s)
- Rui Meng
- China-Australia Joint Research Center for Infectious Diseases (Drs Meng, Shen), School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Qiran Wei
- School of International Pharmaceutical Business (Drs Wei, Zhou), China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jiting Zhou
- School of International Pharmaceutical Business (Drs Wei, Zhou), China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Baoming Zhang
- College of Stomatology (Dr Zhang), Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China; Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research (Dr Zhang), College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China; School of Public Health (Drs Zhang, Li), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Chao Li
- School of Public Health (Drs Zhang, Li), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Mingwang Shen
- China-Australia Joint Research Center for Infectious Diseases (Drs Meng, Shen), School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province (Dr Shen), Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
22
|
Takeji Y, Tada H, Ogura M, Nohara A, Kawashiri MA, Yamashita S, Harada-Shiba M. Clinical Characteristics of Homozygous Familial Hypercholesterolemia in Japan: A Survey Using a National Database. JACC. ASIA 2023; 3:881-891. [PMID: 38155796 PMCID: PMC10751644 DOI: 10.1016/j.jacasi.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 12/30/2023]
Abstract
Background The studies evaluating patients' characteristics and lipid-lowering therapy for patients with homozygous familial hypercholesterolemia (HoFH) are scarce. Objectives This study aims to evaluate the characteristics of and treatments for patients with HoFH. Methods This study included 201 patients who were diagnosed with definite or probable HoFH from the National Database of the Japanese Ministry of Health, Labour, and Welfare. Results The patients' median age at diagnosis was 27 years and exhibited a bimodal distribution. Approximately 70% of patients had coronary artery disease. Regarding genetic backgrounds, mutations in the low-density lipoprotein (LDL) receptor (LDLR) were identified in most of the patients, followed by proprotein convertase subtilisin/kexin type 9 (PCSK9) and double heterozygotes of LDLR. High-intensity statins were introduced to 74% of the patients, lipoprotein apheresis was performed in 21%, and PCSK9 inhibitors were administered to 50%. The mean of LDL cholesterol before and after treatment were 10.1 mmol/L and 3.9 mmol/L, respectively. Patients with coronary artery disease had significantly decreased LDL cholesterol. A quarter of the patients (n = 49, 24%) exhibited valvular diseases, particularly aortic valvular disease (n = 34, 61%). Conclusions The national epidemiological study of patients with HoFH showed patient's clinical and genetic characteristics and LDL-lowering therapy in Japan. There was considerable diversity in the severity of phenotypes, including LDL cholesterol levels, among patients with HoFH. In Japan, the management of LDL cholesterol in HoFH is still inadequate despite the availability of intensive lipid-lowering therapies.
Collapse
Affiliation(s)
- Yasuaki Takeji
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masatsune Ogura
- Department of Medical Laboratory Technology, Faculty of Medical Science, Juntendo University, Urayasu, Japan
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | | | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Izumisano, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
23
|
Katsuki S, Matoba T, Akiyama Y, Yoshida H, Kotani K, Fujii H, Harada-Shiba M, Ishibashi Y, Ishida T, Ishigaki Y, Kabata D, Kihara Y, Kurisu S, Masuda D, Matsuki K, Matsumura T, Mori K, Nakagami T, Nakazato M, Taniuchi S, Ueno H, Yamashita S, Yoshida H, Tsutsui H, Shoji T. Association of Serum Levels of Cholesterol Absorption and Synthesis Markers with the Presence of Cardiovascular Disease: The CACHE Study CVD Analysis. J Atheroscler Thromb 2023; 30:1766-1777. [PMID: 37100627 DOI: 10.5551/jat.64119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
AIM Serum levels of cholesterol absorption and synthesis markers have been associated with cardiovascular risk in the United States and European countries. In this study, we examined the relevance of these biomarkers and the presence of cardiovascular disease (CVD) in Japanese individuals. METHODS The CACHE consortium, comprising of 13 research groups in Japan possessing data on campesterol, an absorption marker, and lathosterol, a synthesis marker measured by gas chromatography, compiled the clinical data using the REDCap system. RESULTS Among the 2,944 individuals in the CACHE population, those with missing campesterol or lathosterol data were excluded. This cross-sectional study was able to analyze data from 2,895 individuals, including 339 coronary artery disease (CAD) patients, 108 cerebrovascular disease (CeVD) patients, and 88 peripheral artery disease (PAD) patients. The median age was 57 years, 43% were female, and the median low-density lipoprotein cholesterol and triglyceride levels were 118 mg/dL and 98 mg/dL, respectively. We assessed the associations of campesterol, lathosterol, and the ratio of campesterol to lathosterol (Campe/Latho ratio) with the odds of CVD using multivariable-adjusted nonlinear regression models. The prevalence of CVD, especially CAD, showed positive, inverse, and positive associations with campesterol, lathosterol, and the Campe/Latho ratio, respectively. These associations remained significant even after excluding individuals using statins and/or ezetimibe. The associations of the cholesterol biomarkers with PAD were determined weaker than those with CAD. Contrarily, no significant association was noted between cholesterol metabolism biomarkers and CeVD. CONCLUSION This study showed that both high cholesterol absorption and low cholesterol synthesis biomarker levels were associated with high odds of CVD, especially CAD.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Yusuke Akiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University
| | - Hisako Fujii
- Department of Health and Medical Innovation, Osaka Metropolitan University Graduate School of Medicine
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Yutaka Ishibashi
- Department of General Medicine, Shimane University Faculty of Medicine
- Jinjyukai Education & Training Center for Healthcare Professionals
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Daijiro Kabata
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Kota Matsuki
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University
| | - Kenta Mori
- Department of General Internal Medicine, Kobe University Hospital
| | - Tomoko Nakagami
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women fs Medical University School of Medicine
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Satsuki Taniuchi
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine
| | - Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | | | - Hisako Yoshida
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate School of Medicine
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine
| |
Collapse
|
24
|
Isawa T, Horie K, Toyoda S, Taguri M. Prognostic impact of Achilles tendon thickness in elderly patients after percutaneous coronary intervention: A 5-year follow-up. J Cardiol 2023; 82:448-454. [PMID: 37506821 DOI: 10.1016/j.jjcc.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/18/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Evaluating the Achilles tendon thickness (ATT) may be beneficial for risk stratification of long-term secondary cardiovascular events among patients who underwent percutaneous coronary intervention (PCI). METHODS This observational study evaluated major adverse cardiac and cerebrovascular events (MACCEs), including cardiovascular death/death from unknown causes, at 5 years after PCI according to the baseline ATT (≥9 mm vs. <9 mm). RESULTS Overall, 355 patients aged ≥75 years were enrolled; 47 (13.2 %) and 308 patients (86.8 %) had an ATT ≥9 mm and <9 mm, respectively. The incidence of MACCEs at 5 years was numerically higher but not significantly different for the ATT ≥9 mm group compared with the ATT <9 mm group (Gray's p-value = 0.10). However, the incidence of cardiovascular death/death from unknown causes at 5 years was significantly higher in the ATT ≥9 mm group than in the ATT <9 mm group (Gray's p-value = 0.034). Multivariable Fine and Gray competing risk analysis showed that an ATT ≥9 mm was associated with both MACCEs [hazard ratio (HR), 1.95; 95 % confidence interval (CI), 1.12-3.41; p-value = 0.019] and cardiovascular death/death from unknown causes (HR, 2.81; 95 % CI, 1.31-6.03; p-value = 0.008) at 5 years in patients with an estimated glomerular filtration rate (eGFR) ≥30 mL/min/1.73 m2. CONCLUSIONS A significantly thick Achilles tendon could be a marker for MACCEs, including cardiovascular death/death from unknown causes, at 5 years among elderly patients with an eGFR ≥30 mL/min/1.73 m2 after PCI.
Collapse
Affiliation(s)
- Tsuyoshi Isawa
- Department of Cardiology, Sendai Kousei Hospital, Sendai, Japan.
| | - Kazunori Horie
- Department of Cardiology, Sendai Kousei Hospital, Sendai, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Masataka Taguri
- Department of Health Data Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Radhika A, Burgula S, Badapanda C, Hussain T, Naushad SM. Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease. Mamm Genome 2023; 34:632-643. [PMID: 37668737 DOI: 10.1007/s00335-023-10017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Dyslipidemia is a major risk factor for the development of coronary artery disease (CAD). Understanding the genetic determinants of dyslipidemia can provide valuable information on the pathogenesis of CAD and aid in the development of early detection strategies. In this study, we used a Global Screening Array (GSA) to elucidate the genetic factors associated with dyslipidemia and their potential role in the prediction of CAD. We conducted a GSA-based association study in 265 subjects to identify the genetic loci associated with dyslipidemia traits using Multiple Linear Regression (MLR) and Logistic Regression (LR), Classification and Regression Tree (CART), and Manhattan plots. We identified an association between dyslipidemia and variants identified in genes such as JCAD, GLIS3, CD38, FN1, CELSR2, MTNR1B, GIPR, DYM, APOB, APOE, ADCY5. The MLR models explained 62%, 71%, and 81% of the variability in HDL, LDL, and triglycerides, respectively. The Area Under the Curve (AUC) values in the LR models of HDL, LDL, and triglycerides were 1.00, 0.94, and 0.95, respectively. CART models identified novel gene-gene interactions influencing the risk for dyslipidemia. To conclude, we have identified the association of 12 SNVs with dyslipidemia and demonstrated their clinical utility in four different models such as MLR, LR, CART, and Manhattan plots. The identified genetic variants and associated pathways shed light on the underlying biology of dyslipidemia and offer potential avenues for precision medicine strategies in the management of CAD.
Collapse
Affiliation(s)
- Ananthaneni Radhika
- Genomics Division, Yoda Lifeline Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add On, Ameerpet, Hyderabad, 500016, India
- Department of Microbiology, Osmania University, Taranaka, Hyderabad, 500007, India
| | - Sandeepta Burgula
- Department of Microbiology, Osmania University, Taranaka, Hyderabad, 500007, India.
| | - Chandan Badapanda
- Genomics Division, Yoda Lifeline Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add On, Ameerpet, Hyderabad, 500016, India
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Shaik Mohammad Naushad
- Genomics Division, Yoda Lifeline Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add On, Ameerpet, Hyderabad, 500016, India.
| |
Collapse
|
26
|
Ganokroj P, Muanpetch S, Deerochanawong C, Phimphilai M, Leelawattana R, Thongtang N, Krittayaphong R, Anthanont P, Vathesatogkit P, Sriphrapradang C, Senthong V, Torpongpun A, Suteerayongprasert P, Pengpong N, Sathavarodom N, Sunanta U, Porntharukchareon T, Kiatpanabhikul P, Kaewkrasaesin C, Suraamornkul S, Kongkit J, Umphonsathien M, Chattranukulchai P, Jiamjarasrungsi W, Khovidhunkit W. Gaps in the Care of Subjects with Familial Hypercholesterolemia: Insights from the Thai Familial Hypercholesterolemia Registry. J Atheroscler Thromb 2023; 30:1803-1816. [PMID: 37197952 DOI: 10.5551/jat.64081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
AIMS Familial hypercholesterolemia (FH) is currently underdiagnosed and undertreated. The establishment of a FH registry could facilitate a deeper understanding of this disease. We described the clinical characteristics of subjects with FH from the Thai FH Registry, compared our data with the regional and global data, and identified gaps in the care of these subjects. METHODS A multicenter, nationwide prospective FH registry was established in Thailand. Our data were compared with those of the European Atherosclerosis Society-FH Studies Collaboration. Multiple logistic regression analyses were performed for variables associated with lipid-lowering medication (LLM) use and the attainment of low-density lipoprotein-cholesterol (LDL-C) goal. RESULTS The study includes 472 subjects with FH (mean age at FH diagnosis: 46±12 years, 61.4% women). A history of premature coronary artery disease was found in 12%. The percentage of LLM use in subjects with a Dutch Lipid Clinic Network score of ≥ 6 (probable or definite FH) in our registry (64%) was slightly lower than the regional data but higher than the global data. Among those who received statins, 25.2% and 6.4% achieved LDL-C levels of <100 mg/dL and <70 mg/dL, respectively. Women with FH were less likely to achieve LDL-C <70 mg/dL (adjusted odds ratio: 0.22, 95% confidence interval: 0.06-0.71, p=0.012). CONCLUSIONS FH in Thailand was diagnosed late, and treatment was inadequate for the majority of subjects. Women with FH were less likely to achieve LDL-C goals. Our insights could potentially help raise awareness and narrow the gap in patient care.
Collapse
Affiliation(s)
- Poranee Ganokroj
- Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University
| | | | | | | | | | | | | | - Pimjai Anthanont
- Department of Medicine, Thammasat Hospital, Thammasat University
| | | | | | - Vichai Senthong
- Department of Medicine, Srinagarind Hospital, Khon Kaen University
| | - Artit Torpongpun
- Department of Medicine, Chonburi Hospital, Ministry of Public Health
| | | | | | | | | | | | | | | | | | - Jaruwan Kongkit
- Department of Medicine, Vachira Phuket Hospital, Ministry of Public Health
| | | | | | - Wiroj Jiamjarasrungsi
- Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University
| | - Weerapan Khovidhunkit
- Department of Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University
| |
Collapse
|
27
|
Page MM, Hardikar W, Alex G, Bates S, Srinivasan S, Stormon M, Hall K, Evans HM, Johnston P, Chen J, Wigg A, John L, Ekinci EI, O'Brien RC, Jones R, Watts GF. Long-term outcomes of liver transplantation for homozygous familial hypercholesterolaemia in Australia and New Zealand. Atherosclerosis 2023; 387:117305. [PMID: 37863699 DOI: 10.1016/j.atherosclerosis.2023.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND AIMS Homozygous familial hypercholesterolaemia (FH) causes severe cardiovascular disease from childhood. Conventional drug therapy is usually ineffective; lipoprotein apheresis (LA) is often required. Liver transplantation (LT) can correct the metabolic defect but is considered a treatment of last resort. Newer drugs including lomitapide and evinacumab might reduce the need for apheresis and LT. We sought to determine the long-term outcomes following LT in Australia and New Zealand. METHODS We analysed demographic, biochemical and clinical data from all patients in Australia and New Zealand who have received LT for homozygous FH, identified from the Australia and New Zealand Liver and Intestinal Transplant Registry. RESULTS Nine patients (five female; one deceased; seven aged between 3 and 6 years at the time of LT and two aged 22 and 26 years) were identified. Mean follow-up was 14.1 years (range 4-27). Baseline LDL-cholesterol off all treatment was 23 ± 4.1 mmol/L. Mean LDL-cholesterol on medical therapy (including maximal statin therapy in all patients, ezetimibe in three and LA in five) was 11 ± 5.7 mmol/L (p < 0.001). After LT, mean LDL-cholesterol was 2.6 ± 0.9 mmol/L (p = 0.004) with three patients remaining on statin therapy and none on LA. One patient died from acute myocardial infarction (AMI) three years after LT. Two patients required aortic valve replacement, more than 10 years after LT. The remaining six patients were asymptomatic after eight to 21 years of follow-up. No significant adverse events associated with immunosuppression were reported. CONCLUSIONS LT for homozygous FH was highly effective in achieving substantial long-term reduction in LDL-cholesterol concentrations in all nine patients. LT remains an option for severe cases of homozygous FH where drug therapy combined with apheresis is ineffective or unfeasible.
Collapse
Affiliation(s)
- Michael M Page
- Medical School, The University of Western Australia, Perth, Australia; Western Diagnostic Pathology, Perth, Australia
| | - Winita Hardikar
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - George Alex
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Sue Bates
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Stormon
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Gastroenterology and Hepatology, The Children's Hospital at Westmead, Sydney, Australia
| | - Kat Hall
- Hepatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, Australia
| | - Helen M Evans
- Paediatric Gastroenterology and Hepatology, Starship Child Health, Auckland, New Zealand; Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter Johnston
- New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | - John Chen
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alan Wigg
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Libby John
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Melbourne, Australia; The Australian Centre for Accelerating Diabetes Innovation, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Richard C O'Brien
- Department of Endocrinology, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Robert Jones
- Hepatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Gerald F Watts
- Medical School, The University of Western Australia, Perth, Australia; Department of Cardiovascular Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
28
|
Gu J, Kuznik A, Quon P, Chauhan A, Sravya TS, Raal FJ. Modelling the potential long-term survival benefit of evinacumab treatment vs. standard of care in patients with homozygous familial hypercholesterolaemia. Eur J Prev Cardiol 2023; 30:1874-1880. [PMID: 37314419 DOI: 10.1093/eurjpc/zwad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
AIMS Despite intensive lipid-lowering therapies (LLTs), most patients with homozygous familial hypercholesterolaemia (HoFH) do not achieve guideline recommended low-density lipoprotein cholesterol (LDL-C) targets and are at increased risk of premature cardiovascular death. This analysis aimed to predict the impact of evinacumab and standard-of-care LLTs on life expectancy in an HoFH population using mathematical modelling. METHODS AND RESULTS Mathematical models were developed using efficacy data for evinacumab from the phase 3 ELIPSE HoFH trial plus efficacy data for standard-of-care LLTs from peer-reviewed publications. Treatment strategies evaluated included (i) untreated, (ii) high-intensity statin (HIS) only, (iii) HIS plus ezetimibe, (iv) HIS plus ezetimibe plus proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9i), and (v) HIS plus ezetimibe plus PCSK9i plus evinacumab. Markov analyses were used to assess differences in survival probability for different LLT strategies. The median survival for untreated HoFH patients was only 33-43 years, depending on different assumptions on baseline untreated LDL-C levels. In the most robust model, we estimated that HIS increased median survival by 9 years and ezetimibe further increased median survival by an additional 9 years. When PCSK9i was added on top of HIS plus ezetimibe, median survival was further improved by 14 years. Finally, the addition of evinacumab to standard-of-care LLTs was estimated to increase median survival by ∼12 years. CONCLUSION In this mathematical modelling analysis, evinacumab treatment could potentially increase long-term survival vs. standard-of-care LLTs for patients with HoFH.
Collapse
Affiliation(s)
- Jing Gu
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill, River Road, Tarrytown, NY 10591, USA
| | - Andreas Kuznik
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill, River Road, Tarrytown, NY 10591, USA
| | - Peter Quon
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill, River Road, Tarrytown, NY 10591, USA
| | | | | | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Tada H, Nohara A, Usui S, Sakata K, Kawashiri MA, Takamura M. Impact of the severe familial hypercholesterolemia status on atherosclerotic risks. Sci Rep 2023; 13:19782. [PMID: 37957199 PMCID: PMC10643630 DOI: 10.1038/s41598-023-47147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
Risks of atherosclerotic events substantially vary even among patients with familial hypercholesterolemia (FH) with extremely high risk based on life-long exposure to high low-density lipoprotein cholesterol levels. This study aimed to examine the impact of the severe FH status defined by the International Atherosclerosis Society (IAS). Data of patients with FH (N = 1050, male = 490) who were admitted to Kanazawa University Hospital between 2000 and 2020 and who were followed up were retrospectively reviewed. The number of major adverse cardiac events (MACEs), including mortality associated with cardiovascular disease, acute coronary syndrome, and ischemic heart disease requiring coronary revascularization per 1000 person-years, was calculated. Hazard ratio was also calculated using Cox proportional model. Overall, 545 (51.9%) patients had severe FH. The median follow-up duration was 12.6 years. In total, 171 MACEs were recorded during the follow-up period. Severe FH was significantly associated with MACE (hazard ratio = 6.48, 95% confidence interval = 2.56-10.40, P = 1.2 × 10-5). The event rates per 1000 person-years in the primary prevention group of non-severe FH and severe FH, were 0.0 and 15.6, respectively. The event rates per 1000 person-years in the secondary prevention group of non-severe FH and severe FH, were 2.0 and 32.3, respectively. Patients with severe FH exhibited significantly higher risks in primary and secondary prevention settings. This simple criterion provides useful information for identifying patients with even higher risk who may need further management.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | | | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
30
|
Harada-Shiba M. Impact of Familial Hypercholesterolemia Diagnosis in Real-World Data. J Atheroscler Thromb 2023; 30:1303-1304. [PMID: 37635059 PMCID: PMC10564652 DOI: 10.5551/jat.ed241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
31
|
Tada H, Nohara A, Usui S, Sakata K, Hayashi K, Fujino N, Kawashiri MA, Takamura M. Coronary Artery and Carotid Artery Plaques in Patients With Heterozygous Familial Hypercholesterolemia. JACC. ADVANCES 2023; 2:100594. [PMID: 38938338 PMCID: PMC11198480 DOI: 10.1016/j.jacadv.2023.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2024]
Abstract
Background Little is known regarding the formation of coronary and carotid plaques and their impact on cardiovascular disease in patients with familial hypercholesterolemia (FH). Objectives This study aimed to determine: 1) if the development of coronary and carotid plaques is correlated; and 2) if these plaques are associated with major adverse cardiac events (MACEs) defined as cardiovascular-related death, unstable angina, myocardial infarction, or staged revascularization. Methods This was a retrospective review of 622 patients with heterozygous FH (HeFH) at Kanazawa University Hospital, assessed coronary and carotid plaque scores using coronary computed tomography and carotid ultrasound within 1 year. Spearman correlation coefficients were assessed among variables. Risk factors for MACEs were determined using the Cox proportional hazard model. Results Coronary and carotid plaque scores were significantly correlated in patients with HeFH in both sexes (Spearman's r = 0.82; P < 0.001 in males and Spearman's r = 0.87; P < 0.001 in females). We observed 132 MACEs during the median follow-up of 13.2 years. These scores were significantly associated with the occurrence of MACE (HR: 3.33; 95% CI: 1.88-4.78; P < 0.001, HR: 2.24; 95% CI: 1.28-3.20; P < 0.001, respectively). Conclusions Coronary and carotid plaque scores were significantly correlated, and both were independently associated with MACEs. The assessments for coronary and/or carotid plaque are useful for further risk stratifications in patients with HeFH.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Ishibashi Y, Yoshida H, Kotani K, Akiyama Y, Fujii H, Harada-Shiba M, Ishida T, Ishigaki Y, Kabata D, Kihara Y, Kurisu S, Masuda D, Matoba T, Matsuki K, Matsumura T, Mori K, Nakagami T, Nakazato M, Taniuchi S, Ueno H, Yamashita S, Yano S, Yoshida H, Shoji T. Serum Values of Cholesterol Absorption and Synthesis Biomarkers in Japanese Healthy Subjects: The CACHE Study HEALTHY Analysis. J Atheroscler Thromb 2023; 30:1336-1349. [PMID: 36740276 PMCID: PMC10564639 DOI: 10.5551/jat.63943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/06/2022] [Indexed: 02/06/2023] Open
Abstract
AIM Blood cholesterol absorption and synthesis biomarkers predict cardiovascular risk. This study aimed to determine the values of serum non-cholesterol sterol markers [lathosterol (Latho), campesterol (Campe), and sitosterol (Sito)] in healthy individuals and factors affecting these markers. METHODS The CACHE Consortium compiled clinical data, including serum Latho (cholesterol synthesis marker), and Campe and Sito (cholesterol absorption markers), by a gas chromatography method in 2944 individuals. Healthy subjects were selected by excluding those with prior cardiovascular disease, diabetes mellitus, hypertension, chronic kidney disease, familial hypercholesterolemia, sitosterolemia, current smokers, those with low (<17 kg/m2) or high (≥ 30 kg/m2) body mass index (BMI), and those with treatment for dyslipidemia or hyperuricemia. Nonlinear regression stratified by sex was used to examine the associations of cholesterol metabolism markers with age, BMI, and serum lipid levels. RESULTS Of 479 individuals selected, 59.4% were female; the median age was 48 years in females and 50 years in males. The three markers showed positively skewed distributions, and sex differences were present. Age was associated positively with Latho, inversely with Campe, but not significantly with Sito. BMI was associated positively with Latho, but not significantly with Campe or Sito. High-density lipoprotein cholesterol (HDL-C) was positively associated with Campe and Sito, but not significantly with Latho. Non-HDL-C was positively associated with the three markers. CONCLUSION Our study results in the healthy subjects help to interpret the non-cholesterol sterol markers for cardiovascular risk assessment in patients with cardiovascular risk factors.
Collapse
Affiliation(s)
- Yutaka Ishibashi
- Department of General Medicine, Shimane University Faculty of Medicine, Shimane, Japan
- Jinjukai Education & Training Center for Healthcare Professionals, Shimane, Japan
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Tochigi, Japan
| | - Yusuke Akiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisako Fujii
- Department of Health and Medical Innovation, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisaku Masuda
- Department of Cardiology, Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Mori
- Department of General Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Tomoko Nakagami
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women fs Medical University School of Medicine, Tokyo, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Satsuki Taniuchi
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Hisako Yoshida
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
33
|
LI JJ, ZHAO SP, ZHAO D, LU GP, PENG DQ, LIU J, CHEN ZY, GUO YL, WU NQ, YAN SK, WANG ZW, GAO RL. 2023 China Guidelines for Lipid Management. J Geriatr Cardiol 2023; 20:621-663. [PMID: 37840633 PMCID: PMC10568545 DOI: 10.26599/1671-5411.2023.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death among urban and rural residents in China, and elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for ASCVD. Considering the increasing burden of ASCVD, lipid management is of the utmost importance. In recent years, research on blood lipids has made breakthroughs around the world, hence a revision of China guidelines for lipid management is imperative, especially since the target lipid levels in the general population vary in respect to the risk of ASCVD. The level of LDL-C, which can be regarded as appropriate in a population without frisk factors, can be considered abnormal in people at high risk of developing ASCVD. As a result, the "Guidelines for the prevention and treatment of dyslipidemia" were adapted into the "China Guidelines for Lipid Management" (henceforth referred to as the new guidelines) by an Experts' committee after careful deliberation. The new guidelines still recommend LDL-C as the primary target for lipid control, with CVD risk stratification to determine its target value. These guidelines recommend that moderate intensity statin therapy in adjunct with a heart-healthy lifestyle, be used as an initial line of treatment, followed by cholesterol absorption inhibitors or/and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, as necessary. The new guidelines provide guidance for lipid management across various age groups, from children to the elderly. The aim of these guidelines is to comprehensively improve the management of lipids and promote the prevention and treatment of ASCVD by guiding clinical practice.
Collapse
Affiliation(s)
- Jian-Jun LI
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shui-Ping ZHAO
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dong ZHAO
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guo-Ping LU
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dao-Quan PENG
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing LIU
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhen-Yue CHEN
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Lin GUO
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Na-Qiong WU
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng-Kai YAN
- Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zeng-Wu WANG
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Run-Lin GAO
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Matsuki K, Harada-Shiba M, Hori M, Ogura M, Akiyama Y, Fujii H, Ishibashi Y, Ishida T, Ishigaki Y, Kabata D, Kihara Y, Kotani K, Kurisu S, Masuda D, Matoba T, Matsumura T, Mori K, Nakagami T, Nakazato M, Taniuchi S, Ueno H, Yamashita S, Yoshida H, Yoshida H, Shoji T. Association between Familial Hypercholesterolemia and Serum Levels of Cholesterol Synthesis and Absorption Markers: The CACHE Study FH Analysis. J Atheroscler Thromb 2023; 30:1152-1164. [PMID: 36624055 PMCID: PMC10499464 DOI: 10.5551/jat.63899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 01/07/2023] Open
Abstract
AIM Serum levels of cholesterol absorption and synthesis markers are known to be associated with cardiovascular risk. Familial hypercholesterolemia (FH) is a well-known inherited disorder presenting elevated low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels and premature coronary disease. In this study, we aim to examine the differences in terms of serum markers of cholesterol metabolism between FH and non-FH individuals and to examine their associations with serum lipid levels. METHODS In this study, we utilized data on serum markers of cholesterol metabolism, namely, lathosterol (Latho, synthesis marker), campesterol (Campe, absorption marker), and sitosterol (Sito, absorption marker) measured by gas chromatography of the CACHE consortium, which comprised of 13 research groups in Japan. Clinical data were compiled using REDCap system. Among the 2944 individuals in the CACHE population, we selected individuals without lipid-lowering medications and hemodialysis patients for this CACHE study FH analysis. Multivariable adjustment was performed to assess the associations. RESULTS In this study, we analyzed data from 51 FH patients and 1924 non-FH individuals. After adjustment for possible confounders, the FH group was shown to have significantly higher Campe and Sito concentrations and insignificantly higher Latho concentrations than the non-FH group. These marker concentrations showed nonlinear associations with TC in the FH group. Campe/Latho and Sito/Latho ratios were significantly higher in the FH group than in the non-FH group. CONCLUSION FH group had significantly elevated serum Campe and Sito concentrations and insignificantly elevated Latho concentrations; thus, intestinal cholesterol absorption relative to hepatic cholesterol synthesis was suggested to be elevated in patients with FH. Serum Latho, Campe, and Sito concentrations showed nonlinear associations with TC in the FH group.
Collapse
Affiliation(s)
- Kota Matsuki
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Department of General Medical Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Akiyama
- Department of Cardiovascular, Respiratory and Geriatric Medicine, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Hisako Fujii
- Department of Health and Medical Innovation, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Ishibashi
- Department of General Medicine, Shimane University Faculty of Medicine, Izumo, Japan
- Jinjyukai Education & Training Center for Healthcare Professionals, Shimane, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima,
Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke-City, Japan
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima,
Japan
| | | | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Mori
- Department of General Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Tomoko Nakagami
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women fs Medical University School of
Medicine, Tokyo, Japan
| | - Masamitsu Nakazato
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Japan
| | - Satsuki Taniuchi
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine,
University of Miyazaki, Japan
| | | | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Hisako Yoshida
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
35
|
Nomura A, Okada H, Nohara A, Kawashiri MA, Takamura M, Tada H. Impact of providing genetics-based future cardiovascular risk on LDL-C in patients with familial hypercholesterolemia. J Clin Lipidol 2023; 17:622-632. [PMID: 37673778 DOI: 10.1016/j.jacl.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant monogenic disease characterized by high low-density lipoprotein cholesterol (LDL-C) levels. Although carrying causative FH variants is associated with coronary heart disease (CHD), it remains unclear whether disclosing its associated cardiovascular risk affects outcomes in patients with FH. OBJECTIVE We aimed to evaluate the efficacy of providing future cardiovascular risk based on genetic testing in addition to a standard FH education program. METHODS We conducted a randomized, wait-list controlled, open-label, single-center trial. In the intervention group, we reported a future cardiovascular risk based on the genetic testing adding to standard FH education at week 0. In the wait-list control group, we only disseminated standard FH education according to the guidelines at week 0; they later received a genetic testing-based cardiovascular risk assessment at week 24. The primary endpoint of this study was the plasma LDL-C level at week 24. RESULTS Fifty eligible patients with clinically diagnosed FH, without a history of CHD, were allocated to the intervention group (n = 24) or the wait-list control group (n = 26). At week 24, the intervention group had a significantly greater reduction in LDL-C levels than the wait-list control group (mean changes, -13.1 mg/dL vs. 6.6 mg/dL; difference, -19.7 mg/dL; 95% confidence interval, -34 to -5.6; p = 0.009). This interventional effect was consistent with FH causative variant carriers but not with non-carriers. CONCLUSIONS In addition to standard FH care, providing future cardiovascular risk based on genetic testing can further reduce plasma LDL-C levels, particularly among FH causal variant carriers. REGISTRATION Japan Registry of Clinical Trials (jRCTs04218002). URL: https://jrct.niph.go.jp/latest-detail/jRCTs042180027.
Collapse
Affiliation(s)
- Akihiro Nomura
- Innovative Clinical Research Center, Kanazawa University (iCREK), Kanazawa, Japan (Dr. Nomura); Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 9208641, Japan (Drs. Nomura, Okada, Takamura and Tada); College of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan (Dr. Nomura); Frontier Institute of Tourism Sciences, Kanazawa University, Kanazawa, Japan (Dr. Nomura)
| | - Hirofumi Okada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 9208641, Japan (Drs. Nomura, Okada, Takamura and Tada)
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan (Dr. Nohara)
| | - Masa-Aki Kawashiri
- Department of Internal Medicine, Kaga Medical Center, Kaga, Japan (Dr. Kawashiri)
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 9208641, Japan (Drs. Nomura, Okada, Takamura and Tada)
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 9208641, Japan (Drs. Nomura, Okada, Takamura and Tada).
| |
Collapse
|
36
|
Li JJ, Zhao SP, Zhao D, Lu GP, Peng DQ, Liu J, Chen ZY, Guo YL, Wu NQ, Yan SK, Wang ZW, Gao RL. 2023 Chinese guideline for lipid management. Front Pharmacol 2023; 14:1190934. [PMID: 37711173 PMCID: PMC10498001 DOI: 10.3389/fphar.2023.1190934] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 09/16/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death among urban and rural residents in China, and elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for ASCVD. Considering the increasing burden of ASCVD, lipid management is of the utmost importance. In recent years, research on blood lipids has made breakthroughs around the world, hence a revision of Chinese guideline for lipid management is imperative, especially since the target lipid levels in the general population vary in respect to the risk of ASCVD. The level of LDL-C, which can be regarded as appropriate in a population without frisk factors, can be considered abnormal in people at high risk of developing ASCVD. As a result, the "Guidelines for the prevention and treatment of dyslipidemia" were adapted into the "Chinese guideline for Lipid Management" (henceforth referred to as the new guidelines) by an Experts' committee after careful deliberation. The new guidelines still recommend LDL-C as the primary target for lipid control, with cardiovascular disease (CVD) risk stratification to determine its target value. These guidelines recommend that moderate intensity statin therapy in adjunct with a heart-healthy lifestyle, be used as an initial line of treatment, followed by cholesterol absorption inhibitors or/and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, as necessary. The new guidelines provide guidance for lipid management across various age groups, from children to the elderly. The aim of these guidelines is to comprehensively improve the management of lipids and promote the prevention and treatment of ASCVD by guiding clinical practice.
Collapse
Affiliation(s)
- Jian-Jun Li
- National Center for Cardiovascular Diseases, FuWai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shui-Ping Zhao
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dong Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guo-Ping Lu
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dao-Quan Peng
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhen-Yue Chen
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Lin Guo
- National Center for Cardiovascular Diseases, FuWai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Na-Qiong Wu
- National Center for Cardiovascular Diseases, FuWai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng-Kai Yan
- Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zeng-Wu Wang
- National Center for Cardiovascular Diseases, FuWai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Run-Lin Gao
- National Center for Cardiovascular Diseases, FuWai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Tandirerung FJ. Does Genotype Affect the Efficacy of PCSK9 Inhibitors in the Treatment of Familial Hypercholesterolemia? Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07505-5. [PMID: 37610687 DOI: 10.1007/s10557-023-07505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE OF REVIEW This review discusses whether patients' genotype affects the efficacy of PCSK9 inhibitors in treating familial hypercholesterolemia and how this might influence clinical management. RECENT FINDINGS Currently, available evidence consistently demonstrates and is in good agreement that, in general, the LDL-C-lowering effect of PCSK9 inhibitors is similar across genotypes, except for compound heterozygous and homozygous familial hypercholesterolemia (FH). However, it remains to be seen whether the comparable therapeutic effect in lowering LDL-C level also leads to a comparable degree of cardiovascular risk reduction with different genotypes. Generally, the level of LDL-C reduction following PCSK9 inhibitor treatment is similar within different genotypes. Hence, genotype is a less reliable predictor for further LDL-C level reduction on PCSK9 inhibitor therapy, and attention should be given to other external influences, especially for heterozygous FH.
Collapse
|
38
|
Huang H, Leung KSK, Garg T, Mazzoleni A, Miteu GD, Zakariya F, Awuah WA, Yin ETS, Haroon F, Hussain Z, Aji N, Jaiswal V, Tse G. Barriers and shortcomings in access to cardiovascular management and prevention for familial hypercholesterolemia during the COVID-19 pandemic. Clin Cardiol 2023; 46:831-844. [PMID: 37260143 PMCID: PMC10436799 DOI: 10.1002/clc.24059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a hereditary condition caused by mutations in the lipid pathway. The goal in managing FH is to reduce circulating low-density lipoprotein cholesterol and, therefore, reduce the risk of developing atherosclerotic cardiovascular disease (ASCVD). Because FH patients were considered high risk groups due to an increased susceptible for contracting COVID-19 infection, we hypothesized whether the effects of the pandemic hindered access to cardiovascular care. In this review, we conducted a literature search in databases Pubmed/Medline and ScienceDirect. We included a comprehensive analysis of findings from articles in English related and summarized the effects of the pandemic on cardiovascular care through direct and indirect effects. During the COVID-19 pandemic, FH patients presented with worse outcomes and prognosis, especially those that have suffered from early ASCVD. This caused avoidance in seeking care due to fear of transmission. The pandemic severely impacted consultations with lipidologists and cardiologists, causing a decline in lipid profile evaluations. Low socioeconomic communities and ethnic minorities were hit the hardest with job displacements and lacked healthcare coverage respectively, leading to treatment nonadherence. Lock-down restrictions promoted sedentary lifestyles and intake of fatty meals, but it is unclear whether these factors attenuated cardiovascular risk in FH. To prevent early atherogenesis in FH patients, universal screening programs, telemedicine, and lifestyle interventions are important recommendations that could improve outcomes in FH patients. However, the need to research in depth on the disproportionate impact within different subgroups should be the forefront of FH research.
Collapse
Affiliation(s)
- Helen Huang
- Royal College of Surgeons in IrelandFaculty of Medicine and Health ScienceDublinIreland
| | - Keith S. K. Leung
- Aston University Medical School, Faculty of Health & Life SciencesAston UniversityBirminghamUK
- Epidemiology Research Unit, Cardiovascular Analytics GroupChina‐UK CollaborationHong KongChina
| | - Tulika Garg
- Government Medical College and Hospital ChandigarhChandigarhIndia
| | - Adele Mazzoleni
- Barts and The London School of Medicine and DentistryLondonUK
| | - Goshen D. Miteu
- School of Biosciences, BiotechnologyUniversity of NottinghamNottinghamUK
- Department of BiochemistryCaleb University LagosLagosNigeria
| | - Farida Zakariya
- Department of Pharmaceutical SciencesAhmadu Bello UniversityZariaNigeria
| | | | | | | | - Zarish Hussain
- Royal College of Surgeons in IrelandMedical University of BahrainBusaiteenBahrain
| | - Narjiss Aji
- Faculty of Medicine and Pharmacy of RabatMohammed V UniversityRabatMorocco
| | - Vikash Jaiswal
- Department of Cardiology ResearchLarkin Community HospitalSouth MiamiFloridaUSA
| | - Gary Tse
- Epidemiology Research Unit, Cardiovascular Analytics GroupChina‐UK CollaborationHong KongChina
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Kent and Medway Medical SchoolCanterburyUK
| |
Collapse
|
39
|
Noda K, Hattori Y, Hori M, Nakaoku Y, Tanaka A, Yoshimoto T, Nishimura K, Yokota T, Harada-Shiba M, Ihara M. Amplified Risk of Intracranial Artery Stenosis/Occlusion Associated With RNF213 p.R4810K in Familial Hypercholesterolemia. JACC. ASIA 2023; 3:625-633. [PMID: 37614551 PMCID: PMC10442882 DOI: 10.1016/j.jacasi.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 08/25/2023]
Abstract
Background The RNF213 p.R4810K variant is associated with moyamoya disease in East Asian individuals and increases the risk of developing intracranial major artery stenosis/occlusion (ICASO) that affects anterior circulation. Meanwhile, 0.5% to 2.5% of asymptomatic East Asian individuals also carry this variant. As such, additional factors are likely required to develop ICASO in variant carriers. Familial hypercholesterolemia (FH) is a common genetic disorder in Japan that has a significant associated risk of developing premature coronary atherosclerosis; however, the relationship between ICASO and FH remains unknown. Objectives This study aimed to determine if FH facilitates RNF213 p.R4810K carriers to develop ICASO. Methods We enrolled patients with FH who had undergone brain magnetic resonance angiography at our hospital from May 2005 to March 2020. The RNF213 p.R4810K variant, and LDLR and PCSK9 mutations were genotyped. ICASO lesions in the brain magnetic resonance angiogram were analyzed. Results Six RNF213 p.R4810K variant carriers were identified among 167 patients with FH (LDLR, n = 104; PCSK9, n = 22). Five of the carriers (83.3%) exhibited ICASO in the anterior circulation; a significant difference in ICASO frequency was observed between the variant carriers and noncarriers (P = 0.025). The median number of stenotic or occluded arteries in the anterior circulation was also significantly larger in the variant carriers (3 vs 1, P = 0.01); however, did not differ between patients with FH with LDLR and PCSK9 mutations. Conclusions Patients with FH exhibit increased prevalence and severity of ICASO associated with RNF213 p.R4810K. Gene mutations for FH may confer an increased risk of ICASO in RNF213 p.R4810K carriers.
Collapse
Affiliation(s)
- Kotaro Noda
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yuriko Nakaoku
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akito Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Yoshimoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
40
|
Tada H, Okada H, Nohara A, Toh R, Harada A, Murakami K, Iino T, Nagao M, Ishida T, Hirata KI, Takamura M, Kawashiri MA. Impact of High-Density Lipoprotein Function, Rather Than High-Density Lipoprotein Cholesterol Level, on Cardiovascular Disease Among Patients With Familial Hypercholesterolemia. Circ J 2023; 87:806-812. [PMID: 36436874 DOI: 10.1253/circj.cj-22-0560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
BACKGROUND Recently, the function of high-density lipoprotein (HDL), rather than the HDL cholesterol (HDL-C) level, has been attracting more attention in risk prediction for coronary artery disease (CAD). METHODS AND RESULTS Patients with clinically diagnosed familial hypercholesterolemia (FH; n=108; male/female, 51/57) were assessed cross-sectionally. Serum cholesterol uptake capacity (CUC) levels were determined using our original cell-free assay. Linear regression was used to determine associations between CUC and clinical variables, including low-density lipoprotein cholesterol and the carotid plaque score. Multivariable logistic regression analysis was used to test factors associated with the presence of CAD. Among the 108 FH patients, 30 had CAD. CUC levels were significantly lower among patients with than without CAD (median [interquartile range] 119 [92-139] vs. 142 [121-165] arbitrary units [AU]; P=0.0004). In addition, CUC was significantly lower in patients with Achilles tendon thickness ≥9.0 mm than in those without Achilles tendon thickening (133 [110-157] vs. 142 [123-174] AU; P=0.047). Serum CUC levels were negatively correlated with the carotid plaque score (Spearman's r=0.37; P=0.00018). Serum CUC levels were significantly associated with CAD, after adjusting for other clinical variables (odds ratio=0.86, 95% CI=0.76-0.96, P=0.033), whereas HDL-C was not. CONCLUSIONS HDL function, assessed by serum CUC level, rather than HDL-C level, adds risk stratification information among FH patients.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Hirofumi Okada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Atsushi Nohara
- Department of Genetics, Ishikawa Prefectural Central Hospital
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation
| | | | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation
| | - Manabu Nagao
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Ken-Ichi Hirata
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | | |
Collapse
|
41
|
Cuchel M, Raal FJ, Hegele RA, Al-Rasadi K, Arca M, Averna M, Bruckert E, Freiberger T, Gaudet D, Harada-Shiba M, Hudgins LC, Kayikcioglu M, Masana L, Parhofer KG, Roeters van Lennep JE, Santos RD, Stroes ESG, Watts GF, Wiegman A, Stock JK, Tokgözoğlu LS, Catapano AL, Ray KK. 2023 Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolaemia: new treatments and clinical guidance. Eur Heart J 2023:7148157. [PMID: 37130090 DOI: 10.1093/eurheartj/ehad197] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023] Open
Abstract
This 2023 statement updates clinical guidance for homozygous familial hypercholesterolaemia (HoFH), explains the genetic complexity, and provides pragmatic recommendations to address inequities in HoFH care worldwide. Key strengths include updated criteria for the clinical diagnosis of HoFH and the recommendation to prioritize phenotypic features over genotype. Thus, a low-density lipoprotein cholesterol (LDL-C) >10 mmol/L (>400 mg/dL) is suggestive of HoFH and warrants further evaluation. The statement also provides state-of-the art discussion and guidance to clinicians for interpreting the results of genetic testing and for family planning and pregnancy. Therapeutic decisions are based on the LDL-C level. Combination LDL-C-lowering therapy-both pharmacologic intervention and lipoprotein apheresis (LA)-is foundational. Addition of novel, efficacious therapies (i.e. inhibitors of proprotein convertase subtilisin/kexin type 9, followed by evinacumab and/or lomitapide) offers potential to attain LDL-C goal or reduce the need for LA. To improve HoFH care around the world, the statement recommends the creation of national screening programmes, education to improve awareness, and management guidelines that account for the local realities of care, including access to specialist centres, treatments, and cost. This updated statement provides guidance that is crucial to early diagnosis, better care, and improved cardiovascular health for patients with HoFH worldwide.
Collapse
Affiliation(s)
- Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 9017 Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Khalid Al-Rasadi
- Department of Biochemistry, College of Medicine & Health Sciences, Medical Research Center, Sultan Qaboos University, Muscat, Oman
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Eric Bruckert
- Pitié-Salpêtrière Hospital and Sorbonne University, Cardio metabolic Institute, Paris, France
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, Chicoutimi, Québec, Canada
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Meral Kayikcioglu
- Department of Cardiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV CIBERDEM, Reus, Spain
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwigs-Maximilians University Klinikum, Munich, Germany
| | | | - Raul D Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
- Academic Research Organization Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jane K Stock
- European Atherosclerosis Society, Gothenburg, Sweden
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- IRCCS MultiMedica, and Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
42
|
Harada-Shiba M, Ohtake A, Sugiyama D, Tada H, Dobashi K, Matsuki K, Minamino T, Yamashita S, Yamamoto Y. Guidelines for the Diagnosis and Treatment of Pediatric Familial Hypercholesterolemia 2022. J Atheroscler Thromb 2023; 30:531-557. [PMID: 36682777 PMCID: PMC10164603 DOI: 10.5551/jat.cr006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 01/20/2023] Open
Abstract
As atherosclerosis begins in childhood, early diagnosis and treatment of familial hypercholesterolemia (FH) is considered necessary. The basic diagnosis of pediatric FH (under 15 years of age) is based on hyper-low-density lipoprotein (LDL) cholesterolemia and a family history of FH; however, in this guideline, to reduce overlooked cases, "probable FH" was established. Once diagnosed with FH or probable FH, efforts should be made to promptly provide lifestyle guidance, including diet. It is also important to conduct an intrafamilial survey, to identify family members with the same condition. If the level of LDL-C remains above 180 mg/dL, drug therapy should be considered at the age of 10. The first-line drug should be statin. Evaluation of atherosclerosis should be started using non-invasive techniques, such as ultrasound. The management target level is an LDL-C level of less than 140 mg/dL. If a homozygous FH is suspected, consult a specialist and determine the response to pharmacotherapy with evaluating atherosclerosis. If the response is inadequate, initiate lipoprotein apheresis as soon as possible.
Collapse
Affiliation(s)
- Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Daisuke Sugiyama
- Faculty of Nursing and Medical Care, Keio University, Tokyo, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Yukiyo Yamamoto
- Department of Medical Education, Department of Pediatrics, School of Medicine, University of Occupational and Environmental
Health, Japan, Fukuoka Japan
| |
Collapse
|
43
|
Tada H, Kojima N, Yamagami K, Nomura A, Nohara A, Usui S, Sakata K, Hayashi K, Fujino N, Takamura M, Kawashiri MA. Coronary artery calcium among patients with heterozygous familial hypercholesterolaemia. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead046. [PMID: 37193254 PMCID: PMC10182732 DOI: 10.1093/ehjopen/oead046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Aims We aimed to determine if coronary artery calcium (CAC) is associated with cardiovascular disease (CVD) events, defined as CVD-related death, unstable angina, myocardial infarction, or staged revascularization among patients with heterozygous familial hypercholesterolaemia (HeFH) under primary prevention settings. Methods and results Data of patients with FH admitted to Kanazawa University Hospital between 2000 and 2020, who underwent CAC measurement and were followed up (n = 622, male = 306, mean age = 54 years), were retrospectively reviewed. Risk factors for CVD events were determined using the Cox proportional hazard model. The median follow-up duration was 13.2 years (interquartile range: 9.8-18.4 years). We observed 132 CVD events during the follow-up period. The event rate per 1000 person-years for CAC scores of 0 [n = 283 (45.5%)], 1-100 [n = 260 (41.8%)], and >100 [n = 79 (12.7%)] was 1.2, 17.0, and 78.8, respectively. Log (CAC score + 1) was a significant predictor of the occurrence of CVD events (hazard ratio: 3.24; 95% confidence interval: 1.68-4.80; P < 0.0001) in the multivariate Cox regression analysis, independent of other factors. The risk discrimination of CVD events was enhanced by adding CAC information to other conventional risk factors (C-statistics: 0.833-0.934; P < 0.0001). Conclusion The CAC score helps in further risk stratification in patients with HeFH.
Collapse
Affiliation(s)
- Hayato Tada
- Corresponding author. Tel: +81-76-265-2000 (2251), Fax: +81-76-234-4251,
| | - Nobuko Kojima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kan Yamagami
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | | |
Collapse
|
44
|
Tada H, Nomura A, Nohara A, Usui S, Sakata K, Hayashi K, Fujino N, Takamura M, Kawashiri MA. Attainment of the low-density lipoprotein cholesterol treatment target and prognosis of heterozygous familial hypercholesterolemia. Atherosclerosis 2023; 371:61-66. [PMID: 36948965 DOI: 10.1016/j.atherosclerosis.2023.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND AND AIMS No previous study has investigated the association between attainment of low-density lipoprotein (LDL) cholesterol treatment target and better prognosis in patients with familial hypercholesterolemia (FH). The current research aimed to examine the association between attainment of LDL cholesterol treatment target and major adverse cardiac events (MACEs) in patients with FH to validate the current LDL cholesterol treatment targets in primary (<100 mg/dL) and secondary (<70 mg/dL) prevention settings. METHODS The data of patients with FH who were admitted to Kanazawa University Hospital between 2000 and 2020 and who were followed-up were retrospectively reviewed. The number of MACEs, including mortality associated with cardiovascular disease, unstable angina, and myocardial infarction per 1000 person-years, was calculated for each stratum for the attainment of LDL cholesterol target. RESULTS The median follow-up duration was 12.6 years. In total, 132 MACEs were recorded during the follow-up period. The numbers of patients who attained the LDL cholesterol target in the primary and secondary prevention groups were 228 (31.9%) and 40 (11.9%), respectively. The event rates per 1000 person-years for LDL cholesterol levels of <100 and ≥100 mg/dL in the primary prevention group were 2.6 and 4.4, respectively. The event rates per 1000 person-years for LDL cholesterol levels of <70 and ≥70 mg/dL in the secondary prevention group were 15.3 and 27.5, respectively. CONCLUSIONS Attainment of the LDL cholesterol target is associated with better prognosis in patients with FH. However, the attainment rate is currently inadequate among Japanese.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | |
Collapse
|
45
|
Tada H, Kojima N, Yamagami K, Nomura A, Nohara A, Usui S, Sakata K, Hayashi K, Fujino N, Takamura M, Kawashiri MA. Impact of Healthy Lifestyle in Patients With Familial Hypercholesterolemia. JACC. ASIA 2023; 3:152-160. [PMID: 36873758 PMCID: PMC9982286 DOI: 10.1016/j.jacasi.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 10/22/2022] [Indexed: 02/04/2023]
Abstract
Background Pathogenic mutations are associated with poor outcomes in patients with familial hypercholesterolemia (FH). However, data on the effects of a healthy lifestyle on FH phenotypes are limited. Objectives The authors investigated the interaction between a healthy lifestyle and FH mutation with prognosis in patients with FH. Methods We investigated the associations of the interaction between genotypes and lifestyle, with the occurrence of major adverse cardiac events (MACE), such as cardiovascular-related mortality, myocardial infarction, unstable angina, and coronary artery revascularization, in patients with FH. We assessed their lifestyle based on 4 questionnaires (healthy dietary pattern, regular exercise, not smoking, and absence of obesity). The Cox proportional hazards model was used to assess the risk for MACE. Results The median follow-up duration was 12.6 (IQR: 9.5-17.9) years. During the follow-up duration, 179 MACE were observed. Independent of classic risk factors, FH mutation and lifestyle score were significantly associated with MACE (HR: 2.73; 95% CI: 1.03-4.43; P = 0.02; and HR: 0.69, 95% CI: 0.40-0.98, P = 0.033, respectively). The estimated risk of coronary artery disease by 75 years of age varied according to lifestyle, ranging from 21.0% among noncarriers with a favorable lifestyle to 32.1% among noncarriers with an unfavorable lifestyle and ranging from 29.0% among carriers with a favorable lifestyle to 55.4% among carriers with an unfavorable lifestyle. Conclusions A healthy lifestyle was associated with reduced risk for MACE among patients with FH with or without genetic diagnosis.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nobuko Kojima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kan Yamagami
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | |
Collapse
|
46
|
Harada-Shiba M, Koezuka R, Makino H, Ogura M. Gradual dose Titration of Lomitapide may Prevent Therapeutic Delays in Patients with Homozygous Familial Hypercholesterolemia. J Atheroscler Thromb 2023; 30:203-205. [PMID: 35732425 PMCID: PMC9925198 DOI: 10.5551/jat.le003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan,Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Ryo Koezuka
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hisashi Makino
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatsune Ogura
- Department of Metabolism and Endocrinology, Eastern Chiba Medical Center, Chiba, Japan
| |
Collapse
|
47
|
Hori M, Takahashi A, Hosoda K, Ogura M, Harada-Shiba M. A Low-Frequency APOB p.(Pro955Ser) Variant Contributes to the Severity of/Variability in Familial Hypercholesterolemia. J Clin Endocrinol Metab 2023; 108:422-432. [PMID: 36190978 DOI: 10.1210/clinem/dgac572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/28/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Heterozygous familial hypercholesterolemia (HeFH) is caused by a rare pathogenic variant in the LDLR, APOB, and PCSK9 genes. However, the causative variants in these genes have not been identified in approximately 40% of HeFH patients. OBJECTIVE Our aim was to identify novel (or additional) genes/variants that contribute to HeFH. METHODS Whole-exome sequencing was performed for 215 family members from 122 families with HeFH without pathogenic variants in the LDLR or PCSK9 genes. RESULTS We could not find novel causative familial hypercholesterolemia (FH) genes/variants by family analysis. Next, we examined all APOB variants. Twenty-four nonsynonymous APOB variants were identified. The allele frequencies of the c.2863C > T:p.(Pro955Ser) variant in the HeFH probands and the general Japanese population were 0.15 and 0.034, respectively [odds ratio 4.9 (95% CI 3.4-7.1); P = 6.9 × 10-13]. The patients harboring the c.2863C > T:p.(Pro955Ser) variant accounted for 9.8% (n = 63) of unrelated patients with HeFH (n = 645). The penetrance of the c.2863C > T:p.(Pro955Ser) variant was low in the pedigree-based genetic analysis. In an in vitro assay, low-density lipoprotein (LDL) uptake from patients with the homozygous c.2863C > T:p.(Pro955Ser) variant was 44% of the LDL uptake from control subjects, and it was similar to that of the LDL uptake from patients with the known pathogenic heterozygous p.(Arg3527Gln) variant. CONCLUSIONS The low-frequency APOB c.2863C > T:p.(Pro955Ser) variant is not an FH-causative variant, but it has a moderate effect size in HeFH. These findings suggest that the combination of the APOB c.2863C > T:p.(Pro955Ser) variant and age, environmental factors, or other genetic factors contributes to the severity of or variability in the HeFH phenotype.
Collapse
Affiliation(s)
- Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Laboratory of Clinical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
48
|
An update on lipid apheresis for familial hypercholesterolemia. Pediatr Nephrol 2023; 38:371-382. [PMID: 35467154 PMCID: PMC9763149 DOI: 10.1007/s00467-022-05541-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
Abstract
Familial hypercholesterolemia (FH) is an inherited metabolic defect leading to increased total cholesterol and low-density cholesterol (LDL) from birth onwards. Homozygous FH, presenting with clear clinical features, has a prevalence of ~ 1 per million. Prevalence of heterozygous FH is 1/500 European population. Atherosclerotic burden depends on the degree and duration of high LDL exposure. In severe cases, early detection is critical, and aggressive lipid-lowering therapies should begin in early childhood to reduce coronary heart disease risk. Pediatric therapeutic concepts correspond to adults and are orientated at LDL plasma concentration. Mean LDL plasma target value during treatment is < 135 mg/dL. Medication in childhood consists of ezetemibe, statins, resins, and PCSK-9 inhibitors, with consideration for age restrictions. Only a minority achieve the treatment target with drug therapy alone. Therapeutic apheresis for the treatment of hypercholesterolemia selectively removes lipoproteins from blood (lipid apheresis (LA)). LA has a long tradition in adult medicine and is also safely used in children by a variety of methods, if customized to special pediatric needs. LA reduces cholesterol levels independently of residual LDL-receptor function and not only achieves reduction or disappearance of xanthomas but also inhibits progression of or mitigates aortic valve stenosis and supravalvular aortic stenosis as well as coronary artery and other atherosclerotic lesions. Cardiovascular prognosis of patients with otherwise untreatable FH depends largely on timely use of LA. Taking into account LA as a lifelong treatment, starting early in childhood, it is important to accommodate therapy modalities, such as treatment frequency and point of time, into the life of the individual.
Collapse
|
49
|
Giallongo S, Lo Re O, Resnick I, Raffaele M, Vinciguerra M. Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:275-298. [DOI: 10.1007/978-981-19-5642-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
50
|
Miyama H, Katsumata Y, Momoi M, Ichihara G, Fujisawa T, Endo J, Kawakami T, Kataoka M, Yuasa S, Sano M, Sato K, Fukuda K. Genetic Testing Enables the Diagnosis of Familial Hypercholesterolemia Underdiagnosed by Clinical Criteria: Analysis of Japanese Early-Onset Coronary Artery Disease Patients. Cardiol Res Pract 2023; 2023:2236422. [PMID: 37151871 PMCID: PMC10162874 DOI: 10.1155/2023/2236422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Definitive diagnosis of familial hypercholesterolemia (FH) is paramount for the risk management of patients and their relatives. The present study aimed to investigate the frequency of gene variants contributing to low-density lipoprotein cholesterol (LDL-C) metabolism and their clinical relevance in patients with early-onset coronary artery disease (EOCAD). Among 63 consecutive patients with EOCAD (men <55 years or women <65 years) who underwent percutaneous coronary intervention (PCI) from 2013 to 2019 at Keio University Hospital, 52 consented to participate in this retrospective study. Targeted sequencing of LDLR, PCSK9, APOB, and LDLRAP1 was performed. Of the 52 patients enrolled (42 men; mean age: 50 ± 6 years), one (LDLR, c.1221_1222delCGinsT) harbored a pathogenic mutation, and one (APOB, c.10591A>G) harbored variants of uncertain significance. Both the patients harboring the variants were male, showing no history of diabetes mellitus or chronic kidney disease, no family history of EOCAD, and no physical findings of FH (i.e., tendon xanthomas or Achilles tendon thickening). Patients harboring the LDLR variant had three-vessel disease, were on a statin prescription at baseline, and had stable LDL-C levels; however, the case showed a poor response to the intensification of medication after PCI. Approximately 3.8% of patients with EOCAD harbored variants of gene related to LDL-C metabolism; there were no notable indicators in the patients' background or clinical course to diagnose FH. Given the difficulty in diagnosing FH based on clinical manifestations and family history, genetic testing could enable the identification of hidden risk factors and provide early warnings to their relatives.
Collapse
Affiliation(s)
- Hiroshi Miyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mizuki Momoi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Genki Ichihara
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Taishi Fujisawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kawakami
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|