1
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. Biochemistry 2024; 63:2692-2703. [PMID: 39322977 PMCID: PMC11483822 DOI: 10.1021/acs.biochem.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Biswajit Gorai
- Institute
of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Integrated
Applied Mathematics Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
- Molecular
and Cellular Biotechnology Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
2
|
Hoeg-Jensen T, Kruse T, Brand CL, Sturis J, Fledelius C, Nielsen PK, Nishimura E, Madsen AR, Lykke L, Halskov KS, Koščová S, Kotek V, Davis AP, Tromans RA, Tomsett M, Peñuelas-Haro G, Leonard DJ, Orchard MG, Chapman A, Invernizzi G, Johansson E, Granata D, Hansen BF, Pedersen TA, Kildegaard J, Pedersen KM, Refsgaard HHF, Alifrangis L, Fels JJ, Neutzsky-Wulff AV, Sauerberg P, Slaaby R. Glucose-sensitive insulin with attenuation of hypoglycaemia. Nature 2024; 634:944-951. [PMID: 39415004 PMCID: PMC11499270 DOI: 10.1038/s41586-024-08042-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes1,2. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia3. Here we report the design and properties of NNC2215, an insulin conjugate with bioactivity that is reversibly responsive to a glucose range relevant for diabetes, as demonstrated in vitro and in vivo. NNC2215 was engineered by conjugating a glucose-binding macrocycle4 and a glucoside to insulin, thereby introducing a switch that can open and close in response to glucose and thereby equilibrate insulin between active and less-active conformations. The insulin receptor affinity for NNC2215 increased 3.2-fold when the glucose concentration was increased from 3 to 20 mM. In animal studies, the glucose-sensitive bioactivity of NNC2215 was demonstrated to lead to protection against hypoglycaemia while partially covering glucose excursions.
Collapse
Affiliation(s)
| | - Thomas Kruse
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Jeppe Sturis
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | | | - Peter K Nielsen
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Alice R Madsen
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Lennart Lykke
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Kim S Halskov
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | | | | | | | | | | | | | | | | | | | - Eva Johansson
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Daniele Granata
- Digital Science and Innovation, Novo Nordisk, Bagsværd, Denmark
| | - Bo F Hansen
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | | | | | | | | | | | - Johannes J Fels
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Per Sauerberg
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark.
| |
Collapse
|
3
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593448. [PMID: 38798363 PMCID: PMC11118388 DOI: 10.1101/2024.05.09.593448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
| | - Biswajit Gorai
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
- Department of Chemistry, University of New Hampshire, Durham 03824, New Hampshire, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham 03824, New Hampshire, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham 03824, New Hampshire, USA
| |
Collapse
|
4
|
He Y, Zhou H, Qu Y, Chi R, Xu H, Chen S, Meng C, Liu Q, Huang X, You H, Ye Y. Pharmacological modulation of gp130 signalling enhances Achilles tendon repair by regulating tenocyte migration and collagen synthesis via SHP2-mediated crosstalk of the ERK/AKT pathway. Biochem Pharmacol 2024; 226:116370. [PMID: 38880359 DOI: 10.1016/j.bcp.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Tendon injuries typically display limited reparative capacity, often resulting in suboptimal outcomes and an elevated risk of recurrence or rupture. While cytokines of the IL-6 family are primarily recognised for their inflammatory properties, they also have multifaceted roles in tissue regeneration and repair. Despite this, studies examining the association between IL-6 family cytokines and tendon repair remained scarce. gp130, a type of glycoprotein, functions as a co-receptor for all cytokines in the IL-6 family. Its role is to assist in the transmission of signals following the binding of ligands to receptors. RCGD423 is a gp130 modulator. Phosphorylation of residue Y759 of gp130 recruits SHP2 and SOCS3 and inhibits activation of the STAT3 pathway. In our study, RCGD423 stimulated the formation of homologous dimers of gp130 and the phosphorylation of Y759 residues without the involvement of IL-6 and IL-6R. Subsequently, the phosphorylated residues recruited SHP2, activating the downstream ERK and AKT pathways. These mechanisms ultimately promoted the migration ability of tenocytes and matrix synthesis, especially collagen I. Moreover, RCGD423 also demonstrated significant improvements in collagen content, alignment of collagen fibres, and biological and biomechanical function in a rat Achilles tendon injury model. In summary, we demonstrated a promising gp130 modulator (RCGD423) that could potentially enhance tendon injury repair by redirecting downstream signalling of IL-6, suggesting its potential therapeutic application for tendon injuries.
Collapse
Affiliation(s)
- Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qingyi Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
5
|
Barron MP, Vilseck JZ. A λ-Dynamics Investigation of Insulin Wakayama and Other A3 Variant Binding Affinities to the Insulin Receptor. J Chem Inf Model 2024; 64:5657-5670. [PMID: 38963805 PMCID: PMC11268370 DOI: 10.1021/acs.jcim.4c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin's A chain (ValA3) is replaced with a leucine (LeuA3), weakening insulin receptor (IR) binding by 140-500-fold. This severe impact on binding from a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding at this site, atomistic explanations of these binding trends have remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin's binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of mutations to insulin's A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.
Collapse
Affiliation(s)
- Monica P Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
6
|
Nawrocka WI, Cheng S, Hao B, Rosen MC, Cortés E, Baltrusaitis EE, Aziz Z, Kovács IA, Özkan E. Nematode Extracellular Protein Interactome Expands Connections between Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602367. [PMID: 39026773 PMCID: PMC11257444 DOI: 10.1101/2024.07.08.602367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematode C. elegans is a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report our C. elegans extracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.
Collapse
Affiliation(s)
- Wioletta I. Nawrocka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Bingjie Hao
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Matthew C. Rosen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Cortés
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elana E. Baltrusaitis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Zainab Aziz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - István A. Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
An W, Hall C, Li J, Hung A, Wu J, Park J, Wang L, Bai XC, Choi E. Activation of the insulin receptor by insulin-like growth factor 2. Nat Commun 2024; 15:2609. [PMID: 38521788 PMCID: PMC10960814 DOI: 10.1038/s41467-024-46990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular mechanism underlying IGF2-induced IR activation remains unclear. Here, we present cryo-EM structures of full-length human long isoform IR (IR-B) in both the inactive and IGF2-bound active states, and short isoform IR (IR-A) in the IGF2-bound active state. Under saturated IGF2 concentrations, both the IR-A and IR-B adopt predominantly asymmetric conformations with two or three IGF2s bound at site-1 and site-2, which differs from that insulin saturated IR forms an exclusively T-shaped symmetric conformation. IGF2 exhibits a relatively weak binding to IR site-2 compared to insulin, making it less potent in promoting full IR activation. Cell-based experiments validated the functional importance of IGF2 binding to two distinct binding sites in optimal IR signaling and trafficking. In the inactive state, the C-terminus of α-CT of IR-B contacts FnIII-2 domain of the same protomer, hindering its threading into the C-loop of IGF2, thus reducing the association rate of IGF2 with IR-B. Collectively, our studies demonstrate the activation mechanism of IR by IGF2 and reveal the molecular basis underlying the different affinity of IGF2 to IR-A and IR-B.
Collapse
Affiliation(s)
- Weidong An
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Albert Hung
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jiayi Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Junhee Park
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Liwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Trenker R, Diwanji D, Bingham T, Verba KA, Jura N. Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation. eLife 2024; 12:RP92873. [PMID: 38498590 PMCID: PMC10948148 DOI: 10.7554/elife.92873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1β. Here, we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1β and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1β and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Devan Diwanji
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
| | - Tanner Bingham
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
| | - Kliment A Verba
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Barron MP, Vilseck JZ. A λ-dynamics investigation of insulin Wakayama and other A3 variant binding affinities to the insulin receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585233. [PMID: 38559010 PMCID: PMC10979964 DOI: 10.1101/2024.03.15.585233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin's A chain (ValA3) is replaced with a leucine (LeuA3), impairing insulin receptor (IR) binding by 140-500 fold. This severe impact on binding from such a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding to minor changes at this site, an atomistic explanation of these binding trends has remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin's binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of subtle modifications to insulin's A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.
Collapse
Affiliation(s)
- Monica P. Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jonah Z. Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Trenker R, Diwanji D, Bingham T, Verba KA, Jura N. Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561161. [PMID: 38260342 PMCID: PMC10802258 DOI: 10.1101/2023.10.06.561161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1β. Here we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1β and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1β and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tanner Bingham
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kliment A. Verba
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Zhang Y, Hung-Chieh Chou D. From Natural Insulin to Designed Analogs: A Chemical Biology Exploration. Chembiochem 2023; 24:e202300470. [PMID: 37800626 DOI: 10.1002/cbic.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Indexed: 10/07/2023]
Abstract
Since its discovery in 1921, insulin has been at the forefront of scientific breakthroughs. From its amino acid sequencing to the revelation of its three-dimensional structure, the progress in insulin research has spurred significant therapeutic breakthroughs. In recent years, protein engineering has introduced innovative chemical and enzymatic methods for insulin modification, fostering the development of therapeutics with tailored pharmacological profiles. Alongside these advances, the quest for self-regulated, glucose-responsive insulin remains a holy grail in the field. In this article, we highlight the pivotal role of chemical biology in driving these innovations and discuss how it continues to shape the future trajectory of insulin research.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
12
|
Park J, Hall C, Hubbard B, LaMoia T, Gaspar R, Nasiri A, Li F, Zhang H, Kim J, Haeusler RA, Accili D, Shulman GI, Yu H, Choi E. MAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis. Diabetes 2023; 72:1781-1794. [PMID: 37725942 PMCID: PMC10658066 DOI: 10.2337/db23-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Insulin activates insulin receptor (IR) signaling and subsequently triggers IR endocytosis to attenuate signaling. Cell division regulators MAD2, BUBR1, and p31comet promote IR endocytosis on insulin stimulation. Here, we show that genetic ablation of the IR-MAD2 interaction in mice delays IR endocytosis, increases IR levels, and prolongs insulin action at the cell surface. This in turn causes a defect in insulin clearance and increases circulating insulin levels, unexpectedly increasing glucagon levels, which alters glucose metabolism modestly. Disruption of the IR-MAD2 interaction increases serum fatty acid concentrations and hepatic fat accumulation in fasted male mice. Furthermore, disruption of the IR-MAD2 interaction distinctly changes metabolic and transcriptomic profiles in the liver and adipose tissues. Our findings establish the function of cell division regulators in insulin signaling and provide insights into the metabolic functions of IR endocytosis. ARTICLE HIGHLIGHTS The physiological role of IR endocytosis in insulin sensitivity remains unclear. Disruption of the IR-MAD2 interaction delays IR endocytosis and prolongs insulin signaling. IR-MAD2 controls insulin clearance and glucose metabolism. IR-MAD2 maintains energy homeostasis.
Collapse
Affiliation(s)
- Junhee Park
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Brandon Hubbard
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Traci LaMoia
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Rafael Gaspar
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Ali Nasiri
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Fang Li
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jiyeon Kim
- Department of Urology and Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Rebecca A Haeusler
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Domenico Accili
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Hongtao Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
13
|
Kertisová A, Žáková L, Macháčková K, Marek A, Šácha P, Pompach P, Jiráček J, Selicharová I. Insulin receptor Arg717 and IGF-1 receptor Arg704 play a key role in ligand binding and in receptor activation. Open Biol 2023; 13:230142. [PMID: 37935358 PMCID: PMC10645074 DOI: 10.1098/rsob.230142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
The insulin receptor (IR, with its isoforms IR-A and IR-B) and the insulin-like growth factor 1 receptor (IGF-1R) are related tyrosine kinase receptors. Recently, the portfolio of solved hormone-receptor structures has grown extensively thanks to advancements in cryo-electron microscopy. However, the dynamics of how these receptors transition between their inactive and active state are yet to be fully understood. The C-terminal part of the alpha subunit (αCT) of the receptors is indispensable for the formation of the hormone-binding site. We mutated the αCT residues Arg717 and His710 of IR-A and Arg704 and His697 of IGF-1R. We then measured the saturation binding curves of ligands on the mutated receptors and their ability to become activated. Mutations of Arg704 and His697 to Ala in IGF-1R decreased the binding of IGF-1. Moreover, the number of binding sites for IGF-1 on the His697 IGF-1R mutant was reduced to one-half, demonstrating the presence of two binding sites. Both mutations of Arg717 and His710 to Ala in IR-A inactivated the receptor. We have proved that Arg717 is important for the binding of insulin to its receptor, which suggests that Arg717 is a key residue for the transition to the active conformation.
Collapse
Affiliation(s)
- Anna Kertisová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 40 Prague 2, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology, Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| |
Collapse
|
14
|
Viola CM, Frittmann O, Jenkins HT, Shafi T, De Meyts P, Brzozowski AM. Structural conservation of insulin/IGF signalling axis at the insulin receptors level in Drosophila and humans. Nat Commun 2023; 14:6271. [PMID: 37805602 PMCID: PMC10560217 DOI: 10.1038/s41467-023-41862-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
The insulin-related hormones regulate key life processes in Metazoa, from metabolism to growth, lifespan and aging, through an evolutionarily conserved insulin signalling axis (IIS). In humans the IIS axis is controlled by insulin, two insulin-like growth factors, two isoforms of the insulin receptor (hIR-A and -B), and its homologous IGF-1R. In Drosophila, this signalling engages seven insulin-like hormones (DILP1-7) and a single receptor (dmIR). This report describes the cryoEM structure of the dmIR ectodomain:DILP5 complex, revealing high structural homology between dmIR and hIR. The excess of DILP5 yields dmIR complex in an asymmetric 'T' conformation, similar to that observed in some complexes of human IRs. However, dmIR binds three DILP5 molecules in a distinct arrangement, showing also dmIR-specific features. This work adds structural support to evolutionary conservation of the IIS axis at the IR level, and also underpins a better understanding of an important model organism.
Collapse
Affiliation(s)
- Cristina M Viola
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Orsolya Frittmann
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- Department of Haematology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Talha Shafi
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Pierre De Meyts
- Department of Cell Signalling, de Duve Institute, B-1200, Brussels, Belgium
- Department of Cell Therapy Research, Novo Nordisk A/S, DK-2670, Maaloev, Denmark
| | - Andrzej M Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
15
|
Girych M, Kulig W, Enkavi G, Vattulainen I. How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Cold Spring Harb Perspect Biol 2023; 15:a041419. [PMID: 37487628 PMCID: PMC10547395 DOI: 10.1101/cshperspect.a041419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Lipids play a diverse and critical role in cellular processes in all tissues. The unique lipid composition of nerve membranes is particularly interesting because it contains, among other things, polyunsaturated lipids, such as docosahexaenoic acid, which the body only gets through the diet. The crucial role of lipids in neurological processes, especially in receptor-mediated cell signaling, is emphasized by the fact that in many neuropathological diseases there are significant deviations in the lipid composition of nerve membranes compared to healthy individuals. The lipid composition of neuromembranes can significantly affect the function of receptors by regulating the physical properties of the membrane or by affecting specific interactions between receptors and lipids. In addition, it is worth noting that the ligand-binding pocket of many receptors is located inside the cell membrane, due to which lipids can even modulate the binding of ligands to their receptors. These mechanisms highlight the importance of lipids in the regulation of membrane receptor activation and function. In this article, we focus on two major protein families: G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) and discuss how lipids affect their function in neuronal membranes, elucidating the basic mechanisms underlying neuronal function and dysfunction.
Collapse
Affiliation(s)
- Mykhailo Girych
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
16
|
Rygiel KA, Elkins JM. Recent advances in the structural biology of tyrosine kinases. Curr Opin Struct Biol 2023; 82:102665. [PMID: 37562149 DOI: 10.1016/j.sbi.2023.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
The past few years have seen exciting discoveries in the area of tyrosine kinase structural biology including the first high resolution models of full-length receptor tyrosine kinases and new mechanistic insights into the structural mechanisms of receptor tyrosine kinase activation. Despite being a mature area of research, the application of new technologies continues to advance our understanding. In this article we highlight a selection of recent studies that illustrate the current areas of research interest, focussing in particular on the exciting progress made possible by cryo-electron-microscopy. These new discoveries may herald a wave of new design ideas for therapeutics acting through novel mechanisms.
Collapse
Affiliation(s)
- Karolina A Rygiel
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
17
|
Yunn NO, Kim J, Ryu SH, Cho Y. A stepwise activation model for the insulin receptor. Exp Mol Med 2023; 55:2147-2161. [PMID: 37779149 PMCID: PMC10618199 DOI: 10.1038/s12276-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
The binding of insulin to the insulin receptor (IR) triggers a cascade of receptor conformational changes and autophosphorylation, leading to the activation of metabolic and mitogenic pathways. Recent advances in the structural and functional analyses of IR have revealed the conformations of the extracellular domains of the IR in inactive and fully activated states. However, the early activation mechanisms of this receptor remain poorly understood. The structures of partially activated IR in complex with aptamers provide clues for understanding the initial activation mechanism. In this review, we discuss the structural and functional features of IR complexed with various ligands and propose a model to explain the sequential activation mechanism. Moreover, we discuss the structures of IR complexed with biased agonists that selectively activate metabolic pathways and provide insights into the design of selective agonists and their clinical implications.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Junhong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Biomedical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
18
|
Dutta B, Loo S, Kam A, Tam JP. Plant-derived cell-penetrating microprotein α-astratide aM1 targets Akt signaling and alleviates insulin resistance. Cell Mol Life Sci 2023; 80:293. [PMID: 37715850 PMCID: PMC10505102 DOI: 10.1007/s00018-023-04937-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Insulin-resistant diabetes is a common metabolic disease with serious complications. Treatments directly addressing the underlying molecular mechanisms involving insulin resistance would be desirable. Our laboratory recently identified a proteolytic-resistant cystine-dense microprotein from huáng qí (Astragalus membranaceus) called α-astratide aM1, which shares high sequence homology to leginsulins. Here we show that aM1 is a cell-penetrating insulin mimetic, enters cells by endocytosis, and activates the PI3K/Akt signaling pathway independent of the insulin receptor leading to translocation of glucose transporter GLUT4 to the cell surface to promote glucose uptake. We also showed that aM1 alters gene expression, suppresses lipid synthesis and uptake, and inhibits intracellular lipid accumulation in myotubes and adipocytes. By reducing intracellular lipid accumulation and preventing lipid-induced, PKCθ-mediated degradation of IRS1/2, aM1 restores glucose uptake to overcome insulin resistance. These findings highlight the potential of aM1 as a lead for developing orally bioavailable insulin mimetics to expand options for treating diabetes.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
19
|
Wang L, Hall CE, Uchikawa E, Chen D, Choi E, Zhang X, Bai XC. Structural basis of insulin fibrillation. SCIENCE ADVANCES 2023; 9:eadi1057. [PMID: 37713485 PMCID: PMC10881025 DOI: 10.1126/sciadv.adi1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Insulin is a hormone responsible for maintaining normal glucose levels by activating insulin receptor (IR) and is the primary treatment for diabetes. However, insulin is prone to unfolding and forming cross-β fibers. Fibrillation complicates insulin storage and therapeutic application. Molecular details of insulin fibrillation remain unclear, hindering efforts to prevent fibrillation process. Here, we characterized insulin fibrils using cryo-electron microscopy (cryo-EM), showing multiple forms that contain one or more of the protofilaments containing both the A and B chains of insulin linked by disulfide bonds. We solved the cryo-EM structure of one of the fibril forms composed of two protofilaments at 3.2-Å resolution, which reveals both the β sheet conformation of the protofilament and the packing interaction between them that underlie the fibrillation. On the basis of this structure, we designed several insulin mutants that display reduced fibrillation while maintaining native IR signaling activity. These designed insulin analogs may be developed into more effective therapeutics for type 1 diabetes.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Catherine E. Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emiko Uchikawa
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dailu Chen
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Lubos M, Pícha J, Selicharová I, Žák J, Buděšínský M, Mitrová K, Žáková L, Jiráček J. Modulation of the antagonistic properties of an insulin mimetic peptide by disulfide bridge modifications. J Pept Sci 2023; 29:e3478. [PMID: 36633503 PMCID: PMC10909431 DOI: 10.1002/psc.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.
Collapse
Affiliation(s)
- Marta Lubos
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jíří Žák
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| |
Collapse
|
21
|
Abstract
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA;
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
22
|
Abstract
Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.
Collapse
Affiliation(s)
- Briony E Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
23
|
Mendoza C, Hanegan C, Sperry A, Vargas L, Case T, Bikman B, Mizrachi D. Insulin receptor-inspired soluble insulin binder. Eur J Cell Biol 2023; 102:151293. [PMID: 36739671 DOI: 10.1016/j.ejcb.2023.151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The insulin receptor (IR) is a 320 kDa membrane receptor tyrosine kinase mediating the pleiotropic actions of insulin, leading to phosphorylation of several intracellular substrates including serine/threonine-protein kinase (AKT1), and IR autophosphorylation. Structural details of the IR have been recently revealed. A high-binding insulin site, L1 (Kd =2 nM), consists of two distant domains in the primary sequence of the IR. Our design simplified the L1 binding site and transformed it into a soluble insulin binder (sIB). The sIB, a 17 kDa protein, binds insulin with 38 nM affinity. The sIB competes with IR for insulin and reduces by more than 50% phosphorylation of AKT1 in HEK 293 T cells, with similar effects on IR autophosphorylation. The sIB represents a new tool for research of insulin binding and signaling properties.
Collapse
Affiliation(s)
- Christopher Mendoza
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Cameron Hanegan
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Alek Sperry
- Mechanical Engineering, College of Engineering, Brigham Young University, Provo, UT, United States
| | - Logan Vargas
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Trevor Case
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Benjamin Bikman
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Dario Mizrachi
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
24
|
Wang L, Hall C, Li J, Choi E, Bai XC. Structural basis of the alkaline pH-dependent activation of insulin receptor-related receptor. Nat Struct Mol Biol 2023; 30:661-669. [PMID: 37055497 PMCID: PMC10465182 DOI: 10.1038/s41594-023-00974-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/20/2023] [Indexed: 04/15/2023]
Abstract
The insulin receptor (IR) family is a subfamily of receptor tyrosine kinases that controls metabolic homeostasis and cell growth. Distinct from IR and insulin-like growth factor 1 receptor, whose activation requires ligand binding, insulin receptor-related receptor (IRR)-the third member of the IR family-is activated by alkaline pH. However, the molecular mechanism underlying alkaline pH-induced IRR activation remains unclear. Here, we present cryo-EM structures of human IRR in both neutral pH inactive and alkaline pH active states. Combined with mutagenesis and cellular assays, we show that, upon pH increase, electrostatic repulsion of the pH-sensitive motifs of IRR disrupts its autoinhibited state and promotes a scissor-like rotation between two protomers, leading to a T-shaped active conformation. Together, our study reveals an unprecedented alkaline pH-dependent activation mechanism of IRR, opening up opportunities to understand the structure-function relationship of this important receptor.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Lin J, Selicharová I, Mitrová K, Fabre B, Miriyala VM, Lepšík M, Jiráček J, Hernández MSG. Targeting the insulin receptor with hormone and peptide dimers. J Pept Sci 2023; 29:e3461. [PMID: 36336650 DOI: 10.1002/psc.3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a key hormone involved in the regulation of overall energetic homeostasis of the organism. The dimeric character of the receptor for insulin evokes ideas about its activation or inhibition with peptide dimers that could either trigger or block the structural transition of the insulin receptor, leading to its activation. Herewith, we present the chemical engineering and biological characterization of several series of insulin dimers or dimers of specific peptides that should be able to bind receptors for insulin or insulin growth factor 1. The hormones or peptides in the dimers were interconnected with different linkers, consisting of triazole moieties and 3, 6, 8, 11, or 23 polyethylene glycol units. The prepared dimers were weaker in binding to insulin receptors than human insulin. However, some of the insulin dimers showed preferential binding specificity toward the isoform A of the insulin receptor, and the insulin dimers also stimulated the insulin receptor more strongly than would be consistent with their binding affinities. Our results suggest that designing insulin dimers may be a promising strategy for modulating the ability of the hormone to activate the receptor or to alter its specificity toward insulin receptor isoforms.
Collapse
Affiliation(s)
- Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
26
|
Saxton RA, Caveney NA, Moya-Garzon MD, Householder KD, Rodriguez GE, Burdsall KA, Long JZ, Garcia KC. Structural insights into the mechanism of leptin receptor activation. Nat Commun 2023; 14:1797. [PMID: 37002197 PMCID: PMC10066393 DOI: 10.1038/s41467-023-37169-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/04/2023] [Indexed: 04/03/2023] Open
Abstract
Leptin is an adipocyte-derived protein hormone that promotes satiety and energy homeostasis by activating the leptin receptor (LepR)-STAT3 signaling axis in a subset of hypothalamic neurons. Leptin signaling is dysregulated in obesity, however, where appetite remains elevated despite high levels of circulating leptin. To gain insight into the mechanism of leptin receptor activation, here we determine the structure of a stabilized leptin-bound LepR signaling complex using single particle cryo-EM. The structure reveals an asymmetric architecture in which a single leptin induces LepR dimerization via two distinct receptor-binding sites. Analysis of the leptin-LepR binding interfaces reveals the molecular basis for human obesity-associated mutations. Structure-based design of leptin variants that destabilize the asymmetric LepR dimer yield both partial and biased agonists that partially suppress STAT3 activation in the presence of wild-type leptin and decouple activation of STAT3 from LepR negative regulators. Together, these results reveal the structural basis for LepR activation and provide insights into the differential plasticity of signaling pathways downstream of LepR.
Collapse
Affiliation(s)
- Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | - Nathanael A Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Karsten D Householder
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grayson E Rodriguez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kylie A Burdsall
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Krimmer SG, Bertoletti N, Suzuki Y, Katic L, Mohanty J, Shu S, Lee S, Lax I, Mi W, Schlessinger J. Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proc Natl Acad Sci U S A 2023; 120:e2300054120. [PMID: 36943885 PMCID: PMC10068818 DOI: 10.1073/pnas.2300054120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The receptor tyrosine kinase KIT and its ligand stem cell factor (SCF) are required for the development of hematopoietic stem cells, germ cells, and other cells. A variety of human cancers, such as acute myeloid leukemia, gastrointestinal stromal tumor, and mast cell leukemia, are driven by somatic gain-of-function KIT mutations. Here, we report cryo electron microscopy (cryo-EM) structural analyses of full-length wild-type and two oncogenic KIT mutants, which show that the overall symmetric arrangement of the extracellular domain of ligand-occupied KIT dimers contains asymmetric D5 homotypic contacts juxtaposing the plasma membrane. Mutational analysis of KIT reveals in D5 region an "Achilles heel" for therapeutic intervention. A ligand-sensitized oncogenic KIT mutant exhibits a more comprehensive and stable D5 asymmetric conformation. A constitutively active ligand-independent oncogenic KIT mutant adopts a V-shaped conformation solely held by D5-mediated contacts. Binding of SCF to this mutant fully restores the conformation of wild-type KIT dimers, including the formation of salt bridges responsible for D4 homotypic contacts and other hallmarks of SCF-induced KIT dimerization. These experiments reveal an unexpected structural plasticity of oncogenic KIT mutants and a therapeutic target in D5.
Collapse
Affiliation(s)
- Stefan G. Krimmer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Yoshihisa Suzuki
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Luka Katic
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Jyotidarsini Mohanty
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sheng Shu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Wei Mi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
28
|
Zhou Y, Stevis PE, Cao J, Saotome K, Wu J, Glatman Zaretsky A, Haxhinasto S, Yancopoulos GD, Murphy AJ, Sleeman MW, Olson WC, Franklin MC. Structural insights into the assembly of gp130 family cytokine signaling complexes. SCIENCE ADVANCES 2023; 9:eade4395. [PMID: 36930708 PMCID: PMC10022904 DOI: 10.1126/sciadv.ade4395] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The interleukin-6 (IL-6) family cytokines signal through gp130 receptor homodimerization or heterodimerization with a second signaling receptor and play crucial roles in various cellular processes. We determined cryo-electron microscopy structures of five signaling complexes of this family, containing full receptor ectodomains bound to their respective ligands ciliary neurotrophic factor, cardiotrophin-like cytokine factor 1 (CLCF1), leukemia inhibitory factor, IL-27, and IL-6. Our structures collectively reveal similarities and differences in the assembly of these complexes. The acute bends at both signaling receptors in all complexes bring the membrane-proximal domains to a ~30 angstrom range but with distinct distances and orientations. We also reveal how CLCF1 engages its secretion chaperone cytokine receptor-like factor 1. Our data provide valuable insights for therapeutically targeting gp130-mediated signaling.
Collapse
Affiliation(s)
- Yi Zhou
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Jing Cao
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Jiaxi Wu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu KF, Yuan C, Du YM, Sun KL, Zhang XK, Vogel H, Jia XD, Gao YZ, Zhang QF, Wang DP, Zhang HW. Applications and prospects of cryo-EM in drug discovery. Mil Med Res 2023; 10:10. [PMID: 36872349 PMCID: PMC9986049 DOI: 10.1186/s40779-023-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time- and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy (cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence (AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of medium-resolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.
Collapse
Affiliation(s)
- Kong-Fu Zhu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Chuang Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Yong-Ming Du
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Kai-Lei Sun
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Xiao-Kang Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 Guangdong China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
| | - Xu-Dong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Yuan-Zhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Qin-Fen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Da-Ping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 Guangdong China
| | - Hua-Wei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| |
Collapse
|
30
|
Jiráček J, Selicharová I, Žáková L. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2. VITAMINS AND HORMONES 2023; 123:187-230. [PMID: 37717985 DOI: 10.1016/bs.vh.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Elucidating how insulin and the related insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) bind to their cellular receptors (IR and IGF-1R) and how the receptors are activated has been the holy grail for generations of scientists. However, deciphering the 3D structure of tyrosine kinase receptors and their hormone-bound complexes has been complicated by the flexible and dimeric nature of the receptors and the dynamic nature of their interaction with hormones. Therefore, mutagenesis of hormones and kinetic studies first became an important tool for studying receptor interactions. It was suggested that hormones could bind to receptors through two binding sites on the hormone surface called site 1 and site 2. A breakthrough in knowledge came with the solution of cryoelectron microscopy (cryoEM) structures of hormone-receptor complexes. In this chapter, we document in detail the mutagenesis of insulin, IGF-1, and IGF-2 with emphasis on modifications of the hypothetical binding site 2 in the hormones, and we discuss the results of structure-activity studies in light of recent cryoEM structures of hormone complexes with IR and IGF-1R.
Collapse
Affiliation(s)
- Jiří Jiráček
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Irena Selicharová
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Žáková
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
31
|
Viola CM, Frittmann O, Jenkins HT, Shafi T, Meyts PD, Brzozowski AM. Structural Conservation of Insulin/IGF Signalling Axis at the Insulin Receptors Level in Drosophilaand humans.. [DOI: 10.1101/2023.02.17.528932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACTThe insulin-related hormones regulate key life processes in Metazoa, from metabolism to growth, lifespan and aging, through an evolutionarily conserved insulin signalling axis (IIS). In humans the IIS axis is controlled by insulin, two insulin-like growth factors, two isoforms of the insulin receptor (hIR-A and -B), and its homologous IGF-1R. InDrosophila, this signalling engages seven insulin-like hormones (DILP1-7) and a single receptor (dmIR). This report describes the first cryoEM structure of the dmIR ectodomain:DILP5 complex, revealing high structural homology between dmIR and hIR. The excess of DILP5 yields dmIR complex in an asymmetric ‘T’ conformation, similar to that observed in some complexes of human IRs. However, dmIR binds three DILP5 molecules in a hitherto-unseen arrangement, showing also dmIR-specific features. This work adds structural support to evolutionary conservation of the IIS axis at the IRs levels, underpinning also a better understanding of an important model organism.
Collapse
|
32
|
Diversity of Structural, Dynamic, and Environmental Effects Explain a Distinctive Functional Role of Transmembrane Domains in the Insulin Receptor Subfamily. Int J Mol Sci 2023; 24:ijms24043906. [PMID: 36835322 PMCID: PMC9965288 DOI: 10.3390/ijms24043906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.
Collapse
|
33
|
Cook TW, Wilstermann AM, Mitchell JT, Arnold NE, Rajasekaran S, Bupp CP, Prokop JW. Understanding Insulin in the Age of Precision Medicine and Big Data: Under-Explored Nature of Genomics. Biomolecules 2023; 13:257. [PMID: 36830626 PMCID: PMC9953665 DOI: 10.3390/biom13020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Insulin is amongst the human genome's most well-studied genes/proteins due to its connection to metabolic health. Within this article, we review literature and data to build a knowledge base of Insulin (INS) genetics that influence transcription, transcript processing, translation, hormone maturation, secretion, receptor binding, and metabolism while highlighting the future needs of insulin research. The INS gene region has 2076 unique variants from population genetics. Several variants are found near the transcriptional start site, enhancers, and following the INS transcripts that might influence the readthrough fusion transcript INS-IGF2. This INS-IGF2 transcript splice site was confirmed within hundreds of pancreatic RNAseq samples, lacks drift based on human genome sequencing, and has possible elevated expression due to viral regulation within the liver. Moreover, a rare, poorly characterized African population-enriched variant of INS-IGF2 results in a loss of the stop codon. INS transcript UTR variants rs689 and rs3842753, associated with type 1 diabetes, are found in many pancreatic RNAseq datasets with an elevation of the 3'UTR alternatively spliced INS transcript. Finally, by combining literature, evolutionary profiling, and structural biology, we map rare missense variants that influence preproinsulin translation, proinsulin processing, dimer/hexamer secretory storage, receptor activation, and C-peptide detection for quasi-insulin blood measurements.
Collapse
Affiliation(s)
- Taylor W. Cook
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jackson T. Mitchell
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas E. Arnold
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Division of Medical Genetics, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
34
|
Chen Y, Zhou Q, Wang J, Xu Y, Wang Y, Yan J, Wang Y, Zhu Q, Zhao F, Li C, Chen CW, Cai X, Bathgate RAD, Shen C, Eric Xu H, Yang D, Liu H, Wang MW. Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4). Nat Commun 2023; 14:492. [PMID: 36717591 PMCID: PMC9886975 DOI: 10.1038/s41467-023-36182-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Members of the insulin superfamily regulate pleiotropic biological processes through two types of target-specific but structurally conserved peptides, insulin/insulin-like growth factors and relaxin/insulin-like peptides. The latter bind to the human relaxin family peptide receptors (RXFPs). Here, we report three cryo-electron microscopy structures of RXFP4-Gi protein complexes in the presence of the endogenous ligand insulin-like peptide 5 (INSL5) or one of the two small molecule agonists, compound 4 and DC591053. The B chain of INSL5 adopts a single α-helix that penetrates into the orthosteric pocket, while the A chain sits above the orthosteric pocket, revealing a peptide-binding mode previously unknown. Together with mutagenesis and functional analyses, the key determinants responsible for the peptidomimetic agonism and subtype selectivity were identified. Our findings not only provide insights into ligand recognition and subtype selectivity among class A G protein-coupled receptors, but also expand the knowledge of signaling mechanisms in the insulin superfamily.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Lingang Laboratory, Shanghai, 200031, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Youwei Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Wang
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Jiahui Yan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi Zhu
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Fenghui Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenghao Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Chun Shen
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China. .,Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
35
|
The insulin receptor endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:79-107. [PMID: 36631202 DOI: 10.1016/bs.pmbts.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin signaling controls multiple aspects of animal physiology. At the cell surface, insulin binds and activates the insulin receptor (IR), a receptor tyrosine kinase. Insulin promotes a large conformational change of IR and stabilizes the active conformation. The insulin-activated IR triggers signaling cascades, thus controlling metabolism, growth, and proliferation. The activated IR undergoes internalization by clathrin- or caveolae-mediated endocytosis. The IR endocytosis plays important roles in insulin clearance from blood, and distribution and termination of the insulin signaling. Despite decades of extensive studies, the mechanism and regulation of IR endocytosis and its contribution to pathophysiology remain incompletely understood. Here we discuss recent findings that provide insights into the molecular mechanisms and regulatory pathways that mediate the IR endocytosis.
Collapse
|
36
|
Gorai B, Vashisth H. Structural models of viral insulin-like peptides and their analogs. Proteins 2023; 91:62-73. [PMID: 35962629 PMCID: PMC9772067 DOI: 10.1002/prot.26410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The insulin receptor (IR), the insulin-like growth factor-1 receptor (IGF1R), and the insulin/IGF1 hybrid receptors (hybR) are homologous transmembrane receptors. The peptide ligands, insulin and IGF1, exhibit significant structural homology and can bind to each receptor via site-1 and site-2 residues with distinct affinities. The variants of the Iridoviridae virus family show capability in expressing single-chain insulin/IGF1 like proteins, termed viral insulin-like peptides (VILPs), which can stimulate receptors from the insulin family. The sequences of VILPs lacking the central C-domain (dcVILPs) are known, but their structures in unbound and receptor-bound states have not been resolved to date. We report all-atom structural models of three dcVILPs (dcGIV, dcSGIV, and dcLCDV1) and their complexes with the receptors (μIR, μIGF1R, and μhybR), and probed the peptide/receptor interactions in each system using all-atom molecular dynamics (MD) simulations. Based on the nonbonded interaction energies computed between each residue of peptides (insulin and dcVILPs) and the receptors, we provide details on residues establishing significant interactions. The observed site-1 insulin/μIR interactions are consistent with previous experimental studies, and a residue-level comparison of interactions of peptides (insulin and dcVILPs) with the receptors revealed that, due to sequence differences, dcVILPs also establish some interactions distinct from those between insulin and IR. We also designed insulin analogs and report enhanced interactions between some analogs and the receptors.
Collapse
Affiliation(s)
- Biswajit Gorai
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
37
|
Lin J, Asai S, Selicharová I, Mitrová K, Kaminský J, Young E, Jiráček J. Recombinant Insulin-Like Growth Factor 1 Dimers: Receptor Binding Affinities and Activation Abilities. Int J Pept Res Ther 2023; 29:33. [PMID: 36891560 PMCID: PMC9985566 DOI: 10.1007/s10989-023-10499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 03/07/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) and its IGF-1 receptor (IGF-1R) belong to an important biological system that is involved in the regulation of normal growth, but that has also been recognized as playing a role in cancer. IGF-1R antagonists could be interesting for the testing of their potential antiproliferative properties as an alternative to IGF-1R tyrosine-kinase inhibitors or anti-IGF-1R monoclonal antibodies. In this study, we were inspired by the successful development of insulin dimers capable of antagonizing insulin effects on the insulin receptor (IR) by simultaneous binding to two separated binding sites and by blocking structural rearrangement of the IR. We designed and produced in Escherichia coli three different IGF-1 dimers in which IGF-1 monomers are interlinked through their N- and C-termini, with linkers having 8, 15 or 25 amino acids. We found that the recombinant products were susceptible to the formation of misfolded or reduced variants, but that some of them were able to bind IGF-1R in low nanomolar affinities and all of them activate IGF-1R proportionally to their binding affinities. Overall, our work can be considered as a pilot study that, although it did not lead to the discovery of new IGF-1R antagonists, explored the possibility of recombinant production of IGF-1 dimers and led to the preparation of active compounds. This work could inspire further studies dealing, for example, with the preparation of IGF-1 conjugates with specific proteins for the study of the hormone and its receptor or for therapeutic applications. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10989-023-10499-1.
Collapse
Affiliation(s)
- Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Seiya Asai
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Elinor Young
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| |
Collapse
|
38
|
Banzai K, Nishimura T. Isolation of a novel missense mutation in insulin receptor as a spontaneous revertant in ImpL2 mutants in Drosophila. Development 2023; 150:285910. [PMID: 36504086 DOI: 10.1242/dev.201248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Evolutionarily conserved insulin/insulin-like growth factor (IGF) signaling (IIS) correlates nutrient levels to metabolism and growth, thereby playing crucial roles in development and adult fitness. In the fruit fly Drosophila, ImpL2, an ortholog of IGFBP7, binds to and inhibits the function of Drosophila insulin-like peptides. In this study, we isolated a temperature-sensitive mutation in the insulin receptor (InR) gene as a spontaneous revertant in ImpL2 null mutants. The p.Y902C missense mutation is located at the functionally conserved amino acid residue of the first fibronectin type III domain of InR. The hypomorphic InR mutant animals showed a temperature-dependent reduction in IIS and body size. The mutant animals also exhibited metabolic defects, such as increased triglyceride and carbohydrate levels. Metabolomic analysis further revealed that defects in InR caused dysregulation of amino acid and ribonucleotide metabolism. We also observed that InR mutant females produced tiny irregular-shaped embryos with reduced fecundity. In summary, this novel allele of InR is a valuable tool for the Drosophila genetic model of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Kota Banzai
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
39
|
Dey A, Mitra D, Rachineni K, Khatri LR, Paithankar H, Vajpai N, Kumar A. Mapping of Methyl Epitopes of a Peptide-Drug with Its Receptor by 2D STDD-Methyl TROSY NMR Spectroscopy. Chembiochem 2022; 23:e202200489. [PMID: 36227643 DOI: 10.1002/cbic.202200489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Indexed: 01/25/2023]
Abstract
The current trend in the biopharmaceutical market has boosted the development and production of biological drugs with high efficacy and fidelity for receptor binding. While high-resolution structural insights into binding epitopes of the receptor are indispensable for better therapeutic design, it is tedious and costly. In this work, we develop a protocol by integrating two well-known NMR-based solution-state methods. Saturation transfer double-difference with methyl-TROSY (STDD-Methyl TROSY NMR) was used to probe methyl binding epitopes of the ligand in a label-free environment. This study was carried out with Human insulin as a model peptide drug, with the insulin growth factor receptor (IGFR), which is an off-target receptor for insulin. Methyl epitopes identified from STDD-Methyl TROSY NMR spectroscopy were validated through the HADDOCK platform to generate a drug-receptor model. Since this method can be applied at natural abundance, it has the potential to screen a large set of peptide-drug interactions for optimum receptor binding. Thus, we propose STDD-Methyl TROSY NMR spectroscopy as a technique for rapid screening of biologics for the development of optimized biopharmaceutics.
Collapse
Affiliation(s)
- Anomitra Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Debarghya Mitra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Kavitha Rachineni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Lakshya Raj Khatri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Harshad Paithankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Navratna Vajpai
- Biocon Biologics Limited, Biocon Park (SEZ), Bommasandra-Jigani Link Road, Bangalore, 560099, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| |
Collapse
|
40
|
Smith NA, Menting JG, Weiss MA, Lawrence MC, Smith BJ. Single-chain insulin analogs threaded by the insulin receptor αCT domain. Biophys J 2022; 121:4063-4077. [PMID: 36181268 PMCID: PMC9675026 DOI: 10.1016/j.bpj.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal α-subunit domains L1-CR and C-terminal αCT peptide; "microreceptor" [μIR]). The structure of the SCI-μIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 Å. Remarkably, the αCT peptide (IR-A isoform) "threads" through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of -1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex-rationalizing why minimal C-domain lengths block complete activity-and might be exploited to design novel receptor-isoform-specific analogs.
Collapse
Affiliation(s)
- Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - John G Menting
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Michael C Lawrence
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Kim J, Yunn NO, Park M, Kim J, Park S, Kim Y, Noh J, Ryu SH, Cho Y. Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures. Nat Commun 2022; 13:6500. [PMID: 36310231 PMCID: PMC9618554 DOI: 10.1038/s41467-022-34292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/20/2022] [Indexed: 12/25/2022] Open
Abstract
Activation of insulin receptor (IR) initiates a cascade of conformational changes and autophosphorylation events. Herein, we determined three structures of IR trapped by aptamers using cryo-electron microscopy. The A62 agonist aptamer selectively activates metabolic signaling. In the absence of insulin, the two A62 aptamer agonists of IR adopt an insulin-accessible arrowhead conformation by mimicking site-1/site-2' insulin coordination. Insulin binding at one site triggers conformational changes in one protomer, but this movement is blocked in the other protomer by A62 at the opposite site. A62 binding captures two unique conformations of IR with a similar stalk arrangement, which underlie Tyr1150 mono-phosphorylation (m-pY1150) and selective activation for metabolic signaling. The A43 aptamer, a positive allosteric modulator, binds at the opposite side of the insulin-binding module, and stabilizes the single insulin-bound IR structure that brings two FnIII-3 regions into closer proximity for full activation. Our results suggest that spatial proximity of the two FnIII-3 ends is important for m-pY1150, but multi-phosphorylation of IR requires additional conformational rearrangement of intracellular domains mediated by coordination between extracellular and transmembrane domains.
Collapse
Affiliation(s)
- Junhong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Na-Oh Yunn
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Mangeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jihan Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Seongeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jeongeun Noh
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Sung Ho Ryu
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yunje Cho
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
42
|
Kirk NS, Chen Q, Wu YG, Asante AL, Hu H, Espinosa JF, Martínez-Olid F, Margetts MB, Mohammed FA, Kiselyov VV, Barrett DG, Lawrence MC. Activation of the human insulin receptor by non-insulin-related peptides. Nat Commun 2022; 13:5695. [PMID: 36171189 PMCID: PMC9519552 DOI: 10.1038/s41467-022-33315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
The human insulin receptor signalling system plays a critical role in glucose homeostasis. Insulin binding brings about extensive conformational change in the receptor extracellular region that in turn effects trans-activation of the intracellular tyrosine kinase domains and downstream signalling. Of particular therapeutic interest is whether insulin receptor signalling can be replicated by molecules other than insulin. Here, we present single-particle cryoEM structures that show how a 33-mer polypeptide unrelated to insulin can cross-link two sites on the receptor surface and direct the receptor into a signalling-active conformation. The 33-mer polypeptide engages the receptor by two helical binding motifs that are each potentially mimicable by small molecules. The resultant conformation of the receptor is distinct from—but related to—those in extant three-dimensional structures of the insulin-complexed receptor. Our findings thus illuminate unexplored pathways for controlling the signalling of the insulin receptor as well as opportunities for development of insulin mimetics. The regulation of plasma glucose levels is effected by insulin. Here, the authors reveal atomic detail of how peptides distinct from insulin bind to and activate the insulin receptor, with implications for design of small-molecule insulin mimetics.
Collapse
Affiliation(s)
- Nicholas S Kirk
- WEHI, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Qi Chen
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Yingzhe Ginger Wu
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - Haitao Hu
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Juan F Espinosa
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas, Madrid, 28108, Spain
| | - Francisco Martínez-Olid
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas, Madrid, 28108, Spain
| | | | - Faiz A Mohammed
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - David G Barrett
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Michael C Lawrence
- WEHI, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
43
|
Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun 2022; 13:5594. [PMID: 36151101 PMCID: PMC9508239 DOI: 10.1038/s41467-022-33274-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.
Collapse
|
44
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
45
|
De Meyts P. [The insulin receptor discovery is 50 years old - A review of achieved progress]. Biol Aujourdhui 2022; 216:7-28. [PMID: 35876517 DOI: 10.1051/jbio/2022007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The isolation of insulin from the pancreas and its purification to a degree permitting its safe administration to type 1 diabetic patients were accomplished 100 years ago at the University of Toronto by Banting, Best, Collip and McLeod and constitute undeniably one of the major medical therapeutic revolutions, recognized by the attribution of the 1923 Nobel Prize in Physiology or Medicine to Banting and McLeod. The clinical spin off was immediate as well as the internationalization of insulin's commercial production. The outcomes regarding basic research were much slower, in particular regarding the molecular mechanisms of insulin action on its target cells. It took almost a half-century before the determination of the tri-dimensional structure of insulin in 1969 and the characterization of its cell receptor in 1970-1971. The demonstration that the insulin receptor is in fact an enzyme named tyrosine kinase came in the years 1982-1985, and the crystal structure of the intracellular kinase domain 10 years later. The crystal structure of the first intracellular kinase substrate (IRS-1) in 1991 paved the way for the elucidation of the intracellular signalling pathways but it took 15 more years to obtain the complete crystal structure of the extracellular receptor domain (without insulin) in 2006. Since then, the determination of the structure of the whole insulin-receptor complex in both the inactive and activated states has made considerable progress, not least due to recent improvement in the resolution power of cryo-electron microscopy. I will here review the steps in the development of the concept of hormone receptor, and of our knowledge of the structure and molecular mechanism of activation of the insulin receptor.
Collapse
Affiliation(s)
- Pierre De Meyts
- de Duve Institute, Department of Cell Signalling, Avenue Hippocrate 74, B-1200 Bruxelles, Belgique - Novo Nordisk A/S, Department of Stem Cell Research, Novo Nordisk Park 1, DK-2760 Maaloev, Danemark
| |
Collapse
|
46
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
47
|
Exploring protein symmetry at the RCSB Protein Data Bank. Emerg Top Life Sci 2022; 6:231-243. [PMID: 35801924 PMCID: PMC9472815 DOI: 10.1042/etls20210267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The symmetry of biological molecules has fascinated structural biologists ever since the structure of hemoglobin was determined. The Protein Data Bank (PDB) archive is the central global archive of three-dimensional (3D), atomic-level structures of biomolecules, providing open access to the results of structural biology research with no limitations on usage. Roughly 40% of the structures in the archive exhibit some type of symmetry, including formal global symmetry, local symmetry, or pseudosymmetry. The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (founding member of the Worldwide Protein Data Bank partnership that jointly manages, curates, and disseminates the archive) provides a variety of tools to assist users interested in exploring the symmetry of biological macromolecules. These tools include multiple modalities for searching and browsing the archive, turnkey methods for biomolecular visualization, documentation, and outreach materials for exploring functional biomolecular symmetry.
Collapse
|
48
|
Laugesen SH, Chou DHC, Safavi-Hemami H. Unconventional insulins from predators and pathogens. Nat Chem Biol 2022; 18:688-697. [PMID: 35761080 DOI: 10.1038/s41589-022-01068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Insulin and its related peptides are found throughout the animal kingdom, in which they serve diverse functions. This includes regulation of glucose homeostasis, neuronal development and cognition. The surprising recent discovery that venomous snails evolved specialized insulins to capture fish demonstrated the nefarious use of this hormone in nature. Because of their streamlined role in predation, these repurposed insulins exhibit unique characteristics that have unraveled new aspects of the chemical ecology and structural biology of this important hormone. Recently, insulins were also reported in other venomous predators and pathogenic viruses, demonstrating the broader use of insulin by one organism to manipulate the physiology of another. In this Review, we provide an overview of the discovery and biomedical application of repurposed insulins and other hormones found in nature and highlight several unique insights gained from these unusual compounds.
Collapse
Affiliation(s)
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. .,School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
49
|
Xu Y, Margetts MB, Venugopal H, Menting JG, Kirk NS, Croll TI, Delaine C, Forbes BE, Lawrence MC. How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor. Structure 2022; 30:1098-1108.e6. [PMID: 35660159 PMCID: PMC9364964 DOI: 10.1016/j.str.2022.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands. A cryo-EM structure of IGF-I bound to a hybrid IR/IGF-1R ectodomain is presented The structure is congruent to those of the single-liganded homodimeric receptors
Collapse
Affiliation(s)
- Yibin Xu
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | | | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - John G Menting
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nicholas S Kirk
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Carlie Delaine
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Briony E Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Michael C Lawrence
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
50
|
Zhang X, Wu C, Wei T, Lu Y, Liu C, Zhang J. Cryo-EM studies of the apo states of human IGF1R. Biochem Biophys Res Commun 2022; 618:148-152. [PMID: 35749888 DOI: 10.1016/j.bbrc.2022.05.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
IGF1R plays an important role in regulating cellular metabolism and growth. As a single transmembrane protein, its structure is flexible. Although previous studies revealed some structures of IGF1R, the cryo-EM apo structures of the receptor have never been reported. Herein, we reported four distinct cryo-EM structures that reveal the apo states of IGF1R. These conformations were classified as "Resting states" and "Active states", according to the orientation of α-CT helices and structural symmetry. In addition, a "Ligand-pocket" was formed in the active conformations, which presented a new view of conformational changes of apo-IGF1R. These results suggest a new dynamic change model to show the details of why and how ligands can bind to IGF1R.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen People's Second Hospital, Shenzhen, 518000, Guangdong, China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China; Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Cang Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Tianzi Wei
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, Hong Kong SAR, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Chuang Liu
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, Hong Kong SAR, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|