201
|
Camacho C, Sanabria-Fernández A, Baños-Villalba A, Edelaar P. Experimental evidence that matching habitat choice drives local adaptation in a wild population. Proc Biol Sci 2020; 287:20200721. [PMID: 32429813 PMCID: PMC7287376 DOI: 10.1098/rspb.2020.0721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Matching habitat choice is a unique, flexible form of habitat choice based on self-assessment of local performance. This mechanism is thought to play an important role in adaptation and population persistence in variable environments. Nevertheless, the operation of matching habitat choice in natural populations remains to be unequivocally demonstrated. We investigated the association between body colour and substrate use by ground-perching grasshoppers (Sphingonotus azurescens) in an urban mosaic of dark and pale pavements, and then performed a colour manipulation experiment to test for matching habitat choice based on camouflage through background matching. Naturally, dark and pale grasshoppers occurred mostly on pavements that provided matching backgrounds. Colour-manipulated individuals recapitulated this pattern, such that black-painted and white-painted grasshoppers recaptured after the treatment aggregated together on the dark asphalt and pale pavement, respectively. Our study demonstrates that grasshoppers adjust their movement patterns to choose the substrate that confers an apparent improvement in camouflage given their individual-specific colour. More generally, our study provides unique experimental evidence of matching habitat choice as a driver of phenotype-environment correlations in natural populations and, furthermore, suggests that performance-based habitat choice might act as a mechanism of adaptation to changing environments, including human-modified (urban) landscapes.
Collapse
|
202
|
Margalef-Marrase J, Pérez-Navarro MÁ, Lloret F. Relationship between heatwave-induced forest die-off and climatic suitability in multiple tree species. GLOBAL CHANGE BIOLOGY 2020; 26:3134-3146. [PMID: 32064733 DOI: 10.1111/gcb.15042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
In recent decades, many forest die-off events have been reported in relation to climate-change-induced episodes, such as droughts and heat waves. To understand how these extreme climatic events induce forest die-off, it is important to find a tool to standardize the climatic conditions experienced by different populations during a specific climatic event, taking into account the historic climatic conditions of the site where these populations live (bioclimatic niche). In this study, we used estimates of climatic suitability calculated from species distribution models (SDMs) for such purpose. We studied forest die-off across France during the 2003 heatwave that affected Western Europe, using 2,943 forest inventory plots dominated by 14 single tree species. Die-off severity was estimated by Normalized Difference Vegetation Index (NDVI) loss using Moderate-resolution Imaging Spectroradiometer remote sensor imagery. Climatic suitability at the local level during the historical 1979-2002 period (HCS), the episode time (2003; ECS) and suitability deviance during the historical period (HCS-SD) were calculated for each species by means of boosted regression tree models using the CHELSA climate database and occurrences extracted from European forest inventories. Low HCS-SD and high mean annual temperature explained the overall regional pattern of vulnerability to die-off across different monospecific forests. The combination of high historical and low episode climatic suitability also contributed significantly to overall forest die-off. Furthermore, we observed different species-specific relationships between die-off vulnerability and climatic suitability: Sub-Mediterranean and Mediterranean species tended to be vulnerable in historically more suitable localities (high HCS), whereas Euro-Siberian species presented greater vulnerability when the hot drought episode was more intense. We demonstrated that at regional scale, past climatic legacy plays an important role in explaining NDVI loss during the episode. Moreover, we demonstrated that SDMs-derived indexes, such as HCS, ECS and HCS-SD, could constitute a tool for standardizing the ways that populations and species experience climatic variability across time and space.
Collapse
|
203
|
Gallardo A, Molina A, Asenjo HG, Martorell-Marugán J, Montes R, Ramos-Mejia V, Sanchez-Pozo A, Carmona-Sáez P, Lopez-Onieva L, Landeira D. The molecular clock protein Bmal1 regulates cell differentiation in mouse embryonic stem cells. Life Sci Alliance 2020; 3:e201900535. [PMID: 32284355 PMCID: PMC7156284 DOI: 10.26508/lsa.201900535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023] Open
Abstract
Mammals optimize their physiology to the light-dark cycle by synchronization of the master circadian clock in the brain with peripheral clocks in the rest of the tissues of the body. Circadian oscillations rely on a negative feedback loop exerted by the molecular clock that is composed by transcriptional activators Bmal1 and Clock, and their negative regulators Period and Cryptochrome. Components of the molecular clock are expressed during early development, but onset of robust circadian oscillations is only detected later during embryogenesis. Here, we have used naïve pluripotent mouse embryonic stem cells (mESCs) to study the role of Bmal1 during early development. We found that, compared to wild-type cells, Bmal1-/- mESCs express higher levels of Nanog protein and altered expression of pluripotency-associated signalling pathways. Importantly, Bmal1-/- mESCs display deficient multi-lineage cell differentiation capacity during the formation of teratomas and gastrula-like organoids. Overall, we reveal that Bmal1 regulates pluripotent cell differentiation and propose that the molecular clock is an hitherto unrecognized regulator of mammalian development.
Collapse
|
204
|
Jou D. Relationships between rational extended thermodynamics and extended irreversible thermodynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190172. [PMID: 32223414 PMCID: PMC7134952 DOI: 10.1098/rsta.2019.0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 05/28/2023]
Abstract
We consider a few conceptual questions on extended thermodynamics, with the aim to contribute to a higher contact between rational extended thermodynamics and extended irreversible thermodynamics. Both theories take a number of fluxes as independent variables, but they differ in the formalism being used to deal with the exploitation of the second principle (rational thermodynamics in the first one and classical irreversible thermodynamics in the second one). Rational extended thermodynamics is more restricted in the range of systems to be analysed, but it is able to obtain a wider number of restrictions and deeper specifications from the second law. By contrast, extended irreversible thermodynamics is more phenomenological, its mathematical formalism is more elementary, but it may deal with a wider diversity of systems although with less detail. Further comparison and dialogue between both branches of extended thermodynamics would be useful for a fuller deployment and deepening of extended thermodynamics. Besides these two approaches, one should also consider the Hamiltonian approach, formalisms with internal variables, and more microscopic approaches, based on kinetic theory or on non-equilibrium ensemble formalisms. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.
Collapse
|
205
|
Pascual R, Martín J, Salvador F, Reina O, Chanes V, Millanes-Romero A, Suñer C, Fernández-Miranda G, Bartomeu A, Huang YS, Gomis RR, Méndez R. The RNA binding protein CPEB2 regulates hormone sensing in mammary gland development and luminal breast cancer. SCIENCE ADVANCES 2020; 6:eaax3868. [PMID: 32440535 PMCID: PMC7228762 DOI: 10.1126/sciadv.aax3868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
Organogenesis is directed by coordinated cell proliferation and differentiation programs. The hierarchical networks of transcription factors driving mammary gland development and function have been widely studied. However, the contribution of posttranscriptional gene expression reprogramming remains largely unexplored. The 3' untranslated regions of messenger RNAs (mRNAs) contain combinatorial ensembles of cis-regulatory elements that define transcript-specific regulation of protein synthesis through their cognate RNA binding proteins. We analyze the contribution of the RNA binding cytoplasmic polyadenylation element-binding (CPEB) protein family, which collectively regulate mRNA translation for about 30% of the genome. We find that CPEB2 is required for the integration of hormonal signaling by controlling the protein expression from a subset of ER/PR- regulated transcripts. Furthermore, CPEB2 is critical for the development of ER-positive breast tumors. This work uncovers a previously unknown gene expression regulation level in breast morphogenesis and tumorigenesis, coordinating sequential transcriptional and posttranscriptional layers of gene expression regulation.
Collapse
|
206
|
Bach-Griera M, Campo-Pérez V, Barbosa S, Traserra S, Guallar-Garrido S, Moya-Andérico L, Herrero-Abadía P, Luquin M, Rabanal RM, Torrents E, Julián E. Mycolicibacterium brumae Is a Safe and Non-Toxic Immunomodulatory Agent for Cancer Treatment. Vaccines (Basel) 2020; 8:E198. [PMID: 32344808 PMCID: PMC7349652 DOI: 10.3390/vaccines8020198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Intravesical Mycobacterium bovis Bacillus Calmette-Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical parameters were analyzed. Finally, histopathological alterations in mouse tissues were evaluated. Our results demonstrate the safety and non-toxic profile of M. brumae. Differences were observed in the biochemical, hematological and histopathological analysis between M. brumae and BCG-infected mice, as well as survival curves rates and colony forming units (CFU) counts in both animal models. M. brumae constitutes a safe therapeutic biological agent, overcoming the safety and toxicity disadvantages presented by BCG in both mice and G. mellonella animal models.
Collapse
|
207
|
Galeano-Otero I, Del Toro R, Guisado A, Díaz I, Mayoral-González I, Guerrero-Márquez F, Gutiérrez-Carretero E, Casquero-Domínguez S, Díaz-de la Llera L, Barón-Esquivias G, Jiménez-Navarro M, Smani T, Ordóñez-Fernández A. Circulating miR-320a as a Predictive Biomarker for Left Ventricular Remodelling in STEMI Patients Undergoing Primary Percutaneous Coronary Intervention. J Clin Med 2020; 9:E1051. [PMID: 32276307 PMCID: PMC7230612 DOI: 10.3390/jcm9041051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Restoration of epicardial coronary blood flow, achieved by early reperfusion with primary percutaneous coronary intervention (PPCI), is the guideline recommended to treat patients with ST-segment-elevation myocardial infarction (STEMI). However, despite successful blood restoration, increasing numbers of patients develop left ventricular adverse remodelling (LVAR) and heart failure. Therefore, reliable prognostic biomarkers for LVAR in STEMI are urgently needed. Our aim was to investigate the role of circulating microRNAs (miRNAs) and their association with LVAR in STEMI patients following the PPCI procedure. We analysed the expression of circulating miRNAs in blood samples of 56 patients collected at admission and after revascularization (at 3, 6, 12 and 24 h). The associations between miRNAs and left ventricular end diastolic volumes at 6 months were estimated to detect LVAR. miRNAs were also analysed in samples isolated from peripheral blood mononuclear cells (PBMCs) and human myocardium of failing hearts. Kinetic analysis of miRNAs showed a fast time-dependent increase in miR-133a, miR-133b, miR-193b, miR-499, and miR-320a in STEMI patients compared to controls. Moreover, the expression of miR-29a, miR-29b, miR-324, miR-208, miR-423, miR-522, and miR-545 was differentially expressed even before PPCI in STEMI. Furthermore, the increase in circulating miR-320a and the decrease in its expression in PBMCs were significantly associated with LVAR and correlated with the expression of miR-320a in human failing myocardium from ischaemic origin. In conclusion, we determined the time course expression of new circulating miRNAs in patients with STEMI treated with PPCI and we showed that miR-320a was positively associated with LVAR.
Collapse
|
208
|
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance 2020; 3:e201900632. [PMID: 32161113 PMCID: PMC7067469 DOI: 10.26508/lsa.201900632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
In animals, miRNAs are the most prevalent small non-coding RNA molecules controlling posttranscriptional gene regulation. The Argonaute proteins (AGO) mediate miRNA-guided gene silencing by recruiting multiple factors involved in translational repression, deadenylation, and decapping. Here, we report that CSDE1, an RNA-binding protein linked to stem cell maintenance and metastasis in cancer, interacts with AGO2 within miRNA-induced silencing complex and mediates gene silencing through its N-terminal domains. We show that CSDE1 interacts with LSM14A, a constituent of P-body assembly and further associates to the DCP1-DCP2 decapping complex, suggesting that CSDE1 could promote the decay of miRNA-induced silencing complex-targeted mRNAs. Together, our findings uncover a hitherto unknown mechanism used by CSDE1 in the control of gene expression mediated by the miRNA pathway.
Collapse
|
209
|
Quemada M, Lassaletta L, Leip A, Jones A, Lugato E. Integrated management for sustainable cropping systems: Looking beyond the greenhouse balance at the field scale. GLOBAL CHANGE BIOLOGY 2020; 26:2584-2598. [PMID: 31923343 DOI: 10.1111/gcb.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/14/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Cover crops (CC) promote the accumulation of soil organic carbon (SOC), which provides multiple benefits to agro-ecosystems. However, additional nitrogen (N) inputs into the soil could offset the CO2 mitigation potential due to increasing N2 O emissions. Integrated management approaches use organic and synthetic fertilizers to maximize yields while minimizing impacts by crop sequencing adapted to local conditions. The goal of this work was to test whether integrated management, centered on CC adoption, has the potential to maximize SOC stocks without increasing the soil greenhouse gas (GHG) net flux and other agro-environmental impacts such as nitrate leaching. To this purpose, we ran the DayCent bio-geochemistry model on 8,554 soil sampling locations across the European Union. We found that soil N2 O emissions could be limited with simple crop sequencing rules, such as switching from leguminous to grass CC when the GHG flux was positive (source). Additional reductions of synthetic fertilizers applications are possible through better accounting for N available in green manures and from mineralization of soil reservoirs while maintaining cash crop yields. Therefore, our results suggest that a CC integrated management approach can maximize the agro-environmental performance of cropping systems while reducing environmental trade-offs.
Collapse
|
210
|
Martín-Matillas M, Mora-Gonzalez J, Migueles JH, Ubago-Guisado E, Gracia-Marco L, Ortega FB. Validity of Slaughter Equations and Bioelectrical Impedance Against Dual-Energy X-Ray Absorptiometry in Children. Obesity (Silver Spring) 2020; 28:803-812. [PMID: 32144886 DOI: 10.1002/oby.22751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to 1) analyze the criterion validity of the Slaughter equations (Slg-Eq) and bioelectrical impedance analysis (BIA) to estimate body fat percentage (BFP) and fat mass index (FMI) at different degrees of obesity in children compared with dual-energy x-ray absorptiometry (DXA) and 2) determine their agreement over time. METHODS Ninety-two children with overweight or obesity (10.0 [SD 1.2] years; 34.8% girls) participated in this 20-week study. Anthropometric, BIA, and DXA measurements were performed. RESULTS Both Slg-Eq and BIA methods underestimated BFP and FMI against DXA, and the bias was markedly larger with BIA (mean absolute percentage error = 11% for Slg-Eq vs. 18%-21% for BIA); a larger underestimation was observed in girls compared with boys for Slg-Eq (P ≤ 0.001), and the observed underestimation in adiposity was reduced as weight status increased. Systematic errors were kept constant over time, so no large differences between methods were observed in the change in adiposity. CONCLUSIONS At the group level, Slg-Eq provides a more valid estimation of BFP and FMI than BIA. At the individual level, Slg-Eq shows larger estimation errors. The validity of these methods might differ in sex and weight status. Nevertheless, both methods seem to be valid for monitoring changes in adiposity.
Collapse
Grants
- ID 100010434 La Caixa Foundation
- FPU14/06837 Spanish Ministry of Education, Culture and Sport
- FPU15/02645 Spanish Ministry of Education, Culture and Sport
- SOMM17/6107/UGR University of Granada, UGR Research and Knowledge Transfer Fund (PPIT) 2016, Excellence Actions Programme: Units of Scientific Excellence; Scientific Unit of Excellence on Exercise and Health (UCEES), and by the Regional Government of Andalusia, Regional Ministry of Economy, Knowledge, Entreprises and University and European Regional Development Fund (ERDF)
- DEP2013-47540 Spanish Ministry of Economy and Competitiveness
- DEP2016-79512-R Spanish Ministry of Economy and Competitiveness
- DEP2017-91544-EXP Spanish Ministry of Economy and Competitiveness
- SOMM17/6107/UGR University of Granada, UGR Research and Knowledge Transfer Fund (PPIT) 2016, Excellence Actions Programme: Units of Scientific Excellence; Scientific Unit of Excellence on Exercise and Health (UCEES), and by the Regional Government of Andalusia, the Regional Ministry of Economy, Knowledge, Enterprises and University, and the European Regional Development Fund (ERDF)
Collapse
|
211
|
Martí-Gómez C, Lara-Pezzi E, Sánchez-Cabo F. dSreg: a Bayesian model to integrate changes in splicing and RNA-binding protein activity. Bioinformatics 2020; 36:2134-2141. [PMID: 31834368 PMCID: PMC7141860 DOI: 10.1093/bioinformatics/btz915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Alternative splicing (AS) is an important mechanism in the generation of transcript diversity across mammals. AS patterns are dynamically regulated during development and in response to environmental changes. Defects or perturbations in its regulation may lead to cancer or neurological disorders, among other pathological conditions. The regulatory mechanisms controlling AS in a given biological context are typically inferred using a two-step framework: differential AS analysis followed by enrichment methods. These strategies require setting rather arbitrary thresholds and are prone to error propagation along the analysis. RESULTS To overcome these limitations, we propose dSreg, a Bayesian model that integrates RNA-seq with data from regulatory features, e.g. binding sites of RNA-binding proteins. dSreg identifies the key underlying regulators controlling AS changes and quantifies their activity while simultaneously estimating the changes in exon inclusion rates. dSreg increased both the sensitivity and the specificity of the identified AS changes in simulated data, even at low read coverage. dSreg also showed improved performance when analyzing a collection of knock-down RNA-binding proteins' experiments from ENCODE, as opposed to traditional enrichment methods, such as over-representation analysis and gene set enrichment analysis. dSreg opens the possibility to integrate a large amount of readily available RNA-seq datasets at low coverage for AS analysis and allows more cost-effective RNA-seq experiments. AVAILABILITY AND IMPLEMENTATION dSreg was implemented in python using stan and is freely available to the community at https://bitbucket.org/cmartiga/dsreg. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
212
|
Gámez E, Elizondo-Castillo H, Tascon J, García-Salinas S, Navascues N, Mendoza G, Arruebo M, Irusta S. Antibacterial Effect of Thymol Loaded SBA-15 Nanorods Incorporated in PCL Electrospun Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E616. [PMID: 32230766 PMCID: PMC7221837 DOI: 10.3390/nano10040616] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
For the effective management of infected chronic wounds, the incorporation of antimicrobial drugs into wound dressings can increase their local availability at the infection site. Mesoporous silicon dioxide SBA-15 is an excellent drug carrier with tunable drug release kinetics. In this work, synthesized SBA-15 loaded with the natural antimicrobial compound thymol (THY) was incorporated into polycaprolactone (PCL) electrospun nanofibers to obtain an advanced wound dressing. Rod-shaped particles with internal parallel channels oriented along the longitudinal axis (diameter: 138 ± 30 nm, length: 563 ± 100 nm) were loaded with 70.8 wt.% of THY. Fiber mats were prepared using these particles as nanofillers within polycaprolactone (PCL) electrospun fibers. The resulting mats contained 5.6 wt.% of THY and more than half of this loading was released in the first 7 h. This release would prevent an initial bacterial colonization and also inhibit or eliminate bacterial growth as in vitro shown against Staphylococcus aureus ATCC 25923. Minimal inhibitory concentration (MIC: 0.07 mg/mL) and minimal bactericidal concentration (MBC: 0.11 mg/mL) of released THY were lower than the amount of free THY required, demonstrating the benefit of drug encapsulation for a more efficient bactericidal capacity due to the direct contact between mats and bacteria.
Collapse
|
213
|
Planas-Marquès M, Kressin JP, Kashyap A, Panthee DR, Louws FJ, Coll NS, Valls M. Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2157-2171. [PMID: 32211785 PMCID: PMC7242079 DOI: 10.1093/jxb/erz562] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/20/2019] [Indexed: 05/07/2023]
Abstract
Ralstonia solanacearum is a bacterial vascular pathogen causing devastating bacterial wilt. In the field, resistance against this pathogen is quantitative and is available for breeders only in tomato and eggplant. To understand the basis of resistance to R. solanacearum in tomato, we investigated the spatio-temporal dynamics of bacterial colonization using non-invasive live monitoring techniques coupled to grafting of susceptible and resistant varieties. We found four 'bottlenecks' that limit the bacterium in resistant tomato: root colonization, vertical movement from roots to shoots, circular vascular bundle invasion, and radial apoplastic spread in the cortex. Radial invasion of cortical extracellular spaces occurred mostly at late disease stages but was observed throughout plant infection. This study shows that resistance is expressed in both root and shoot tissues, and highlights the importance of structural constraints to bacterial spread as a resistance mechanism. It also shows that R. solanacearum is not only a vascular pathogen but spreads out of the xylem, occupying the plant apoplast niche. Our work will help elucidate the complex genetic determinants of resistance, setting the foundations to decipher the molecular mechanisms that limit pathogen colonization, which may provide new precision tools to fight bacterial wilt in the field.
Collapse
|
214
|
Alberdi-Cedeño J, Ibargoitia ML, Guillén MD. Effect of the Enrichment of Corn Oil with alpha- or gamma-Tocopherol on Its in Vitro Digestion Studied by 1H NMR and SPME-GC/MS; Formation of Hydroperoxy-, Hydroxy-, Keto-Dienes and Keto- E-epoxy- E-Monoenes in the more alpha-Tocopherol Enriched Samples. Antioxidants (Basel) 2020; 9:E246. [PMID: 32197490 PMCID: PMC7139825 DOI: 10.3390/antiox9030246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/27/2023] Open
Abstract
The aim of this study is the analysis of the in vitro digestion of corn oil, and of the effect of its enrichment with three levels of gamma- and alpha-tocopherol, by using, for the first time, 1H nuclear magnetic resonance (1H NMR) and a solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). The attention is focused on the hydrolysis degree, the degradation of oil's main components, the occurrence of oxidation reactions and main compounds formed, as well as on the bioaccessibility of oil's main components, of compounds formed in the oxidation, and, of gamma- and alpha-tocopherol. The lipolysis levels reached are high and show a similar pattern in all cases. The oxidation of corn oil components during in vitro digestion is proven, as is the action of gamma-tocopherol as an antioxidant and alpha-tocopherol as a prooxidant. In the more alpha-tocopherol enriched samples, hydroperoxy-, hydroxy-, and keto-dienes, as well as keto-epoxy-monoenes and aldehydes, are generated. The bioaccessibility of the oil's main components is high. The compounds formed in the oxidation process during in vitro digestion can also be considered bioaccessible. The bioaccessibility of alpha-tocopherol is smaller than that of gamma-tocopherol. The concentration of this latter compound remains unchanged during the in vitro digestion of the more alpha-tocopherol enriched oil samples.
Collapse
|
215
|
Benedetti B, Dannehl D, König R, Coviello S, Kreutzer C, Zaunmair P, Jakubecova D, Weiger TM, Aigner L, Nacher J, Engelhardt M, Couillard-Després S. Functional Integration of Neuronal Precursors in the Adult Murine Piriform Cortex. Cereb Cortex 2020; 30:1499-1515. [PMID: 31647533 PMCID: PMC7132906 DOI: 10.1093/cercor/bhz181] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/05/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
The extent of functional maturation and integration of nonproliferative neuronal precursors, becoming neurons in the adult murine piriform cortex, is largely unexplored. We thus questioned whether precursors eventually become equivalent to neighboring principal neurons or whether they represent a novel functional network element. Adult brain neuronal precursors and immature neurons (complex cells) were labeled in transgenic mice (DCX-DsRed and DCX-CreERT2 /flox-EGFP), and their cell fate was characterized with patch clamp experiments and morphometric analysis of axon initial segments. Young (DCX+) complex cells in the piriform cortex of 2- to 4-month-old mice received sparse synaptic input and fired action potentials at low maximal frequency, resembling neonatal principal neurons. Following maturation, the synaptic input detected on older (DCX-) complex cells was larger, but predominantly GABAergic, despite evidence of glutamatergic synaptic contacts. Furthermore, the rheobase current of old complex cells was larger and the maximal firing frequency was lower than those measured in neighboring age-matched principal neurons. The striking differences between principal neurons and complex cells suggest that the latter are a novel type of neuron and new coding element in the adult brain rather than simple addition or replacement for preexisting network components.
Collapse
|
216
|
Aparicio M, Alba C, Rodríguez JM, Fernández L. Microbiological and Immunological Markers in Milk and Infant Feces for Common Gastrointestinal Disorders: A Pilot Study. Nutrients 2020; 12:E634. [PMID: 32121004 PMCID: PMC7146151 DOI: 10.3390/nu12030634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of this pilot study was to assess the fecal microbiome and different immunological parameters in infant feces and maternal milk from mother-infant pairs in which the infants were suffering from different gastrointestinal disorders (colic, non-IgE-mediated cow milk protein allergy (CMPA), and proctocolitis). A cohort of 30 mother-infant pairs, in which the infants were diagnosed with these gastrointestinal disorders or included as healthy controls, were recruited. Bacterial composition of infant feces and breast milk was determined by metataxonomic sequencing. Immunological compounds were quantified using multiplexed immunoassays. A higher abundance of Eggerthellaceae, Lachnospiraceae and Peptostreptococcaceae, and lower abundance of Bifidobacterium and higher abundance of Rothia were registered in fecal samples from the CMPA group. Eggerthellaceae was also significantly more abundant in milk samples of the CMPA group. There were no differences in the concentration of immunological compounds in infant fecal samples between the four groups. In contrast, differences were found in the concentration and/or frequency of compounds related to acquired immunity and granulocyte colony stimulating factor (GCSF) in breast milk samples. In conclusion, a few microbial signatures in feces may explain part of the difference between CMPA and other infants. In addition, some milk immunological signatures have been uncovered among the different conditions addressed in this pilot study.
Collapse
|
217
|
Roostalu J, Thomas C, Cade NI, Kunzelmann S, Taylor IA, Surrey T. The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability. eLife 2020; 9:e51992. [PMID: 32053491 PMCID: PMC7018511 DOI: 10.7554/elife.51992] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
Microtubules are cytoskeletal polymers whose function depends on their property to switch between states of growth and shrinkage. Growing microtubules are thought to be stabilized by a GTP cap at their ends. The nature of this cap, however, is still poorly understood. End Binding proteins (EBs) recruit a diverse range of regulators of microtubule function to growing microtubule ends. Whether the EB binding region is identical to the GTP cap is unclear. Using mutated human tubulin with blocked GTP hydrolysis, we demonstrate that EBs bind with high affinity to the GTP conformation of microtubules. Slowing-down GTP hydrolysis leads to extended GTP caps. We find that cap length determines microtubule stability and that the microtubule conformation changes gradually in the cap as GTP is hydrolyzed. These results demonstrate the critical importance of the kinetics of GTP hydrolysis for microtubule stability and establish that the GTP cap coincides with the EB-binding region.
Collapse
|
218
|
Ranzani OT, Milà C, Sanchez M, Bhogadi S, Kulkarni B, Balakrishnan K, Sambandam S, Sunyer J, Marshall JD, Kinra S, Tonne C. Association between ambient and household air pollution with carotid intima-media thickness in peri-urban South India: CHAI-Project. Int J Epidemiol 2020; 49:69-79. [PMID: 31605119 PMCID: PMC7124504 DOI: 10.1093/ije/dyz208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Evidence linking ambient air pollution with atherosclerosis is lacking from low- and middle-income countries. Additionally, evidence regarding the association between household air pollution and atherosclerosis is limited. We evaluated the association between ambient fine particulate matter [particulate matter with an aerodynamic diameter of ≤2.5 µm (PM2.5)] and biomass fuel use on carotid intima-media thickness (CIMT), a surrogate of atherosclerosis, in India. METHODS We analysed the third follow-up of the Andhra Pradesh Children and Parent Study cohort (2010-2012), which recruited participants from 28 peri-urban villages. Our primary outcome was mean CIMT, measured using a standardized protocol. We estimated annual average PM2.5 outdoors at residence using land-use regression. Biomass cooking fuel was self-reported. We fitted a within-between linear-mixed model adjusting for potential confounders. RESULTS Among 3278 participants (48% women, mean age 38 years), mean PM2.5 was 32.7 [range 24.4-38.2] µg/m3, and 60% used biomass. After confounder adjustment, we observed positive associations between within-village variation in PM2.5 and CIMT in all participants [1.79%, 95% confidence interval (CI), -0.31 to 3.90 per 1 µg/m3 of PM2.5] and in men (2.98%, 95% CI, 0.23-5.72, per 1 µg/m3 of PM2.5). Use of biomass cooking fuel was associated with CIMT in all participants (1.60%, 95% CI, -0.46 to 3.65), especially in women with an unvented stove (6.14%, 95% CI, 1.40-10.89). The point-estimate for the PM2.5 association was larger in sub-groups with higher cardiometabolic risk profile. CONCLUSIONS Ambient and household air pollution were positively associated with CIMT in a peri-urban population of India, although with limited precision for some estimates. We observed differences in the association between ambient and household air pollution and CIMT by gender.
Collapse
|
219
|
Álvarez I, Agudo AB, Herrero A, Torices R. The Mendelian inheritance of gynomonoecy: insights from Anacyclus hybridizing species. AMERICAN JOURNAL OF BOTANY 2020; 107:116-125. [PMID: 31903550 DOI: 10.1002/ajb2.1414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Gynomonoecy is an infrequent sexual system in angiosperms, although widely represented within the Asteraceae family. Currently, the hypothesis of two nuclear loci controling gynomonoecy is the most accepted. However, the genic interactions are still uncertain. Anacyclus clavatus, A. homogamos, and A. valentinus differ in their sexual system and floral traits. Here, we investigate the inheritance of gynomonoecy in this model system to understand its prevalence in the family. METHODS We selected six natural populations (two per species) for intra- and interspecific experimental crosses, and generated a total of 1123 individuals from the F1 generation, F2 , and backcrosses for sexual system characterization. The frequency of gynomonoecy observed for each cross was tested to fit different possible hypotheses of genic interaction. Additionally, the breeding system and the degree of reproductive isolation between these species were assessed. RESULTS Complementary epistasis, in which two dominant alleles are required for trait expression, explained the frequencies of gynomonoecy observed across all generations. The heterozygosity inferred in Anacyclus valentinus, as well as its lower and variable seed set, is congruent with its hybrid origin. CONCLUSIONS In our model system gynomonoecy is controlled by complementary epistasis of two genes. A common origin of this sexual system in Asteraceae, in which genic duplications, mutations, and hybridization between lineages played a key role, is hypothesized whereas independent evolutionary pathways and possibly diverse underlying genetic factors are suggested for gynomonoecy expression in other angiosperm families.
Collapse
|
220
|
Galán-Ganga M, Del Río R, Jiménez-Moreno N, Díaz-Guerra M, Lastres-Becker I. Cannabinoid CB 2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells. Cell Mol Neurobiol 2020; 40:167-177. [PMID: 31385133 DOI: 10.1007/s10571-019-00719-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor that has neuroprotective and anti-inflammatory effects, regulating more than 250 genes. As NRF2, cannabinoid receptor type 2 (CB2) is also implicated in the preservation of neurons against glia-driven inflammation. To this concern, little is known about the regulation pathways implicated in CB2 receptor expression. In this study, we analyze whether NRF2 could modulate the transcription of CB2 in neuronal and microglial cells. Bioinformatics analysis revealed an antioxidant response element in the promoter sequence of the CB2 receptor gene. Further analysis by chemical and genetic manipulations of this transcription factor demonstrated that NRF2 is not able to modulate the expression of CB2 in neurons. On the other hand, at the level of microglia, the expression of CB2 is NRF2-dependent. These results are related to the differential levels of expression of both genes regarding the brain cell type. Since modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neurodegeneration, our findings will contribute to disclose the potential of CB2 as a novel target for treating different pathologies.
Collapse
|
221
|
Pallarés S, Sanchez-Hernandez JC, Colado R, Balart-García P, Comas J, Sánchez-Fernández D. Beyond survival experiments: using biomarkers of oxidative stress and neurotoxicity to assess vulnerability of subterranean fauna to climate change. CONSERVATION PHYSIOLOGY 2020; 8:coaa067. [PMID: 34504711 PMCID: PMC7437362 DOI: 10.1093/conphys/coaa067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 04/19/2020] [Accepted: 07/12/2020] [Indexed: 05/06/2023]
Abstract
Accurate assessments of species vulnerability to climate change need to consider the physiological capacity of organisms to deal with temperature changes and identify early signs of thermally induced stress. Oxidative stress biomarkers and acetylcholinesterase activity are useful proxies of stress at the cellular and nervous system level. Such responses are especially relevant for poor dispersal organisms with limited capacity for behavioural thermoregulation, like deep subterranean species. We combined experimental measurements of upper lethal thermal limits, acclimation capacity and biomarkers of oxidative stress and neurotoxicity to assess the impact of heat stress (20°C) at different exposure times (2 and 7 days) on the Iberian endemic subterranean beetle Parvospeonomus canyellesi. Survival response (7 days of exposure) was similar to that reported for other subterranean specialist beetles (high survival up to 20°C but no above 23°C). However, a low physiological plasticity (i.e. incapacity to increase heat tolerance via acclimation) and signs of impairment at the cellular and nervous system level were observed after 7 days of exposure at 20°C. Such sublethal effects were identified by significant differences in total antioxidant capacity, glutathione S-transferase activity, the ratio of reduced to oxidized forms of glutathione and acetylcholinesterase activity between the control (cave temperature) and 20°C treatment. At 2 days of exposure, most biomarker values indicated some degree of oxidative stress in both the control and high-temperature treatment, likely reflecting an initial altered physiological status associated to factors other than temperature. Considering these integrated responses and the predicted increase in temperature in its unique locality, P. canyellesi would have a narrower thermal safety margin to face climate change than that obtained considering only survival experiments. Our results highlight the importance of exploring thermally sensitive processes at different levels of biological organization to obtain more accurate estimates of the species capacity to face climate change.
Collapse
|
222
|
Sánchez-Sanuy F, Peris-Peris C, Tomiyama S, Okada K, Hsing YI, San Segundo B, Campo S. Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC PLANT BIOLOGY 2019; 19:563. [PMID: 31852430 PMCID: PMC6921540 DOI: 10.1186/s12870-019-2156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/21/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level in eukaryotes. In rice, MIR7695 expression is regulated by infection with the rice blast fungus Magnaporthe oryzae with subsequent down-regulation of an alternatively spliced transcript of natural resistance-associated macrophage protein 6 (OsNramp6). NRAMP6 functions as an iron transporter in rice. RESULTS Rice plants grown under high iron supply showed blast resistance, which supports that iron is a factor in controlling blast resistance. During pathogen infection, iron accumulated in the vicinity of M. oryzae appressoria, the sites of pathogen entry, and in cells surrounding infected regions of the rice leaf. Activation-tagged MIR7695 rice plants (MIR7695-Ac) exhibited enhanced iron accumulation and resistance to M. oryzae infection. RNA-seq analysis revealed that blast resistance in MIR7695-Ac plants was associated with strong induction of defense-related genes, including pathogenesis-related and diterpenoid biosynthetic genes. Levels of phytoalexins during pathogen infection were higher in MIR7695-Ac than wild-type plants. Early phytoalexin biosynthetic genes, OsCPS2 and OsCPS4, were also highly upregulated in wild-type rice plants grown under high iron supply. CONCLUSIONS Our data support a positive role of miR7695 in regulating rice immunity that further underpin links between defense and iron signaling in rice. These findings provides a basis to better understand regulatory mechanisms involved in rice immunity in which miR7695 participates which has a great potential for the development of strategies to improve blast resistance in rice.
Collapse
|
223
|
Díez-Álamo AM, Díez E, Alonso MA, Fernandez A. Absence of posture-dependent and posture-congruent memory effects on the recall of action sentences. PLoS One 2019; 14:e0226297. [PMID: 31830104 PMCID: PMC6907800 DOI: 10.1371/journal.pone.0226297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/24/2019] [Indexed: 01/10/2023] Open
Abstract
In two experiments with large samples of participants, we explored contextual memory effects associated with body posture, which was considered a physical and proprioceptive context and, therefore, potentially relevant to the encoding and retrieval of information. In Experiment 1 (N = 128), we studied the effect of context dependence on memory by manipulating the body posture adopted by the participants during the incidental encoding and subsequent recall of a series of action sentences not intrinsically associated with particular body postures (e.g., “to put on a pair of glasses”, “to look at a postcard”). Memory performance was not affected by context manipulation, as reflected by the absence of significant differences between remembering while in the posture adopted at study or in a different posture. Experiment 2 (N = 85) was designed to analyze context congruency memory effects, and for that purpose we manipulated the participants' body posture during the recall of sentences that described actions usually performed in body postures that were congruent or incongruent with the posture of the participants (e.g., recalling the sentence “to travel by taxi” while sitting or while standing). A content-neutral posture (lying) was used for the incidental encoding phase. Memory performance was not affected by contextual congruency at the time of recall, as evidenced by the lack of significant differences between recalling in a posture congruent with the content to be recalled and recalling in an alternative posture. Bayesian analyses supported the strength of null findings in the two experiments, adding to the evidence that, when taken together, the results in this study clearly failed to show contextual memory effects of body posture on the recall of action-related verbal statements.
Collapse
|
224
|
Zanella M, Vitriolo A, Andirko A, Martins PT, Sturm S, O’Rourke T, Laugsch M, Malerba N, Skaros A, Trattaro S, Germain PL, Mihailovic M, Merla G, Rada-Iglesias A, Boeckx C, Testa G. Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication. SCIENCE ADVANCES 2019; 5:eaaw7908. [PMID: 31840056 PMCID: PMC6892627 DOI: 10.1126/sciadv.aaw7908] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/26/2019] [Indexed: 05/10/2023]
Abstract
We undertook a functional dissection of chromatin remodeler BAZ1B in neural crest (NC) stem cells (NCSCs) from a uniquely informative cohort of typical and atypical patients harboring 7q11.23 copy number variants. Our results reveal a key contribution of BAZ1B to NCSC in vitro induction and migration, coupled with a crucial involvement in NC-specific transcriptional circuits and distal regulation. By intersecting our experimental data with new paleogenetic analyses comparing modern and archaic humans, we found a modern-specific enrichment for regulatory changes both in BAZ1B and its experimentally defined downstream targets, thereby providing the first empirical validation of the human self-domestication hypothesis and positioning BAZ1B as a master regulator of the modern human face. In so doing, we provide experimental evidence that the craniofacial and cognitive/behavioral phenotypes caused by alterations of the Williams-Beuren syndrome critical region can serve as a powerful entry point into the evolution of the modern human face and prosociality.
Collapse
|
225
|
Mourkas E, Florez‐Cuadrado D, Pascoe B, Calland JK, Bayliss SC, Mageiros L, Méric G, Hitchings MD, Quesada A, Porrero C, Ugarte‐Ruiz M, Gutiérrez‐Fernández J, Domínguez L, Sheppard SK. Gene pool transmission of multidrug resistance among Campylobacter from livestock, sewage and human disease. Environ Microbiol 2019; 21:4597-4613. [PMID: 31385413 PMCID: PMC6916351 DOI: 10.1111/1462-2920.14760] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
The use of antimicrobials in human and veterinary medicine has coincided with a rise in antimicrobial resistance (AMR) in the food-borne pathogens Campylobacter jejuni and Campylobacter coli. Faecal contamination from the main reservoir hosts (livestock, especially poultry) is the principal route of human infection but little is known about the spread of AMR among source and sink populations. In particular, questions remain about how Campylobacter resistomes interact between species and hosts, and the potential role of sewage as a conduit for the spread of AMR. Here, we investigate the genomic variation associated with AMR in 168 C. jejuni and 92 C. coli strains isolated from humans, livestock and urban effluents in Spain. AMR was tested in vitro and isolate genomes were sequenced and screened for putative AMR genes and alleles. Genes associated with resistance to multiple drug classes were observed in both species and were commonly present in multidrug-resistant genomic islands (GIs), often located on plasmids or mobile elements. In many cases, these loci had alleles that were shared among C. jejuni and C. coli consistent with horizontal transfer. Our results suggest that specific antibiotic resistance genes have spread among Campylobacter isolated from humans, animals and the environment.
Collapse
|