1
|
Standing D, Dandawate P, Gunewardena S, Covarrubias-Zambrano O, Roby KF, Khabele D, Jewell A, Tawfik O, Bossmann SH, Godwin AK, Weir SJ, Jensen RA, Anant S. Selective targeting of IRAK1 attenuates low molecular weight hyaluronic acid-induced stemness and non-canonical STAT3 activation in epithelial ovarian cancer. Cell Death Dis 2024; 15:362. [PMID: 38796478 PMCID: PMC11127949 DOI: 10.1038/s41419-024-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Katherine F Roby
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Jewell
- Department of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pharmacology and Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Changizi Z, Kajbaf F, Moslehi A. An Overview of the Role of Peroxisome Proliferator-activated Receptors in Liver Diseases. J Clin Transl Hepatol 2023; 11:1542-1552. [PMID: 38161499 PMCID: PMC10752810 DOI: 10.14218/jcth.2023.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a superfamily of nuclear transcription receptors, consisting of PPARα, PPARγ, and PPARβ/δ, which are highly expressed in the liver. They control and modulate the expression of a large number of genes involved in metabolism and energy homeostasis, oxidative stress, inflammation, and even apoptosis in the liver. Therefore, they have critical roles in the pathophysiology of hepatic diseases. This review provides a general insight into the role of PPARs in liver diseases and some of their agonists in the clinic.
Collapse
Affiliation(s)
- Zahra Changizi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Kajbaf
- Veterinary Department, Faculty of Agriculture, Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
3
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
4
|
Hassanzadeh K, Rahimmi A, Moloudi MR, Maccarone R, Corbo M, Izadpanah E, Feligioni M. Effect of lobeglitazone on motor function in rat model of Parkinson's disease with diabetes co-morbidity. Brain Res Bull 2021; 173:184-192. [PMID: 34051296 DOI: 10.1016/j.brainresbull.2021.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) and diabetes mellitus share similar pathophysiological characteristics, genetic and environmental factors. It has been reported that people with diabetes mellitus appear to have a remarkable higher incidence of PD than age matched non diabetic individuals. Evidences suggest that use of antidiabetic glitazone is associated with a diminished risk of PD incidence in patients with diabetes. This study examined the effect of lobeglitazone, a member of thiazolidinedione class, in rat model of Parkinson's disease with diabetes co-morbidity. Rats received either rotenone and/or a combination of streptozocin and a high calorie diet for disease induction and they were treated with different doses of lobeglitazone or its vehicle. Behavioral tests comprising rotarod, bar test and rearing test were conducted to evaluate the motor function. Changes in the level tyrosine hydroxylase, TNF-α and NF-κB were analyzed using ELISA. In the same brain regions the possible changes in PPAR-γ receptor level were evaluated. Findings showed that although lobeglitazone tends to reverse the effect of rotenone in animals with diabetes, it was just able to prevent partly the motor defect in rearing test. Furthermore, lobeglitazone (1 mg/kg) reversed, in substantia nigra and striatum, the changes in tyrosine hydroxylase, TNF-α, NF-κB and PPAR-γ receptor content induced by rotenone in rats with diabetic condition. Although other preclinical studies are needed, these findings suggest that lobeglitazone is a promising neuroprotective candidate for clinical trials for PD patients with diabetes co-morbidity.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
| | - Arman Rahimmi
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran
| | - Rita Maccarone
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy.
| |
Collapse
|
5
|
Li Y, Wang B, Shen J, Bai M, Xu E. Berberine attenuates fructose-induced insulin resistance by stimulating the hepatic LKB1/AMPK/PGC1α pathway in mice. PHARMACEUTICAL BIOLOGY 2020; 58:385-392. [PMID: 32393087 PMCID: PMC7269079 DOI: 10.1080/13880209.2020.1756349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 05/22/2023]
Abstract
Context: Berberine is an alkaloid that possesses various pharmacologic effects.Objective: To explore the mechanism of berberine to improve insulin sensitivity in fructose-fed mice.Materials and methods: Sixty male ICR mice were randomly divided into 6 groups (10 mice in each group): control, fructose, pioglitazone (10 mg/kg) and berberine (50, 100, and 200 mg/kg). Except for the control group, the mice received 20% fructose drinking for 10 weeks. Pioglitazone and berberine were orally administered once daily during the last 4 weeks. The insulin sensitivity was evaluated using an oral glucose tolerance test (OGTT). The serum levels of fasting glucose and insulin, blood lipids, and hormones were determined. The hepatic AMP and ATP contents were detected using high performance liquid chromatography (HPLC) analysis, and the protein expression was examined by immunoblotting.Results: Berberine significantly reversed the insulin resistance induced by fructose, including lowering fasting insulin levels (from 113.9 to 67.4) and area under the curve (AUC) during OGTT (from 1310 to 1073), decreasing serum leptin (from 0.28 to 0.13) and increasing serum adiponectin levels (from 1.50 to 2.80). Moreover, berberine enhanced the phosphorylation levels of protein kinase B (PKB/AKT; 2.27-fold) and glycogen synthase kinase-3β (GSK3β; 2.56-fold), and increased hepatic glycogen content (from 0.19 to 1.65). Furthermore, berberine upregulated the protein expression of peroxisome proliferator activated receptor gamma coactivator 1α (PGC1α; 2.61-fold), phospho-AMP-activated protein kinase (p-AMPK; 1.35-fold) and phospho-liver kinase B1 (p-LKB1; 1.41-fold), whereas it decreased the AMP/ATP ratio (from 4.25 to 1.82).Conclusion: The present study demonstrated the protective effects of berberine against insulin resistance induced by fructose. Our findings may provide an experimental basis for the application of berberine in the treatment of insulin resistance.
Collapse
Affiliation(s)
- Yucheng Li
- Henan Key Laboratory for Modern Research on Zhongjing’s Herbal Formulae, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Baoying Wang
- Henan Key Laboratory for Modern Research on Zhongjing’s Herbal Formulae, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Jiduo Shen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Ming Bai
- Henan Key Laboratory for Modern Research on Zhongjing’s Herbal Formulae, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
- CONTACT Ming Bai
| | - Erping Xu
- Henan Key Laboratory for Modern Research on Zhongjing’s Herbal Formulae, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
- Erping Xu Henan Key Laboratory for Modern Research on Zhongjing’s Herbal Formulae, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| |
Collapse
|
6
|
Schulte R, Wohlleber D, Unrau L, Geers B, Metzger C, Erhardt A, Tiegs G, van Rooijen N, Heukamp LC, Klotz L, Knolle PA, Diehl L. Pioglitazone-Mediated Peroxisome Proliferator-Activated Receptor γ Activation Aggravates Murine Immune-Mediated Hepatitis. Int J Mol Sci 2020; 21:ijms21072523. [PMID: 32260486 PMCID: PMC7177299 DOI: 10.3390/ijms21072523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.
Collapse
Affiliation(s)
- Rike Schulte
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
| | - Dirk Wohlleber
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, 81675, Munich, Germany
| | - Ludmilla Unrau
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Bernd Geers
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Christina Metzger
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
| | - Annette Erhardt
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Nico van Rooijen
- Department of Molecular Cell Biology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands;
| | | | - Luisa Klotz
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Department of Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Percy A. Knolle
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, 81675, Munich, Germany
| | - Linda Diehl
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
- Correspondence:
| |
Collapse
|
7
|
Yu L, Li H, Zhang C, Zhang Q, Guo J, Li J, Yuan H, Li L, Carmichael P, Peng S. Integrating in vitro testing and physiologically-based pharmacokinetic (PBPK) modelling for chemical liver toxicity assessment-A case study of troglitazone. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103296. [PMID: 31783317 DOI: 10.1016/j.etap.2019.103296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
In vitro to in vivo extrapolation (IVIVE) for next-generation risk assessment (NGRA) of chemicals requires computational modeling and faces unique challenges. Using mitochondria-related toxicity data of troglitazone (TGZ), a prototype drug known for liver toxicity, from HepaRG, HepG2, HC-04, and primary human hepatocytes, we explored inherent uncertainties in IVIVE, including cell models, cellular response endpoints, and dose metrics. A human population physiologically-based pharmacokinetic (PBPK) model for TGZ was developed to predict in vivo doses from in vitro point-of-departure (POD) concentrations. Compared to the 200-800 mg/d dose range of TGZ where liver injury was observed clinically, the predicted POD doses for the mean and top one percentile of the PBPK population were 28-372 and 15-178 mg/d respectively based on Cmax dosimetry, and 185-2552 and 83-1010 mg/d respectively based on AUC. In conclusion, although with many uncertainties, integrating in vitro assays and PBPK modeling is promising in informing liver toxicity-inducing TGZ doses.
Collapse
Affiliation(s)
- Lin Yu
- Academy of Military Medicine, Academy of Military Sciences, 27 Taiping Road, Beijing 100850, PR China; Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Hequn Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Chi Zhang
- Academy of Military Medicine, Academy of Military Sciences, 27 Taiping Road, Beijing 100850, PR China; Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jiabin Guo
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Jin Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Haitao Yuan
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Lizhong Li
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Paul Carmichael
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Shuangqing Peng
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China.
| |
Collapse
|
8
|
Tavares RS, Escada-Rebelo S, Sousa MI, Silva A, Ramalho-Santos J, Amaral S. Can Antidiabetic Drugs Improve Male Reproductive (Dys)Function Associated with Diabetes? Curr Med Chem 2019; 26:4191-4222. [PMID: 30381064 DOI: 10.2174/0929867325666181101111404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/25/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
The alarming increase in the number of diabetic patients worldwide raises concerns regarding the impact of the disease on global health, not to mention on social and economic aspects. Furthermore, the association of this complex metabolic disorder with male reproductive impairment is worrying, mainly due to the increasing chances that young individuals, at the apex of their reproductive window, could be affected by the disease, further contributing to the disturbing decline in male fertility worldwide. The cornerstone of diabetes management is glycemic control, proven to be effective in avoiding, minimizing or preventing the appearance or development of disease-related complications. Nonetheless, the possible impact of these therapeutic interventions on male reproductive function is essentially unexplored. To address this issue, we have made a critical assessment of the literature on the effects of several antidiabetic drugs on male reproductive function. While the crucial role of insulin is clear, as shown by the recovery of reproductive impairments in insulin-deficient individuals after treatment, the same clearly does not apply to other antidiabetic strategies. In fact, there is an abundance of controversial reports, possibly related to the various study designs, experimental models and compounds used, which include biguanides, sulfonylureas, meglitinides, thiazolidinediones/glitazones, bile acid sequestrants, amylin mimetics, as well as sodiumglucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide 1 (GLP1), α-glucosidase inhibitors and dipeptidyl peptidase 4 (DPP4) inhibitors. These aspects constitute the focus of the current review.
Collapse
Affiliation(s)
- R S Tavares
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - S Escada-Rebelo
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - M I Sousa
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - A Silva
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - J Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - S Amaral
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
9
|
Kwon MJ, Lee YJ, Jung HS, Shin HM, Kim TN, Lee SH, Rhee BD, Kim MK, Park JH. The direct effect of lobeglitazone, a new thiazolidinedione, on pancreatic beta cells: A comparison with other thiazolidinediones. Diabetes Res Clin Pract 2019; 151:209-223. [PMID: 30954516 DOI: 10.1016/j.diabres.2019.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
AIMS The direct effects of thiazolidinediones (TZDs) on pancreatic beta cells have been controversial. The aim of this study was to find out whether a novel TZD, lobeglitazone, has beneficial effects on pancreatic beta cells and db/db mice compared to those of other TZDs. METHODS INS-1 cells were incubated at a high-glucose concentration with various concentrations of troglitazone, rosiglitazone, pioglitazone, and lobeglitazone. Apoptosis and proliferation of beta cells, markers for ER stress and glucose-stimulated insulin secretion (GSIS) were assessed. In addition, C57BL/6 db/db mice were treated with pioglitazone or lobeglitazone for 4 weeks, and metabolic parameters and the configuration of pancreatic islets were also examined. RESULTS Lobeglitazone and other TZDs decreased INS-1 cell apoptosis in high-glucose conditions. Lobeglitazone and other TZDs significantly decreased hyperglycemia-induced increases in ER stress markers and increased GSIS. Metabolic parameters showed greater improvement in db/db mice treated with pioglitazone and lobeglitazone than in control mice. Islet size, cell proliferation, and beta cell mass were increased, and collagen surrounding the islets was decreased in treated mice. CONCLUSIONS Lobeglitazone showed beneficial effects on beta cell survival and function against hyperglycemia. The prosurvival and profunction effects of lobeglitazone were comparable to those of other TZDs.
Collapse
Affiliation(s)
- Min Jeong Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea; Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Republic of Korea
| | - Yong Jae Lee
- CKD Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Hye Sook Jung
- Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Republic of Korea
| | - Hyun Mi Shin
- Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Republic of Korea
| | - Tae Nyun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Soon Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Mi-Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea; Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Republic of Korea.
| | - Jeong Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea; Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Republic of Korea.
| |
Collapse
|
10
|
Tavares RS, Escada-Rebelo S, Silva AF, Sousa MI, Ramalho-Santos J, Amaral S. Antidiabetic therapies and male reproductive function: where do we stand? Reproduction 2018; 155:R13-R37. [DOI: 10.1530/rep-17-0390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus has been increasing at alarming rates in recent years, thus jeopardizing human health worldwide. Several antidiabetic drugs have been introduced in the market to manage glycemic levels, and proven effective in avoiding, minimizing or preventing the appearance or development of diabetes mellitus-related complications. However, and despite the established association between such pathology and male reproductive dysfunction, the influence of these therapeutic interventions on such topics have been scarcely explored. Importantly, this pathology may contribute toward the global decline in male fertility, giving the increasing preponderance of diabetes mellitus in young men at their reproductive age. Therefore, it is mandatory that the reproductive health of diabetic individuals is maintained during the antidiabetic treatment. With this in mind, we have gathered the available information and made a critical analysis regarding the effects of several antidiabetic drugs on male reproductive function. Unlike insulin, which has a clear and fundamental role on male reproductive function, the other antidiabetic therapies' effects at this level seem incoherent. In fact, studies are highly controversial possibly due to the different experimental study approaches, which, in our opinion, suggests caution when it comes to prescribing such drugs to young diabetic patients. Overall, much is still to be determined and further studies are needed to clarify the safety of these antidiabetic strategies on male reproductive system. Aspects such as the effects of insulin levels variations, consequent of insulin therapy, as well as what will be the impact of the side effect hypoglycemia, common to several therapeutic strategies discussed, on the male reproductive system are still to be addressed.
Collapse
|
11
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
12
|
Mullins ME, Zane Horowitz B. In our experience. TOXICOLOGY COMMUNICATIONS 2017. [DOI: 10.1080/24734306.2017.1293950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Michael E. Mullins
- Division of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - B. Zane Horowitz
- Oregon Poison Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
13
|
Gupte-Singh K, Li H, Swain JL, Cheng Y, Regev A. Assessment of a Severity-Based Algorithm to Detect Signals of Severe Drug-Induced Liver Injury Using Spontaneous Reporting Database. Pharmaceut Med 2017. [DOI: 10.1007/s40290-016-0173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Vansant G, Pezzoli P, Saiz R, Birch A, Duffy C, Ferre F, Monforte J. Gene Expression Analysis of Troglitazone Reveals Its Impact on Multiple Pathways in Cell Culture: A Case for In Vitro Platforms Combined with Gene Expression Analysis for Early (Idiosyncratic) Toxicity Screening. Int J Toxicol 2016; 25:85-94. [PMID: 16597547 DOI: 10.1080/10915810600605690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR γ) agonists of the thiazolidinedione family are used for the treatment of type 2 diabetes mellitus due to their ability to reduce glucose and lipid levels in patients with this disease. Three thiazolidinediones that were approved for treatment are Rezulin (troglitazone), Avandia (rosiglitazone), and Actos (pioglitazone). Troglitazone was withdrawn from the market due to idiosyncratic drug toxicity. Rosiglitazone and pioglitazone are still on the market for the treatment of type 2 diabetes. The authors present data from a gene expression screen that compares the impact these three compounds have in rats, in rat hepatocytes, and in the clone 9 rat liver cell line. The authors monitored the changes in expression in multiple genes, including those related to xenobiotic metabolism, proliferation, DNA damage, oxidative stress, apoptosis, and inflammation. Compared to the other two compounds, troglitazone had a significant impact on many of the pathways monitored in vitro although no major perturbation was detected in vivo. The changes detected predict not only general toxicity but potential mechanisms of toxicity. Based on gene expression analysis, the authors propose there is not just one but multiple ways troglitazone could be toxic, depending on a patient’s environment and genetic makeup, including immune response-related toxicity.
Collapse
Affiliation(s)
- Gordon Vansant
- Althea Technologies, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Hashimoto H, Mizushima T, Ogura T, Kagawa T, Tomiyama K, Takahashi RI, Yagoto M, Kawai K, Chijiwa T, Nakamura M, Suemizu H. Study on AAV-mediated gene therapy for diabetes in humanized liver mouse to predict efficacy in humans. Biochem Biophys Res Commun 2016; 478:1254-60. [DOI: 10.1016/j.bbrc.2016.08.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
|
17
|
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48:e219. [PMID: 26964835 PMCID: PMC4892884 DOI: 10.1038/emm.2016.6] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.
Collapse
Affiliation(s)
- Pia V Röder
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| | - Bingbing Wu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Yixian Liu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Weiping Han
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| |
Collapse
|
18
|
Pushkin R, Frassetto L, Tsourounis C, Segal ES, Kim S. Improving the Reporting of Adverse Drug Reactions in the Hospital Setting. Postgrad Med 2015; 122:154-64. [DOI: 10.3810/pgm.2010.11.2233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Zhou L, Zhong Y, Xue MZ, Kuang D, Cao XW, Zhao ZJ, Li HL, Xu YF, Wang R. Design, synthesis and evaluation of PPAR gamma binding activity of 2-thioxo-4-thiazolidinone derivatives. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2014.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92:73-89. [PMID: 25083916 PMCID: PMC4212005 DOI: 10.1016/j.bcp.2014.07.018] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Xin Liu
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | | | - Tina Blazevic
- Department of Pharmacognosy, University of Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | | |
Collapse
|
21
|
Foster JR, Jacobsen M, Kenna G, Schulz-Utermoehl T, Morikawa Y, Salmu J, Wilson ID. Differential Effect of Troglitazone on the Human Bile Acid Transporters, MRP2 and BSEP, in the PXB Hepatic Chimeric Mouse. Toxicol Pathol 2012; 40:1106-16. [DOI: 10.1177/0192623312447542] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aims of this study were to assess the utility of the PXB mouse model of a chimeric human/mouse liver in studying human-specific effects of an important human hepatotoxic drug, the PPARγ agonist, troglitazone. When given orally by gavage for 7 days, at dose levels of 300 and 600 ppm, troglitazone induced specific changes in the human hepatocytes of the chimeric liver without an effect on the murine hepatic portions. The human hepatocytes, in the vehicle-treated PXB mouse, showed an accumulation of electron-dense lipid droplets that appeared as clear vacuoles under the light microscope in H&E-stained sections. Following dosing with troglitazone, there was a loss of the large lipid droplets in the human hepatocytes, a decrease in the amount of lipid as observed in frozen sections of liver stained by Oil-red-O, and a decrease in the expression of two bile acid transporters, BSEP and MRP2. None of these changes were observed in the murine remnants of the chimeric liver. No changes were observed in the expression of three CYPs, CYP 3A2, CYP 1A1, and CYP 2B1, in either the human or murine hepatocytes, even though the baseline expression of the enzymes differed significantly between the two hepatocyte species with the mouse hepatocytes consistently showing increased expression of the protein of all three enzymes. This study has shown that the human hepatocytes, in the PXB chimeric mouse liver, retain an essentially normal phenotype in the mouse liver and, the albeit limited CYP enzymes studied show a more human, rather than a murine, expression pattern. In line with this conclusion, the study has shown a differential response of the human versus the mouse hepatocytes, and the effects observed are highly suggestive of a differential handling of the compound by the two hepatocyte species although the exact reasons are not as yet clear. The PXB chimeric mouse system therefore holds the clear potential to explore human hepatic–specific features, such as metabolism, prior to dosing human subjects, and as such should have considerable utility in drug discovery and development.
Collapse
Affiliation(s)
- John R. Foster
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | - Matt Jacobsen
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | - Gerry Kenna
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | | | | | - Juuso Salmu
- PhoenixBio Co. Ltd, Higashi–Hiroshima, Japan
| | - Ian D. Wilson
- Clinical Pharmacology and DMPK Department, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| |
Collapse
|
22
|
Hrach J, Mueller S, Hewitt P. Development of an in vitro liver toxicity prediction model based on longer term primary rat hepatocyte culture. Toxicol Lett 2011; 206:189-96. [DOI: 10.1016/j.toxlet.2011.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 02/05/2023]
|
23
|
Abstract
INTRODUCTION The prevalence of type 2 diabetes mellitus (T2DM) has reached epidemic proportions. Many new therapies have emerged, including thiazolidinediones (TZDs), selective agonists of PPAR-γ, now used as both primary and add-on therapies. Given that T2DM is a lifetime disease, there is a need for assurance that new drugs are both safe and effective. Recent concern about the cardiovascular safety of one of the new drugs, rosiglitazone, is the stimulus for this review. AREAS COVERED The safety of pioglitazone and rosiglitazone under the headings of liver safety, cardiovascular safety, fluid retention, weight gain and bone fractures is reviewed based on a PubMed search of the years 1997 through June 2010. This review also describes the magnitude of the risks of the TZDs and provides a recommendation on the use of TZDs. EXPERT OPINION Liver safety is no longer an issue with the TZDs. There are no significant differences between rosiglitazone and pioglitazone in fluid retention, weight gain and bone fractures. However, pioglitazone tends to be cardioprotective while rosiglitazone is cardiotoxic. There is no current justification for prescribing rosiglitazone.
Collapse
Affiliation(s)
- Keith G Tolman
- University of Utah College of Pharmacy, Department of Pharmacology and Toxicology, 4059 S. Gary Rd, SLC, UT 84124, USA.
| |
Collapse
|
24
|
Gupta D, Kono T, Evans-Molina C. The role of peroxisome proliferator-activated receptor γ in pancreatic β cell function and survival: therapeutic implications for the treatment of type 2 diabetes mellitus. Diabetes Obes Metab 2010; 12:1036-47. [PMID: 20977574 PMCID: PMC3764483 DOI: 10.1111/j.1463-1326.2010.01299.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of type 2 diabetes mellitus involves both peripheral insulin resistance and dysfunctional insulin secretion from the pancreatic β cell. Currently, there is intense research focus on delineating the etiologies of pancreatic β cell dysfunction in type 2 diabetes. However, there remains an unmet clinical need to establish therapeutic guidelines and strategies that emphasize the preservation of pancreatic β cell function in at-risk and affected individuals. Thiazolidinediones are orally active agents approved for use in type 2 diabetes and act as agonists of the nuclear hormone receptor PPAR-γ. These drugs improve insulin sensitivity, but there is also a growing appreciation of PPAR-γ actions within the β cell. PPAR-γ has been shown to regulate directly key β cell genes involved in glucose sensing, insulin secretion and insulin gene transcription. Further, pharmacologic PPAR-γ activation has been shown to protect against glucose-, lipid-, cytokine- and islet amyloid polypeptide (IAPP)-induced activation of numerous stress pathways. This article will review the mechanisms by which PPAR-γ activation acts to maintain β cell function and survival in type 2 diabetes mellitus and highlight some of the current controversies in this field.
Collapse
Affiliation(s)
- D Gupta
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
25
|
Agarwal VK, McHutchison JG, Hoofnagle JH, for the Drug-Induced Liver Injury Network (DILIN). Important elements for the diagnosis of drug-induced liver injury. Clin Gastroenterol Hepatol 2010; 8:463-70. [PMID: 20170750 PMCID: PMC3901223 DOI: 10.1016/j.cgh.2010.02.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver disease is the leading cause of acute liver failure in the United States. Accurate reporting of drug-induced liver injury is essential for early detection of hepatotoxicity and for developing reliable, interpretable literature. We assessed the extent to which published case reports of drug-induced liver disease include sufficient clinical data for interpreting the cause of toxicity. METHODS We developed a list of 42 predetermined, specific minimal elements necessary in evaluating causality of drug-induced liver injury. We then analyzed 97 published case reports or series studies of hepatotoxicity from 6 drugs (from 3 classes): amoxicillin/clavulanic acid (n = 35), troglitazone (n = 32), rosiglitazone (n = 10), pioglitazone (n = 8), zafirlukast (n = 8), and montelukast (n = 4). RESULTS Patient age, sex, primary disease, and drug name were reported in most, if not all, published case reports. However, many elements were underreported; some publications did not mention initial bilirubin levels (12%), many did not provide initial alkaline phosphatase levels (58%), and others provided vague descriptions of how certain diagnoses were excluded, that is, tests for hepatitis A, B, and C were negative. Data on abnormal results from serial liver tests frequently were absent. Exclusions of competing viral etiologies were reported in less than 50% of the studies. CONCLUSIONS Reports of drug-induced liver diseases often do not provide the data needed to determine the causes of the adverse effects. Efforts to promote and include a list of essential diagnostic elements in research articles could increase the quality and clinical utility of published case reports of drug toxicity.
Collapse
Affiliation(s)
- Vijay K. Agarwal
- Duke Clinical Research Institute and Duke University Medical Center, Durham, North Carolina
| | - John G. McHutchison
- Duke Clinical Research Institute and Duke University Medical Center, Durham, North Carolina
| | - Jay H. Hoofnagle
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
26
|
Hosomi H, Akai S, Minami K, Yoshikawa Y, Fukami T, Nakajima M, Yokoi T. An in vitro drug-induced hepatotoxicity screening system using CYP3A4-expressing and γ-glutamylcysteine synthetase knockdown cells. Toxicol In Vitro 2010; 24:1032-8. [DOI: 10.1016/j.tiv.2009.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/14/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
|
27
|
Lewis JR, Mohanty SR. Nonalcoholic fatty liver disease: a review and update. Dig Dis Sci 2010; 55:560-78. [PMID: 20101463 DOI: 10.1007/s10620-009-1081-0] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
Abstract
The spectrum of nonalcoholic fatty liver disease (NAFLD) ranges from asymptomatic steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Hepatic steatosis occurs when free fatty acids, released in the setting of insulin resistance and the metabolic syndrome, are taken up by the liver. Additional biochemical insults, including oxidative stress, upregulation of inflammatory mediators, and dysregulated apoptosis, can result in inflammation (producing NASH) and fibrosis. Noninvasive methods (e.g., abdominal ultrasonography) are safe ways to support a diagnosis of hepatic steatosis, but advanced liver histopathologic findings including NASH and fibrosis cannot be identified without pursuing liver biopsy. Recent advances in serologic and imaging methods aim to determine severity of inflammation and fibrosis noninvasively. Currently, therapeutic options for NAFLD are limited to medications that reduce risk factors, but the future holds promise for therapies that might slow the progression of this increasingly prevalent disorder.
Collapse
Affiliation(s)
- Jeffrey R Lewis
- Department of Medicine, Center for Liver Diseases, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
28
|
Abstract
Troglitazone was the first thiazolidinedione antidiabetic agent approved for clinical use in 1997, but it was withdrawn from the market in 2000 due to serious idiosyncratic hepatotoxicity. Troglitazone contains the structure of a unique chroman ring of vitamin E, and this structure has the potential to undergo metabolic biotransformation to form quinone metabolites, phenoxy radical intermediate, and epoxide species. Although troglitazone has been shown to induce apoptosis in various hepatic and nonhepatic cells, the involvement of reactive metabolites in the troglitazone cytotoxicity is controversial. Numerous toxicological tests, both in vivo and in vitro, have been used to try to predict the toxicity, but no direct mechanism has been demonstrated that can explain the hepatotoxicity that occurred in some individuals. This chapter summarizes the proposed mechanisms of troglitazone hepatotoxicity based in vivo and in vitro studies. Many factors have been proposed to contribute to the mechanism underlying this idiosyncratic toxicity.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
29
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPAR gamma appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPAR gamma expression may be a vascular compensatory response. Also, ligand-activated PPAR gamma decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPAR alpha, similar to PPAR gamma, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPAR alpha activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPAR delta overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPAR delta ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology.
Collapse
Affiliation(s)
- Milton Hamblin
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
30
|
Rizos CV, Elisaf MS, Mikhailidis DP, Liberopoulos EN. How safe is the use of thiazolidinediones in clinical practice? Expert Opin Drug Saf 2009; 8:15-32. [PMID: 19236215 DOI: 10.1517/14740330802597821] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thiazolidinediones (TZDs) are widely used antidiabetic drugs with proven efficacy regarding mainly surrogate markers of diabetes management. However, efficacy on surrogate markers may not always translate into benefits in clinical outcomes. Thiazolidinediones are usually well tolerated; however, their use may be associated with several adverse effects. The first TZD, troglitazone, was withdrawn from the market owing to serious hepatotoxicity. However, this does not seem to be the case with newer TZDs. OBJECTIVE The aim of the present review is to discuss the safety profile of this drug class. METHODS We searched PubMed up to July 2008 using relevant keywords. CONCLUSIONS Common side effects associated with TZDs include edema, weight gain, macular edema and heart failure. Moreover, they may cause hypoglycemia when combined with other antidiabetic drugs as well as decrease hematocrit and hemoglobin levels. Increased bone fracture risk is another TZD-related side effect. Thiazolidinediones tend to increase serum low density lipoprotein cholesterol levels, with rosiglitazone having a more pronounced effect compared with pioglitazone. Moreover, rosiglitazone increases low density lipoprotein particle concentration in contrast to pioglitazone where a decrease is observed. Rosiglitazone has been associated with an increase in myocardial infarction incidence. On the other hand, pioglitazone may reduce cardiovascular events. Overall, TZDs are valuable drugs for diabetes management but physicians should keep in mind that they are associated with several adverse events, the most prominent of which is heart failure.
Collapse
Affiliation(s)
- C V Rizos
- Department of Internal Medicine, University of Ioannina, School of Medicine, Ioannina 45110, Greece.
| | | | | | | |
Collapse
|
31
|
Tajiri K, Shimizu Y. Practical guidelines for diagnosis and early management of drug-induced liver injury. World J Gastroenterol 2009. [PMID: 19058303 DOI: 10.3748/wig.14.6774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spectrum of drug-induced liver injury (DILI) is both diverse and complex. The first step in diagnosis is a suspicion of DILI based on careful consideration of recent comprehensive reports on the disease. There are some situations in which the suspicion of DILI is particularly strong. Exclusion of other possible etiologies according to the pattern of liver injury is essential for the diagnosis. In patients with suspected DILI, diagnostic scales, such as the Councils for International Organizations of Medical Sciences/Roussel Uclaf Causality Assessment Method (CIOMS/RUCAM) scale, may be helpful for the final diagnosis. Early management of DILI involves prompt withdrawal of the drug suspected of being responsible, according to serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin (T-Bil). However, as DILI patients may show resolution of liver injury without discontinuation of the drug, it should be carefully evaluated whether the suspected drug should be discontinued immediately with adequate consideration of the importance of the medication.
Collapse
Affiliation(s)
- Kazuto Tajiri
- Department of Gastroenterology and Hematology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | |
Collapse
|
32
|
Collino M, Patel NSA, Thiemermann C. PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2009; 2:179-97. [PMID: 19124421 DOI: 10.1177/1753944708090924] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability in industrialized countries. Despite advances in understanding its pathophysiology, little progress has been made in the treatment of stroke. The currently available therapies have proven to be highly unsatisfactory (except thrombolysis) and attempts are being made to identify and characterize signaling proteins which could be exploited to design novel therapeutic modalities. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control lipid and glucose metabolism. PPARs regulate gene expression by binding with the retinoid X receptor (RXR) as a heterodimeric partner to specific DNA sequences, termed PPAR response elements. In addition, PPARs may modulate gene transcription also by directly interfering with other transcription factor pathways in a DNA-binding independent manner. To date, three different PPAR isoforms, designated alpha, beta/delta, and gamma, have been identified. Recently, they have been found to play an important role for the pathogenesis of various disorders of the central nervous system and accumulating data suggest that PPARs may serve as potential targets for treating ischemic stroke. Activation of all PPAR isoforms, but especially of PPARgamma, was shown to prevent post-ischemic inflammation and neuronal damage in several in vitro and in vivo models, negatively regulating the expression of genes induced by ischemia/ reperfusion (I/R). This paper reviews the evidence and recent developments relating to the potential therapeutic effects of PPAR-agonists in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Massimo Collino
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy.
| | | | | |
Collapse
|
33
|
Tajiri K, Shimizu Y. Practical guidelines for diagnosis and early management of drug-induced liver injury. World J Gastroenterol 2008; 14:6774-6785. [PMID: 19058303 PMCID: PMC2773872 DOI: 10.3748/wjg.14.6774] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/05/2008] [Accepted: 11/12/2008] [Indexed: 02/06/2023] Open
Abstract
The spectrum of drug-induced liver injury (DILI) is both diverse and complex. The first step in diagnosis is a suspicion of DILI based on careful consideration of recent comprehensive reports on the disease. There are some situations in which the suspicion of DILI is particularly strong. Exclusion of other possible etiologies according to the pattern of liver injury is essential for the diagnosis. In patients with suspected DILI, diagnostic scales, such as the Councils for International Organizations of Medical Sciences/Roussel Uclaf Causality Assessment Method (CIOMS/RUCAM) scale, may be helpful for the final diagnosis. Early management of DILI involves prompt withdrawal of the drug suspected of being responsible, according to serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin (T-Bil). However, as DILI patients may show resolution of liver injury without discontinuation of the drug, it should be carefully evaluated whether the suspected drug should be discontinued immediately with adequate consideration of the importance of the medication.
Collapse
Affiliation(s)
- Kazuto Tajiri
- Department of Gastroenterology and Hematology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | |
Collapse
|
34
|
Tajiri K, Shimizu Y. Practical guidelines for diagnosis and early management of drug-induced liver injury. World J Gastroenterol 2008. [PMID: 19058303 DOI: 10.4748/wjg.14.6774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spectrum of drug-induced liver injury (DILI) is both diverse and complex. The first step in diagnosis is a suspicion of DILI based on careful consideration of recent comprehensive reports on the disease. There are some situations in which the suspicion of DILI is particularly strong. Exclusion of other possible etiologies according to the pattern of liver injury is essential for the diagnosis. In patients with suspected DILI, diagnostic scales, such as the Councils for International Organizations of Medical Sciences/Roussel Uclaf Causality Assessment Method (CIOMS/RUCAM) scale, may be helpful for the final diagnosis. Early management of DILI involves prompt withdrawal of the drug suspected of being responsible, according to serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin (T-Bil). However, as DILI patients may show resolution of liver injury without discontinuation of the drug, it should be carefully evaluated whether the suspected drug should be discontinued immediately with adequate consideration of the importance of the medication.
Collapse
Affiliation(s)
- Kazuto Tajiri
- Department of Gastroenterology and Hematology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | |
Collapse
|
35
|
Sarafidis PA. Thiazolidinedione derivatives in diabetes and cardiovascular disease: an update. Fundam Clin Pharmacol 2008; 22:247-64. [DOI: 10.1111/j.1472-8206.2008.00568.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Tahan V, Eren F, Avsar E, Yavuz D, Yuksel M, Emekli E, Imeryuz N, Celikel C, Uzun H, Haklar G, Tozun N. Rosiglitazone attenuates liver inflammation in a rat model of nonalcoholic steatohepatitis. Dig Dis Sci 2007; 52:3465-3472. [PMID: 17436085 DOI: 10.1007/s10620-007-9756-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 01/01/2007] [Indexed: 12/11/2022]
Abstract
Rosiglitazone is an insulin-sensitizing agent. We aimed to assess the effects of rosiglitazone on a methionine- and choline-deficient diet (MCDD) model of nonalcoholic steatohepatitis (NASH) in rats. Wistar rats were fed either MCDD or a control diet in the 4-week induction study; they were given saline or 4 mg/kg/day rosiglitazone. After the induction study period, the rats were divided into four groups and fed MCDD or given a control diet for an additional 8 weeks and received saline or rosiglitazone. Serum and tissue samples were obtained. Rosiglitazone improved inflammation in NASH and improved ALT, alkaline phosphatase, and interleukin-6 levels in the induction study and interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha levels in the treatment study. Our preliminary study is the first to show the anti-inflammatory effects of rosiglitazone in NASH. Rosiglitazone's effect on cytokines may be a key mechanism of its anti-inflammatory effect in NASH.
Collapse
Affiliation(s)
- Veysel Tahan
- Department of Gastroenterology, Marmara University School of Medicine, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This article briefly discusses nonalcoholic fatty liver disease (NAFLD) and its association with the metabolic syndrome, its pathogenesis and natural history. It then presents a detailed discussion on the efficacy and safety of different insulin sensitizers in patients who have NASH.
Collapse
Affiliation(s)
- Mouen Khashab
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, WD OPW 2005, 1001 West 10th Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
38
|
Tang W. Drug metabolite profiling and elucidation of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2007; 3:407-20. [PMID: 17539747 DOI: 10.1517/17425255.3.3.407] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug metabolism studies, together with pathologic and histologic evaluation, provide critical data sets to help understand mechanisms underlying drug-related hepatotoxicity. A common practice is to trace morphologic changes resulting from liver injury back to perturbation of biochemical processes and to identify drug metabolites that affect those processes as possible culprits. This strategy can be illustrated in efforts of elucidating the cause of acetaminophen-, troglitazone- and valproic acid-induced hepatic necrosis, microvesicular steatosis and cholestasis with the aid of information from qualitative and quantitative analysis of metabolites. From a pharmaceutical research perspective, metabolite profiling represents an important function because a structure-activity relationship is essential to rational drug design. In addition, drugs are known to induce idiosyncratic hepatotoxicity, which usually escapes the detection by preclinical safety assessment and clinical trials. This issue is addressed, at present, by eliminating those molecules that are prone to metabolic bioactivation, based on the concept that formation of electrophilic metabolites triggers covalent protein modification and subsequent organ toxicity. Although pragmatic, such an approach has its limitations as a linear correlation does not exist between toxicity and the extent of bioactivation. It may be possible in the future that the advance of proteomics, metabonomics and genomics would pave the way leading to personalized medication in which beneficial effect of a drug is maximized, whereas toxicity risk is minimized.
Collapse
Affiliation(s)
- Wei Tang
- Merck Research Laboratories, Department of Drug Metabolism, Rahway, NJ 07065-0900, USA.
| |
Collapse
|
39
|
Wang T, Shankar K, Ronis MJ, Mehendale HM. Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit Rev Toxicol 2007; 37:413-59. [PMID: 17612954 DOI: 10.1080/10408440701215100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase dincidences of hepatotoxicity have been observed in diabetic patients receiving drug therapies. Neither the mechanisms nor the predisposing factors underlying hepatotoxicity in diabetics are clearly understood. Animal studies designed to examine the mechanisms of diabetes-modulated hepatotoxicity have traditionally focused only on bioactivation/detoxification of drugs and toxicants. It is becoming clear that once injury is initiated, additional events determine the final outcome of liver injury. Foremost among them are two leading mechanisms: first, biochemical mechanisms that lead to progression or regression of injury; and second, whether or not timely and adequate liver tissue repair occurs to mitigate injury and restore liver function. The liver has a remarkable ability to repair and restore its structure and function after physical or chemical-induced damage. The dynamic interaction between biotransformation-based liver injury and compensatory tissue repair plays a pivotal role in determining the ultimate outcome of hepatotoxicity initiated by drugs or toxicants. In this review, mechanisms underlying altered hepatotoxicity in diabetes with emphasis on both altered bioactivation and liver tissue repair are discussed. Animal models of both marked sensitivity (diabetic rats) and equally marked protection (diabetic mice) from drug-induced hepatotoxicity are described. These examples represent a remarkable species difference. Availability of the rodent diabetic models offers a unique opportunity to uncover mechanisms of clinical interest in averting human diabetic sensitivity to drug-induced hepatotoxicities. While the rat diabetic models appear to be suitable, the diabetic mouse models might not be suitable in preclinical testing for potential hepatotoxic effects of drugs or toxicants, because regardless of type 1 or type2 diabetes, mice are resistant to acute drug-or toxicant-induced toxicities.
Collapse
Affiliation(s)
- T Wang
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
40
|
Hewitt NJ, Lechón MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GMM, Hengstler JG. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 2007; 39:159-234. [PMID: 17364884 DOI: 10.1080/03602530601093489] [Citation(s) in RCA: 537] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review brings you up-to-date with the hepatocyte research on: 1) in vitro-in vivo correlations of metabolism and clearance; 2) CYP enzyme induction, regulation, and cross-talk using human hepatocytes and hepatocyte-like cell lines; 3) the function and regulation of hepatic transporters and models used to elucidate their role in drug clearance; 4) mechanisms and examples of idiosyncratic and intrinsic hepatotoxicity; and 5) alternative cell systems to primary human hepatocytes. We also report pharmaceutical perspectives of these topics and compare methods and interpretations for the drug development process.
Collapse
Affiliation(s)
- Nicola J Hewitt
- Scientific Writing Services, Wingertstrasse, Erzhausen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Snow KL, Moseley RH. Effect of thiazolidinediones on bile acid transport in rat liver. Life Sci 2007; 80:732-40. [PMID: 17126857 DOI: 10.1016/j.lfs.2006.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 09/26/2006] [Accepted: 11/01/2006] [Indexed: 11/17/2022]
Abstract
The thiazolidinedione derivatives, troglitazone, rosiglitazone, and pioglitazone, are novel insulin-sensitizing drugs that are useful in the treatment of type 2 diabetes. However, hepatotoxicity associated with troglitazone led to its withdrawal from the market in March 2000. In view of case reports of hepatotoxicity from rosiglitazone and pioglitazone, it is unclear whether thiazolidinediones as a class are associated with hepatotoxicity. Although the mechanism of troglitazone-associated hepatotoxicity has not been elucidated, troglitazone and its major metabolite, troglitazone sulfate, competitively inhibit adenosine triphosphate (ATP)-dependent taurocholate transport in isolated rat canalicular liver plasma membrane vesicles mediated by the canalicular bile salt export pump (Bsep). These results suggest that cholestasis may be a factor in troglitazone-associated hepatotoxicity. To determine whether this effect is 1) limited to canalicular bile acid transport and 2) is specific to troglitazone, the effect of troglitazone, rosiglitazone, and ciglitazone on bile acid transport was examined in rat basolateral (blLPM) and canalicular (cLPM) liver plasma membrane vesicles. In cLPM vesicles, troglitazone, rosiglitazone, and ciglitazone (100 microM) all significantly inhibited ATP-dependent taurocholate transport. In blLPM vesicles, these three thiazolidinediones also significantly inhibited Na(+)-dependent taurocholate transport. Inhibition of bile acid transport was concentration dependent and competitive in both cLPM and blLPM vesicles. In conclusion, these findings are consistent with a class effect by thiazolidinediones on hepatic bile acid transport. If hepatotoxicity is associated with this effect, then hepatotoxicity is not limited to troglitazone. Alternatively, if hepatotoxicity is limited to troglitazone, other mechanisms are responsible for its reported hepatotoxicity.
Collapse
Affiliation(s)
- Kris L Snow
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
42
|
Andrade RJ, Lucena MI, Kaplowitz N, García-Muņoz B, Borraz Y, Pachkoria K, García-Cortés M, Fernández MC, Pelaez G, Rodrigo L, Durán JA, Costa J, Planas R, Barriocanal A, Guarner C, Romero-Gomez M, Muņoz-Yagüe T, Salmerón J, Hidalgo R. Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. Hepatology 2006; 44:1581-1588. [PMID: 17133470 DOI: 10.1002/hep.21424] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chronic adverse reaction may occur in some instances of drug-induced liver injury (DILI), even despite drug cessation. In our study, we obtained records from a Spanish registry and evaluated cases of DILI with biochemical evidence of long-term damage. Chronic outcome was defined as a persistent biochemical abnormality of hepatocellular pattern of damage more than 3 months after drug withdrawal or more than 6 months after cholestatic/mixed damage. Data on 28 patients with a chronic clinical evolution (mean follow-up 20 months) between November 1995 and October 2005 were retrieved (18 female; overall mean age 55 yr) and accounted for 5.7% of total idiosyncratic DILI cases (n = 493) submitted to the registry. The main drug classes were cardiovascular and central nervous system (28.5% and 25%, respectively), which, in contrast, represented only 9.8% and 13%, respectively, of all DILI cases. The most frequent causative drugs were amoxicillin-clavulanate (4 of 69 cases), bentazepam (3 of 7 cases), atorvastatin (2 of 7 cases), and captopril (2 of 5 cases). Patients with cholestatic/mixed injury (18 of 194 cases [9%]) were more prone to chronicity than patients with hepatocellular injury (10 of 240 cases; P < .031). In the case of chronic hepatocellular injury, 3 patients progressed to cirrhosis and 2 to chronic hepatitis. In the cholestatic/mixed group, liver biopsy indicated cirrhosis in 1 patient and ductal lesions in 3 patients. In conclusion, cholestatic/mixed type of damage is more prone to become chronic while, in the hepatocellular pattern, the severity is greater. Cardiovascular and central nervous system drugs are the main groups leading to chronic liver damage.
Collapse
Affiliation(s)
- Raúl J Andrade
- Unidad de Hepatología, Grupo de Estudio para las Hepatopatías Asociadas a Medicamentos, Co-ordinating Centre, Hospital Universitario Virgen de la Victoria, Facultad de Medicina, Campus Universitario de Teatinos s/n, Málaga, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maniratanachote R, Minami K, Katoh M, Nakajima M, Yokoi T. Dephosphorylation of ribosomal protein P0 in response to troglitazone-induced cytotoxicity. Toxicol Lett 2006; 166:189-99. [PMID: 16893617 DOI: 10.1016/j.toxlet.2006.07.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/09/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Troglitazone (TRO)-induced cytotoxicity was investigated in HepG2 cells. The cells were exposed to TRO as well as rosiglitazone (RSG) at concentrations of 0, 25, 50 and 75 microM for 48 h. Total proteins were separated by two-dimensional electrophoresis and visualized by silver staining. We focused on a protein spot at an approximate molecular weight of 35 kDa and isoelectric point (pI) of 5.7, which appeared only with the cytotoxic concentrations (50 and 75 microM) of TRO, but not with the low concentration (25 microM) of TRO or any concentrations of RSG. This protein spot was subjected to amino acid sequence analysis and identified as ribosomal protein P0 (P0). Interestingly, without any significant induction of its protein and mRNA, P0 was dephosphorylated depending on the concentration- and time-dependent manner of TRO-induced cytotoxicity. Pretreatment with a general caspase inhibitor, Z-VAD.fmk, prevented cleavage of caspase-3 but demonstrated a slight improvement of cytotoxicity induced by TRO. Thus, these effects could not prevent the dephosphorylation of P0. Our results strongly suggest that a post-translational modification, dephosphorylation, of P0 is associated with TRO-induced cytotoxicity.
Collapse
Affiliation(s)
- Rawiwan Maniratanachote
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
44
|
Devi SS, Philip BK, Warbritton A, Latendresse JR, Mehendale HM. Prior administration of a low dose of thioacetamide protects type 1 diabetic rats from subsequent administration of lethal dose of thioacetamide. Toxicology 2006; 226:107-17. [PMID: 16901604 DOI: 10.1016/j.tox.2006.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/22/2006] [Accepted: 06/03/2006] [Indexed: 01/22/2023]
Abstract
Previously, we reported that an ordinarily non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic rats due to inhibited liver tissue repair, whereas 30 mg TA/kg allows 100% survival due to stimulated although delayed tissue repair. Objective of this investigation was to test whether prior administration of a low dose of TA (30 mg/kg) would lead to sustainable stimulation of liver tissue repair in type 1 diabetic rats sufficient to protect from a subsequently administered lethal dose of TA. Therefore, in the present study, the hypothesis that preplacement of tissue repair by a low dose of TA (30 mg TA/kg, ip) can reverse the hepatotoxicant sensitivity (autoprotection) in type 1 diabetic rats was tested. Preliminary studies revealed that a single intraperitoneal (ip) administration of TA causes 90% mortality in diabetic rats with as low as 75 mg/kg. To establish an autoprotection model in diabetic condition, diabetic rats were treated with 30 mg TA/kg (priming dose). Administration of priming dose stimulated tissue repair that peaked at 72h, at which time these rats were treated with a single ip dose of 75 mg TA/kg. Our results show that tissue repair stimulated by the priming dose enabled diabetic rats to overexpress, calpastatin, endogenous inhibitor of calpain, to inhibit calpain-mediated progression of liver injury induced by the subsequent administration of lethal dose, resulting in 100% survival. Further investigation revealed that protection observed in these rats is not due to decreased bioactivation. These studies underscore the importance of stimulation of tissue repair in the final outcome of liver injury (survival/death) after hepatotoxicant challenge. Furthermore, these results also suggest that it is possible to stimulate tissue repair in diabetics to overcome the enhanced sensitivity of hepatotoxicants.
Collapse
Affiliation(s)
- Sachin S Devi
- Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, 700 University Ave, Monroe, LA 71209, USA
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Peraza MA, Burdick AD, Marin HE, Gonzalez FJ, Peters JM. The Toxicology of Ligands for Peroxisome Proliferator-Activated Receptors (PPAR). Toxicol Sci 2005; 90:269-95. [PMID: 16322072 DOI: 10.1093/toxsci/kfj062] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand activated transcription factors that modulate target gene expression in response to endogenous and exogenous ligands. Ligands for the PPARs have been widely developed for the treatment of various diseases including dyslipidemias and diabetes. While targeting selective receptor activation is an established therapeutic approach for the treatment of various diseases, a variety of toxicities are known to occur in response to ligand administration. Whether PPAR ligands produce toxicity via a receptor-dependent and/or off-target-mediated mechanism(s) is not always known. Extrapolation of data derived from animal models and/or in vitro models, to humans, is also questionable. The different toxicities and mechanisms associated with administration of ligands for the three PPARs will be discussed, and important data gaps that could increase our current understanding of how PPAR ligands lead to toxicity will be highlighted.
Collapse
Affiliation(s)
- Marjorie A Peraza
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
47
|
Maniratanachote R, Shibata A, Kaneko S, Yamamori I, Wakasugi T, Sawazaki T, Katoh K, Tokudome S, Nakajima M, Yokoi T. Detection of autoantibody to aldolase B in sera from patients with troglitazone-induced liver dysfunction. Toxicology 2005; 216:15-23. [PMID: 16115720 DOI: 10.1016/j.tox.2005.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Troglitazone is a thiazolidinedione antidiabetic agent with insulin-sensitizing activities that was withdrawn from the market in 2000 due to its association with idiosyncratic hepatotoxicity. To address the suspected autoantibody production associated with troglitazone, we investigated autoantibodies in sera from patients with type II diabetes mellitus with troglitazone-induced liver dysfunction. Two female patients (47- and 70-year-old) ceased taking troglitazone (400 mg/day) after 23.5 and 16 weeks, respectively, due to increased serum ALT. Using two-dimensional electrophoresis and amino acid sequence analyses, aldolase B was identified as an autoantigen that reacted with antibodies in sera from both patients. The titer of anti-aldolase B remained high for several weeks after stopping troglitazone administration. The mean reactivity of autoantibodies to aldolase B determined by ELISA with sera of patients with chronic hepatitis (n = 40) and liver cirrhosis (n = 40) was significantly higher (p < 0.05 and p < 0.001, respectively) than with sera of healthy subjects (n = 80). These findings suggest that liver injury may cause the appearance of autoantibodies to aldolase B which may then aggravate the hepatitis. In addition, the anti-aldolase B titer might indicate the severity of liver dysfunction.
Collapse
Affiliation(s)
- Rawiwan Maniratanachote
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Strowig SM, Raskin P. Combination therapy using metformin or thiazolidinediones and insulin in the treatment of diabetes mellitus. Diabetes Obes Metab 2005; 7:633-41. [PMID: 16219007 DOI: 10.1111/j.1463-1326.2004.00440.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biguanide, metformin, sensitizes the liver to the effect of insulin, suppressing hepatic glucose output. Thiazolidinediones such as rosiglitazone and pioglitazone enhance insulin-mediated glucose disposal, leading to reduced plasma insulin concentrations. These classes of drugs may also have varying beneficial effects on features of insulin resistance such as lipid levels, blood pressure and body weight. Metformin in combination with insulin has been shown to significantly improve blood glucose levels while lowering total daily insulin dose and body weight. The thiazolidinediones in combination with insulin have also been effective in lowering blood glucose levels and total daily insulin dose. Triple combination therapy using insulin, metformin and a thiazolidinedione improves glycaemic control to a greater degree than dual therapy using insulin and metformin or insulin and a thiazolidinedione. There is insufficient evidence to recommend the use of metformin or thiazolidinediones in type 1 diabetic patients. Although these agents are largely well tolerated, some subjects experience significant gastrointestinal problems while using metformin. Metformin is associated with a low risk of lactic acidosis, but should not be used in patients with elevated serum creatinine or those being treated for congestive heart failure. The thiazolidinediones are associated with an increase in body weight, although this can be avoided with careful lifestyle management. Thiazolidinediones may also lead to oedema and are associated with a low incidence of hepatocellular injury. Thiazolidinediones are contraindicated in patients with underlying heart disease who are at risk of congestive heart failure and in patients who have abnormal hepatic function. The desired blood glucose-lowering effect and adverse event profiles of these agents should be considered when recommending these agents to diabetic patients. The potential for metformin or the thiazolidinediones to impact long-term cardiovascular outcomes remains under investigation.
Collapse
Affiliation(s)
- Suzanne M Strowig
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
49
|
Reddy VBG, Karanam BV, Gruber WL, Wallace MA, Vincent SH, Franklin RB, Baillie TA. Mechanistic studies on the metabolic scission of thiazolidinedione derivatives to acyclic thiols. Chem Res Toxicol 2005; 18:880-8. [PMID: 15892582 DOI: 10.1021/tx0500373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiazolidinedione (TZD) derivatives have been reported to undergo metabolic activation of the TZD ring to produce reactive intermediates. In the case of troglitazone, it was proposed that a P450-mediated S-oxidation leads to TZD ring scission and the formation of a sulfenic acid intermediate, which may be trapped as a GSH conjugate. In the present study, we employed a model compound {denoted MRL-A, (+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethoxy)phenyl]methyl]benzamide} to investigate the mechanism of TZD ring scission. When MRL-A was incubated with monkey liver microsomes (or recombinant P450 3A4 and NADPH-P450 reductase) in the presence of NADPH and oxygen, the major products of TZD ring scission were the free thiol metabolite (M2) and its dimer (M3). Furthermore, a GSH conjugate of M2 (M4) also was formed when the incubation mixture was supplemented with GSH. Experiments with isolated M2 suggested that this metabolite was unstable and underwent spontaneous autooxidation to M3. A qualitatively similar metabolite profile was observed when MRL-A was incubated with recombinant P450 3A4 and cumene hydroperoxide. Because an oxygen atom is transferred to MRL-A under these conditions, these data suggested that S-oxidation alone may result in TZD ring scission and formation of M2 via a sulfenic acid intermediate. Also, because the latter incubation mixture did not contain any reducing agents, the formation of M2 may have occurred due to disproportionation of the sulfenic acid. When NADPH was added to the incubation mixture containing P450 3A4 and cumene hydroperoxide, the formation of M3 increased, suggesting that the sulfenic acid was reduced to M2 by NADPH and subsequently underwent dimerization to yield M3 (vide supra). When NADPH was replaced by GSH, the formation of M4 increased, consistent with reduction of the sulfenic acid by GSH. In summary, these results suggest that the TZD ring in MRL-A is activated by an initial P450-mediated S-oxidation step followed by spontaneous scission of the TZD ring to a putative sulfenic acid intermediate; the latter species then undergoes reduction to the free thiol by GSH, NADPH, and/or disproportionation. Finally, the thiol may dimerize to the corresponding disulfide or, in the presence of S-adenosylmethionine, form the stable S-methyl derivative.
Collapse
Affiliation(s)
- Vijay Bhasker G Reddy
- Department of Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Robert I Misbin
- Division of Endocrine and Metabolic Drug Products, Food and Drug Administration, Rockville, Maryland, USA.
| |
Collapse
|