1
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Liu Y, Lin D, Najam SS, Huang S, Song M, Sirakawin C, Zhao C, Jiang H, Konopka W, Herzig S, Vinnikov IA. Functional redundancy between glucocorticoid and mineralocorticoid receptors in mature corticotropin-releasing hormone neurons protects from obesity. Obesity (Silver Spring) 2024; 32:1885-1896. [PMID: 39315404 DOI: 10.1002/oby.24116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Here, we aimed to investigate the role of glucocorticoid and mineralocorticoid receptors (GRs and MRs, respectively) in the regulation of energy homeostasis. METHODS We used three mouse models with simultaneous deletion of GRs and MRs in either forebrain neurons, the paraventricular nucleus, or corticotropin-releasing hormone (CRH) neurons and compared them with wild-type controls or isolated knockout groups. In addition to body weight, food intake, energy expenditure, insulin sensitivity, fat/lean mass distribution, and plasma corticosterone levels, we also performed transcriptomic analysis of CRH neurons and assessed their response to melanocortinergic stimulation. RESULTS Similar to global double-knockout models, deletion of GRs and MRs specifically in mature CRH neurons resulted in obesity. Importantly, the latter was accompanied by insulin resistance, but not increased plasma corticosterone levels. Transcriptomic analysis of these neurons revealed upregulation of several genes involved in postsynaptic signal transduction, including the Ptk2b gene, which encodes proline-rich tyrosine kinase 2. Knockout of both nuclear receptors leads to upregulation of Ptk2b in CRH neurons, which results in their diminished responsiveness to melanocortinergic stimulation. CONCLUSIONS Our data demonstrate the functional redundancy of GRs and MRs in CRH neurons to maintain energy homeostasis and prevent obesity. Simultaneous targeting of both receptors might represent an unprecedented approach to counteract obesity.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dongfa Lin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun, China
| | - Syeda Sadia Najam
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shangyuan Huang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muyi Song
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Catherine Zhao
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haixia Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Witold Konopka
- Laboratory of Neuroplasticity and Metabolism, Department of Life Sciences and Biotechnology, Łukasiewicz PORT Polish Center for Technology Development, Wrocław, Poland
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Munich Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Technical University Munich, Munich, Germany; German Center for Diabetes Research, Munich, Germany
| | - Ilya A Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Isaac J, Karkare SC, Balasubramanian H, Schappaugh N, Javier JL, Rashid M, Murugan M. Sex differences in neural representations of social and nonsocial reward in the medial prefrontal cortex. Nat Commun 2024; 15:8018. [PMID: 39271723 PMCID: PMC11399386 DOI: 10.1038/s41467-024-52294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The reinforcing nature of social interactions is necessary for the maintenance of appropriate social behavior. However, the neural substrates underlying social reward processing and how they might differ based on the sex and internal state of the animal remains unknown. It is also unclear whether these neural substrates are shared with those involved in nonsocial rewarding processing. We developed a fully automated, two choice (social-sucrose) operant assay in which mice choose between social and nonsocial rewards to directly compare the reward-related behaviors associated with two competing stimuli. We performed cellular resolution calcium imaging of medial prefrontal cortex (mPFC) neurons in male and female mice across varying states of water restriction and social isolation. We found that mPFC neurons maintain largely non-overlapping, flexible representations of social and nonsocial reward that vary with internal state in a sex-dependent manner. Additionally, optogenetic manipulation of mPFC activity during the reward period of the assay disrupted reward-seeking behavior across male and female mice. Thus, using a two choice operant assay, we have identified sex-dependent, non-overlapping neural representations of social and nonsocial reward in the mPFC that vary with internal state and that are essential for appropriate reward-seeking behavior.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Sonia Corbett Karkare
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Hymavathy Balasubramanian
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | | | - Jarildy Larimar Javier
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Maha Rashid
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
La Porta C, Plum T, Palme R, Mack M, Tappe-Theodor A. Repeated social defeat stress differently affects arthritis-associated hypersensitivity in male and female mice. Brain Behav Immun 2024; 119:572-596. [PMID: 38663771 DOI: 10.1016/j.bbi.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic stress enhances the risk of neuropsychiatric disorders and contributes to the aggravation and chronicity of pain. The development of stress-associated diseases, including pain, is affected by individual vulnerability or resilience to stress, although the mechanisms remain elusive. We used the repeated social defeat stress model promoting susceptible and resilient phenotypes in male and female mice and induced knee mono-arthritis to investigate the impact of stress vulnerability on pain and immune system regulation. We analyzed different pain-related behaviors, measured blood cytokine and immune cell levels, and performed histological analyses at the knee joints and pain/stress-related brain areas. Stress susceptible male and female mice showed prolonged arthritis-associated hypersensitivity. Interestingly, hypersensitivity was exacerbated in male but not female mice. In males, stress promoted transiently increased neutrophils and Ly6Chigh monocytes, lasting longer in susceptible than resilient mice. While resilient male mice displayed persistently increased levels of the anti-inflammatory interleukin (IL)-10, susceptible mice showed increased levels of the pro-inflammatory IL-6 at the early- and IL-12 at the late arthritis stage. Although joint inflammation levels were comparable among groups, macrophage and neutrophil infiltration was higher in the synovium of susceptible mice. Notably, only susceptible male mice, but not females, presented microgliosis and monocyte infiltration in the prefrontal cortex at the late arthritis stage. Blood Ly6Chigh monocyte depletion during the early inflammatory phase abrogated late-stage hypersensitivity and the associated histological alterations in susceptible male mice. Thus, recruitment of blood Ly6Chigh monocytes during the early arthritis phase might be a key factor mediating the persistence of arthritis pain in susceptible male mice. Alternative neuro-immune pathways that remain to be explored might be involved in females.
Collapse
Affiliation(s)
- Carmen La Porta
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, Regensburg University Hospital, Regensburg, Germany
| | - Anke Tappe-Theodor
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Bentefour Y, Bakker J. Stress during pubertal development affects female sociosexual behavior in mice. Nat Commun 2024; 15:3610. [PMID: 38688927 PMCID: PMC11061123 DOI: 10.1038/s41467-024-47300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Puberty is a crucial phase for the development of female sexual behavior. Growing evidence suggests that stress during this period may interfere with the development of sexual behavior. However, the neural circuits involved in this alteration remain elusive. Here, we demonstrated in mice that pubertal stress permanently disrupted sexual performance without affecting sexual preference. This was associated with a reduced expression and activation of neuronal nitric oxide synthase (nNOS) in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Fiber photometry revealed that VMHvl nNOS neurons are strongly responsive to male olfactory cues with this activation being substantially reduced in pubertally stressed females. Finally, treatment with a NO donor partially restored sexual performance in pubertally stressed females. This study provides insights into the involvement of VMHvl nNOS in the processing of olfactory cues important for the expression of female sexual behavior. In addition, exposure to stress during puberty disrupts the integration of male olfactory cues leading to reduced sexual behavior.
Collapse
Affiliation(s)
- Yassine Bentefour
- GIGA Neurosciences-Neuroendocrinology Lab - University of Liège, Liège, 4000, Belgium.
| | - Julie Bakker
- GIGA Neurosciences-Neuroendocrinology Lab - University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
6
|
Burke M, Wong K, Talyansky Y, Mhatre SD, Mitchell C, Juran CM, Olson M, Iyer J, Puukila S, Tahimic CGT, Christenson LK, Lowe M, Rubinstein L, Shirazi-Fard Y, Sowa MB, Alwood JS, Ronca AE, Paul AM. Sexual dimorphism during integrative endocrine and immune responses to ionizing radiation in mice. Sci Rep 2024; 14:7334. [PMID: 38409284 PMCID: PMC10897391 DOI: 10.1038/s41598-023-33629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/16/2023] [Indexed: 02/28/2024] Open
Abstract
Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.
Collapse
Affiliation(s)
- Marissa Burke
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelly Wong
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuli Talyansky
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Siddhita D Mhatre
- KBR, Houston, TX, 77002, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Carol Mitchell
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Cassandra M Juran
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Makaila Olson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Janani Iyer
- KBR, Houston, TX, 77002, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Universities Space Research Association, Mountain View, CA, 94043, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Candice G T Tahimic
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Universities Space Research Association, Mountain View, CA, 94043, USA
- The Joseph Sagol Neuroscience Center, Sheba Research Hospital, Ramat Gan 52621, Israel
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
- Departments of Obstetrics & Gynecology, Wake Forest Medical School, Winston-Salem, NC, USA.
| | - Amber M Paul
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
7
|
Zhai X, Ai L, Chen D, Zhou D, Han Y, Ji R, Hu M, Wang Q, Zhang M, Wang Y, Zhang C, Yang JX, Hu A, Liu H, Cao JL, Zhang H. Multiple integrated social stress induces depressive-like behavioral and neural adaptations in female C57BL/6J mice. Neurobiol Dis 2024; 190:106374. [PMID: 38097092 DOI: 10.1016/j.nbd.2023.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Despite women representing most of those affected by major depression, preclinical studies have focused almost exclusively on male subjects, partially due to a lack of ideal animal paradigms. As the persistent need regarding the sex balance of neuroscience research and female-specific pathology of mental disorders surges, the establishment of natural etiology-based and systematically validated animal paradigms for depression with female subjects becomes an urgent scientific problem. This study aims to establish, characterize, and validate a "Multiple Integrated Social Stress (MISS)" model of depression in female C57BL/6J mice by manipulating and integrating daily social stressors that females are experiencing. Female C57BL/6J mice randomly experienced social competition failure in tube test, modified vicarious social defeat stress, unescapable overcrowding stress followed by social isolation on each day, for ten consecutive days. Compared with their controls, female MISS mice exhibited a relatively decreased preference for social interaction and sucrose, along with increased immobility in the tail suspension test, which could last for at least one month. These MISS mice also exhibited increased levels of blood serum corticosterone, interleukin-6 L and 1β. In the pharmacological experiment, MISS-induced dysfunctions in social interaction, sucrose preference, and tail suspension tests were amended by systematically administrating a single dose of sub-anesthetic ketamine, a rapid-onset antidepressant. Compared with controls, MISS females exhibited decreased c-Fos activation in their anterior cingulate cortex, prefrontal cortex, nucleus accumbens and some other depression-related brain regions. Furthermore, 24 h after the last exposure to the paradigm, MISS mice demonstrated a decreased center zone time in the open field test and decreased open arm time in the elevated plus-maze test, indicating anxiety-like behavioral phenotypes. Interestingly, MISS mice developed an excessive nesting ability, suggesting a likely behavioral phenotype of obsessive-compulsive disorder. These data showed that the MISS paradigm was sufficient to generate pathological profiles in female mice to mimic core symptoms, serum biochemistry and neural adaptations of depression in clinical patients. The present study offers a multiple integrated natural etiology-based animal model tool for studying female stress susceptibility.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dandan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengfan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qing Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Moruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chunyan Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ankang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, PR China
| | - He Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine, Huzhou Central Hospital, Huzhou 313003, China; The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313003, China; The Fifth School of Clinical Medicine, Zhejiang Chinese Medical University, Huzhou 313003, China; The Affiliated Central Hospital, Huzhou University, Huzhou 313003, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
8
|
Neira S, Lee S, Hassanein LA, Sides T, D'Ambrosio SL, Boyt KM, Bains JS, Kash TL. Impact and Role of Hypothalamic Corticotropin Releasing Hormone Neurons in Withdrawal from Chronic Alcohol Consumption in Female and Male Mice. J Neurosci 2023; 43:7657-7667. [PMID: 37833068 PMCID: PMC10634552 DOI: 10.1523/jneurosci.1153-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Worldwide, alcohol use and abuse are a leading risk of mortality, causing 5.3% of all deaths (World Health Organization, 2022). The endocrine stress system, initiated by the peripheral release of corticotropin releasing hormone (CRH) from primarily glutamatergic neurons in the paraventricular nucleus of the hypothalamus (PVN), is profoundly linked with alcohol use, abuse, and relapse (Blaine and Sinha, 2017). These PVN CRH-releasing (PVNCRH) neurons are essential for peripheral and central stress responses (Rasiah et al., 2023), but little is known about how alcohol affects these neurons. Here, we show that two-bottle choice alcohol consumption blunts the endocrine-mediated corticosterone response to stress during acute withdrawal in female mice. Conversely, using slice electrophysiology, we demonstrate that acute withdrawal engenders a hyperexcitable phenotype of PVNCRH neurons in females that is accompanied by increased glutamatergic transmission in both male and female mice. GABAergic synaptic transmission was unaffected by alcohol history. We then tested whether chemogenetic inhibition of PVNCRH neurons would restore stress response in female mice with a history of alcohol drinking in the looming disk test, which mimics an approaching predator threat. Accordingly, inhibition of PVNCRH neurons reduced active escape in hM4Di alcohol history mice only. This study indicates that stress-responsive PVNCRH neurons in females are particularly affected by a history of alcohol consumption. Interestingly, women have indicated an increase in heavy alcohol use to cope with stress (Rodriguez et al., 2020), perhaps pointing to a potential underlying mechanism in alcohol-mediated changes to PVNCRH neurons that alter stress response.SIGNIFICANCE STATEMENT Paraventricular nucleus of the hypothalamus neurons that release corticotropin releasing hormone (PVNCRH) are vital for stress response. These neurons have been understudied in relation to alcohol and withdrawal despite profound relations between stress, alcohol use disorders (AUD), and relapse. In this study, we use a variety of techniques to show that acute withdrawal from a history of alcohol impacts peripheral stress response, PVNCRH neurons, and behavior. Specifically, PVNCRH are in a hyperactive state during withdrawal, which drives an increase in active stress coping behaviors in female mice only. Understanding how alcohol use and withdrawal affects stress responding PVNCRH neurons may contribute to finding new potential targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sophia Lee
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Leslie A Hassanein
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Tori Sides
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Shannon L D'Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jaideep S Bains
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
9
|
dos-Santos RC, Sweeten BLW, Stelly CE, Tasker JG. The Neuroendocrine Impact of Acute Stress on Synaptic Plasticity. Endocrinology 2023; 164:bqad149. [PMID: 37788632 PMCID: PMC11046011 DOI: 10.1210/endocr/bqad149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Stress induces changes in nervous system function on different signaling levels, from molecular signaling to synaptic transmission to neural circuits to behavior-and on different time scales, from rapid onset and transient to delayed and long-lasting. The principal effectors of stress plasticity are glucocorticoids, steroid hormones that act with a broad range of signaling competency due to the expression of multiple nuclear and membrane receptor subtypes in virtually every tissue of the organism. Glucocorticoid and mineralocorticoid receptors are localized to each of the cellular compartments of the receptor-expressing cells-the membrane, cytosol, and nucleus. In this review, we cover the neuroendocrine effects of stress, focusing mainly on the rapid actions of acute stress-induced glucocorticoids that effect changes in synaptic transmission and neuronal excitability by modulating synaptic and intrinsic neuronal properties via activation of presumed membrane glucocorticoid and mineralocorticoid receptors. We describe the synaptic plasticity that occurs in 4 stress-associated brain structures, the hypothalamus, hippocampus, amygdala, and prefrontal cortex, in response to single or short-term stress exposure. The rapid transformative impact of glucocorticoids makes this stress signal a particularly potent effector of acute neuronal plasticity.
Collapse
Affiliation(s)
- Raoni Conceição dos-Santos
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
10
|
Jovanovic P, Pool AH, Morones N, Wang Y, Novinbakht E, Keshishian N, Jang K, Oka Y, Riera CE. A sex-specific thermogenic neurocircuit induced by predator smell recruiting cholecystokinin neurons in the dorsomedial hypothalamus. Nat Commun 2023; 14:4937. [PMID: 37582805 PMCID: PMC10427624 DOI: 10.1038/s41467-023-40484-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Olfactory cues are vital for prey animals like rodents to perceive and evade predators. Stress-induced hyperthermia, via brown adipose tissue (BAT) thermogenesis, boosts physical performance and facilitates escape. However, many aspects of this response, including thermogenic control and sex-specific effects, remain enigmatic. Our study unveils that the predator odor trimethylthiazoline (TMT) elicits BAT thermogenesis, suppresses feeding, and drives glucocorticoid release in female mice. Chemogenetic stimulation of olfactory bulb (OB) mitral cells recapitulates the thermogenic output of this response and associated stress hormone corticosterone release in female mice. Neuronal projections from OB to medial amygdala (MeA) and dorsomedial hypothalamus (DMH) exhibit female-specific cFos activity toward odors. Cell sorting and single-cell RNA-sequencing of DMH identify cholecystokinin (CCK)-expressing neurons as recipients of predator odor cues. Chemogenetic manipulation and neuronal silencing of DMHCCK neurons further implicate these neurons in the propagation of predator odor-associated thermogenesis and food intake suppression, highlighting their role in female stress-induced hyperthermia.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Allan-Hermann Pool
- Department of Neuroscience, Department of Anesthesiology and Pain Management, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nancy Morones
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Yidan Wang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Edward Novinbakht
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Nareg Keshishian
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Kaitlyn Jang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
- Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
| |
Collapse
|
11
|
Lameu EL, Rasiah NP, Baimoukhametova DV, Loewen SP, Bains JS, Nicola W. Particle-swarm based modelling reveals two distinct classes of CRH PVN neurons. J Physiol 2023; 601:3151-3171. [PMID: 36223200 DOI: 10.1113/jp283133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Electrophysiological recordings can provide detailed information of single neurons' dynamical features and shed light on their response to stimuli. Unfortunately, rapidly modelling electrophysiological data for inferring network-level behaviours remains challenging. Here, we investigate how modelled single neuron dynamics leads to network-level responses in the paraventricular nucleus of the hypothalamus (PVN), a critical nucleus for the mammalian stress response. Recordings of corticotropin releasing hormone neurons from the PVN (CRHPVN ) were performed using whole-cell current-clamp. These, neurons, which initiate the endocrine response to stress, were rapidly and automatically fit to a modified adaptive exponential integrate-and-fire model (AdEx) with particle swarm optimization (PSO). All CRHPVN neurons were accurately fit by the AdEx model with PSO. Multiple sets of parameters were found that reliably reproduced current-clamp traces for any single neuron. Despite multiple solutions, the dynamical features of the models such as the rheobase, fixed points, and bifurcations, were shown to be stable across fits. We found that CRHPVN neurons can be divided into two subtypes according to their bifurcation at the onset of firing: CRHPVN -integrators and CRHPVN -resonators. The existence of CRHPVN -resonators was then directly confirmed in a follow-up patch-clamp hyperpolarization protocol which readily induced post-inhibitory rebound spiking in 33% of patched neurons. We constructed networks of CRHPVN model neurons to investigate the network level responses of CRHPVN neurons. We found that CRHPVN -resonators maintain baseline firing in networks even when all inputs are inhibitory. The dynamics of a small subset of CRHPVN neurons may be critical to maintaining a baseline firing tone in the PVN. KEY POINTS: Corticotropin-releasing hormone neurons (CRHPVN ) in the paraventricular nucleus of the hypothalamus act as the final neural controllers of the stress response. We developed a computational modelling platform that uses particle swarm optimization to rapidly and accurately fit biophysical neuron models to patched CRHPVN neurons. A model was fitted to each patched neuron without the use of dynamic clamping, or other procedures requiring sophisticated inputs and fitting algorithms. Any neuron undergoing standard current clamp step protocols for a few minutes can be fitted by this procedure The dynamical analysis of the modelled neurons shows that CRHPVN neurons come in two specific 'flavours': CRHPVN -resonators and CRHPVN -integrators. We directly confirmed the existence of these two classes of CRHPVN neurons in subsequent experiments. Network simulations show that CRHPVN -resonators are critical to retaining the baseline firing rate of the entire network of CRHPVN neurons as these cells can fire rebound spikes and bursts in the presence of strong inhibitory synaptic input.
Collapse
Affiliation(s)
- Ewandson L Lameu
- Cell Biology and Anatomy Department, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dinara V Baimoukhametova
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Wilten Nicola
- Cell Biology and Anatomy Department, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Vu AP, Lam D, Denney C, Lee KV, Plemel JR, Jackson J. Social isolation produces a sex- and brain region-specific alteration of microglia state. Eur J Neurosci 2023; 57:1481-1497. [PMID: 36918398 DOI: 10.1111/ejn.15966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Social isolation is a profound form of psychological stress that impacts the mental health of a large proportion of society. Other experimental models of stress have demonstrated a microglia response that serves either a protective or pathological function. However, the effect of adult social isolation on microglia has not been thoroughly investigated. We measured microglia territory, branching, end points and phagocytic-lysosomal activity in group housed C57Bl/6 mice and mice that were socially isolated for 2 weeks. Our results show that the dorsomedial hypothalamus and hippocampal CA2 region of adult male mice undergo increased microglia volume, territory and endpoints following social isolation, whereas females exhibit this increase in the hypothalamus only. Males exhibited decreases in the phagocytic-lysosomal marker CD68 in microglia in these regions, whereas females showed an increase in CD68 in the hypothalamus suggesting sexually dimorphic and brain region-specific change in microglia state in response to social isolation. The prefrontal cortex, central amygdala, nucleus accumbens shell and visual cortex did not exhibit changes in microglia structure in either male or female mice. These data show that microglia in different brain regions undergo a distinct response to social isolation which may account for changes in cognition and behaviour associated with this prevalent form of psychological stress.
Collapse
Affiliation(s)
- Alex P Vu
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - David Lam
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Cayla Denney
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly V Lee
- Department of Medicine, Division of Neurology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Si L, Xiao L, Xie Y, Xu H, Yuan G, Xu W, Wang G. Social isolation after chronic unpredictable mild stress perpetuates depressive-like behaviors, memory deficits and social withdrawal via inhibiting ERK/KEAP1/NRF2 signaling. J Affect Disord 2023; 324:576-588. [PMID: 36584714 DOI: 10.1016/j.jad.2022.12.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Social withdrawal in patients with depression can aggravate depressive symptoms. However, few studies focus on the behavioral changes of social isolation after CUMS. NRF2 had been reported to be down-regulated after CUMS. But whether NRF2 participates in behavioral changes induced by social isolation after CUMS remains unclear. This study aims to develop a new model combined social isolation with CUMS, and investigate whether such behavioral changes are related to NRF2 signaling. METHODS This study included two stages. In Stage 1, rats were subjected to 4-week CUMS and CUMS-susceptible rats were selected. In Stage 2, the CUMS-susceptible rats received 4-week social isolation or social support. Behavioral tests were carried out to observe behavioral changes, including sucrose preference test, forced swimming test, open field test, novel object recognition and social interaction test. QRT-PCR, western blot and immunofluorescence staining detected the ERK/KEAP1/NRF2 signaling. RESULTS CUMS-susceptible rats exhibited depressive-like behaviors accompanied by the down-regulated ERK/KEAP1/NRF2 signaling in hippocampus. In Stage 2, compared with 4-week social support (group CUMSG), 4-week social isolation (group CUMSI) perpetuated the depressive-like behaviors, memory deficits and social withdrawal in CUMS-susceptible rats, as well as lower levels of p-ERK, NRF2, p-NRF2, HO-1 and NQO1, and the higher levels of KEAP1 in hippocampus. CONCLUSION These findings suggested that social isolation after CUMS perpetuated depressive-like behaviors, memory deficits and social withdrawal via inhibiting ERK/KEAP1/NRF2 signaling. This study provided molecular evidence for the effects of post-stress social isolation on mental health, and the antioxidant stress signaling might be a target to rescue these.
Collapse
Affiliation(s)
- Lujia Si
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.
| | - Ling Xiao
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Yinping Xie
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.
| | - Hong Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Guohao Yuan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Wenqian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Gaohua Wang
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.
| |
Collapse
|
15
|
Bąk J, Bobula B, Hess G. Restraint Stress and Repeated Corticosterone Administration Differentially Affect Neuronal Excitability, Synaptic Transmission and 5-HT 7 Receptor Reactivity in the Dorsal Raphe Nucleus of Young Adult Male Rats. Int J Mol Sci 2022; 23:ijms232214303. [PMID: 36430779 PMCID: PMC9698125 DOI: 10.3390/ijms232214303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Exogenous corticosterone administration reduces GABAergic transmission and impairs its 5-HT7 receptor-dependent modulation in the rat dorsal raphe nucleus (DRN), but it is largely unknown how neuronal functions of the DRN are affected by repeated physical and psychological stress. This study compared the effects of repeated restraint stress and corticosterone injections on DRN neuronal excitability, spontaneous synaptic transmission, and its 5-HT7 receptor-dependent modulation. Male Wistar rats received corticosterone injections for 7 or 14 days or were restrained for 10 min twice daily for 3 days. Repeated restraint stress and repeated corticosterone administration evoked similar changes in performance in the forced swim test. They increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from DRN neurons. In contrast to the treatment with corticosterone, restraint stress-induced changes in sEPSC kinetics and decreased intrinsic excitability of DRN neurons did not modify inhibitory transmission. Repeated injections of the 5-HT7 receptor antagonist SB 269970 ameliorated the effects of restraint on excitability and sEPSC frequency but did not restore the altered kinetics of sEPSCs. Thus, repeated restraint stress and repeated corticosterone administration differ in consequences for the intrinsic excitability of DRN projection neurons and their excitatory and inhibitory synaptic inputs. Effects of repeated restraint stress on DRN neurons can be partially abrogated by blocking the 5-HT7 receptor.
Collapse
|
16
|
Choi JE, Choi DI, Lee J, Kim J, Kim MJ, Hong I, Jung H, Sung Y, Kim JI, Kim T, Yu NK, Lee SH, Choe HK, Koo JW, Kim JH, Kaang BK. Synaptic ensembles between raphe and D 1R-containing accumbens shell neurons underlie postisolation sociability in males. SCIENCE ADVANCES 2022; 8:eabo7527. [PMID: 36223467 PMCID: PMC9555785 DOI: 10.1126/sciadv.abo7527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dong Il Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jisu Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jooyoung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Min Jung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ilgang Hong
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyunsu Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yongmin Sung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-il Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - TaeHyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Nam-Kyung Yu
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Technojoongang-daero, Dalseong-gun, Daegu 42988, South Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang 37673, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
17
|
Padilla-Coreano N, Tye KM, Zelikowsky M. Dynamic influences on the neural encoding of social valence. Nat Rev Neurosci 2022; 23:535-550. [PMID: 35831442 PMCID: PMC9997616 DOI: 10.1038/s41583-022-00609-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Social signals can serve as potent emotional triggers with powerful impacts on processes from cognition to valence processing. How are social signals dynamically and flexibly associated with positive or negative valence? How do our past social experiences and present social standing shape our motivation to seek or avoid social contact? We discuss a model in which social attributes, social history, social memory, social rank and social isolation can flexibly influence valence assignment to social stimuli, termed here as 'social valence'. We emphasize how the brain encodes each of these four factors and highlight the neural circuits and mechanisms that play a part in the perception of social attributes, social memory and social rank, as well as how these factors affect valence systems associated with social stimuli. We highlight the impact of social isolation, dissecting the neural and behavioural mechanisms that mediate the effects of acute versus prolonged periods of social isolation. Importantly, we discuss conceptual models that may account for the potential shift in valence of social stimuli from positive to negative as the period of isolation extends in time. Collectively, this Review identifies factors that control the formation and attribution of social valence - integrating diverse areas of research and emphasizing their unique contributions to the categorization of social stimuli as positive or negative.
Collapse
Affiliation(s)
- Nancy Padilla-Coreano
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kay M Tye
- HHMI-Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Kuniishi H, Nakatake Y, Sekiguchi M, Yamada M. Adolescent social isolation induces distinct changes in the medial and lateral OFC-BLA synapse and social and emotional alterations in adult mice. Neuropsychopharmacology 2022; 47:1597-1607. [PMID: 35697823 PMCID: PMC9283446 DOI: 10.1038/s41386-022-01358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Early-life social isolation is associated with social and emotional problems in adulthood. However, neural mechanisms underlying how social deprivation impairs social and emotional development are poorly understood. Recently, the orbitofrontal cortex (OFC) and basolateral amygdala (BLA) have been highlighted as key nodes for social and emotional functions. Hence, we hypothesize that early social deprivation disrupts the information processing in the OFC-BLA pathway and leads to social and emotional dysfunction. Here, we examined the effects of adolescent social isolation on the OFC-BLA synaptic transmission by optogenetic and whole-cell patch-clamp methods in adult mice. Adolescent social isolation decreased social preference and increased passive stress-coping behaviour in adulthood. Then, we examined excitatory synaptic transmissions to BLA from medial or lateral subregions of the OFC (mOFC or lOFC). Notably, adolescent social isolation decreased the AMPA/NMDA ratio in the mOFC-BLA synapse in adulthood, while the ratio was increased in the lOFC-BLA synapse. Furthermore, we optogenetically manipulated the mOFC-BLA or lOFC-BLA transmission in behaving mice and examined the effects on social and stress-coping behaviours. Optogenetic manipulation of the mOFC-BLA transmission altered social behaviour without affecting passive stress-coping behaviour, while optogenetic manipulation of the lOFC-BLA transmission altered passive stress-coping behaviour without affecting social behaviour. Our results suggest that adolescent social isolation induces distinct postsynaptic changes in the mOFC-BLA and lOFC-BLA synapses, and these changes may separately contribute to abnormalities in social and emotional development.
Collapse
Affiliation(s)
- Hiroshi Kuniishi
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan. .,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka University, Osaka, Japan. .,Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
| | - Yuko Nakatake
- grid.419280.60000 0004 1763 8916Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Masayuki Sekiguchi
- grid.419280.60000 0004 1763 8916Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan ,grid.419280.60000 0004 1763 8916Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Mitsuhiko Yamada
- grid.419280.60000 0004 1763 8916Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| |
Collapse
|
19
|
Neira S, Hassanein LA, Stanhope CM, Buccini MC, D’Ambrosio SL, Flanigan ME, Haun HL, Boyt KM, Bains JS, Kash TL. Chronic alcohol consumption alters home-cage behaviors and responses to ethologically relevant predator tasks in mice. Alcohol Clin Exp Res 2022; 46:1616-1629. [PMID: 35797227 PMCID: PMC9906815 DOI: 10.1111/acer.14901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Alcohol withdrawal is a key component of severe alcohol use disorder. Animal models of alcohol withdrawal tend to focus on traditional anxiety/stress tests. While these have been essential to advancing our understanding of the biology of alcohol withdrawal, abrupt cessation of drinking following heavy alcohol consumption can also trigger withdrawal-related affective states that impact responses to a variety of life events and stressors. To this end, we show that behaviors in a variety of tasks that differ in task demand and intensity are altered during withdrawal in male and female mice after voluntary alcohol access. METHODS Male and female miceunderwent six weeks of intermittent two-bottle choice alcohol exposure followed by behavioral tests. The tests included-Home cage: low-stress baseline environment to measure spontaneous natural behaviors; Open field: anxiety-inducing bright novel environment; Looming disc: arena with a protective hut where mice are exposed to a series of discs that mimic an overhead advancing predator, and Robogator-simulated predator task: forced foraging behavioral choice in the presence of an advancing robot predator that "attacks" when mice are near a food pellet in a large open arena. RESULTS A history of alcohol exposure impacted behaviors in these tasks in a sex-dependent manner. In the home cage, alcohol induced reductions in digging and heightened stress coping through an increase in grooming time. In males, increased rearing yielded greater vigilance/exploration in a familiar environment. The open-field test revealed an anxiety phenotype in both male and female mice exposed to alcohol. Male mice showed no behavioral alterations to the looming disc task, while females exposed to alcohol showed greater escape responses than water controls, indicative of active stress-response behaviors. In males, the Robogator task revealed a hesitant/avoidant phenotype in alcohol-exposed mice under greater task demands. CONCLUSIONS Few drugs show robust evidence of efficacy in clinical trials for alcohol withdrawal. Understanding how withdrawal alters a variety of behaviors in both males and females that are linked to stress coping can increase our understanding of alcohol misuse and aid in developing better medications for treating individuals with AUD.
Collapse
Affiliation(s)
- Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Neuroscience, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leslie A. Hassanein
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christina M. Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle C. Buccini
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shannon L. D’Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harold L. Haun
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristen M. Boyt
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jaideep S. Bains
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Neuroscience, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Wang ZJ, Shwani T, Liu J, Zhong P, Yang F, Schatz K, Zhang F, Pralle A, Yan Z. Molecular and cellular mechanisms for differential effects of chronic social isolation stress in males and females. Mol Psychiatry 2022; 27:3056-3068. [PMID: 35449296 PMCID: PMC9615910 DOI: 10.1038/s41380-022-01574-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022]
Abstract
Chronic social isolation stress during adolescence induces susceptibility for neuropsychiatric disorders. Here we show that 5-week post-weaning isolation stress induces sex-specific behavioral abnormalities and neuronal activity changes in the prefrontal cortex (PFC), basal lateral amygdala (BLA), and ventral tegmental area (VTA). Chemogenetic manipulation, optogenetic recording, and in vivo calcium imaging identify that the PFC to BLA pathway is causally linked to heightened aggression in stressed males, and the PFC to VTA pathway is causally linked to social withdrawal in stressed females. Isolation stress induces genome-wide transcriptional alterations in a region-specific manner. Particularly, the upregulated genes in BLA of stressed males are under the control of activated transcription factor CREB, and CREB inhibition in BLA normalizes gene expression and reverses aggressive behaviors. On the other hand, neuropeptide Hcrt (Hypocretin/Orexin) is among the top-ranking downregulated genes in VTA of stressed females, and Orexin-A treatment rescues social withdrawal. These results have revealed molecular mechanisms and potential therapeutic targets for stress-related mental illness.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Treefa Shwani
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Junting Liu
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fengwei Yang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kelcie Schatz
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Arnd Pralle
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
21
|
Watanasriyakul WT, Scotti MAL, Carter CS, McNeal N, Colburn W, Wardwell J, Grippo AJ. Social isolation and oxytocin antagonism increase emotion-related behaviors and heart rate in female prairie voles. Auton Neurosci 2022; 239:102967. [PMID: 35240436 PMCID: PMC8974671 DOI: 10.1016/j.autneu.2022.102967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/06/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Social isolation influences depression- and anxiety-related disorders and cardiac function. Oxytocin may mediate these conditions through interactions with social behavior, emotion, and cardiovascular function, via central and/or peripheral mechanisms. The present study investigated the influence of oxytocin antagonism using L-368,899, a selective oxytocin receptor antagonist that crosses the blood-brain barrier, on depression- and anxiety-related behaviors and heart rate in prairie voles. This rodent species has translational value for investigating interactions of social stress, behavior, cardiac responses, and oxytocin function. Adult female prairie voles were socially isolated or co-housed with a sibling for 4 weeks. A subset of animals in each housing condition was subjected to 4 sessions of acute L-368,899 (20 mg/kg, ip) or saline administration followed by a depression- or anxiety-related behavioral assessment. A subset of co-housed animals was evaluated for cardiac function following acute administration of L-368,899 (20 mg/kg, ip) and during behavioral assessments. Social isolation (vs. co-housing) increased depression- and anxiety-related behaviors. In isolated animals, L-368,899 (vs. vehicle) did not influence anxiety-related behaviors but exacerbated depression-related behaviors. In co-housed animals, L-368,899 exacerbated depression-related behaviors and increased heart rate at baseline and during behavioral tests. Social isolation produces emotion-related behaviors in prairie voles; central and/or peripheral oxytocin antagonism exacerbates these behavioral signs. Oxytocin antagonism induces depression-relevant behaviors and increases basal and stressor-reactive heart rate in co-housed prairie voles, similar to the consequences of social isolation demonstrated in this model. These results provide translational value for humans who experience behavioral and cardiac consequences of loneliness or social stress.
Collapse
Affiliation(s)
- W Tang Watanasriyakul
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Melissa-Ann L Scotti
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - C Sue Carter
- The Kinsey Institute, Indiana University, Bloomington, IN 47405, United States of America
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - William Colburn
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America.
| |
Collapse
|
22
|
Caruso A, Ricceri L, Caruso A, Nicoletti F, Gaetano A, Scaccianoce S. Postweaning social isolation and autism-like phenotype: a biochemical and behavioral comparative analysis. Behav Brain Res 2022; 428:113891. [PMID: 35421428 DOI: 10.1016/j.bbr.2022.113891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
Adolescence is a critical period for brain development. In most mammalian species, disturbances experienced during adolescence constitute a risk factor for several neuropsychiatric disorders. In this study, we compared the biochemical and behavioral profile induced by postweaning social isolation (PWSI) in inbred C57BL/6N mice with that of BTBR mice, a rodent model of autism spectrum disorders. Male C57BL/6N mice were either housed in groups of four or isolated from weaning (postnatal day 21) for four weeks before experimental analyses. After weaning, male BTBR mice were housed four per cage and analyzed at 48 days of age. PWSI reduced hippocampal levels of type 2 metabotropic glutamate (mGlu2) receptors, and glucocorticoid and mineralocorticoid receptors. A similar reduction was seen in group-housed BTBR mice. Plasma corticosterone levels in basal conditions were not influenced by PWSI, but were increased in BTBR mice. Social investigation (total and head sniffing) and the number of ultrasonic vocalizations were reduced in both PWSI mice and age-matched group-housed BTBR mice, indicating a lower social responsiveness in both groups of mice. These results suggest that absence of social stimuli during adolescence induces an endophenotype with social deficit features, which mimics the phenotype of a mouse model of autism spectrum disorders.
Collapse
Affiliation(s)
- Alessandra Caruso
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| | - Laura Ricceri
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy.
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Alessandra Gaetano
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| | - Sergio Scaccianoce
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| |
Collapse
|
23
|
Torres ERS, Luo J, Boehnlein JK, Towns D, Kinzie JD, DeBarber AE, Raber J. Apolipoprotein E Isoform-specific changes related to stress and trauma exposure. Transl Psychiatry 2022; 12:125. [PMID: 35347119 PMCID: PMC8960860 DOI: 10.1038/s41398-022-01848-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a highly prevalent mental health disorder. Due to the high level of variability in susceptibility and severity, PTSD therapies are still insufficient. In addition to environmental exposures, genetic risks play a prominent role and one such factor is apolipoprotein E. The protein (apoE) is functionally involved in cholesterol transport and metabolism and exists as 3 major isoforms in humans: E2, E3, and E4. To model the role of apolipoprotein E isoform in stress-related changes in behavior and cognition, female and male mice (3-5 months of age) expressing E2, E3, or E4 were used. Mice were either placed into control groups or exposed to chronic variable stress (CVS), which has been shown to induce PTSD-like behavioral and neuroendocrine changes. E2 mice showed a unique response to CVS compared to E3 and E4 mice that included impaired spatial learning and memory, increased adrenal gland weight, and no increase in glucocorticoid receptor protein levels (normalized to apoE levels). In addition, the cholesterol metabolite 7-ketocholesterol was elevated in the cortex after CVS in E3 and E4, but not E2 female mice. E2 confers unique changes in behavioral, cognitive, and biomarker profiles after stress exposure and identify 7-ketocholesterol as a possible novel biomarker of the traumatic stress response. We further explored the relationship between E2 and PTSD in an understudied population by genotyping 102 patients of Cambodian and Vietnamese ethnicity. E2 carriers demonstrated a higher odds ratio of having a PTSD diagnosis compared to E3/E3 carriers, supporting that the E2 genotype is associated with PTSD diagnosis after trauma exposure in this population.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181SW Sam Jackson Park Road, L470, Portland, OR, 97239, USA
| | - Jenny Luo
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - James K Boehnlein
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
- VA Northwest Mental Illness Research, Education and Clinical Center (MIRECC), Washington DC, USA
| | - Daniel Towns
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
| | - J David Kinzie
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
| | - Andrea E DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181SW Sam Jackson Park Road, L470, Portland, OR, 97239, USA.
- Departments of Neurology, Psychiatry, and Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
24
|
Murra D, Hilde KL, Fitzpatrick A, Maras PM, Watson SJ, Akil H. Characterizing the behavioral and neuroendocrine features of susceptibility and resilience to social stress. Neurobiol Stress 2022; 17:100437. [PMID: 35242893 PMCID: PMC8857076 DOI: 10.1016/j.ynstr.2022.100437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Evaluating and coping with stressful social events as they unfold is a critical strategy in overcoming them without long-lasting detrimental effects. Individuals display a wide range of responses to stress, which can manifest in a variety of outcomes for the brain as well as subsequent behavior. Chronic Social Defeat Stress (CSDS) in mice has been widely used to model individual variation following a social stressor. Following a course of repeated intermittent psychological and physical stress, mice diverge into separate populations of social reactivity: resilient (socially interactive) and susceptible (socially avoidant) animals. A rich body of work reveals distinct neurobiological and behavioral consequences of this experience that map onto the resilient and susceptible groups. However, the range of factors that emerge over the course of defeat have not been fully described. Therefore, in the current study, we focused on characterizing behavioral, physiological, and neuroendocrine profiles of mice in three separate phases: before, during, and following CSDS. We found that following CSDS, traditional read-outs of anxiety-like and depression-like behaviors do not map on to the resilient and susceptible groups. By contrast, behavioral coping strategies used during the initial social stress encounter better predict which mice will eventually become resilient or susceptible. In particular, mice that will emerge as susceptible display greater escape behavior on Day 1 of social defeat than those that will emerge as resilient, indicating early differences in coping mechanisms used between the two groups. We further show that the social avoidance phenotype in susceptible mice is specific to the aggressor strain and does not generalize to conspecifics or other strains, indicating that there may be features of threat discrimination that are specific to the susceptible mice. Our findings suggest that there are costs and benefits to both the resilient and susceptible outcomes, reflected in their ability to cope and adapt to the social stressor.
Collapse
|
25
|
Yu H, Miao W, Ji E, Huang S, Jin S, Zhu X, Liu MZ, Sun YG, Xu F, Yu X. Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions. Neuron 2022; 110:1051-1067.e7. [PMID: 35045339 DOI: 10.1016/j.neuron.2021.12.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/29/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
It is well known that affective and pleasant touch promotes individual well-being and facilitates affiliative social communication, although the neural circuit that mediates this process is largely unknown. Here, we show that social-touch-like tactile stimulation (ST) enhances firing of oxytocin neurons in the mouse paraventricular hypothalamus (PVH) and promotes social interactions and positively reinforcing place preference. These results link pleasant somatosensory stimulation to increased social interactions and positive affective valence. We further show that tachykinin 1 (Tac1+) neurons in the lateral and ventrolateral periaqueductal gray (l/vlPAG) send monosynaptic excitatory projections to PVH oxytocin neurons. Functionally, activation of PVH-projecting Tac1+ neurons increases firing of oxytocin neurons, promotes social interactions, and increases preference for the social touch context, whereas reducing activity of Tac1+ neurons abolishes ST-induced oxytocin neuronal firing. Together, these results identify a dipeptidergic pathway from l/vlPAG Tac1+ neurons to PVH oxytocin neurons, through which pleasant sensory experience promotes social behavior.
Collapse
Affiliation(s)
- Hang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - En Ji
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shajin Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sen Jin
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xutao Zhu
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Ming-Zhe Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
26
|
Ding JX, Rudak PT, Inoue W, Haeryfar SM. Physical restraint mouse models to assess immune responses under stress with or without habituation. STAR Protoc 2021; 2:100838. [PMID: 34568850 PMCID: PMC8449122 DOI: 10.1016/j.xpro.2021.100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Physical confinement, or restraint, is a psychological stressor used in rodent studies. A single restraint episode elevates blood corticosterone levels, a hallmark of stress responses. Repeated restraint results in habituation (or desensitization), whereas chronic exposure to unpredictable stressors fails to induce habituation. Here, we provide our protocols and guidelines in using three mouse restraint models, namely prolonged restraint stress, repeated restraint stress, and chronic variable stress, to examine immunological homeostasis/competence, or lack thereof, under stress with or without habituation. For complete information on the generation and use of these protocols, please refer to Rudak et al. (2021). Three physical restraint mouse models to study the impact of long-term stress on immunity A model of prolonged restraint stress altering immune homeostasis/competence A model of repeated daily restraint stress resulting in habituation in animals An optimized protocol for chronic variable stress circumventing habituation
Collapse
Affiliation(s)
- Jian Xiang Ding
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada
| | - Patrick T. Rudak
- Department of Microbiology and Immunology, Western University, London, ON N6A 5C1, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
- Corresponding author
| | - S.M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, ON N6A 5C1, Canada
- Department of Surgery, Division of General Surgery, Western University, London, ON N6A 4V2, Canada
- Department of Medicine, Division of Clinical Immunology and Allergy, Western University, London, ON N6A 5A5, Canada
- Corresponding author
| |
Collapse
|
27
|
Stollenwerk TM, Hillard CJ. Adolescent THC Treatment Does Not Potentiate the Behavioral Effects in Adulthood of Maternal Immune Activation. Cells 2021; 10:3503. [PMID: 34944011 PMCID: PMC8700174 DOI: 10.3390/cells10123503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Both in utero exposure to maternal immune activation and cannabis use during adolescence have been associated with increased risk for the development of schizophrenia; however, whether these exposures exert synergistic effects on brain function is not known. In the present study, mild maternal immune activation (MIA) was elicited in mice with prenatal exposure to polyinosinic-polycytidylic acid (poly(I:C)), and ∆9-tetrahydrocannabinol (THC) was provided throughout adolescence in cereal (3 mg/kg/day for 5 days). Neither THC nor MIA pretreatments altered activity in assays used to characterize hyperdopaminergic states in adulthood: amphetamine hyperlocomotion and prepulse inhibition of the acoustic startle reflex. Adolescent THC treatment elicited deficits in spatial memory and enhanced spatial reversal learning in adult female mice in the Morris water maze, while exposure to MIA elicited female-specific deficits in fear extinction learning in adulthood. There were no effects in these assays in adult males, nor were there interactions between THC and MIA in adult females. While doses of poly(I:C) and THC were sufficient to elicit behavioral effects, particularly relating to cognitive performance in females, there was no evidence that adolescent THC exposure synergized with the risk imposed by MIA to worsen behavioral outcomes in adult mice of either sex.
Collapse
Affiliation(s)
| | - Cecilia J. Hillard
- Neuroscience Research Center, Department of Pharmacology and Toxicology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA;
| |
Collapse
|
28
|
Levkovich I, Shinan-Altman S. The impact of gender on emotional reactions, perceived susceptibility and perceived knowledge about COVID-19 among the Israeli public. Int Health 2021; 13:555-561. [PMID: 33449111 PMCID: PMC7928893 DOI: 10.1093/inthealth/ihaa101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The current COVID-19 outbreak is seriously affecting the lives and health of people across the globe. While gender remains a key determinant of health, attempts to address the gendered dimensions of health face complex challenges. METHODS In a cross-sectional study 482 participants (men=237, women=245) completed questionnaires on precautionary behaviour, perceived knowledge about COVID-19 risk factors, emotional reactions toward COVID-19 and perceived susceptibility. We examined gender differences in perceived knowledge about COVID-19 risk factors, healthy behaviours, threat perceptions and emotional responses, as well as the role of gender as a moderating factor. RESULTS Women reported higher levels of precautionary behaviour (t(475)=3.91, p<0.001) and more negative emotional reactions toward COVID-19 (t(475)=6.07, p<0.001). No gender differences emerged in perceived susceptibility or knowledge about COVID-19. The multiple regression model is significant and explains 30% of the variance in precautionary behaviour, which was found to be higher among women and older participants, those with higher perceived knowledge about COVID-19 risk factors and those with higher emotional reactions. Gender exhibited a significant moderating role in the relationship between perceived knowledge and precautionary behaviour (B=0.16, SE=0.07, β=0.13, p=0.02, 95% CI 0.03 to 0.30). CONCLUSION Women exhibited higher levels of precautionary behaviour and emotional responses.
Collapse
Affiliation(s)
| | - Shiri Shinan-Altman
- The Louis and Gabi Weisfeld School of Social Work, Bar Ilan University, Israel
| |
Collapse
|
29
|
Agrawal S, Dróżdż M, Makuch S, Pietraszek A, Sobieszczańska M, Mazur G. The Assessment of Fear of COVID-19 among the Elderly Population: A Cross-Sectional Study. J Clin Med 2021; 10:jcm10235537. [PMID: 34884241 PMCID: PMC8658105 DOI: 10.3390/jcm10235537] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
The prevailing COVID-19 pandemic has dramatically affected the mental health and well-being of individuals. This cross-sectional study aimed to assess the perceived fear of COVID-19 among older adults in Poland and identify subpopulations with the highest risk of potential mental health disorders. The study was conducted in November–December 2020 on 500 people aged ≥60 years (mean M = 67.9, standard deviation SD = 4.2). In order to collect information on participants’ characteristics and COVID-19-related information, they were asked to complete a questionnaire based on recorded telephone calls. Perceived fear of COVID-19 was measured using Fear of COVID-19 Scale (FCV-19S), which ranges from 7 to 35. Multiple linear regression was performed to identify factors associated with the perceived fear of COVID-19. Our results showed that the highest level of fear of COVID-19 infection was observed among women (p = 0.025) and patients taking anticoagulants (p = 0.004). Moreover, older adults with higher anxiety levels were more likely to be fearful of COVID-19 (according to the GAS-10 scale; p < 0.001). These findings may help policy makers and healthcare workers to adapt and implement better mental health strategies to help the elderly fight fear and anxiety during the prevailing pandemic.
Collapse
Affiliation(s)
- Siddarth Agrawal
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska St. 213, 50-556 Wroclaw, Poland; (A.P.); (G.M.)
- Correspondence: ; Tel.: +48-71-736-40-00; Fax: +48-71-736-40-09
| | - Mateusz Dróżdż
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany;
| | - Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, K. Marcinkowskiego St. 1, 50-368 Wroclaw, Poland;
| | - Alicja Pietraszek
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska St. 213, 50-556 Wroclaw, Poland; (A.P.); (G.M.)
| | - Małgorzata Sobieszczańska
- Department of Geriatrics, Wroclaw Medical University, Marii Skłodowskiej-Curie St. 66, 50-369 Wroclaw, Poland;
| | - Grzegorz Mazur
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska St. 213, 50-556 Wroclaw, Poland; (A.P.); (G.M.)
| |
Collapse
|
30
|
dos Santos WO, Gusmao DO, Wasinski F, List EO, Kopchick JJ, Donato J. Effects of Growth Hormone Receptor Ablation in Corticotropin-Releasing Hormone Cells. Int J Mol Sci 2021; 22:9908. [PMID: 34576072 PMCID: PMC8465163 DOI: 10.3390/ijms22189908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) cells are the dominant neuronal population responsive to the growth hormone (GH) in the paraventricular nucleus of the hypothalamus (PVH). However, the physiological importance of GH receptor (GHR) signaling in CRH neurons is currently unknown. Thus, the main objective of the present study was to investigate the consequences of GHR ablation in CRH-expressing cells of male and female mice. GHR ablation in CRH cells did not cause significant changes in body weight, body composition, food intake, substrate oxidation, locomotor activity, glucose tolerance, insulin sensitivity, counterregulatory response to 2-deoxy-D-glucose and ghrelin-induced food intake. However, reduced energy expenditure was observed in female mice carrying GHR ablation in CRH cells. The absence of GHR in CRH cells did not affect anxiety, circadian glucocorticoid levels or restraint-stress-induced corticosterone secretion and activation of PVH neurons in both male and female mice. In summary, GHR ablation, specifically in CRH-expressing neurons, does not lead to major alterations in metabolism, hypothalamic-pituitary-adrenal axis, acute stress response or anxiety in mice. Considering the previous studies showing that central GHR signaling regulates homeostasis in situations of metabolic stress, future studies are still necessary to identify the potential physiological importance of GH action on CRH neurons.
Collapse
Affiliation(s)
- Willian O. dos Santos
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Daniela O. Gusmao
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Edward O. List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (E.O.L.); (J.J.K.)
| | - John J. Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (E.O.L.); (J.J.K.)
| | - Jose Donato
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| |
Collapse
|
31
|
Zhao X, Ziobro P, Pranic NM, Chu S, Rabinovich S, Chan W, Zhao J, Kornbrek C, He Z, Tschida KA. Sex- and context-dependent effects of acute isolation on vocal and non-vocal social behaviors in mice. PLoS One 2021; 16:e0255640. [PMID: 34469457 PMCID: PMC8409668 DOI: 10.1371/journal.pone.0255640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Humans are extraordinarily social, and social isolation has profound effects on our behavior, ranging from increased social motivation following short periods of social isolation to increased anti-social behaviors following long-term social isolation. Mice are frequently used as a model to understand how social isolation impacts the brain and behavior. While the effects of chronic social isolation on mouse social behavior have been well studied, much less is known about how acute isolation impacts mouse social behavior and whether these effects vary according to the sex of the mouse and the behavioral context of the social encounter. To address these questions, we characterized the effects of acute (3-day) social isolation on the vocal and non-vocal social behaviors of male and female mice during same-sex and opposite-sex social interactions. Our experiments uncovered pronounced effects of acute isolation on social interactions between female mice, while revealing more subtle effects on the social behaviors of male mice during same-sex and opposite-sex interactions. Our findings advance the study of same-sex interactions between female mice as an attractive paradigm to investigate neural mechanisms through which acute isolation enhances social motivation and promotes social behavior.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Patryk Ziobro
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Nicole M. Pranic
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Chu
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Rabinovich
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - William Chan
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Jennifer Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Caroline Kornbrek
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Zichen He
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Tschida
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
32
|
Plasticity of intrinsic excitability across the estrous cycle in hypothalamic CRH neurons. Sci Rep 2021; 11:16700. [PMID: 34404890 PMCID: PMC8371084 DOI: 10.1038/s41598-021-96341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Stress responses are highly plastic and vary across physiological states. The female estrous cycle is associated with a number of physiological changes including changes in stress responses, however, the mechanisms driving these changes are poorly understood. Corticotropin-releasing hormone (CRH) neurons are the primary neural population controlling the hypothalamic-pituitary-adrenal (HPA) axis and stress-evoked corticosterone secretion. Here we show that CRH neuron intrinsic excitability is regulated over the estrous cycle with a peak in proestrus and a nadir in estrus. Fast inactivating voltage-gated potassium channel (IA) currents showed the opposite relationship, with current density being lowest in proestrus compared to other cycle stages. Blocking IA currents equalized excitability across cycle stages revealing a role for IA in mediating plasticity in stress circuit function over the female estrous cycle.
Collapse
|
33
|
Rekhter N, Ermasova N. Effect of the COVID-19 on Perceptions of Health, Anticipated Need for Health Services, and Cost of Health Care. Disaster Med Public Health Prep 2021; 16:1-7. [PMID: 34099075 PMCID: PMC8314050 DOI: 10.1017/dmp.2021.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This article investigates how perceived vulnerability to the coronavirus disease 2019 (COVID-19) pandemic at its early stages is associated with people's perception of their health, the need for health-care services, and expenses related to addressing the COVID-19 impact on their health. METHODS The results are based on the analysis of surveys that were distributed among members of 26 random Facebook groups in April-May, 2020. Perceived COVID-19 pandemic related stress and health concerns were examined by using the analysis of variance (ANOVA) test. RESULTS Among 315 respondents, 64% have experienced COVID-19 related stress and identified anxiety, headache, insomnia, and weight gain as their primary health concerns. The ANOVA test revealed that females are more impacted by the COVID-19 stress than males. Around 40% of respondents believed that the COVID-19 would lead to an increase in the cost of health services, and 20% of respondents anticipated that the COVID-19 pandemic would increase their need for health services. CONCLUSIONS Learning about how people perceive the COVID-19 pandemic impact on their health, particularly in the pandemic's early stages can allow health professionals to develop targeted interventions that can influence pandemic preventative behaviors among different population groups. This study can help understand use patterns and mitigate financial barriers that could interfere with patients' care-seeking behavior.
Collapse
Affiliation(s)
- Natalia Rekhter
- Health Administration Department, College of Health and Human Services, Governors State University, University Park, IllinoisUSA
| | - Natalia Ermasova
- Public Policy and Administration Unit, College of Arts and Sciences, Governors State University, University Park, IllinoisUSA
| |
Collapse
|
34
|
Demaray MK, Ogg JA, Malecki CK, Styck KM. COVID-19 Stress and Coping and Associations With Internalizing Problems in 4th Through 12th Grade Students. SCHOOL PSYCHOLOGY REVIEW 2021. [DOI: 10.1080/2372966x.2020.1869498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell 2021; 184:1500-1516. [PMID: 33691140 PMCID: PMC8580010 DOI: 10.1016/j.cell.2021.02.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Social homeostasis is the ability of individuals to detect the quantity and quality of social contact, compare it to an established set-point in a command center, and adjust the effort expended to seek the optimal social contact expressed via an effector system. Social contact becomes a positive or negative valence stimulus when it is deficient or in excess, respectively. Chronic deficits lead to set-point adaptations such that reintroduction to the previous optimum is experienced as a surplus. Here, we build upon previous models for social homeostasis to include adaptations to lasting changes in environmental conditions, such as with chronic isolation.
Collapse
Affiliation(s)
- Christopher R Lee
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kay M Tye
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Masi G, Berloffa S, Milone A, Brovedani P. Social withdrawal and gender differences: Clinical phenotypes and biological bases. J Neurosci Res 2021; 101:751-763. [PMID: 33550643 DOI: 10.1002/jnr.24802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Evidence from everyday life suggests that differences in social behaviors between males and females exist, both in animal and in humans. These differences can be related to socio-cultural determinants, but also to specialized portions of the brain (the social brain), from the neurotransmitter to the neural network level. The high vulnerability of this system is expressed by the wide range of neuropsychiatric disorders associated with social dysfunctions, particularly social withdrawal. The principal psychiatric disorders with prominent social withdrawal are described, including hikikomori-like syndromes, and anxiety, depressive, autistic, schizophrenic, and personality disorders. It is hypothesized that social withdrawal can be partially independent from other symptoms and likely reflect alterations in the social brain itself, leading to a similar, transdiagnostic social dysfunction, reflecting defects in the social brain across a variety of psychopathological conditions. An overview is provided of gender effects in the biological determinants of social behavior, including: the anatomical structures of the social brain; the dimorphic brain structures, and the modulation of their development by sex steroids; gender differences in "social" neurotransmitters (vasopressin and oxytocin), and in their response to social stress. A better comprehension of gender differences in the phenotypes of social disorders and in the neural bases of social behaviors may provide new insights for timely, focused, innovative, and gender-specific treatments.
Collapse
Affiliation(s)
- Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Stefano Berloffa
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Annarita Milone
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Paola Brovedani
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| |
Collapse
|
37
|
Styck KM, Malecki CK, Ogg J, Demaray MK. Measuring COVID-19-Related Stress Among 4th Through 12th Grade Students. SCHOOL PSYCHOLOGY REVIEW 2021. [DOI: 10.1080/2372966x.2020.1857658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Sterley TL, Bains JS. Social communication of affective states. Curr Opin Neurobiol 2021; 68:44-51. [PMID: 33434768 DOI: 10.1016/j.conb.2020.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Social interactions promote the communication of explicit and implicit information between individuals. Implicit or subconscious sharing of cues can be useful in conveying affective states. Knowing the affective state of others can guide future interactions, while an inability to decipher another's affective state is a core feature of autism spectrum disorder. The precise neural circuitry and mechanisms involved in communicating affective states are not well understood. Over the past few years, a number of important observations in rodent models have increased our knowledge of the neural processes for social communication of affective state. Here we highlight these contributions by first describing the rodent models used to investigate social communication of affect and then summarising the neural circuitry and processes implicated by these rodent models. We relate these findings to humans as well as to the current global context where social interactions have been modified by the Covid-19 pandemic.
Collapse
Affiliation(s)
- Toni-Lee Sterley
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
39
|
Donovan M, Mackey CS, Platt GN, Rounds J, Brown AN, Trickey DJ, Liu Y, Jones KM, Wang Z. Social isolation alters behavior, the gut-immune-brain axis, and neurochemical circuits in male and female prairie voles. Neurobiol Stress 2020; 13:100278. [PMID: 33344730 PMCID: PMC7739176 DOI: 10.1016/j.ynstr.2020.100278] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
The absence of social support, or social isolation, can be stressful, leading to a suite of physical and psychological health issues. Growing evidence suggests that disruption of the gut-immune-brain axis plays a crucial role in the negative outcomes seen from social isolation stress. However, the mechanisms remain largely unknown. The socially monogamous prairie vole (Microtus ochrogaster) has been validated as a useful model for studying negative effects of social isolation on the brain and behaviors, yet how the gut microbiome and central immune system are altered in isolated prairie voles are still unknown. Here, we utilized this social rodent to examine how social isolation stress alters the gut-immune-brain axis and relevant behaviors. Adult male and female prairie voles (n = 48 per sex) experienced social isolation or were cohoused with a same-sex cagemate (control) for six weeks. Thereafter, their social and anxiety-like behaviors, neuronal circuit activation, neurochemical expression, and microgliosis in key brain regions, as well as gut microbiome alterations from the isolation treatment were examined. Social isolation increased anxiety-like behaviors and impaired social affiliation. Isolation also resulted in sex- and brain region-specific alterations in neuronal activation, neurochemical expression, and microgliosis. Further, social isolation resulted in alterations to the gut microbiome that were correlated with key brain and behavioral measures. Our data suggest that social isolation alters the gut-immune-brain axis in a sex-dependent manner and that gut microbes, central glial cells, and neurochemical systems may play a critical, integrative role in mediating negative outcomes from social isolation.
Collapse
Affiliation(s)
- Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N. Wheeling St., Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Calvin S. Mackey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Grayson N. Platt
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Jacob Rounds
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Amber N. Brown
- Department of Biological Science Core Facilities, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Darryl J. Trickey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Kathryn M. Jones
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| |
Collapse
|
40
|
Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex. Brain Sci 2020; 10:brainsci10110799. [PMID: 33143056 PMCID: PMC7692092 DOI: 10.3390/brainsci10110799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background: The chronic stress of social isolation is a valid predictor of cognitive pathology. This study aimed to compare the effects of long-term social isolation on female versus male Wistar rats’ learning and memory. We hypothesized that prolonged social isolation stress, which starts early in life, would affect learning in a sex-dependent manner. Methods: Social isolation started at the edge of early to mid-adolescence and lasted 9 months. The rat’s cognitive abilities were assessed by habituation and reactivity to novelty in the open field (OF) test, spatial memory in the Morris water maze (MWM), and the conditioned passive avoidance (PA) reflex. Basal serum corticosterone levels were assessed using an enzyme-linked immunosorbent assay. Results: Regardless of the housing conditions, females habituated to the OF under low illumination slower than males. Under bright light, the single-housed rats showed hyporeactivity to novelty. In the MWM, all the rats learned to locate the platform; however, on the first training day, the single-housed females’ speed was lower relative to other groups. Four months later, in the post-reminder probe trial, the single-housed rats reached the area around the platform site later, and only males, regardless of housing conditions, preferred the target quadrant. Single-housed rats, irrespective of sex, showed a PA deficit. There was a more pronounced conditioned fear in the single-housed males than in females. In both male and female rats, basal corticosterone levels in rat blood serum after 9 months of social isolation did not differ from that in the group-housed rats of the corresponding sex. Meanwhile, females’ basal corticosterone level was higher than in males, regardless of the housing conditions. The relative weight of the adrenal glands was increased only in single-housed females. Conclusions: Under long-term social isolation, started early in life, single-housed females compared with males showed more pronounced cognitive impairments in the MWM and PA paradigm, findings that specify their greater vulnerability to the stress of prolonged social isolation.
Collapse
|
41
|
Sex-Specific Vasopressin Signaling Buffers Stress-Dependent Synaptic Changes in Female Mice. J Neurosci 2020; 40:8842-8852. [PMID: 33051356 DOI: 10.1523/jneurosci.1026-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
In many species, social networks provide benefit for both the individual and the collective. In addition to transmitting information to others, social networks provide an emotional buffer for distressed individuals. Our understanding about the cellular mechanisms that contribute to buffering is poor. Stress has consequences for the entire organism, including a robust change in synaptic plasticity at glutamate synapses onto corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN). In females, however, this stress-induced metaplasticity is buffered by the presence of a naive partner. This buffering may be because of discrete behavioral interactions, signals in the context in which the interaction occurs (i.e., olfactory cues), or it may be influenced by local signaling events in the PVN. Here, we show that local vasopressin (VP) signaling in PVN buffers the short-term potentiation (STP) at glutamate synapses after stress. This social buffering of metaplasticity, which requires the presence of another individual, was prevented by pharmacological inhibition of the VP 1a receptor (V1aR) in female mice. Exogenous VP mimicked the effects of social buffering and reduced STP in CRHPVN neurons from females but not males. These findings implicate VP as a potential mediator of social buffering in female mice.SIGNIFICANCE STATEMENT In many organisms, including rodents and humans, social groups are beneficial to overall health and well-being. Moreover, it is through these social interactions that the harmful effects of stress can be mitigated, a phenomenon known as social buffering. In the present study, we describe a critical role for the neuropeptide vasopressin (VP) in social buffering of synaptic metaplasticity in stress-responsive corticotropin-releasing hormone (CRH) neurons in female mice. These effects of VP do not extend to social buffering of stress behaviors, suggesting this is a very precise and local form of sex-specific neuropeptide signaling.
Collapse
|
42
|
Spagnolo PA, Manson JE, Joffe H. Sex and Gender Differences in Health: What the COVID-19 Pandemic Can Teach Us. Ann Intern Med 2020; 173:385-386. [PMID: 32384135 PMCID: PMC7249504 DOI: 10.7326/m20-1941] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The authors of this commentary call for sex- and gender-specific and differentiating factors to be urgently included in the research, prevention, and therapeutics implementation response to the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- National Institute on Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, Maryland (P.A.S.)
| | - JoAnn E Manson
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts (J.E.M., H.J.)
| | - Hadine Joffe
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts (J.E.M., H.J.)
| |
Collapse
|
43
|
Jin SX, Dickson D, Maguire J, Feig LA. RASGRF1 in CRF cells controls the early adolescent female response to repeated stress. J Endocrinol 2020; 245:397-410. [PMID: 32240981 PMCID: PMC7297040 DOI: 10.1530/joe-19-0375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/08/2022]
Abstract
RASGRF1 (GRF1) is a calcium-stimulated guanine-nucleotide exchange factor that activates RAS and RAC GTPases. In hippocampus neurons, it mediates the action of NMDA and calcium-permeable AMPA glutamate receptors on specific forms of synaptic plasticity, learning, and memory in both male and female mice. Recently, we showed GRF1 also regulates the HPA axis response to restraint stress, but only in female mice before puberty. In particular, we found that after 7 days of restraint stress (7DRS) (30 min/day) both elevated serum CORT levels and induction of an anxiolytic phenotype normally observed in early adolescent (EA) female mice are blocked in GRF1-knockout mice. In contrast, no effects were observed in EA male or adult females. Here, we show this phenotype is due, at least in part, to GRF1 loss in CRF cells of the paraventricular nucleus of the hypothalamus, as GRF1 knockout specifically in these cells suppressed 7DRS-induced elevation of serum CORT levels specifically in EA females, but only down to levels found in comparably stressed EA males. Nevertheless, it still completely blocked the 7DRS-induced anxiolytic phenotype observed in EA females. Interestingly, loss of GRF1 in CRF cells had no effect after only three restraint stress exposures, implying a role for GRF1 in 7DRS stress-induced plasticity of CRF cells that appears to be specific to EA female mice. Overall, these findings indicate that GRF1 in CRF cells makes a key contribution to the distinct response EA females display to repeated stress.
Collapse
Affiliation(s)
- Shan-xue Jin
- Department of Developmental, Molecular, and Chemical Biology
| | - David Dickson
- Department of Developmental, Molecular, and Chemical Biology
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Larry A. Feig
- Department of Developmental, Molecular, and Chemical Biology
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
- communicating author P- 617-636-6956,
| |
Collapse
|
44
|
Matovic S, Ichiyama A, Igarashi H, Salter EW, Sunstrum JK, Wang XF, Henry M, Kuebler ES, Vernoux N, Martinez-Trujillo J, Tremblay ME, Inoue W. Neuronal hypertrophy dampens neuronal intrinsic excitability and stress responsiveness during chronic stress. J Physiol 2020; 598:2757-2773. [PMID: 32347541 DOI: 10.1113/jp279666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The hypothalamic-pituitary-adrenal (HPA) axis habituates to repeated stress exposure. We studied hypothalamic corticotropin-releasing hormone (CRH) neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. The intrinsic excitability of CRH neurons decreased after repeated stress in a time course that coincided with the development of HPA axis habituation. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load and dampened membrane depolarization in response to the influx of positive charge. We report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for HPA axis habituation. ABSTRACT Encountering a stressor immediately activates the hypothalamic-pituitary-adrenal (HPA) axis, but this stereotypic stress response also undergoes experience-dependent adaptation. Despite the biological and clinical importance, how the brain adjusts stress responsiveness in the long term remains poorly understood. We studied hypothalamic corticotropin-releasing hormone neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. Using patch-clamp electrophysiology in acute slices, we found that the intrinsic excitability of these neurons substantially decreased after daily repeated stress in a time course that coincided with their loss of stress responsiveness in vivo. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load, and dampened membrane depolarization in response to the influx of positive charge. Multiphoton imaging and electron microscopy revealed that repeated stress augmented ruffling of the plasma membrane, suggesting an ultrastructural plasticity that may efficiently accommodate the membrane area expansion. Overall, we report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for adaptation of the neuroendocrine stress response.
Collapse
Affiliation(s)
- Sara Matovic
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario
| | - Aoi Ichiyama
- Neuroscience Program, University of Western Ontario
| | | | - Eric W Salter
- Robarts Research Institute, University of Western Ontario.,Current address: University of Toronto
| | | | - Xue Fan Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| | - Mathilde Henry
- Axe Neurosciences, CRCHU de Quebec-Université Laval.,Current address: INRAE, Univ. Bordeaux, Bordeaux INP, Nutrineuro, UMR 1286, Bordeaux, F-33000, France
| | - Eric S Kuebler
- Robarts Research Institute, University of Western Ontario
| | | | - Julio Martinez-Trujillo
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| | - Marie-Eve Tremblay
- Axe Neurosciences, CRCHU de Quebec-Université Laval.,Département de médecine moléculaire, Université Laval.,Division of Medical Sciences, University of Victoria
| | - Wataru Inoue
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| |
Collapse
|
45
|
Focke CMB, Iremonger KJ. Rhythmicity matters: Circadian and ultradian patterns of HPA axis activity. Mol Cell Endocrinol 2020; 501:110652. [PMID: 31738971 DOI: 10.1016/j.mce.2019.110652] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Oscillations are a fundamental feature of neural and endocrine systems. The hypothalamic-pituitary-adrenal (HPA) axis dynamically controls corticosteroid secretion in basal conditions and in response to stress. Across the 24-h day, HPA axis activity oscillates with both an ultradian and circadian rhythm. These rhythms have been shown to be important for regulating metabolism, inflammation, mood, cognition and stress responsiveness. Here we will discuss the neural and endocrine mechanisms driving these rhythms, the physiological importance of these rhythms and health consequences when they are disrupted.
Collapse
Affiliation(s)
- Caroline M B Focke
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
46
|
Pro-neurogenic effect of fluoxetine in the olfactory bulb is concomitant to improvements in social memory and depressive-like behavior of socially isolated mice. Transl Psychiatry 2020; 10:33. [PMID: 32066672 PMCID: PMC7026434 DOI: 10.1038/s41398-020-0701-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Although loneliness is a human experience, it can be estimated in laboratory animals deprived from physical contact with conspecifics. Rodents under social isolation (SI) tend to develop emotional distress and cognitive impairment. However, it is still to be determined whether those conditions present a common neural mechanism. Here, we conducted a series of behavioral, morphological, and neurochemical analyses in adult mice that underwent to 1 week of SI. We observed that SI mice display a depressive-like state that can be prevented by enriched environment, and the antidepressants fluoxetine (FLX) and desipramine (DES). Interestingly, chronic administration of FLX, but not DES, was able to counteract the deleterious effect of SI on social memory. We also analyzed cell proliferation, neurogenesis, and astrogenesis after the treatment with antidepressants. Our results showed that the olfactory bulb (OB) was the neurogenic niche with the highest increase in neurogenesis after the treatment with FLX. Considering that after FLX treatment social memory was rescued and depressive-like behavior decreased, we propose neurogenesis in the OB as a possible mechanism to unify the FLX ability to counteract the deleterious effect of SI.
Collapse
|
47
|
Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity. Nat Commun 2019; 10:5696. [PMID: 31836701 PMCID: PMC6911111 DOI: 10.1038/s41467-019-13639-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Stress leaves a lasting impression on an organism and reshapes future responses. However, the influence of past experience and stress hormones on the activity of neural stress circuits remains unclear. Hypothalamic corticotropin-releasing hormone (CRH) neurons orchestrate behavioral and endocrine responses to stress and are themselves highly sensitive to corticosteroid (CORT) stress hormones. Here, using in vivo optical recordings, we find that CRH neurons are rapidly activated in response to stress. CRH neuron activity robustly habituates to repeated presentations of the same, but not novel stressors. CORT feedback has little effect on CRH neuron responses to acute stress, or on habituation to repeated stressors. Rather, CORT preferentially inhibits tonic CRH neuron activity in the absence of stress stimuli. These findings reveal how stress experience and stress hormones modulate distinct components of CRH neuronal activity to mediate stress-induced adaptations. Stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamus, but how their activity is regulated during and after stress is unclear. Here, the authors show that stress habituation and corticosteroid feedback tune different components of CRH neuron activity.
Collapse
|
48
|
Kim JS, Iremonger KJ. Temporally Tuned Corticosteroid Feedback Regulation of the Stress Axis. Trends Endocrinol Metab 2019; 30:783-792. [PMID: 31699237 DOI: 10.1016/j.tem.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
Abstract
Activity of the hypothalamic-pituitary-adrenal (HPA) axis is tuned by corticosteroid feedback. Corticosteroids regulate cellular function via genomic and nongenomic mechanisms, which operate over diverse time scales. This review summarizes recent advances in our understanding of how corticosteroid feedback regulates hypothalamic stress neuron function and output through synaptic plasticity, changes in intrinsic excitability, and modulation of neuropeptide production. The temporal kinetics of corticosteroid actions in the brain versus the pituitary have important implications for how organisms respond to stress. Furthermore, we will discuss, some of the technical limitations and missing links in the field, and the potential implications these may have on our interpretations of corticosteroid negative feedback experiments.
Collapse
Affiliation(s)
- Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
49
|
Fructuoso M, Espinosa-Carrasco J, Erb I, Notredame C, Dierssen M. Protocol for Measuring Compulsive-like Feeding Behavior in Mice. Bio Protoc 2019; 9:e3308. [PMID: 33654818 DOI: 10.21769/bioprotoc.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/02/2022] Open
Abstract
Obesity is an important health problem with a strong environmental component that is acquiring pandemic proportion. The high availability of caloric dense foods promotes overeating potentially causing obesity. Animal models are key to validate novel therapeutic strategies, but researchers must carefully select the appropriate model to draw the right conclusions. Obesity is defined by an increased body mass index greater than 30 and characterized by an excess of adipose tissue. However, the regulation of food intake involves a close interrelationship between homeostatic and non-homeostatic factors. Studies in animal models have shown that intermittent access to sweetened or calorie-dense foods induces changes in feeding behavior. However, these studies are focused mainly on the final outcome (obesity) rather than on the primary dysfunction underlying the overeating of palatable foods. We describe a protocol to study overeating in mice using diet-induced obesity (DIO). This method can be applied to free choice between palatable food and a standard rodent chow or to forced intake of calorie-dense and/or palatable diets. Exposure to such diets is sufficient to promote changes in meal pattern that we register and analyze during the period of weight gain allowing the longitudinal characterization of feeding behavior in mice. Abnormal eating behaviors such as binge eating or snacking, behavioral alterations commonly observed in obese humans, can be detected using our protocol. In the free-choice procedure, mice develop a preference for the rewarding palatable food showing the reinforcing effect of this diet. Compulsive components of feeding are reflected by maintenance of feeding despite an adverse bitter taste caused by adulteration with quinine and by the negligence of standard chow when access to palatable food is ceased or temporally limited. Our strategy also enables to identify compulsive overeating in mice under a high-caloric regime by using limited food access and finally, we propose complementary behavioral tests to confirm the non-homeostatic food-taking triggered by these foods. Finally, we describe how to computationally explore large longitudinal behavioral datasets.
Collapse
Affiliation(s)
- Marta Fructuoso
- Cellular and Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Espinosa-Carrasco
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Comparative Bioinformatics, Bioinformatics and Genomics Program, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Spain
| | - Ionas Erb
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Comparative Bioinformatics, Bioinformatics and Genomics Program, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Spain
| | - Cedric Notredame
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Comparative Bioinformatics, Bioinformatics and Genomics Program, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
50
|
Di Natale MR, Soch A, Ziko I, De Luca SN, Spencer SJ, Sominsky L. Chronic predator stress in female mice reduces primordial follicle numbers: implications for the role of ghrelin. J Endocrinol 2019; 241:201-219. [PMID: 30959480 DOI: 10.1530/joe-19-0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Chronic stress is a known suppressor of female reproductive function. However, attempts to isolate single causal links between stress and reproductive dysfunction have not yet been successful due to their multi-faceted aetiologies. The gut-derived hormone ghrelin regulates stress and reproductive function and may therefore be pivotal in the neuroendocrine integration of the hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes. Here, we hypothesised that chronic stress disrupts ovarian follicle maturation and that this effect is mediated by a stress-induced increase in acyl ghrelin and activation of the growth hormone secretatogue receptor (GHSR). We gave C57BL/6J female mice 30 min daily chronic predator stress for 4 weeks, or no stress, and gave them daily GHSR antagonist (d-Lys3-GHRP-6) or saline. Exposure to chronic predator stress reduced circulating corticosterone, elevated acyl ghrelin levels and led to significantly depleted primordial follicle numbers. GHSR antagonism stress-dependently altered the expression of genes regulating ovarian responsiveness to gonadotropins and was able to attenuate the stress-induced depletion of primordial follicles. These findings suggest that chronic stress-induced elevations of acyl ghrelin may be detrimental for ovarian follicle maturation.
Collapse
Affiliation(s)
- Madeleine R Di Natale
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ilvana Ziko
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|