1
|
Lima JCDS, da Silva Cavalcante E, Gonçalves CR, Lima-Junior SE, Cardoso CAL, Antonialli-Junior WF. Effect of Seasonal Variation on the Cuticular Chemical Composition of Atta laevigata (Smith 1858) (Hymenoptera: Formicidae). J Chem Ecol 2025; 51:15. [PMID: 39888559 DOI: 10.1007/s10886-025-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 02/01/2025]
Abstract
Cuticular hydrocarbons (CHCs) constitute an important class of chemical compounds present in the cuticular layer of insects, where their main functions are to prevent desiccation of the cuticle and as signals for intraspecific recognition. Studies concerning CHCs have shown a phenotypic flexibility of their composition, depending on environmental factors. However, the way that each of these factors influences this variation remains little explored. The aim of the present study was to evaluate the effects of environmental variations on the cuticular chemical composition of the ant Atta laevigata. Workers from four different colonies nesting in forest edge environments were collected over the course of a year, during the hot and humid and cold and dry seasons. The cuticular compounds were extracted and then analyzed by gas chromatography, revealing that the compounds of this species belonged to the classes of linear alkanes, mono, di and trimethyl alkanes, alkenes and alkadienes. Furthermore, the cuticular profile varied significantly among colonies of this species and between seasons, while intra-season variability was more significant during the hot and humid season. The observed temporal variation indicated that the numbers of compounds and the proportion of different types of CHC can vary according to the period of the year, however with a greater significant variation in colonies in the hot and humid season. These results showed that variations in environmental conditions, especially climate, can have decisive effects in the dynamics of cuticular chemistry.
Collapse
Affiliation(s)
- Jean Carlos Dos Santos Lima
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil.
| | - Elivelto da Silva Cavalcante
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Cristiano Ramos Gonçalves
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Sidnei Eduardo Lima-Junior
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Claudia Andrea Lima Cardoso
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - William Fernando Antonialli-Junior
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| |
Collapse
|
2
|
Yee WL, Rose AC, Milnes JM, Feder JL. Differential water deprivation tolerances of adult Rhagoletis indifferens and Rhagoletis pomonella (Diptera: Tephritidae) as a possible factor affecting their distributional abundances in Washington State, USA. ENVIRONMENTAL ENTOMOLOGY 2024; 53:1078-1092. [PMID: 39412207 DOI: 10.1093/ee/nvae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 12/18/2024]
Abstract
Insects that evolved in mesic regions may have difficulty establishing in xeric regions. Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) was introduced into drier western North America from mesic eastern North America while Rhagoletis indifferens Curran is native to western North America. Here, we predicted that R. indifferens survives water deprivation longer than R. pomonella, as R. indifferens is more abundant than R. pomonella in dry central Washington (WA) State, USA. Sweet and bitter cherry-origin R. indifferens and apple- and hawthorn-origin R. pomonella from xeric central or mesic western WA were provided water throughout or were water-deprived at 2-4 and 14-18 d old and held at 20°C or 30/31°C and daily survival recorded. At 20°C and 30°C, western WA apple-origin R. pomonella provided water survived longer than sweet cherry-origin R. indifferens. When water-deprived, however, 2-4 d old R. indifferens, although smaller, survived significantly longer than western WA apple-origin R. pomonella of the same age. This was also generally true for 14-18 d old flies, although differences were less often significant. Central WA large-thorn hawthorn-origin R. pomonella survived water deprivation significantly longer than western WA apple-origin R. pomonella, and as long as R. indifferens. Water-deprived flies of both species survived longer at 20°C than 30/31°C. Survival analyses suggest that low water availability rather than high temperature contributes to lower R. pomonella than R. indifferens abundances in central WA, with R. pomonella populations in that region differing from western WA R. pomonella with respect to tolerance of xeric climates.
Collapse
Affiliation(s)
- Wee L Yee
- USDA-ARS, Temperate Tree Fruit & Vegetable Research Unit, Wapato, WA, USA
| | - Alexander C Rose
- USDA-ARS, Temperate Tree Fruit & Vegetable Research Unit, Wapato, WA, USA
| | - Joshua M Milnes
- Washington State Department of Agriculture - Plant Protection Division, Yakima, WA, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
3
|
Nayal K, Krupp JJ, Abdalla OHMH, Levine JD. Cuticular hydrocarbons promote desiccation resistance by preventing transpiration in Drosophila melanogaster. J Exp Biol 2024; 227:jeb247752. [PMID: 39445981 PMCID: PMC11634026 DOI: 10.1242/jeb.247752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Desiccation is a fundamental challenge confronted by all terrestrial organisms, particularly insects. With a relatively small body size and large surface-to-volume ratio, insects are susceptible to rapid evaporative water loss and dehydration. To counter these physical constraints, insects have acquired specialized adaptations, including a hydrophobic cuticle that acts as a physical barrier to transpiration. We previously reported that genetic ablation of the oenocytes - specialized cells required to produce cuticular hydrocarbons (HCs) - significantly reduced survivorship under desiccative conditions in the fruit fly, Drosophila melanogaster. Although increased transpiration - resulting from the loss of the oenocytes and HCs - was hypothesized to be responsible for the decrease in desiccation survival, this possibility was not directly tested. Here, we investigated the underlying physiological mechanisms contributing to the reduced survival of oenocyte-less (oe-) flies. Using flow-through respirometry, we show that oe- flies, regardless of sex, exhibited an increased rate of transpiration relative to wild-type controls, and that coating oe- flies with fly-derived HC extract restored the rate to near-wild-type levels. Importantly, total body water stores, including metabolic water reserves, as well as dehydration tolerance, measured as the percentage of total body water lost at the time of death, were largely unchanged in oe- flies. Together, our results directly demonstrate the critically important role played by the oenocytes and cuticular HCs to promote desiccation resistance.
Collapse
Affiliation(s)
- Kamar Nayal
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Joshua J. Krupp
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Osama H. M. H. Abdalla
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Joel D. Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
4
|
Jean-François F, Pratibha S, Stéphane F, Enisa A, Fabrice N, Bernard M, Deepa A, Claude E. Experimental Evolution Induced by Maternal Post-copulatory Factors in Drosophila. Behav Genet 2024:10.1007/s10519-024-10206-w. [PMID: 39570491 DOI: 10.1007/s10519-024-10206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Experimental evolution is a powerful approach to study the mechanisms underlying the adaptation of selected characters under the conditions chosen in the laboratory. Drosophila melanogaster is a species frequently used to investigate the experimental evolution of characters, especially those related to reproduction. Recent intra-generational studies showed that cis-vaccenyl acetate (cVa), a sex pheromone transferred with bacteria on eggs by females either 1 day (D1) or 5 days (D5) after copulation, differentially affected the behavior and pheromone release in adult males emerging from these eggs. Here, we extended this finding to determine whether this alternative egg exposure repeated over many generations could affect a larger set of reproduction-related characters in both sexes. To test the repetitive effects of maternal D1 or D5 post-copulatory factors, we carried out an experimental selection procedure consisting of exposing eggs during 40 successive generations to D1 or D5 maternal post-copulatory factors. We compared cVa and cuticular pheromones, courtship and mating behaviors, and fecundity at different generations in flies of D1 and D5 lines. Based on findings obtained at earlier generations, we also determined survival, bacterial composition and gene expression in adults. Some of these complex traits significantly diverged between D1 and D5 lines indicating that maternal post-copulatory factors transmitted to eggs can influence adult life history traits.
Collapse
Affiliation(s)
- Ferveur Jean-François
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.
| | | | - Fraichard Stéphane
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Aruçi Enisa
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
- Molecular and Biology Department, Cornell University, Ithaca, NY, USA
| | - Neiers Fabrice
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Moussian Bernard
- Animal Genetics, Interfaculty Institute for Cell Biology, Universität Tübingen, Tübingen, Germany
- INRAE, CNRS, Institut Sophia Agrobiotech, Université Côte d'Azur, Sophia Antipolis, France
| | - Agashe Deepa
- National Centre for Biological Sciences (NCBS-TIFR), Bengaluru, India
| | - Everaerts Claude
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Ferveur JF, Cortot J, Moussian B, Everaerts C. Population Density Affects Drosophila Male Pheromones in Laboratory-Acclimated and Natural Lines. J Chem Ecol 2024; 50:536-548. [PMID: 39186176 DOI: 10.1007/s10886-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
In large groups of vertebrates and invertebrates, aggregation can affect biological characters such as gene expression, physiological, immunological and behavioral responses. The insect cuticle is covered with hydrocarbons (cuticular hydrocarbons; CHCs) which reduce dehydration and increase protection against xenobiotics. Drosophila melanogaster and D. simulans flies also use some of their CHCs as contact pheromones. In these two sibling species, males also produce the volatile pheromone 11-cis-Vaccenyl acetate (cVa). To investigate the effect of insect density on the production of CHCs and cVa we compared the level of these male pheromones in groups of different sizes. These compounds were measured in six lines acclimated for many generations in our laboratory - four wild-type and one CHC mutant D. melanogaster lines plus one D. simulans line. Increasing the group size substantially changed pheromone amounts only in the four D. melanogaster wild-type lines. To evaluate the role of laboratory acclimation in this effect, we measured density-dependent pheromonal production in 21 lines caught in nature after 1, 12 and 25 generations in the laboratory. These lines showed varied effects which rarely persisted across generations. Although increasing group size often affected pheromone production in laboratory-established and freshly-caught D. melanogaster lines, this effect was not linear, suggesting complex determinants.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France.
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| |
Collapse
|
6
|
Baleba SBS, Jiang NJ, Hansson BS. Temperature-mediated dynamics: Unravelling the impact of temperature on cuticular hydrocarbon profiles, mating behaviour, and life history traits in three Drosophila species. Heliyon 2024; 10:e36671. [PMID: 39263086 PMCID: PMC11387341 DOI: 10.1016/j.heliyon.2024.e36671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
In a world grappling with climate change, understanding the enduring impact of changes in temperatures on insect adult traits is crucial. It is proposed that cold- and warm-adapted species exhibit specialized behavioural and physiological responses to their respective temperature ranges. In contrast, generalist species maintain more stable metabolic and developmental rates across a broader range of temperatures, reflecting their ability to exploit diverse thermal niches. Here, we explored this intricate response to temperature exposure in three Drosophila species: Drosophila ezoana originating in Arctic regions, D. novamexicana in arid, hot environments, and in the cosmopolitan species D. virilis. Rearing these flies at 15, 20, 25, and 30 °C revealed striking variations in their cuticular hydrocarbon (CHC) profiles, known to mediate mate recognition and prevent water loss in insects. The cold-adapted D. ezoana consistently exhibited reduced CHC levels with increasing temperatures, while the warm-adapted D. novamexicana and the cosmopolitan D. virilis displayed more nuanced responses. Additionally, we observed a significant influence of rearing temperature on the mating behaviour of these flies, where those reared at the extreme temperatures, 15 and 30 °C, exhibiting reduced mating success. Consequently, this led to a decrease in the production of adult offspring. Also, these adult offspring underwent notable alterations in life history traits, reaching adulthood more rapidly at 25 and 30 °C but with lower weight and reduced longevity. Furthermore, among these offspring, those produced by the cold-adapted D. ezoana were more vulnerable to desiccation and starvation than those from the warm-adapted D. novamexicana and the cosmopolitan D. virilis. In summary, our research demonstrates that Drosophila species from diverse ecological regions exhibit distinct responses to temperature changes, as evidenced by variations in CHC profiles, mating behaviours, fertility, and life history traits. This provides valuable insights into how environmental conditions shape the biology and ecology of insects.
Collapse
Affiliation(s)
- Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Nan-Ji Jiang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
7
|
Zamora-Briseño JA, Schunke JM, Arteaga-Vázquez MA, Arredondo J, Tejeda MT, Ascencio-Ibáñez JT, Díaz-Fleischer F. Transcriptional response of laboratory-reared Mexican fruit flies ( Anastrepha ludens Loew) to desiccation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:563-570. [PMID: 39295441 DOI: 10.1017/s0007485324000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Confronting environments with low relative humidity is one of the main challenges faced by insects with expanding distribution ranges. Anastrepha ludens (the Mexican fruit fly) has evolved to cope with the variable conditions encountered during its lifetime, which allows it to colonise a wide range of environments. However, our understanding of the mechanisms underpinning the ability of this species to confront environments with low relative humidity is incomplete. In this sense, omic approaches such as transcriptomics can be helpful for advancing our knowledge on how this species copes with desiccation stress. Considering this, in this study, we performed transcriptomic analyses to compare the molecular responses of laboratory-reared A. ludens exposed and unexposed to desiccation. Data from the transcriptome analyses indicated that the responses to desiccation are shared by both sexes. We identified the up-regulation of transcripts encoding proteins involved in lipid metabolism and membrane remodelling, as well as proteases and cuticular proteins. Our results provide a framework for understanding the response to desiccation stress in one of the most invasive fruit fly species in the world.
Collapse
Affiliation(s)
| | - James M Schunke
- Department of Structural and Molecular Biochemistry, North Carolina State University
| | | | - José Arredondo
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | - Marco T Tejeda
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | | | | |
Collapse
|
8
|
Britton S, Davidowitz G. No evidence for the melanin desiccation hypothesis in a larval Lepidopteran. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104669. [PMID: 38936542 DOI: 10.1016/j.jinsphys.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Water regulation is an important physiological challenge for insects due to their small body sizes and large surface area to volume ratios. Adaptations for decreasing cuticular water loss, the largest avenue of loss, are especially important. The melanin desiccation hypothesis states that melanin molecules in the cuticle may help prevent water loss, thus offering protection from desiccation. This hypothesis has much empirical support in Drosophila species, but remains mostly untested in other taxa, including Lepidoptera. Because melanin has many other important functions in insects, its potential role in desiccation prevention is not always clear. In this study we investigated the role of melanin in desiccation prevention in the white-lined Sphinx moth, Hyles lineata (Lepidoptera, Sphingidae), which shows high plasticity in the degree of melanin pigmentation during the late larval instars. We took advantage of this plasticity and used density treatments to induce a wide range of cuticular melanization; solitary conditions induced low melanin pigmentation while crowded conditions induced high melanin pigmentation. We tested whether more melanic larvae from the crowded treatment were better protected from desiccation in three relevant responses: i) total water loss over a desiccation period, ii) change in hemolymph osmolality over a desiccation period, and iii) evaporation rate of water through the cuticle. We did not find support for the melanin desiccation hypothesis in this species. Although treatment influenced total water loss, this effect did not occur via degree of melanization. Interestingly, this implies that crowding, which was used to induce high melanin phenotypes, may have other physiological effects that influence water regulation. There were no differences between treatments in cuticular evaporative water loss or change in hemolymph osmolality. However, we conclude that osmolality may not sufficiently reflect water loss in this case. This study emphasizes the context dependency of melanin's role in desiccation prevention and the importance of considering how it may vary across taxa. In lepidopteran larvae that are constantly feeding phytophagous insects with soft cuticles, melanin may not be necessary for preventing cuticular water loss.
Collapse
Affiliation(s)
- Sarah Britton
- University of Arizona, Department of Ecology and Evolutionary Biology, USA.
| | - Goggy Davidowitz
- University of Arizona, Department of Ecology and Evolutionary Biology, USA; University of Arizona, Department of Entomology, USA
| |
Collapse
|
9
|
Ferveur JF, Cortot J, Cobb M, Everaerts C. Natural Diversity of Cuticular Pheromones in a Local Population of Drosophila after Laboratory Acclimation. INSECTS 2024; 15:273. [PMID: 38667403 PMCID: PMC11050499 DOI: 10.3390/insects15040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Experimental studies of insects are often based on strains raised for many generations in constant laboratory conditions. However, laboratory acclimation could reduce species diversity reflecting adaptation to varied natural niches. Hydrocarbons covering the insect cuticle (cuticular hydrocarbons; CHCs) are reliable adaptation markers. They are involved in dehydration reduction and protection against harmful factors. CHCs can also be involved in chemical communication principally related to reproduction. However, the diversity of CHC profiles in nature and their evolution in the laboratory have rarely been investigated. Here, we sampled CHC natural diversity in Drosophila melanogaster flies from a particular location in a temperate region. We also measured cis-Vaccenyl acetate, a male-specific volatile pheromone. After trapping flies using varied fruit baits, we set up 21 D. melanogaster lines and analysed their pheromones at capture and after 1 to 40 generations in the laboratory. Under laboratory conditions, the broad initial pheromonal diversity found in male and female flies rapidly changed and became more limited. In some females, we detected CHCs only reported in tropical populations: the presence of flies with a novel CHC profile may reflect the rapid adaptation of this cosmopolitan species to global warming in a temperate area.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK;
| | - Claude Everaerts
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| |
Collapse
|
10
|
Yang Y, Flaven-Pouchon J, Cortot J, Ferveur JF, Moussian B. Colorimetric surface lipid quantification in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22091. [PMID: 38385805 DOI: 10.1002/arch.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Insects are covered with free neutral cuticular hydrocarbons (CHC) that may be linear, branched, and unsaturated and vary in their chain length. The CHC composition is species-specific and contributes to the adaptation of the animal to its ecological niche. Commonly, CHCs contribute substantially to the inward and outward barrier function of the cuticle and serve pheromonal communication. They are generally determined by gas-chromatography, a time-consuming method requiring detailed expertize, but it is not available in many laboratories. Here, we report on the establishment of a colorimetric method allowing semi-quantitative determination of unsaturated CHCs in Drosophila flies. This method is based on the in vitro reaction of vanillin with double bounds in lipid molecules in an acidic solution to generate a reddish color. We found a robust correlation between gas chromatographic and vanillin-colorimetric data on unsaturated CHCs amounts in single flies. As the role of unsaturated CHCs in the performance of insects in their environment is only partly understood, we think that this novel method would allow fast and broad analyses of this type of CHCs in insects both in the field and in laboratories and thereby contribute to a substantial improvement in the investigation of this matter.
Collapse
Affiliation(s)
- Yang Yang
- Interfaculty Institute for Cell Biology, Animal Genetics, Universität Tübingen, Tübingen, Germany
| | - Justin Flaven-Pouchon
- Interfaculty Institute for Cell Biology, Animal Genetics, Universität Tübingen, Tübingen, Germany
| | - Jerôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Universite ́ de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Universite ́ de Bourgogne, Dijon, France
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
11
|
Tao YD, Liu Y, Wan XS, Xu J, Fu DY, Zhang JZ. High and Low Temperatures Differentially Affect Survival, Reproduction, and Gene Transcription in Male and Female Moths of Spodoptera frugiperda. INSECTS 2023; 14:958. [PMID: 38132631 PMCID: PMC10743771 DOI: 10.3390/insects14120958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, we found that both heat and cold stresses significantly affected the survival and reproduction of both sexes in Spodoptera frugiperda adults, with larvae showing relatively higher extreme temperature tolerance. Further transcriptomic analysis in adults found remarkable differences and similarities between sexes in terms of temperature stress responses. Metabolism-related processes were suppressed in heat stressed females, which did not occur to the same extend in males. Moreover, both heat and cold stress reduced immune activities in both sexes. Heat stress induced the upregulation of many heat shock proteins in both sexes, whereas the response to cold stress was insignificant. More cold tolerance-related genes, such as cuticle proteins, UDP-glucuronosyltransferase, and facilitated trehalose transporter Tret1, were found upregulated in males, whereas most of these genes were downregulated in females. Moreover, a large number of fatty acid-related genes, such as fatty acid synthases and desaturases, were differentially expressed under heat and cold stresses in both sexes. Heat stress in females induced the upregulation of a large number of zinc finger proteins and reproduction-related genes; whereas cold stress induced downregulation in genes linked to reproduction. In addition, TRPA1-like encoding genes (which have functions involved in detecting temperature changes) and sex peptide receptor-like genes were found to be differentially expressed in stressed moths. These results indicate sex-specific heat and cold stress responses and adaptive mechanisms and suggest sex-specific trade-offs between stress-resistant progresses and fundamental metabolic processes as well as between survival and reproduction.
Collapse
Affiliation(s)
- Yi-Dong Tao
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Yu Liu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Xiao-Shuang Wan
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jin Xu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jun-Zhong Zhang
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| |
Collapse
|
12
|
Ren Y, Li Y, Ju Y, Zhang W, Wang Y. Insect cuticle and insecticide development. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22057. [PMID: 37840232 DOI: 10.1002/arch.22057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Insecticide resistance poses a significant challenge, diminishing the effectiveness of chemical insecticides. To address this global concern, the development of novel and efficient pest management technologies based on chemical insecticides is an ongoing necessity. The insect cuticle, a highly complex and continuously renewing organ, plays a crucial role in this context. On one hand, as the most vital structure, it serves as a suitable target for insecticides. On the other hand, it acts as the outermost barrier, isolating the insect's inner organs from the environment, and thus offering resistance to contact with insecticides, preventing their entry into insect bodies. Our work focuses on key targets concerning cuticle formation and the interaction between the cuticle and contact insecticides. Deeper studying insect cuticles and understanding their structure-function relationship, formation process, and regulatory mechanisms during cuticle development, as well as investigating insecticide resistance related to the barrier properties of insect cuticles, are promising strategies not only for developing novel insecticides but also for discovering general synergists for contact insecticides. With this comprehensive review, we hope to contribute valuable insights into the development of effective pest management solutions and the mitigation of insecticide resistance.
Collapse
Affiliation(s)
- Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Wang S, Yun Y, Tian X, Su Z, Liao Z, Li G, Ma T. HMDB: A curated database of genes involved in hydrocarbon monooxygenation reaction with homologous genes as background. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132397. [PMID: 37639797 DOI: 10.1016/j.jhazmat.2023.132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The investigation of hydrocarbon degradation potential of environmental microorganisms is an important research topic, whether for the global carbon cycle or oil pollution remediation. Under aerobic conditions, the microorganisms employ a range of monooxygenases to use hydrocarbons substrates as a source of carbon and energy. With the explosion of sequencing data, mining genes in genomes or metagenomes has become computationally expensive and time-consuming. We proposed the HMDB, which is a professional gene database of hydrocarbon monooxygenases. HMDB contains 38 genes, which encode 11 monooxygenases responsible for the hydroxylation of 8 hydrocarbons. To reduce false positives, the strategy of using homologous genes as background noise was applied for HMDB. We added 10,095 gene sequences of homologous enzymes which took non-hydrocarbons as substrates to HMDB. The classic BLAST method and best-hit strategy were recommended for HMDB usage, but not limited. The performance of HMDB was validated using 264,402 prokaryote genomes from RefSeq and 51 metagenomes from SRA. The results showed that HMDB database had high sensitivity and low false positive rate. We release the HMDB database here, hoping to speed up the process for investigation of hydrocarbon monooxygenases in massive metagenomic data. HMDB is freely available at http://www.orgene.net/HMDB/.
Collapse
Affiliation(s)
- Shaojing Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Yun
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuefeng Tian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhaoying Su
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zitong Liao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ting Ma
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Mitchell C, Wylde Z, Del Castillo E, Rapkin J, House CM, Hunt J. Beauty or function? The opposing effects of natural and sexual selection on cuticular hydrocarbons in male black field crickets. J Evol Biol 2023; 36:1266-1281. [PMID: 37534753 DOI: 10.1111/jeb.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2023]
Abstract
Although many theoretical models of male sexual trait evolution assume that sexual selection is countered by natural selection, direct empirical tests of this assumption are relatively uncommon. Cuticular hydrocarbons (CHCs) are known to play an important role not only in restricting evaporative water loss but also in sexual signalling in most terrestrial arthropods. Insects adjusting their CHC layer for optimal desiccation resistance is often thought to come at the expense of successful sexual attraction, suggesting that natural and sexual selection are in opposition for this trait. In this study, we sampled the CHCs of male black field crickets (Teleogryllus commodus) using solid-phase microextraction and then either measured their evaporative water loss or mating success. We then used multivariate selection analysis to quantify the strength and form of natural and sexual selection targeting male CHCs. Both natural and sexual selection imposed significant linear and stabilizing selection on male CHCs, although for very different combinations. Natural selection largely favoured an increase in the total abundance of CHCs, especially those with a longer chain length. In contrast, mating success peaked at a lower total abundance of CHCs and declined as CHC abundance increased. However, mating success did improve with an increase in a number of specific CHC components that also increased evaporative water loss. Importantly, this resulted in the combination of male CHCs favoured by natural selection and sexual selection being strongly opposing. Our findings suggest that the balance between natural and sexual selection is likely to play an important role in the evolution of male CHCs in T. commodus and may help explain why CHCs are so divergent across populations and species.
Collapse
Affiliation(s)
- Christopher Mitchell
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Zachariah Wylde
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - Enrique Del Castillo
- Department of Industrial & Manufacturing Engineering and Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James Rapkin
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - John Hunt
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| |
Collapse
|
15
|
Whyte BA, Sandidge R, Buellesbach J, Cash EI, Scheckel KJ, Gibson JD, Tsutsui ND. The role of body size and cuticular hydrocarbons in the desiccation resistance of invasive Argentine ants (Linepithema humile). J Exp Biol 2023; 226:jeb245578. [PMID: 37497773 PMCID: PMC10482004 DOI: 10.1242/jeb.245578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
An insect's cuticle is typically covered in a layer of wax prominently featuring various hydrocarbons involved in desiccation resistance and chemical communication. In Argentine ants (Linepithema humile), cuticular hydrocarbons (CHCs) communicate colony identity, but also provide waterproofing necessary to survive dry conditions. Theory suggests different CHC compound classes have functional trade-offs, such that selection for compounds used in communication would compromise waterproofing, and vice versa. We sampled sites of invasive L. humile populations from across California to test whether CHC differences between them can explain differences in their desiccation survival. We hypothesized that CHCs whose abundance was correlated with environmental factors would determine survival during desiccation, but our regression analysis did not support this hypothesis. Interestingly, we found the abundance of most CHCs had a negative correlation with survival, regardless of compound class. We suggest that the CHC differences between L. humile nests in California are insufficient to explain their differential survival against desiccation, and that body mass is a better predictor of desiccation survival at this scale of comparison.
Collapse
Affiliation(s)
- Brian A. Whyte
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Rebecca Sandidge
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Jan Buellesbach
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California, Berkeley, Berkeley, CA 94720-3114, USA
- Institute for Evolution and Biodiversity, University of Muenster, Hüfferstr. 1, D-48149 Münster, Germany
| | - Elizabeth I. Cash
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Kelsey J. Scheckel
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Joshua D. Gibson
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California, Berkeley, Berkeley, CA 94720-3114, USA
- Department of Biology, Georgia Southern University, PO Box 8042-1, Statesboro, GA 30460, USA
| | - Neil D. Tsutsui
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| |
Collapse
|
16
|
Dong W, Wu WJ, Song CY, Li T, Zhang JZ. Jinggangmycin stimulates reproduction and increases CHCs-dependent desiccation tolerance in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105484. [PMID: 37532348 DOI: 10.1016/j.pestbp.2023.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 08/04/2023]
Abstract
Jinggangmycin (JGM), an agricultural antibiotic compound, is mainly used against the rice sheath blight (RSB) Rhizoctonia solani. However, its application may lead to unexpected consequences in insects. In this study, the effects of JGM on the physiological parameters of Drosophila melanogaster were investigated. The results showed that 0.005 g/ml JGM exposure increased female daily egg production and extended the oviposition period, while there was no significant effect on reproduction at 0.016 g/ml. At the same time, desiccation tolerance increased in flies fed 0.005 g/ml JGM. The RT-qPCR results revealed that FAS1 and FAS3 expression were upregulated in 0.005 g/ml JGM treated flies. Consistently, the amount of CHCs accumulated on the cuticle surface increased upon JGM treatment at 0.005 g/ml. Moreover, RNAi for FAS3 decreased desiccation tolerance of JGM-treated flies. These results suggest that JGM affects fatty acid biosynthesis, which in turn enhances reproduction and desiccation tolerance in Drosophila.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China.
| | - Wen-Jun Wu
- Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Chen-Yang Song
- Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Ting Li
- Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
Kanyile SN, Engl T, Heddi A, Kaltenpoth M. Endosymbiosis allows Sitophilus oryzae to persist in dry conditions. Front Microbiol 2023; 14:1199370. [PMID: 37497544 PMCID: PMC10366622 DOI: 10.3389/fmicb.2023.1199370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Insects frequently associate with intracellular microbial symbionts (endosymbionts) that enhance their ability to cope with challenging environmental conditions. Endosymbioses with cuticle-enhancing microbes have been reported in several beetle families. However, the ecological relevance of these associations has seldom been demonstrated, particularly in the context of dry environments where high cuticle quality can reduce water loss. Thus, we investigated how cuticle-enhancing symbionts of the rice-weevil, Sitophilus oryzae contribute to desiccation resistance. We exposed symbiotic and symbiont-free (aposymbiotic) beetles to long-term stressful (47% RH) or relaxed (60% RH) humidity conditions and measured population growth. We found that symbiont presence benefits host fitness especially under dry conditions, enabling symbiotic beetles to increase their population size by over 33-fold within 3 months, while aposymbiotic beetles fail to increase in numbers beyond the starting population in the same conditions. To understand the mechanisms underlying this drastic effect, we compared beetle size and body water content and found that endosymbionts confer bigger body size and higher body water content. While chemical analyses revealed no significant differences in composition and quantity of cuticular hydrocarbons after long-term exposure to desiccation stress, symbiotic beetles lost water at a proportionally slower rate than did their aposymbiotic counterparts. We posit that the desiccation resistance and higher fitness observed in symbiotic beetles under dry conditions is due to their symbiont-enhanced thicker cuticle, which provides protection against cuticular transpiration. Thus, we demonstrate that the cuticle enhancing symbiosis of Sitophilus oryzae confers a fitness benefit under drought stress, an ecologically relevant condition for grain pest beetles. This benefit likely extends to many other systems where symbiont-mediated cuticle synthesis has been identified, including taxa spanning beetles and ants that occupy different ecological niches.
Collapse
Affiliation(s)
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
18
|
Ostwald MM, Tretter S, Buellesbach J, Calixto JM, Fewell JH, Gadau J, Baudier KM. Body mass and cuticular hydrocarbon profiles, but not queen number, underlie worker desiccation resistance in a facultatively polygynous harvester ant (Pogonomyrmex californicus). J Comp Physiol B 2023; 193:261-269. [PMID: 37120421 DOI: 10.1007/s00360-023-01488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
As small-bodied terrestrial organisms, insects face severe desiccation risks in arid environments, and these risks are increasing under climate change. Here, we investigate the physiological, chemical, and behavioral mechanisms by which harvester ants, one of the most abundant arid-adapted insect groups, cope with desiccating environmental conditions. We aimed to understand how body size, cuticular hydrocarbon profiles, and queen number impact worker desiccation resistance in the facultatively polygynous harvester ant, Pogonomyrmex californicus. We measured survival at 0% humidity of field-collected worker ants sourced from three closely situated populations within a semi-arid region of southern California. These populations vary in queen number, with one population dominated by multi-queen colonies (primary polygyny), one population dominated by single-queen colonies, and one containing an even mix of single- and multi-queen colonies. We found no effect of population on worker survival in desiccation assays, suggesting that queen number does not influence colony desiccation resistance. Across populations, however, body mass and cuticular hydrocarbon profiles significantly predicted desiccation resistance. Larger-bodied workers survived longer in desiccation assays, emphasizing the importance of reduced surface area-to-volume ratios in maintaining water balance. Additionally, we observed a positive relationship between desiccation resistance and the abundance of n-alkanes, supporting previous work that has linked these high-melting point compounds to improved body water conservation. Together, these results contribute to an emerging model explaining the physiological mechanisms of desiccation resistance in insects.
Collapse
Affiliation(s)
| | - Sandra Tretter
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | | | - Jürgen Gadau
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Kaitlin M Baudier
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
19
|
Zhao Y, Liu W, Zhao X, Yu Z, Guo H, Yang Y, Moussian B, Zhu KY, Zhang J. Lipophorin receptor is required for the accumulations of cuticular hydrocarbons and ovarian neutral lipids in Locusta migratoria. Int J Biol Macromol 2023; 236:123746. [PMID: 36806776 DOI: 10.1016/j.ijbiomac.2023.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Lipophorin is the most abundant lipoprotein particle in insect hemolymph. Lipophorin receptor (LPR) is a glycoprotein that binds to the lipophorin and mediates cellular uptake and metabolism of lipids by endocytosis. However, the roles of LPR in uptake of lipids in the integument and ovary remain unknown in the migratory locust (Locusta migratoria). In present study, we characterized the molecular properties and biological roles of LmLPR in L. migratoria. The LmLPR transcript level was high in the first 2 days of the adults after eclosion, then gradually declined. LmLPR was predominately expressed in fat body, ovary and integument. Using immuno-detection methods, we revealed that LmLPR was mainly localized in the membrane of oenocytes, epidermal cells, fat body cells and follicular cells. RNAi-mediated silencing of LmLPR led to a slight decrease of the cuticle hydrocarbon contents but with little effect on the cuticular permeability. However, the neutral lipid content was significantly decreased in the ovary after RNAi against LmLPR, which led to a retarded ovarian development. Taken together, our results indicated that LmLPR is involved in the uptake and accumulation of lipids in the ovary and plays a crucial role in ovarian development in L. migratoria. Therefore, LmLPR could be a promising RNAi target for insect pest management by disrupting insect ovarian development.
Collapse
Affiliation(s)
- Yiyan Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hongfang Guo
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis CEDEX, France
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
20
|
Horváth V, Guirao-Rico S, Salces-Ortiz J, Rech GE, Green L, Aprea E, Rodeghiero M, Anfora G, González J. Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations. BMC Biol 2023; 21:35. [PMID: 36797754 PMCID: PMC9933328 DOI: 10.1186/s12915-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Climate change is one of the main factors shaping the distribution and biodiversity of organisms, among others by greatly altering water availability, thus exposing species and ecosystems to harsh desiccation conditions. However, most of the studies so far have focused on the effects of increased temperature. Integrating transcriptomics and physiology is key to advancing our knowledge on how species cope with desiccation stress, and these studies are still best accomplished in model organisms. RESULTS Here, we characterized the natural variation of European D. melanogaster populations across climate zones and found that strains from arid regions were similar or more tolerant to desiccation compared with strains from temperate regions. Tolerant and sensitive strains differed not only in their transcriptomic response to stress but also in their basal expression levels. We further showed that gene expression changes in tolerant strains correlated with their physiological response to desiccation stress and with their cuticular hydrocarbon composition, and functionally validated three of the candidate genes identified. Transposable elements, which are known to influence stress response across organisms, were not found to be enriched nearby differentially expressed genes. Finally, we identified several tRNA-derived small RNA fragments that differentially targeted genes in response to desiccation stress. CONCLUSIONS Overall, our results showed that basal gene expression differences across individuals should be analyzed if we are to understand the genetic basis of differential stress survival. Moreover, tRNA-derived small RNA fragments appear to be relevant across stress responses and allow for the identification of stress-response genes not detected at the transcriptional level.
Collapse
Affiliation(s)
- Vivien Horváth
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | | | | | - Gabriel E Rech
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Eugenio Aprea
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Mirco Rodeghiero
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Gianfranco Anfora
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
| |
Collapse
|
21
|
Wang Z, Receveur JP, Pu J, Cong H, Richards C, Liang M, Chung H. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife 2022; 11:e80859. [PMID: 36473178 PMCID: PMC9757832 DOI: 10.7554/elife.80859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the water-proofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine-learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.
Collapse
Affiliation(s)
- Zinan Wang
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| | - Joseph P Receveur
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
- Institute for Genome Sciences, University of MarylandBaltimoreUnited States
| | - Jian Pu
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- College of Agriculture, Sichuan Agricultural UniversitySichuanChina
| | - Haosu Cong
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Cole Richards
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Muxuan Liang
- Department of Biostatistics, University of FloridaGainesvilleUnited States
| | - Henry Chung
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
22
|
Bai TT, Pei XJ, Liu TX, Fan YL, Zhang SZ. Melanin synthesis genes BgTH and BgDdc affect body color and cuticle permeability in Blattella germanica. INSECT SCIENCE 2022; 29:1552-1568. [PMID: 35191584 DOI: 10.1111/1744-7917.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 05/12/2023]
Abstract
Melanin is involved in cuticle pigmentation and sclerotization of insects, which is critical for maintaining structural integrity and functional completeness of insect cuticle. The 2 key enzymes of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC) predicted in melanin biosynthesis are usually conserved in insects. However, it is unclear whether their function is related to epidermal permeability. In this study, we identified and cloned the gene sequences of BgTH and BgDdc from Blattella germanica, and revealed that they both showed a high expression at the molting, and BgTH was abundant in the head and integument while BgDdc was expressed highest in the fat body. Using RNA interference (RNAi), we found that knockdown of BgTH caused molting obstacles in some cockroaches, with the survivors showing pale color and softer integuments, while knockdown of BgDdc was viable and generated an abnormal light brown body color. Desiccation assay showed that the dsBgTH-injected adults died earlier than control groups under a dry atmosphere, but dsBgDdc-injected cockroaches did not. In contrast, when dsRNA-treated cockroaches were reared under a high humidity condition, almost no cockroaches died in all treatments. Furthermore, with eosin Y staining assay, we found that BgTH-RNAi resulted in a higher cuticular permeability, and BgDdc-RNAi also caused slight dye penetration. These results demonstrate that BgTH and BgDdc function in body pigmentation and affect the waterproofing ability of the cuticle, and the reduction of cuticular permeability may be achieved through cuticle melanization.
Collapse
Affiliation(s)
- Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Present address: Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Fatty acyl-CoA reductase influences wax biosynthesis in the cotton mealybug, Phenacoccus solenopsis Tinsley. Commun Biol 2022; 5:1108. [PMID: 36261606 PMCID: PMC9582030 DOI: 10.1038/s42003-022-03956-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mealybugs are highly aggressive to a diversity of plants. The waxy layer covering the outermost part of the integument is an important protective defense of these pests. However, the molecular mechanisms underlying wax biosynthesis in mealybugs remain largely unknown. Here, we analyzed multi-omics data on wax biosynthesis by the cotton mealybug, Phenacoccus solenopsis Tinsley, and found that a fatty acyl-CoA reductase (PsFAR) gene, which was highly expressed in the fat bodies of female mealybugs, contributed to wax biosynthesis by regulating the production of the dominant chemical components of wax, cuticular hydrocarbons (CHCs). RNA interference (RNAi) against PsFAR by dsRNA microinjection and allowing mealybugs to feed on transgenic tobacco expressing target dsRNA resulted in a reduction of CHC contents in the waxy layer, and an increase in mealybug mortality under desiccation and deltamethrin treatments. In conclusion, PsFAR plays crucial roles in the wax biosynthesis of mealybugs, thereby contributing to their adaptation to water loss and insecticide stress. The role of a fatty acyl-CoA reductase (PsFAR) in wax biosynthesis of cotton mealybug is investigated, RNAi against PsFAR resulted in insects with lower generation of waxy filaments and higher mortality under desiccation and deltamethrin treatments.
Collapse
|
24
|
Yang Y, Li X, Liu D, Pei X, Khoso AG. Rapid Changes in Composition and Contents of Cuticular Hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) Clones Adapting to Desiccation Stress. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:508-518. [PMID: 35022723 DOI: 10.1093/jee/toab240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 06/14/2023]
Abstract
Cuticular hydrocarbons (CHCs) are diverse in insects, and include variable classes of cuticular lipids, contributing to waterproofing for insects under desiccation environments. However, this waterproofing function of CHCs is still not well characterized in aphids. In this study, we compared CHC profiles for desiccation-resistant and nonresistant genotypes of the grain aphid, Sitobion avenae (Fabricius), in responses to desiccation. Our result showed that a total of 27 CHCs were detected in S. avenae, and linear alkanes (e.g., n-C29) were found to be the predominant components. Long-chain monomethyl alkanes were found to associate closely with water loss rates in S. avenae in most cases. Resistant genotypes of both wing morphs had higher contents of short-chain n-alkanes under control than nonresistant genotypes, showing the importance of short-chain n-alkanes in constitutive desiccation resistance. Among these, n-C25 might provide a CHC signature to distinguish between desiccation-resistant and nonresistant individuals. Compared with linear alkanes, methyl-branched CHCs appeared to display higher plasticity in rapid responses to desiccation, especially for 2-MeC26, implying that methyl-branched CHCs could be more sensitive to desiccation, and play more important roles in induced desiccation-resistance. Thus, both constitutive and induced CHCs (linear or methyl-branched) can contribute to adaptive responses of S. avenae populations under desiccation environments. Our results provide substantial evidence for adaptive changes of desiccation resistance and associated CHCs in S. avenae, and have significant implications for aphid evolution and management in the context of global climate change.
Collapse
Affiliation(s)
- Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaosai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abdul Ghaffar Khoso
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Golian M, Bien T, Schmelzle S, Esparza-Mora MA, McMahon DP, Dreisewerd K, Buellesbach J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. INSECTS 2022; 13:insects13010083. [PMID: 35055926 PMCID: PMC8778109 DOI: 10.3390/insects13010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The waxy layer covering the surface of most terrestrial insects is mainly composed of non-polar lipids termed cuticular hydrocarbons (CHCs). These have a long research history as important dual traits for both desiccation prevention and chemical communication. We analyzed CHC profiles of seven species of the insect order Blattodea (termites and cockroaches) with the most commonly applied chromatographic method, gas-chromatography coupled with mass spectrometry (GC-MS), and the more novel approach of silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS). Comparing these two analytical methods, we demonstrated that the conventional GC-MS approach does not provide enough information on the entire CHC profile range in the tested species. Ag-LDI-MS was able to detect very long-chain CHCs ranging up to C58, which remained undetected when solely relying on standard GC-MS analysis. Additionally, we measured the body surface areas of each tested species applying 3D scanning technology to assess their respective CHC amounts per mm2. When adjusting for body surface areas, proportional CHC quantity distributions shifted considerably between our studied species, suggesting the importance of including this factor when conducting quantitative CHC comparisons, particularly in insects that vary substantially in body size. Abstract Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs may frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account.
Collapse
Affiliation(s)
- Marek Golian
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Sebastian Schmelzle
- Ecological Networks, Technical University of Darmstadt, Schnittspahnstr. 2, D-64287 Darmstadt, Germany;
| | - Margy Alejandra Esparza-Mora
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dino Peter McMahon
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
- Correspondence: ; Tel.: +49-(0)-251-83-21637
| |
Collapse
|
26
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
27
|
Torres-Banda V, Obregón-Molina G, Viridiana Soto-Robles L, Albores-Medina A, Fernanda López M, Zúñiga G. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotechnol J 2022; 20:3080-3095. [PMID: 35782727 PMCID: PMC9233182 DOI: 10.1016/j.csbj.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Dendroctonus bark beetles are the most destructive agents in coniferous forests. These beetles come into contact with the toxic compounds of their host's chemical defenses throughout their life cycle, some of which are also used by the insects as kairomones to select their host trees during the colonization process. However, little is known about the molecular mechanisms by which the insects counteract the toxicity of these compounds. Here, two sibling species of bark beetles, D. valens and D. rhizophagus, were stimulated with vapors of a blend of their main kairomones (α-pinene, β-pinene and 3-carene), in order to compare the transcriptional response of their gut. A total of 48 180 unigenes were identified in D. valens and 43 704 in D. rhizophagus, in response to kairomones blend. The analysis of differential gene expression showed a transcriptional response in D. valens (739 unigenes, 0.58–10.36 Log2FC) related to digestive process and in D. rhizophagus (322 unigenes 0.87–13.08 Log2FC) related to xenobiotics metabolism. The expression profiles of detoxification genes mainly evidenced the up-regulation of COEs and GSTs in D. valens, and the up-regulation of P450s in D. rhizophagus. Results suggest that terpenes metabolism comes accompanied by an integral hormetic response, result of compensatory mechanisms, including the activation of other metabolic pathways, to ensure the supply of energy and the survival of organisms which is specific for each species, according to its life history and ecological strategy.
Collapse
Affiliation(s)
- Verónica Torres-Banda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - L. Viridiana Soto-Robles
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP 07360, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| |
Collapse
|
28
|
Franco A, Salvia R, Scieuzo C, Schmitt E, Russo A, Falabella P. Lipids from Insects in Cosmetics and for Personal Care Products. INSECTS 2021; 13:insects13010041. [PMID: 35055884 PMCID: PMC8779901 DOI: 10.3390/insects13010041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary The use of insects as a new source of lipids is a topic of great interest from both environmental and economic points of view. In addition to use in feed and energy applications, lipids could be used for the formulation of personal care products. The cosmetics industry is always in search of new ingredients to use in novel product formulations. The processes mediated by bioconverter insects, such as Hermetia illucens, are really advantageous because starting from substrates of low economic and biological value (agri-food by-products, zootechnical, catering, and other waste), it is possible to obtain products of high commercial value. The composition of insect lipids depends on the feeding substrate, as well as the insect species, therefore for each personal care application, it is possible to find the most suitable starting conditions. In this review, we display a general outlook on insect lipids, the extraction processes, and their use in cosmetics and personal care fields. Abstract Insects, the most varied group of known organisms on Earth, are arousing great interest also for the possibility to use them as a feed and food source. The mass rearing of some species, defined as “bioconverters”, is spreading worldwide, thanks to their sustainability. At the end of the bioconversion process, breeders obtain eco-friendly biomolecules of high biological and economic value, including proteins and lipids, from larvae of bioconverter insects, in particular Hermetia illucens. Besides the most classical use of insect lipids as food additives, they are also used in the formulation of several products for personal care. The composition of insect lipids depends on the substrate on which the insects are reared but also on the insect species, so the cosmetic producers should consider these features to choose their insect starting point. The most abundant fatty acids detected in H. illucens are lauric, myristic, palmitic, and oleic acids, regardless of feed substrate; its fatty acids composition is favorable for soap composition, while their derivatives are used for detergent and shampoo. Here, we offer an overview of insect lipids, their extraction methods, and their application in cosmetics and personal care products.
Collapse
Affiliation(s)
- Antonio Franco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (R.S.); (P.F.)
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Eric Schmitt
- Protix B.V., Industriestaat 3, 5107 NC Dongen, The Netherlands;
| | - Antonella Russo
- Greenswitch s.r.l., Strada Provinciale Ferrandina—Macchia, 75013 Ferrandina, Italy;
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (R.S.); (P.F.)
| |
Collapse
|
29
|
Hamida ZC, Farine JP, Ferveur JF, Soltani N. Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108981. [PMID: 33493665 DOI: 10.1016/j.cbpc.2021.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Oberon® is a commercial formulation of spiromesifen, a pesticide inhibitor of lipid biosynthesis via acetyl CoA carboxylase, widely used in agricultural crop protection. However, its mode of action requires further analysis. We currently examined the effect of this product on Drosophila melanogaster as a non-target and model organism. Different concentrations of spiromesifen were administered by ingestion (and contact) during pre-imaginal development, and we evaluated its delayed action on adults. Our results suggest that spiromesifen induced insecticidal activity on D. melanogaster. Moreover, spiromesifen treatment significantly increased the duration of larval and pupal development at all tested concentrations while it shortened longevity in exposed males as compared to control males. Also, pre-imaginal exposure to spiromesifen quantitatively affected fatty acids supporting its primary mode of action on lipid synthesis. In addition, this product was found to modify cuticular hydrocarbon profiles in exposed female and male flies as well as their sexual behavior and reproductive capacity.
Collapse
Affiliation(s)
- Z C Hamida
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria; Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J P Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J F Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| |
Collapse
|
30
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
31
|
Bogaerts‐Márquez M, Guirao‐Rico S, Gautier M, González J. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster. Mol Ecol 2021; 30:938-954. [PMID: 33350518 PMCID: PMC7986194 DOI: 10.1111/mec.15783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
While several studies in a diverse set of species have shed light on the genes underlying adaptation, our knowledge on the selective pressures that explain the observed patterns lags behind. Drosophila melanogaster is a valuable organism to study environmental adaptation because this species originated in Southern Africa and has recently expanded worldwide, and also because it has a functionally well-annotated genome. In this study, we aimed to decipher which environmental variables are relevant for adaptation of D. melanogaster natural populations in Europe and North America. We analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations collected in 20 European and 11 North American locations. We used the BayPass software to identify single nucleotide polymorphisms (SNPs) and transposable elements (TEs) showing signature of adaptive differentiation across populations, as well as significant associations with 59 environmental variables related to temperature, rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found that in addition to temperature and rainfall, wind related variables are also relevant for D. melanogaster environmental adaptation. Interestingly, 23%-51% of the genes that showed significant associations with environmental variables were not found overly differentiated across populations. In addition to SNPs, we also identified 10 reference transposable element insertions associated with environmental variables. Our results showed that genome-environment association analysis can identify adaptive genetic variants that are undetected by population differentiation analysis while also allowing the identification of candidate environmental drivers of adaptation.
Collapse
Affiliation(s)
- María Bogaerts‐Márquez
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| |
Collapse
|
32
|
Yang Y, Zhao X, Niu N, Zhao Y, Liu W, Moussian B, Zhang J. Two fatty acid synthase genes from the integument contribute to cuticular hydrocarbon biosynthesis and cuticle permeability in Locusta migratoria. INSECT MOLECULAR BIOLOGY 2020; 29:555-568. [PMID: 32741000 DOI: 10.1111/imb.12665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/02/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Lipids of the insect cuticle have important roles in resistance against the arid environment and invasion of foreign substances. Fatty acid synthase (FAS) is an important enzyme of the insect lipid synthesis pathway. In the present study, we identified three FAS genes from transcriptome data of the migratory locust, Locusta migratoria, based on bioinformatics analyses. Among them, two FAS genes (LmFAS1 and LmFAS3) are highly expressed in the integument of fifth instar nymphs. Suppression of LmFAS1 and LmFAS3 by RNA interference caused lethality during ecdysis or shortly after moulting. The weight of the locusts and the content of lipid droplets were reduced compared with those of the control. The results of gas chromatography-mass spectrometry analysis showed that knockdown of LmFAS3 led to a decrease of both cuticular hydrocarbons and inner hydrocarbons (CHCs and IHCs) contents, especially the content of methyl branched hydrocarbons. By contrast, knockdown of LmFAS1 only resulted in a decrease in the IHC content, but not that of CHCs. By consequence, in LmFAS1- and LmFAS3-suppressed locusts, hydrocarbon deficiency reduced desiccation resistance and enhanced cuticle permeability and sensitivity to insecticides. These results indicate that LmFAS1 and LmFAS3 are essential for hydrocarbon production and cuticle permeability, which play influential roles in waterproofing the insect cuticle.
Collapse
Affiliation(s)
- Y Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - X Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - N Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Y Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - W Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - B Moussian
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose, Nice, France
| | - J Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
33
|
Wu L, Zhang ZF, Yu Z, Yu R, Ma E, Fan YL, Liu TX, Feyereisen R, Zhu KY, Zhang J. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:3541-3550. [PMID: 32419293 DOI: 10.1002/ps.5914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cuticular hydrocarbons (CHCs) have a critical role in preventing desiccation and penetration of xenobiotics in insects. Previous studies have shown that cytochrome P450 subfamily 4G (CYP4G) enzymes are oxidative decarbonylases, essential for CHC biosynthesis. However, it is unclear whether there are functional differences between the two CYP4G genes in most insects. In Locusta migratoria, we identified two CYP4G genes (LmCYP4G62 and LmCYP4G102). LmCYP4G102 plays a critical role in the synthesis of CHCs, but the function of LmCYP4G62 is unknown. RESULTS We identified, characterized, and compared two LmCYP4G genes, based on L. migratoria transcriptomic and genomic databases. RT-qPCR showed that both were highly expressed in tissues with which oenocytes are associated, the integument and fat body. Immunostaining indicated that LmCYP4G62 and LmCYP4G102 were highly abundant in oenocytes in these tissues. However, the two enzymes had a different subcellular distribution, with LmCYP4G62 localized on the plasma membrane and LmCYP4G102 dispersed throughout the oenocyte cytoplasm, presumably on the endoplasmic reticulum. RNA interference-mediated gene silencing against each of the two genes resulted in reduced CHC contents, in all classes for LmCYP4G102, but mostly shorter chain CHCs for LmCYP4G62. Silencing of both genes resulted in increased insecticide penetration through the cuticle, and increased locust susceptibility to desiccation and insecticides. CONCLUSION Our studies suggest that both LmCYP4G62 and LmCYP4G102 contribute to hydrocarbon biosynthesis and play key roles in protecting locusts from water loss and insecticide penetration, but they are not fully redundant. Further, the two LmCYP4G genes might be used as new targets for insect pest management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Rongrong Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen1017, Denmark
- Department of Plant and Crops, Ghent University, Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
34
|
Perez R, Aron S. Adaptations to thermal stress in social insects: recent advances and future directions. Biol Rev Camb Philos Soc 2020; 95:1535-1553. [PMID: 33021060 DOI: 10.1111/brv.12628] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/20/2023]
Abstract
Thermal stress is a major driver of population declines and extinctions. Shifts in thermal regimes create new environmental conditions, leading to trait adaptation, population migration, and/or species extinction. Extensive research has examined thermal adaptations in terrestrial arthropods. However, little is known about social insects, despite their major role in ecosystems. It is only within the last few years that the adaptations of social insects to thermal stress have received attention. Herein, we discuss what is currently known about thermal tolerance and thermal adaptation in social insects - namely ants, termites, social bees, and social wasps. We describe the behavioural, morphological, physiological, and molecular adaptations that social insects have evolved to cope with thermal stress. We examine individual and collective responses to both temporary and persistent changes in thermal conditions and explore the extent to which individuals can exploit genetic variability to acclimatise. Finally, we consider the costs and benefits of sociality in the face of thermal stress, and we propose some future research directions that should advance our knowledge of individual and collective thermal adaptations in social insects.
Collapse
Affiliation(s)
- Rémy Perez
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
35
|
Park SJ, Pandey G, Castro-Vargas C, Oakeshott JG, Taylor PW, Mendez V. Cuticular Chemistry of the Queensland Fruit Fly Bactrocera tryoni (Froggatt). Molecules 2020; 25:E4185. [PMID: 32932681 PMCID: PMC7571174 DOI: 10.3390/molecules25184185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
The cuticular layer of the insect exoskeleton contains diverse compounds that serve important biological functions, including the maintenance of homeostasis by protecting against water loss, protection from injury, pathogens and insecticides, and communication. Bactrocera tryoni (Froggatt) is the most destructive pest of fruit production in Australia, yet there are no published accounts of this species' cuticular chemistry. We here provide a comprehensive description of B. tryoni cuticular chemistry. We used gas chromatography-mass spectrometry to identify and characterize compounds in hexane extracts of B. tryoni adults reared from larvae in naturally infested fruits. The compounds found included spiroacetals, aliphatic amides, saturated/unsaturated and methyl branched C12 to C20 chain esters and C29 to C33 normal and methyl-branched alkanes. The spiroacetals and esters were found to be specific to mature females, while the amides were found in both sexes. Normal and methyl-branched alkanes were qualitatively the same in all age and sex groups but some of the alkanes differed in amounts (as estimated from internal standard-normalized peak areas) between mature males and females, as well as between mature and immature flies. This study provides essential foundations for studies investigating the functions of cuticular chemistry in this economically important species.
Collapse
Affiliation(s)
- Soo J. Park
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Gunjan Pandey
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - Cynthia Castro-Vargas
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - John G. Oakeshott
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Vivian Mendez
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
36
|
Yang Y, Liu D, Liu X, Wang B, Shi X. Divergence of Desiccation-Related Traits in Sitobion avenae from Northwestern China. INSECTS 2020; 11:insects11090626. [PMID: 32932880 PMCID: PMC7565472 DOI: 10.3390/insects11090626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The impact of drought on insects has become increasingly evident in the context of global climate change, but the physiological mechanisms of aphids' responses to desiccating environments are still not well understood. We sampled the wheat aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) from arid areas of northwestern China. Both desiccation-resistant and -nonresistant genotypes were identified, providing direct evidence of genetic divergence in desiccation resistance of S. avenae. Resistant genotypes of wingless S. avenae showed longer survival time and LT50 under the desiccation stress (i.e., 10% relative humidity) than nonresistant genotypes, and wingless individuals tended to have higher desiccation resistance than winged ones. Both absolute and relative water contents did not differ between the two kinds of genotypes. Resistant genotypes had lower water loss rates than nonresistant genotypes for both winged and wingless individuals, suggesting that modulation of water loss rates could be the primary strategy in resistance of this aphid against desiccation stress. Contents of cuticular hydrocarbons (CHC) (especially methyl-branched alkanes) showed significant increase for both resistant and nonresistant genotypes after exposure to the desiccation stress for 24 h. Under desiccation stress, survival time was positively correlated with contents of methyl-branched alkanes for resistant genotypes. Thus, the content of methyl-branched alkanes and their high plasticity could be closely linked to water loss rate and desiccation resistance in S. avenae. Our results provide insights into fundamental aspects and underlying mechanisms of desiccation resistance in aphids, and have significant implications for the evolution of aphid populations in the context of global warming.
Collapse
Affiliation(s)
- Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Biyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
37
|
Wang Y, Farine JP, Yang Y, Yang J, Tang W, Gehring N, Ferveur JF, Moussian B. Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in Drosophila suzukii and Drosophila melanogaster. Front Genet 2020; 11:887. [PMID: 32849846 PMCID: PMC7423992 DOI: 10.3389/fgene.2020.00887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Cuticle barrier efficiency in insects depends largely on cuticular lipids. To learn about the evolution of cuticle barrier function, we compared the basic properties of the cuticle inward and outward barrier function in adults of the fruit flies Drosophila suzukii and Drosophila melanogaster that live on fruits sharing a similar habitat. At low air humidity, D. suzukii flies desiccate faster than D. melanogaster flies. We observed a general trend indicating that in this respect males are less robust than females in both species. Xenobiotics penetration occurs at lower temperatures in D. suzukii than in D. melanogaster. Likewise, D. suzukii flies are more susceptible to contact insecticides than D. melanogaster flies. Thus, both the inward and outward barriers of D. suzukii are less efficient. Consistently, D. suzukii flies have less cuticular hydrocarbons (CHC) that participate as key components of the cuticle barrier. Especially, the relative amounts of branched and desaturated CHCs, known to enhance desiccation resistance, show reduced levels in D. suzukii. Moreover, the expression of snustorr (snu) that encodes an ABC transporter involved in barrier construction and CHC externalization, is strongly suppressed in D. suzukii. Hence, species-specific genetic programs regulate the quality of the lipid-based cuticle barrier in these two Drosophilae. Together, we conclude that the weaker inward and outward barriers of D. suzukii may be partly explained by differences in CHC composition and by a reduced Snu-dependent transport rate of CHCs to the surface. In turn, this suggests that snu is an ecologically adjustable and therefore relevant gene in cuticle barrier efficiency.
Collapse
Affiliation(s)
- Yiwen Wang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Yang Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jing Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Weina Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nicole Gehring
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Bernard Moussian
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
| |
Collapse
|
38
|
Krupp JJ, Nayal K, Wong A, Millar JG, Levine JD. Desiccation resistance is an adaptive life-history trait dependent upon cuticular hydrocarbons, and influenced by mating status and temperature in D. melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:103990. [PMID: 31830467 DOI: 10.1016/j.jinsphys.2019.103990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial insects are susceptible to desiccation and conserve internal water stores by preventing the loss of water due to transpiration across the cuticle. The epicuticle, a thin waxy layer on the outer surface of the insect cuticle is comprised primarily of a complex blend of cuticular hydrocarbons (CHCs) and is integral to preventing cuticular water loss. How the composition of epicuticular lipids (quantity and quality of the specific hydrocarbons) relates to desiccation resistance, however, has been difficult to determine. Here, we establish a model system to test the capacity of CHCs to protect against desiccation in the vinegar fly, Drosophila melanogaster. Using this system, we demonstrate that the oenocytes and CHCs produced by these cells are critically important for desiccation resistance, as measured by survival under desiccative conditions. Additionally, we show that both mating status and developmental temperature influence desiccation resistance. Prior mating increased desiccation survival through the direct transfer of CHCs between sexual partners, as well as through a female-specific response to a male-derived factor transferred during copulation. Together, our results demonstrate that desiccation resistance is an adaptive life-history trait dependent upon CHCs and influenced by prior social interactions and environmental conditions.
Collapse
Affiliation(s)
- Joshua J Krupp
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Kamar Nayal
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Amy Wong
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Jocelyn G Millar
- Department of Entomology, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
39
|
New Method of Analysis of Lipids in Tribolium castaneum (Herbst) and Rhyzopertha dominica (Fabricius) Insects by Direct Immersion Solid-Phase Microextraction (DI-SPME) Coupled with GC-MS. INSECTS 2019; 10:insects10100363. [PMID: 31635132 PMCID: PMC6835878 DOI: 10.3390/insects10100363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022]
Abstract
Lipids play an essential role in providing energy and other physiological functions for insects. Therefore, it is important to determine the composition of insect lipids from cuticular and internal tissues for a better understanding of insect biology and physiology. A novel non-derivatization method for the analysis of lipids including fatty acids, hydrocarbon waxes, sterols in Tribolium castaneum (Herbst) and Rhyzopertha dominica (Fabricius) was explored using the direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Nine extraction solvents, acetonitrile, methanol, hexane, ethanol, chloroform, acetonitrile and ethanol (1:1 v/v), acetonitrile and water (1:1 v/v), ethanol and water (1:1 v/v) and acetonitrile and ethanol and water (2:2:1 v/v/v) were selected and evaluated for the extraction of insect lipids with DI-SPME fiber. Acetonitrile extraction offered the best qualitative, quantitative, and number of lipids extracted from insects samples results. Acetonitrile extracted high-boiling point compounds from both species of tested insects. The range of hydrocarbons was C25 (pentacosane) to C32 (dotriacontane) for T. castaneum and C26 (11-methylpentacosane) to C34 (tetratriacontane) for R. dominica. The major compounds extracted from the cuticular surface of T. castaneum were 11-methylheptacosane (20.71%) and 3-methylheptacosane (12.37%), and from R. dominica were 10-methyldotriacontane (14.0%), and 15-methyltritriacontane (9.93%). The limit of detection (LOD) for the n-alkane compounds ranged between 0.08 (nonacosane) and 0.26 (dotriacontane) µg/g and for the fatty acids between 0.65 (arachidic acid) to 0.89 (oleic acid) µg/g. The study indicated that DI-SPME GC-MS is a highly efficient extraction and a sensitive analytical method for the determination of non-derivatized insect lipids in cuticular and homogenized body tissues.
Collapse
|
40
|
Dong W, Dobler R, Dowling DK, Moussian B. The cuticle inward barrier in Drosophila melanogaster is shaped by mitochondrial and nuclear genotypes and a sex-specific effect of diet. PeerJ 2019; 7:e7802. [PMID: 31592352 PMCID: PMC6779114 DOI: 10.7717/peerj.7802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/31/2019] [Indexed: 01/23/2023] Open
Abstract
An important role of the insect cuticle is to prevent wetting (i.e., permeation of water) and also to prevent penetration of potentially harmful substances. This barrier function mainly depends on the hydrophobic cuticle surface composed of lipids including cuticular hydrocarbons (CHCs). We investigated to what extent the cuticle inward barrier function depends on the genotype, comprising mitochondrial and nuclear genes in the fruit fly Drosophila melanogaster, and investigated the contribution of interactions between mitochondrial and nuclear genotypes (mito-nuclear interactions) on this function. In addition, we assessed the effects of nutrition and sex on the cuticle barrier function. Based on a dye penetration assay, we find that cuticle barrier function varies across three fly lines that were captured from geographically separated regions in three continents. Testing different combinations of mito-nuclear genotypes, we show that the inward barrier efficiency is modulated by the nuclear and mitochondrial genomes independently. We also find an interaction between diet and sex. Our findings provide new insights into the regulation of cuticle inward barrier function in nature.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Ralph Dobler
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
- Université Côte d’Azur, CNRS—Inserm, iBV, Parc Valrose, Nice, France
| |
Collapse
|
41
|
Oxytocin/vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants. Proc Natl Acad Sci U S A 2019; 116:5597-5606. [PMID: 30842287 PMCID: PMC6431230 DOI: 10.1073/pnas.1817788116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Inotocin, the oxytocin/vasopressin-like peptide, is widely conserved in arthropods; however, little is known about its molecular function. Here, we show that, in ants, the expression levels of inotocin and its receptor are correlated with the age of workers and their behavior. We also demonstrate that inotocin signaling is involved in desiccation resistance by regulating the synthesis of cuticular hydrocarbons. We propose that the up-regulation of inotocin and its receptor as workers age and switch tasks from nursing to foraging is a key physiological adaption to survive drier environments outside of the nest. Oxytocin/vasopressin-like peptides are important regulators of physiology and social behavior in vertebrates. However, the function of inotocin, the homologous peptide in arthropods, remains largely unknown. Here, we show that the level of expression of inotocin and inotocin receptor are correlated with task allocation in the ant Camponotus fellah. Both genes are up-regulated when workers age and switch tasks from nursing to foraging. in situ hybridization revealed that inotocin receptor is specifically expressed in oenocytes, which are specialized cells synthesizing cuticular hydrocarbons which function as desiccation barriers in insects and for social recognition in ants. dsRNA injection targeting inotocin receptor, together with pharmacological treatments using three identified antagonists blocking inotocin signaling, revealed that inotocin signaling regulates the expression of cytochrome P450 4G1 (CYP4G1) and the synthesis of cuticular hydrocarbons, which play an important role in desiccation resistance once workers initiate foraging.
Collapse
|
42
|
Thorat L, Nath BB. Insects With Survival Kits for Desiccation Tolerance Under Extreme Water Deficits. Front Physiol 2018; 9:1843. [PMID: 30622480 PMCID: PMC6308239 DOI: 10.3389/fphys.2018.01843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The year 2002 marked the tercentenary of Antonie van Leeuwenhoek's discovery of desiccation tolerance in animals. This remarkable phenomenon to sustain 'life' in the absence of water can be revived upon return of hydrating conditions. Today, coping with climate change-related factors, especially temperature-humidity imbalance, is a global challenge. Under such adverse circumstances, desiccation tolerance remains a prime mechanism of several plants and a few animals to escape the hostile consequences of fluctuating hydroperiodicity patterns in their habitats. Among small animals, insects have demonstrated impressive resilience to dehydration and thrive under physiological water deficits without compromising on revival and survival upon rehydration. The focus of this review is to compile research insights on insect desiccation tolerance, gathered over the past several decades from numerous laboratories worldwide working on different insect groups. We provide a comparative overview of species-specific behavioral changes, adjustments in physiological biochemistry and cellular and molecular mechanisms as few of the noteworthy desiccation-responsive survival kits in insects. Finally, we highlight the role of insects as potential mechanistic models in tracking global warming which will form the basis for translational research to mitigate periods of climatic uncertainty predicted for the future.
Collapse
Affiliation(s)
- Leena Thorat
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
43
|
Buellesbach J, Whyte BA, Cash E, Gibson JD, Scheckel KJ, Sandidge R, Tsutsui ND. Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California. J Chem Ecol 2018; 44:1101-1114. [PMID: 30430363 DOI: 10.1007/s10886-018-1029-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Cuticular hydrocarbons (CHCs), the dominant fraction of the insects' epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant's expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.
Collapse
Affiliation(s)
- Jan Buellesbach
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA. .,Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| | - Brian A Whyte
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA.,Department of Biology, Georgia Southern University, P.O. Box 8042-1, Statesboro, GA, 30460, USA
| | - Kelsey J Scheckel
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Rebecca Sandidge
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Neil D Tsutsui
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| |
Collapse
|