1
|
Li W, Zhang J, Gao Y, Kong X, Sun X. Nervous system in hepatocellular carcinoma: Correlation, mechanisms, therapeutic implications, and future perspectives. Biochim Biophys Acta Rev Cancer 2025; 1880:189345. [PMID: 40355012 DOI: 10.1016/j.bbcan.2025.189345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous and complex cancer influenced by both the tumor microenvironment and multi-level regulation of the nervous system. Increasing evidence highlights critical roles of the central nervous system (CNS) and peripheral nervous system (PNS) in modulating HCC progression. Psychological stress and emotional disturbances, representing CNS dysregulation, directly accelerate tumor growth, metastasis, and impair anti-tumor immunity in HCC. PNS involvement, particularly autonomic innervation, extensively reshapes the hepatic tumor microenvironment. Specifically, sympathetic activation promotes immune suppression, tumor cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stemness via β-adrenergic signaling and hypoxia-inducible factor 1-alpha (HIF-1α) stabilization, whereas parasympathetic signals generally exert anti-inflammatory and tumor-suppressive effects mediated by acetylcholine. Neurotransmitters including epinephrine, norepinephrine, dopamine, serotonin, and acetylcholine precisely regulate critical pathways such as AKT/mTOR, ERK, and NF-κB, thereby driving malignant cell behaviors, immune evasion, and chemoresistance. Neuro-targeted pharmacological interventions (e.g., SSRIs, β-blockers, dopamine antagonists) and behavioral therapies have shown efficacy in preclinical studies, underscoring their therapeutic potential. Additionally, neural-associated biomarkers like NEDD9, CNTN1, and nerve growth factor (NGF) exhibit prognostic significance, supporting their future clinical application. By systematically integrating neuroscience with oncology, this review identifies innovative neural-based therapeutic strategies, highlights key mechanistic insights, and outlines promising directions for future research and personalized clinical management of HCC.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, People's Republic of China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, People's Republic of China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, People's Republic of China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, People's Republic of China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
2
|
Eissa LA, Marawan AM, Marawan ME, Abass SA. Autophagy in disease management: Exploring the potential of natural products as targeted therapies. Pathol Res Pract 2025; 272:156077. [PMID: 40516139 DOI: 10.1016/j.prp.2025.156077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 06/01/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
Autophagy is a vital cellular process that degrades and recycles intracellular components via lysosomes, playing a key role in maintaining cellular homeostasis. Alteration of this mechanism has been implicated in the occurrence and progression of numerous diseases, including cancer, neurodegenerative disorders, cardiovascular conditions, and microbial and viral infections. Recent studies have identified several mutations affecting autophagy-related genes and elucidated how defective degradation of specific substrates contributes to disease mechanisms. Natural products are gaining attention for their ability to modulate autophagy through several molecular targets. Herin, we highlight the complicated role of autophagy in disease pathogenesis. We also illustrate how natural products may offer therapeutic value by targeting autophagy in different pathological contexts.
Collapse
Affiliation(s)
- Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Amani M Marawan
- Faculty of Veterinary Medicine, Delta University for Science and Technology, Gamsa 11152, Egypt; Shoha Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35738, Egypt.
| | - Mohamed E Marawan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| | - Shimaa A Abass
- Department of Biochemistry, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh 33516, Egypt; Biochemistry Department, Faculty of Pharmacy, Menoufia National University, Menoufia, Egypt.
| |
Collapse
|
3
|
Liu D, Li L, Zhang J, Qin H, Zhang M, Sun X, Han Y, Wang F, Wang Z, Cai Z. Berberine promotes apoptosis and inhibits the migration of oral squamous carcinoma cells through inhibition of the RAGE/PI3K/AKT/mTOR pathway. Biomed Pharmacother 2025; 187:118147. [PMID: 40339228 DOI: 10.1016/j.biopha.2025.118147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
Given the high recurrence rate, elevated risk of metastasis, and drug resistance associated with oral squamous cell carcinoma (OSCC), the development of low - toxicity and highly efficient therapeutic agents has emerged as a top research priority. In this study, we conducted an in-depth investigation into the efficacy and underlying mechanism of berberine (BBR), a compound renowned for its broad anticancer activity, in the context of OSCC. Using network pharmacology, we identified 91 potential targets of BBR in OSCC, with SRC, PIK3CA, and CDC42 ranking among the top. KEGG pathway analysis indicated that the cross-targets were predominantly concentrated in signaling pathways such as PI3K/AKT, AGE-RAGE, and Ras. Molecular docking assays demonstrated that the binding energies between BBR and the core targets were all below -5 kcal/mol, signifying favorable binding interactions. Bioinformatics studies unveiled that SRC, PIK3CA, and CDC42 were highly expressed in OSCC patients and correlated with a poorer prognosis. In vitro, experiments further substantiated that BBR impeded the proliferation and migration of OSCC cells and reduced the intracellular expression levels of RAGE, p-PI3K, p-AKT, and p-mTOR proteins. Our results suggest that BBR effectively facilitates apoptosis and curbs the proliferation and migration of OSCC, potentially by suppressing the RAGE/PI3K/AKT/mTOR pathway. In summary, these findings underscore the potential of BBR as a single agent capable of exerting multi-target and multi-pathway synergistic effects on cancer cells.
Collapse
Affiliation(s)
- Daili Liu
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Ling Li
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Jingfei Zhang
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China
| | - Han Qin
- Department of Stomatology, Tengzhou Hospital of Traditional Chinese Medicine, Tengzhou 277599, China
| | - Meng Zhang
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Xiaoyang Sun
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China; Department of Stomatology, Shandong Second Medical University, Weifang 261000, China
| | - Yuting Han
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Feng Wang
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China; Department of Stomatology, Shandong Second Medical University, Weifang 261000, China
| | - Zhi Wang
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China.
| | - Zhen Cai
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China.
| |
Collapse
|
4
|
Mondaca JM, Muñoz JMF, Barraza GA, Vanderhoeven F, Redondo AL, Flamini MI, Sanchez AM. Therapeutic potential of GNRHR analogs and SRC/FAK inhibitors to counteract tumor growth and metastasis in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167826. [PMID: 40189112 DOI: 10.1016/j.bbadis.2025.167826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women, with hormone-dependent BC accounting for about 80 % of cases, primarily affecting postmenopausal women with gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) elevated. Treatments targeting the gonadotropin-releasing hormone receptor (GnRHR), such as the agonist leuprorelin (LEU) and antagonist degarelix (DEGA), are used for hormone-dependent tumors. While the functional role of gonadotropin receptors in extragonadal tissues remains uncertain, recent studies suggest LH contributes to tumor development and progression. Tumor progression involves reorganization in the actin cytoskeleton, induction of adhesion, and cell migration, driven by proteins such as Src and the focal adhesion kinase (FAK), which are related to invasive behaviors. The overexpression of both protein kinases generates an invasive and metastatic phenotype, then inhibitors targeting Src (PP2) and FAK (FAKi) have been developed to counteract this effect. This study combined GnRH analogs with Src and FAK inhibitors to target BC progression. We found that LH treatment influenced gene expression linked to tumor development. Examining the GnRHR-LEU and GnRHR-DEGA complexes revealed structural differences affecting ligand binding. In an orthotopic tumor model, DEGA reduced tumor growth, while LEU had the opposite effect. Combining DEGA with PP2 or FAKi enhanced tumor inhibition, improving mice survival. These findings provide valuable insights into the essential regulatory role of gonadotropins in genes involved in tumorigenic processes, highlighting the potential of GnRHR antagonists combined with Src or FAK inhibitors as a promising strategy to develop new drugs that interfere with the ability of breast tumor progression.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Manuel Fernandez Muñoz
- Departamento de Laboratorio de Salud Pública, Ministerio de Salud y Deportes, Gobierno de Mendoza, Mendoza, Argentina
| | - Gustavo Adolfo Barraza
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fiorella Vanderhoeven
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Analía Lourdes Redondo
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
5
|
Jallod IMS, Abbas AK, Yaqoob FI, Aziz AAA. Bridging diabetes and cancer: harnessing biomarkers as dual sentinels for diagnosis, prognosis, and therapeutic advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04209-5. [PMID: 40387929 DOI: 10.1007/s00210-025-04209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
The complex two-way relationship between diabetes mellitus (DM) and cancer poses a significant global health challenge. Shared mechanisms such as hyperinsulinemia, chronic inflammation, and oxidative stress create an environment that fosters cancer development, increasing the risk for certain cancers in individuals with diabetes, including pancreatic, colorectal, breast, liver, and endometrial malignancies. In this context, biomarkers emerge as essential tools, offering a means to untangle the connections between these two conditions by providing insights into early detection, diagnosis, prognosis, and treatment monitoring. For diabetic patients, biomarkers are particularly valuable as they help differentiate between changes caused by cancer and those driven by metabolic imbalances, illuminating disease evolution. This review examines the unique challenges encountered by diabetic patients with cancer, emphasizing the contributions of targeted biomarkers in identifying cancer subtypes, predicting outcomes, and guiding treatment decisions. We explore organ-specific biomarker profiles across various cancers, including pancreatic, colorectal, breast, liver, and lung, highlighting their potential to enhance diagnostic precision and enable personalized treatment strategies. Ultimately, we aim to illustrate how a deeper understanding of biomarker signatures can inform innovative clinical approaches and improve care for patients facing the dual burden of diabetes and cancer.
Collapse
Affiliation(s)
| | | | - Faheemah Ismael Yaqoob
- College of Nursing, Department of Basic Science Nursing, University of Telafer, Telafer, Iraq
| | | |
Collapse
|
6
|
El-Gendi H, Albrahim JS, Alenezi H, El-Fakharany EM, El-Maradny YA, Saleh AK. Bioactive bacterial cellulose/chitosan/sodium alginate composite film functionalized with Moringa oleifera seed extract: Antimicrobial, anticancer, and molecular docking studies. Int J Biol Macromol 2025; 307:141958. [PMID: 40074119 DOI: 10.1016/j.ijbiomac.2025.141958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
In this study, composite films (BC/Ch/SA/EEMS) were fabricated using the casting method by incorporating bacterial cellulose (BC), chitosan (Ch), and sodium alginate (SA) with ethanolic Moringa seed extract (EEMS). HPLC analysis detected 16 polyphenolic compounds in EEMS, with Rutin (59.56 μg/mL) the most abundant, while GC-MS analysis identified 11-octadecenoic acid (88.35 %) as the predominant compound. The minimum inhibitory concentration (MIC) of EEMS was approximately 0.015 mg/mL for S. typhimurium, while S. mutans and C. albicans shared a MIC value of 0.062 mg/mL. The BC/Ch/SA/EEMS composite films were characterized using SEM, XRD, and FT-IR, confirming the successful incorporation of EEMS, which appeared as white spots within the composite. The composite films exhibited broad-spectrum antimicrobial activity, particularly against S. typhimurium and S. aureus, with the 2 % EEMS-loaded film demonstrating the highest efficacy. In vitro anticancer evaluations revealed significant cytotoxic effects against HepG-2 liver and MDA breast cancer cell lines, with Film 2 (2 % EEMS) exhibiting the highest selectivity index. Molecular docking analysis further highlighted Kaempferol and Syringic acid as potential drug candidates due to their strong binding affinities with key cancer-associated proteins. The novelty of this study lies in integrating of EEMS into a biopolymer matrix with promising biomedical applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess development department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt.
| | - Jehan S Albrahim
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hussain Alenezi
- Department of Manufacturing Engineering Technology, College of Technological Studies, PAAET, Shuwaikh Industrial, Kuwait
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, 12622 Giza, Egypt.
| |
Collapse
|
7
|
Banki K, Perl A. Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging. Autoimmun Rev 2025; 24:103781. [PMID: 40010622 DOI: 10.1016/j.autrev.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
Collapse
Affiliation(s)
- Katalin Banki
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
8
|
Zafar A, Khatoon S, Khan MJ, Abu J, Naeem A. Advancements and limitations in traditional anti-cancer therapies: a comprehensive review of surgery, chemotherapy, radiation therapy, and hormonal therapy. Discov Oncol 2025; 16:607. [PMID: 40272602 PMCID: PMC12021777 DOI: 10.1007/s12672-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Cancer remains a major global health challenge, consistently ranking as the second leading cause of mortality worldwide. Despite significant advancements in research and technology, the need to deepen our understanding of tumor biology and improve therapeutic strategies persists. This review focuses on the progress and challenges of four traditional cancer treatment modalities: surgery, chemotherapy, radiation therapy, and hormonal therapy. Surgery, the primary method for tumor removal, has evolved with the integration of fluorescence-based technology and robotic systems, enhancing precision and minimizing collateral damage. Radiation therapy has progressed with improved focus, intensity control, and 3D technology, refining both diagnosis and treatment. Chemotherapy has advanced from natural extracts to synthesized derivatives with amplified cytotoxicity against cancer cells. Hormonal therapy has emerged as a crucial strategy for hormone-dependent cancers, restraining growth or inducing regression. Despite these advancements, each approach faces ongoing challenges. Surgery struggles with complete tumor removal due to heterogeneity. Chemotherapy contends with drug resistance and side effects. Radiation therapy grapples with precision issues and limited access in some regions. Hormonal therapy faces resistance development and quality of life impacts. This study provides a comprehensive analysis of the evolution of these traditional anti-cancer therapies, offering insights into their progress and highlighting areas for future research. By examining these modalities, we aim to underscore their relevance in the current oncology landscape and identify opportunities for improvement in cancer treatment strategies.
Collapse
Affiliation(s)
- Aasma Zafar
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan
| | - Summaiya Khatoon
- College of Health Sciences, QU Health Sector, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Junaid Abu
- Aisha bint Hamad al-Attiyah hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aisha Naeem
- Research and Graduate Studies, QU Health Sector, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
9
|
Asproni B, Pinna GA, Corona P, Coinu S, Piras S, Carta A, Murineddu G. Therapeutic Potential of Tricyclic Pyridazinone-Based Molecules: An Overview. Int J Mol Sci 2025; 26:3806. [PMID: 40332429 PMCID: PMC12027733 DOI: 10.3390/ijms26083806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Pyridazin-3(2H)one-based molecules have always attracted the attention of medicinal chemists due to their different pharmacological properties. The incorporation of such nuclei in therapeutically active molecules either as monocyclic units or as fused bi- or tricyclic scaffolds results in a wide range of pharmacological effects such as anti-inflammatory, analgesic, anticancer, antimicrobial, antiviral, cardiovascular-protective, antiulcer, and many other useful pharmacological activities. In accordance with our consolidated experience gained over the years in the chemistry and biology of tricyclic pyridazin-3(2H)ones, this review summarizes SAR studies of such pyridazinone-based polycyclic compounds endowed with various biological and therapeutic properties.
Collapse
Affiliation(s)
- Battistina Asproni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.A.P.); (P.C.); (S.C.); (S.P.); (A.C.)
| | | | | | | | | | | | - Gabriele Murineddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.A.P.); (P.C.); (S.C.); (S.P.); (A.C.)
| |
Collapse
|
10
|
Yamaguchi H, Nagai R. Insights from the fructose-derived product glucoselysine: Revisiting the polyol pathway in diabetic complications. J Diabetes Investig 2025; 16:569-577. [PMID: 39891559 PMCID: PMC11970307 DOI: 10.1111/jdi.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
Advanced glycation end-products (AGEs) have been extensively studied because of their close association with the onset and progression of diabetic complications. However, owing to their formation through diverse metabolic pathways, AGEs often reflect a wide range of pathological conditions rather than being specific to diabetic complications. Consequently, identifying an AGE that directly correlates only with diabetic complications remains a challenge. Chronic hyperglycemia not only saturates the glycolytic pathway but also upregulates the polyol pathway, leading to the excessive production of fructose, a highly reactive reducing sugar. Although it has long been understood that fructose-derived AGEs contribute to diabetic complications, their chemical structures remain unidentified. Recent breakthroughs have revealed that glucoselysine (GL) is a primary fructose-specific AGE. Unlike other AGEs, GL is exclusively formed from fructose and not from other reducing sugars, such as glucose or galactose. This specificity provides GL with a distinct advantage in that its production pathway can be traced, making it a reliable indicator of polyol pathway activity. Furthermore, emerging evidence suggests that GL levels correlate with the progression of diabetic complications, including both micro- and macrovascular complications, making it a promising biomarker. GL's potential extends beyond diagnostics, as it may serve as a therapeutic target for managing complications associated with prolonged hyperglycemia and enhanced of polyol pathway. This review focuses on the enhanced polyol pathway and the formation of GL and discusses its biochemical characteristics, clinical significance, and potential as a novel diagnostic marker and therapeutic target in diabetic care.
Collapse
Affiliation(s)
- Hiroko Yamaguchi
- Laboratory of Food and Regulation Biology, Graduate School of BioscienceTokai UniversityKumamotoJapan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of BioscienceTokai UniversityKumamotoJapan
- Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of AgricultureTokai UniversityKumamotoJapan
| |
Collapse
|
11
|
Dilimulati D, Nueraihemaiti N, Hailati S, Han M, Abudurousuli K, Maihemuti N, Baishan A, Aikebaier A, Abulizi M, Zhou W. Elucidating the multi-target pharmacological mechanism of Xiaoyandina for the treatment of hepatitis C virus based on bioinformatics and cyberpharmacology studies. Medicine (Baltimore) 2025; 104:e41793. [PMID: 40101098 PMCID: PMC11922434 DOI: 10.1097/md.0000000000041793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
An estimated 170 million people worldwide suffer from chronic hepatitis C virus (HCV) infection, which is the main reason for liver transplantation in numerous nations. Traditional Chinese medicine is also frequently employed in medicine to treat HCV. Xiaoyandina is frequently employed in traditional medicine, and which has traditionally been used to cure acute and chronic hepatitis, jaundice, acute and chronic cholecystitis, and acute and chronic cholangitis. The information related to active compounds was retrieved from public databases and through literature review which was later combined with differentially expressed genes obtained through microarray datasets; a compound-target genes-disease network was constructed which uncovered that Kaempferol, Sesamin, and Quercetin decisively contributed to the cell growth and proliferation by affecting STAT1, interleukin-6, and CXCL10 proteins. The molecular docking and molecular dynamics simulation of 50 ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. In total, compound targets were obtained separately from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. And 27, 10,894, 6, and 20 disease targets were acquired separately based on OMIM, GeneCard, DrugBank, and PharmGkb databases. Then, we constructed the compound-target network and protein-protein interaction network. Three hundred ninety-four differentially expressed genes were observed (231 up-regulated and 163 downregulated genes). Hub genes were screened through survival analysis, including interleukin-6, STAT1, and CXCL10. Finally, molecular docking and molecular dynamics analysis results showed more stable binding between 3 hub genes and the 2 most active compounds Kaempferol and Quercetin. Our research suggests a novel scientific approach for evaluating the multi-component, multi-target impact of XYDN's active compounds. The present investigation suggested Quercetin, Kaempferol, and Sesamin as possible HCV treatments by combining bioinformatics techniques and network pharmacology. But the findings were not validated in actual patients, so further investigation is needed to confirm the potential use of XYDN towards HCV.
Collapse
Affiliation(s)
- Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Mengyuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Kayisaier Abudurousuli
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Nulibiya Maihemuti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Alfira Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Maidina Abulizi
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| |
Collapse
|
12
|
Chen JF, Ye SZ, Wang KJ, Meng XY, Yang BB, Wu KR, Ma Q. Long non-coding RNA OSTM1-AS1 promotes renal cell carcinoma progression by sponging miR-491-5p and upregulating MMP-9. Sci Rep 2025; 15:359. [PMID: 39747324 PMCID: PMC11696353 DOI: 10.1038/s41598-024-83154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown. Here, we examined OSTM1-AS1 functional roles and mechanism in RCC development. OSTM1-AS1 expression was significantly highly expressed among RCC tissue specimens and cell lines. Functionally, OSTM1-AS1 knockdown significantly suppressed cell proliferation, migration along with metastasis of RCC cells. Mechanistically, miR-491-5p was targeted via OSTM1-AS1, and down-regulation of miR-491-5p reversed OSTM1-AS1 knockdown impact on RCC migration and invasion. MMP-9 was targeted via miR-491-5p, and MMP-9 overexpression reversed miR-491-5p or OSTM1-AS1 knockdown impact on cell migration and invasion. MMP-9 abundance was decreased by OSTM1-AS1 silence, that was reduced by miR-491-5p deficiency. Importantly, our investigation revealed that OSTM1-AS1 has the ability to interact with miR-491-5p, thereby increasing the MMP-9 expression. The in vivo trial demonstrated that OSTM1-AS1 suppression resulted in tumor growth inhibition among nude mice. In summary, our findings indicate, for the first time, at least to the best of our knowledge, that OSTM1-AS1 serves as an oncogene among RCC by promoting proliferation, invasion, and metastasis through its targeting of the miR-491-5p/MMP9 axis. Therefore, this axis could represent a promising alternative therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Jun-Feng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Bin-Bin Yang
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke Rong Wu
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Yi-Huan Genitourinary Cancer Group, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
13
|
Gupta M, Nimesh H, Bilgrami AL, Sarwat M. A Saffron-based Polyherbal Formulation DuK Prevents Hepatocellular Carcinoma in Male Wistar Rats. Curr Cancer Drug Targets 2025; 25:335-344. [PMID: 37594101 DOI: 10.2174/1568009623666230818115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Duk is a well-established traditional drug that has been used since time immemorial by Indian practitioners to cure various human ailments. OBJECTIVE The purpose of this study was to explore the anti-cancer activity and the possible mechanism of Duk against diethylnitrosamine (DEN)-initiated hepatocarcinogenesis. METHODS We administered Duk at 3 doses, viz., 75, 150, and 300 mg/kg/day, 2 weeks before the DEN and continued it for 16 weeks. After 1 week of DEN recovery, 2-aminoacetylflourine (2- AAF) was administered to promote hepatocarcinogenesis. RESULTS We found that Duk significantly reduced the DEN and 2-AAF induced phenotypical changes in rats and restored the levels of liver function markers. Furthermore, Duk counteracted the oxidative stress induced by carcinogens as observed by restoration in the levels of superoxide dismutase (SOD) and catalase (CAT). Duk significantly diminished the levels of malondialdehyde (MDA) in a dose dependent manner and restored the liver microarchitecture as assessed by histopathological studies. The results of immunohistochemical staining showed that Duk inhibited the DEN-induced decrease in the number of cells positive for Bid and Caspase-9. It also reduces the number of cells positive for Cyclin D. CONCLUSION Duk significantly protects rat liver from hepatocarcinogenesis by regulating oxidative damage and restoring liver function markers. The chemopreventive effect of Duk might be through the induction of apoptosis.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hemlata Nimesh
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Xiao S, Yu T, Yang F, Yuan H, Ni J. LMAN2 interacts with HEATR3 to expedite HER2-positive breast cancer advancement and inflammation and Akt/ERK/NF-κB signaling. Biochem Cell Biol 2025; 103:1-11. [PMID: 39772898 DOI: 10.1139/bcb-2024-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The paper aimed to reveal the impacts and the possible mechanism of action of lectin mannose-binding 2 protein (LMAN2) in HER2-positive breast cancer (BC). The expression, prognostic potential of LMAN2, and the correlation between LMAN2 and HEAT repeat containing 3 (HEATR3) in BC were analyzed in TCGA database. Intact, Mentha, and BioGrid databases predicted LMAN2-HEATR3 interactions. Reverse transcription-quantitative PCR and Western blot examined LMAN2 expression. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays, respectively, detected the aggressive cellular biological behaviors including proliferation, migration, and invasion. Western blot analyzed the expression of matrix metalloproteinases, HEATR3, and protein kinase B (Akt)/extracellular signal-regulated kinase (ERK)/nuclear factor-kappaB (NF-κB) signaling-related proteins. Co-immunoprecipitation assay was used to prove the relationship of LMAN2 with HEATR3. Enzyme-linked immunosorbent assay detected inflammatory cytokine levels. LMAN2 was overexpressed in HER2-positive BC tissues and cells and indicated unfavorable prognosis of BC patients. LMAN2 knockdown suppressed HER2-positive BC cell proliferation, migration, and invasion. LMAN2 interacted with and had a positive correlation with HEATR3. HEATR3 up-regulation reversed the repressive role of LMAN2 interference in the progression of HER2-positive BC, Akt/ERK/NF-κB signaling, and inflammatory response. Altogether, LMAN2 silencing might exert anti-tumor and anti-inflammatory properties and inactivate Akt/ERK/NF-κB signaling in HER2-positive BC via binding to HEATR3.
Collapse
Affiliation(s)
- Sujian Xiao
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Tong Yu
- Blood Transfusion Department, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Fulan Yang
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Huozhong Yuan
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Jun Ni
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
15
|
Alam M, Gulzar M, Akhtar MS, Rashid S, Zulfareen, Tanuja, Shamsi A, Hassan MI. Epigallocatechin-3-gallate therapeutic potential in human diseases: molecular mechanisms and clinical studies. MOLECULAR BIOMEDICINE 2024; 5:73. [PMID: 39725830 PMCID: PMC11671467 DOI: 10.1186/s43556-024-00240-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Green tea has garnered increasing attention across age groups due to its numerous health benefits, largely attributed to Epigallocatechin 3-gallate (EGCG), its key polyphenol. EGCG exhibits a wide spectrum of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and neuroprotective properties, as well as benefits for cardiovascular and oral health. This review provides a comprehensive overview of recent findings on the therapeutic potential of EGCG in various human diseases. Neuroprotective effects of EGCG include safeguarding neurons from damage and enhancing cognitive function, primarily through its antioxidant capacity to reduce reactive oxygen species (ROS) generated during physiological stress. Additionally, EGCG modulates key signaling pathways such as JAK/STAT, Delta-Notch, and TNF, all of which play critical roles in neuronal survival, growth, and function. Furthermore, EGCG is involved in regulating apoptosis and cell cycle progression, making it a promising candidate for the treatment of metabolic diseases, including cancer and diabetes. Despite its promising therapeutic potential, further clinical trials are essential to validate the efficacy and safety of EGCG and to optimize its delivery to target tissues. While many reviews have addressed the anticancer properties of EGCG, this review focuses on the molecular mechanisms and signaling pathways by which EGCG used in specific human diseases, particularly cancer, neurodegenerative and metabolic diseases. It serves as a valuable resource for researchers, clinicians, and healthcare professionals, revealing the potential of EGCG in managing neurodegenerative disorders, cancer, and metabolic diseases and highlighting its broader therapeutic values.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Tanuja
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, P.O. Box 346, Ajman, UAE.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
16
|
Jansen K, Kornfeld L, Lennartz M, Dwertmann Rico S, Kind S, Reiswich V, Viehweger F, Bawahab AA, Fraune C, Gorbokon N, Luebke AM, Hube-Magg C, Menz A, Uhlig R, Krech T, Hinsch A, Jacobsen F, Burandt E, Sauter G, Simon R, Kluth M, Steurer S, Marx AH, Clauditz TS, Dum D, Lebok P, Minner S, Bernreuther C. Carcinoembryonic Antigen Expression in Human Tumors: A Tissue Microarray Study on 13,725 Tumors. Cancers (Basel) 2024; 16:4052. [PMID: 39682238 DOI: 10.3390/cancers16234052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Carcinoembryonic antigen (CEA) is a cell-surface glycoprotein serving as a drug target, diagnostic marker, and serum marker for cancer monitoring. However, prevalence data on CEA expression in cancer tissues vary considerably. This study was designed to determine CEA expression in normal and neoplastic tissues. METHODS A tissue microarray containing 13,725 samples from 120 different tumor types, as well as 76 different normal tissue types, was analyzed by immunohistochemistry (IHC). RESULTS CEA was detectable in 65 (54.2%) of 120 tumor categories, including 49 (40.8%) tumor types with at least one strongly positive case. CEA positivity was most common in colorectal adenomas (100%) and carcinomas (98.7%), other gastrointestinal adenocarcinomas (61.1-80.3%), medullary carcinomas of the thyroid (96.3%), pulmonary adenocarcinoma (73.7%), mucinous carcinomas of the ovary (79.8%) and the breast (43.2%), small-cell carcinomas of the lung (64.3%), and urinary bladder (38.9%). CEA overexpression was linked to high tumor grade and invasive growth (p < 0.0001 each) in urinary bladder cancer, and estrogen and HER2 receptor positivity (p ≤ 0.0158) in invasive breast cancer of no special type. In colorectal adenocarcinomas, reduced CEA expression was associated with mismatch repair deficiency (p < 0.0001). CONCLUSIONS The comprehensive list of CEA-positive human tumor types demonstrates that CEA is expressed in a broad range of epithelial neoplasms, many of which might benefit from CEA serum monitoring and anti-CEA therapies.
Collapse
Affiliation(s)
- Kristina Jansen
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lara Kornfeld
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, Pathology Division, College of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
17
|
Ghorbian M, Ghorbian S. Comprehensive review of reinforcement learning in lung cancer diagnosis and treatment: Taxonomy, challenges and recommendations. Comput Biol Med 2024; 183:109326. [PMID: 39461105 DOI: 10.1016/j.compbiomed.2024.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Lung cancer (LuC) is one of the leading causes of death in the world, and due to the complex mechanisms and widespread metastasis, diagnosis and treatment are challenging. In recent years, the application of reinforcement learning (RL) techniques as a new tool to improve LuC diagnosis and treatment has been dramatically expanded. These techniques can potentially increase the accuracy of diagnosis and optimize treatment processes by learning from limited data and improving clinical decisions. However, RL in LuC diagnosis and treatment faces challenges such as limited access to clinical data, the complexity of algorithms, and the need for technical expertise for proper implementation. Our systematic review article aims to evaluate the latest developments in applications and challenges of using RL techniques in LuC diagnosis and treatment. The findings showed that RL has increased the accuracy of identifying disease trends by 37 % and enhancing treatment decisions by 23 %. Also, using this approach reduces data processing time by 17 % and streamlining treatment processes by 12 %. Ultimately, analyzing the current challenges and offering recommendations to researchers could help develop new strategies for improving the diagnosis and treatment of LuC.
Collapse
Affiliation(s)
- Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
18
|
Fan CW, Luo L, Li MS, Gu YQ, Fang YL, Qin F, Wang HS. Sesquilignans PD from Zanthoxylum nitidum var. tomentosum exerts antitumor effects via the ROS/MAPK pathway in liver cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1530-1542. [PMID: 38958633 DOI: 10.1080/10286020.2024.2371032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Sesquilignans PD is a natural phenylpropanoid compound that was isolated from Zanthoxylum nitidum var. tomentosum. In this study, we assessed the antitumor effect of PD on SK-Hep-1 and HepG2 cells and the underlying molecular mechanisms. The results revealed that PD markedly inhibited the proliferation and migration of both liver cancer cells. Moreover, PD induced apoptosis, autophagy, and reactive oxygen species (ROS) production in liver cancer cells. Notably, PD increased the protein levels of p-p38 MAPK and p-ERK1/2 in liver cancer cells. This is the first report on the anticancer effect of PD, which is mediated via increased ROS production and MAPK signaling activation.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Scientific Experiment Center, Guilin Medical University, Guilin 541199, China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Yi-Lin Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
19
|
Xenodochidis C, Hristova-Panusheva K, Kamenska T, Santhosh PB, Petrov T, Stoychev L, Genova J, Krasteva N. Graphene Oxide Nanoparticles for Photothermal Treatment of Hepatocellular Carcinoma Using Low-Intensity Femtosecond Laser Irradiation. Molecules 2024; 29:5650. [PMID: 39683809 DOI: 10.3390/molecules29235650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Graphene oxide-mediated photothermal therapy using femtosecond lasers has recently shown promise in treating hepatocellular carcinoma. However, significant work remains to optimize irradiation parameters for specific nanoparticle types and cancer cells to improve nanomaterial-mediated photothermal anticancer therapy. This study investigated the photothermal potential of nGO and nGO-PEG nanoparticles (NPs) combined with femtosecond laser irradiation at 515 nm and 1030 nm wavelengths, with varying power (0.1 and 0.2 W/cm2) and duration (5 and 10 min), to optimize photothermal therapy for hepatocellular carcinoma. Conversion efficiency of NPs, morphology and viability of HepG2 and normal MDCK cells after treatments were evaluated using an electronic thermometer, phase-contrast microscopy, and WST-1 assay. The results revealed that nGO-PEG NPs exhibited better photothermal efficiency than nGO, with 515 nm of irradiation inducing a temperature increase up to 19.1 °C compared to 4.7 °C with 1030 nm of light. Laser exposure to 515 nm significantly reduced HepG2 cell viability, with the most intense conditions (10 min at 0.2 W/cm2) causing a decrease of up to 58.2% with nGO and 43.51% with nGO-PEG. Normal MDCK cells showed minimal impact or a slight viability increase, especially with nGO-PEG. Combined treatment with laser irradiation and NPs induced significant morphological changes in HepG2 cells, including cell detachment and apoptotic-like characteristics, particularly with 1030 nm of irradiation. MDCK cells exhibited minimal morphological changes, with some recovery observed under lower energy conditions. These findings suggest that low-energy lasers and engineered nanomaterials could provide a minimally invasive approach to photothermal cancer therapy with reduced side effects.
Collapse
Affiliation(s)
- Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Trayana Kamenska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Todor Petrov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8 Kliment Ohridski Str., 1000 Sofia, Bulgaria
| | - Lyubomir Stoychev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| |
Collapse
|
20
|
Schwarz M, Simbrunner B, Jachs M, Hartl L, Balcar L, Bauer DJM, Semmler G, Hofer BS, Scheiner B, Pinter M, Stättermayer AF, Trauner M, Reiberger T, Mandorfer M. High histamine levels are associated with acute-on-chronic liver failure and liver-related death in patients with advanced chronic liver disease. Liver Int 2024; 44:2904-2914. [PMID: 39136222 DOI: 10.1111/liv.16056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS The role of histamine in advanced chronic liver disease (ACLD) is poorly understood. We investigated plasma histamine levels across ACLD stages and their prognostic value. METHODS We included patients with evidence of ACLD, defined by portal hypertension (hepatic venous pressure gradient [HVPG] ≥6 mmHg) and/or a liver stiffness measurement by transient elastography ≥10 kPa, who underwent HVPG measurement between 2017 and 2020. Acute-on-chronic liver failure (ACLF) and/or liver-related death were defined as composite endpoint. RESULTS Of 251 patients, 82.5% had clinically significant portal hypertension (median HVPG: 17 mmHg [interquartile range (IQR) 12-21]) and 135 patients (53.8%) were decompensated at baseline. Median plasma histamine was 8.5 nmol/L (IQR: 6.4-11.5), 37.1% of patients showed elevated values (>9.9 nmol/L). Histamine levels did not differ significantly across Child-Turcotte-Pugh (CTP) stages nor strata of model for end-stage liver disease (MELD) or HVPG. Histamine levels correlated with markers of circulatory dysfunction (i.e. sodium, renin and aldosterone). During a median follow-up of 29.2 months, 68 patients developed ACLF or liver-related death. In univariate as well as in multivariate analysis (adjusting for age, sex, HVPG as well as either MELD, clinical stage, and serum albumin or CTP and serum sodium), elevated histamine levels remained associated with the composite endpoint. CTP-based multivariate model adjusted sub-distribution hazard ratio (asHR): 1.010 (95% CI: 1.004-1.021), p < .001; MELD-based multivariate model asHR: 1.030 (95% CI: 1.017-1.040), p < .001. CONCLUSION High levels of histamine were linked to circulatory dysfunction in ACLD patients and independently associated with increased risks of ACLF or liver-related death. Further mechanistic studies on the link between histamine signalling and development of hyperdynamic circulation and ACLF are warranted.
Collapse
Affiliation(s)
- Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - David J M Bauer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt S Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Albert F Stättermayer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Yan J, Yang A, Tu S. The relationship between keratin 18 and epithelial-derived tumors: as a diagnostic marker, prognostic marker, and its role in tumorigenesis. Front Oncol 2024; 14:1445978. [PMID: 39502314 PMCID: PMC11534658 DOI: 10.3389/fonc.2024.1445978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
As a structural protein, keratin is mainly expressed in epithelial cells and skin appendages to provide mechanical support and external resistance. The keratin family has a total of 54 members, which are divided into type I and type II. Two types of keratins connect to each other to form keratin intermediate filaments and participate in the construction of the cytoskeleton. K18 is a non-hair keratin, which is widely expressed in simple epithelial tissues with its partner, K8. Compared with mechanical support, K8/K18 pairs play more important roles in biological regulation, such as mediating anti-apoptosis, regulating cell cycle progression, and transmitting signals. Mutations in K18 can cause a variety of non-neoplastic diseases of the visceral epithelium. In addition, the expression levels of K18 are frequently altered in various epithelial-derived tumors, especially adenocarcinomas, which suggests that K18 may be involved in tumorigenesis. Due to the specific expression pattern of K18 in tumor tissues and its serum level reflecting tumor cell death, apply K18 to diagnose tumors and predict its prognosis have the potential to be simple and effective alternative methods. However, these potential roles of K18 in tumors have not been fully summarized. In this review, we focus on the relationship between K18 and epithelial-derived tumors, discuss the value of K18 as a diagnostic and prognostic marker, and summarize the interactions of K18 with various related proteins in tumorigenesis, with examples of simple epithelial tumors such as lung, breast, liver, and gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiazhi Yan
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Aiwei Yang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shuo Tu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Ahmad Z, Jain SK, Mishra SK. Beta-caryophyllene attenuates experimental hepatocellular carcinoma through downregulation of oxidative stress and inflammation. J Biochem Mol Toxicol 2024; 38:e23850. [PMID: 39275950 DOI: 10.1002/jbt.23850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is caused by various factors including toxic substances and xenobiotics. Numerous treatment strategies are used to address toxicity to the liver and HCC, yet their adverse effects are drawbacks. This study aimed to assess the effect of DEN/CCl4 on morphological changes in the liver, body weight, tumor incidence, and hematological tumor incidence, hematological parameters, hepatic markers, and histopathological analysis in mice following a preventive measure by using β-caryophyllene (BCP). Adult Balb/c mice were administered a single dose of DEN 1-mg/kg body weight and 0.2-mL CCl4/kg body weight intraperitoneal twice a week (i.p.) for 22 weeks. BCP was treated in one group of mice at 30-mg/kg body weight, intraperitoneal, for 7 weeks. BCP alone was treated in one group of mice at 300-mg/kg body weight intraperitoneal for 22 weeks. DEN/CCl4 caused a reduction in mice's body weight, which was significantly attenuated by BCP administration. BCP supplementation attenuated the tumor incidence DEN/CCl4 (100%) to about 25%. DEN/CCl4 caused alterations in the hematological parameters, serum total protein albumin globulin, A/G ratio, liver function markers (AST, ALT, ALP, GGT, ACP, and bilirubin), and lipid profile markers that were significantly reinstated by BCP administration. Oxidative stress markers (MDA, SOD, CAT, NO, LDH, and GST) were reduced by DEN/CCl4, which were significantly increased in BCP-treated groups. The liver histopathology alterations caused by DEN/CCl4 were amended considerably by BCP treatment. Immunohistochemical studies suggest that AFP, caspase-3, and COX-2 were chronically overexpressed in DEN/CCl4-exposed mice, notably attenuated by BCP administration. BCP suppressed tumor incidence by downregulating inflammation and inducing caspase-3-mediated apoptosis. Conclusively, BCP appears to be a potent natural supplement capable of repressing liver inflammation and carcinoma through the mitigation of oxidative stress and inflammation pathways.
Collapse
MESH Headings
- Animals
- Polycyclic Sesquiterpenes/pharmacology
- Oxidative Stress/drug effects
- Mice, Inbred BALB C
- Mice
- Inflammation/metabolism
- Inflammation/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/prevention & control
- Carcinoma, Hepatocellular/chemically induced
- Male
- Down-Regulation/drug effects
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/drug therapy
- Sesquiterpenes/pharmacology
- Sesquiterpenes/therapeutic use
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/drug therapy
- Liver/metabolism
- Liver/pathology
- Liver/drug effects
- Carbon Tetrachloride/toxicity
Collapse
Affiliation(s)
- Zaved Ahmad
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Subodh Kumar Jain
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | |
Collapse
|
23
|
Wei Y, Lv J, Zhu S, Wang S, Su J, Xu C. Enzyme-responsive liposomes for controlled drug release. Drug Discov Today 2024; 29:104014. [PMID: 38705509 DOI: 10.1016/j.drudis.2024.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Compared to other nanovectors, liposomes exhibit unique advantages, such as good biosafety and high drug-loading capacity. However, slow drug release from conventional liposomes makes most payloads unavailable, restricting the therapeutic efficacy. Therefore, in the last ∼20 years, enzyme-responsive liposomes have been extensively investigated, which liberate drugs under the stimulation of enzymes overexpressed at disease sites. In this review, we elaborate on the research progress on enzyme-responsive liposomes. The involved enzymes mainly include phospholipases, particularly phospholipase A2, matrix metalloproteinases, cathepsins, and esterases. These enzymes can cleave ester bonds or specific peptide sequences incorporated in the liposomes for controlled drug release by disrupting the primary structure of liposomes, detaching protective polyethylene glycol shells, or activating liposome-associated prodrugs. Despite decades of efforts, there are still a lack marketed products of enzyme-responsive liposomes. Therefore, more efforts should be made to improve the safety and effectiveness of enzyme-responsive liposomes and address the issues associated with production scale-up.
Collapse
Affiliation(s)
- Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Shiyu Zhu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China.
| |
Collapse
|
24
|
Yamaguchi H, Matsumura T, Sugawa H, Niimi N, Sango K, Nagai R. Glucoselysine, a unique advanced glycation end-product of the polyol pathway and its association with vascular complications in type 2 diabetes. J Biol Chem 2024; 300:107479. [PMID: 38879006 PMCID: PMC11283207 DOI: 10.1016/j.jbc.2024.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.
Collapse
Affiliation(s)
- Hiroko Yamaguchi
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan; Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of Agriculture, Tokai University, Kumamoto, Japan.
| |
Collapse
|
25
|
Fan M, Xu X, Hu Y. Characterization of tumor endothelial cells (TEC) in gastric cancer and development of a TEC-based risk signature using single-cell RNA-seq and bulk RNA-seq data. Aging (Albany NY) 2024; 16:10252-10270. [PMID: 38870270 PMCID: PMC11236301 DOI: 10.18632/aging.205928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Tumor endothelial cells (TECs) are essential participants in tumorigenesis. This study is focused on elucidating the TEC traits in gastric cancer (GC) and constructing a prognostic risk model to predict the clinical outcome of GC patients. METHODS Single-cell RNA sequencing (scRNA-seq) data were obtained from the GEO database. Using specific markers, the Seurat R package aided in processing scRNA-seq data and identifying TEC clusters. Based on TEC cluster-associated genes identified by Pearson correlation analysis, TEC-related prognostic genes were screened by lasso-Cox regression analysis, thereby constructing a risk signature. A nomogram was created by combining the risk signature with clinicopathological features. RESULTS Based on the scRNA-seq data, 5 TEC clusters were discovered in GC, with 3 of them showing prognostic associations in GC. A total of 163 genes were pinpointed among 3302 DEGs as significantly linked to TEC clusters, leading to the formulation of a risk signature comprising 8 genes. Furthermore, there was a notable correlation between the risk signature and the immune cell infiltration. Multivariate analysis findings indicated that the risk signature served as an independent prognostic factor for GC. Moreover, its efficacy in forecasting immune response was validated. CONCLUSION TEC-based risk model is highly effective in predicting the survival outcomes of GC patients and can forecast the immune response. Targeting TECs may significantly inhibit tumor progression and enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Meng Fan
- Department of Gastrointestinal Surgery, Zhu Cheng People’s Hospital, Weifang, China
| | - Xiaofei Xu
- Department of Gastrointestinal Surgery, Zhu Cheng People’s Hospital, Weifang, China
| | - Yu Hu
- Department of Gastrointestinal Surgery, Zhu Cheng People’s Hospital, Weifang, China
| |
Collapse
|
26
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM. Sulfonamides as anticancer agents: A brief review on sulfonamide derivatives as inhibitors of various proteins overexpressed in cancer. Bioorg Chem 2024; 147:107409. [PMID: 38714116 DOI: 10.1016/j.bioorg.2024.107409] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Sulfonamides have gained prominence as versatile agents in cancer therapy, effectively targeting a spectrum of cancer-associated enzymes. This review provides an extensive exploration of their multifaceted roles in cancer biology. Sulfonamides exhibit adaptability by acting as tyrosine kinase inhibitors, disrupting pivotal signaling pathways in cancer progression. Moreover, they disrupt pH regulation mechanisms in cancer cells as carbonic anhydrase inhibitors, inhibiting growth, and survival. Sulfonamides also serve as aromatase inhibitors, interfering with estrogen synthesis in hormone-driven cancers. Inhibition of matrix metalloproteinases presents an opportunity to impede cancer cell invasion and metastasis. Additionally, their emerging role as histone deacetylase inhibitors offers promising prospects in epigenetic-based cancer therapies. These diverse roles underscore sulfonamides as invaluable tools for innovative anti-cancer treatments, warranting further exploration for enhanced clinical applications and patient outcomes.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo, 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
27
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mehrabian A, Heravi Shargh V, Badiee A, Alavizadeh SH, Arabi L, Kamali H, Jaafari MR. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer. J Liposome Res 2024; 34:221-238. [PMID: 37647288 DOI: 10.1080/08982104.2023.2247079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
PEGylation is a commonly used approach to prolong the blood circulation time of cationic liposomes. However, PEGylation is associated with the "PEG dilemma", which hinders binding and uptake into tumor cells. The cleavable PEG products are a possible solution to this problem. In the current research, doxorubicin-loaded cationic liposomes (Dox-CLs) surface-conjugated with a matrix metalloproteinase-2 (MMP-2)-sensitive octapeptide linker-PEG derivative were prepared and compared to non-PEGylated and PEGylated CLs in terms of size, surface charge, drug encapsulation and release, uptake, in vivo pharmacokinetics, and anticancer efficacy. It was postulated that PEG deshielding in response to the overexpressed MMP-2 in the tumor microenvironment increases the interaction of protected CLs with cellular membranes and improves their uptake by tumor cells/vasculature. MMP2-responsive Dox-CLs had particle sizes of ∼115-140 nm, surface charges of ∼+25 mV, and encapsulation efficiencies of ∼85-95%. In vitro cytotoxicity assessments showed significantly enhanced uptake and cytotoxicity of PEG-cleavable CLs compared to their non-cleavable PEG-coated counterparts or Caelyx®. Also, the chick chorioallantoic membrane assay showed great antiangiogenesis ability of Dox-CLs leading to target and prevent tumor neovascularization. Besides, in vivo studies showed an effective therapeutic efficacy of PEG-cleavable Dox-CLs in murine colorectal cancer with negligible hematological and histopathological toxicity. Altogether, our results showed that MMP2-responsive Dox-CLs could be served as a promising approach to improve tumor drug delivery and uptake.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
29
|
Mao B, Liu S, Zhu S, Wu F, Yuan W, Yan Y, Wang B. The janus face of serotonin: Regenerative promoter and chronic liver disease aggravator. Heliyon 2024; 10:e30703. [PMID: 38756588 PMCID: PMC11096747 DOI: 10.1016/j.heliyon.2024.e30703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The progression of liver diseases, from viral hepatitis and fatty liver disease to cirrhosis and hepatocellular carcinoma (HCC), is the most representative series of pathological events in liver diseases. While serotonin (5-HT) primarily regulates brain functions such as psychology, mood, and appetite in the central nervous system (CNS), peripheral 5-HT plays a crucial role in regulating tumor development, glucose and lipid metabolism, immune function and inflammatory response related to liver diseases. These peripheral physiological processes involving 5-HT are the key mechanisms driving the development of these liver diseases. This study presents an overview of the existing literature, focusing on the role of 5-HT in HCC, cirrhosis, fatty liver disease, viral hepatitis, and liver injury. In summary, while 5-HT promotes liver regeneration, it can also contribute to the progression of chronic liver disease. These findings indicate the potential for the development and use of 5-HT-related drugs for the treatment of liver diseases, including HCC and cirrhosis.
Collapse
Affiliation(s)
- Benliang Mao
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shanfei Zhu
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Fan Wu
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
30
|
Zhang X, Jia Y, Zhang N, Wu D, Ma H, Ren X, Ju H, Wei Q. Self-Assembly-Induced Enhancement of Cathodic Electrochemiluminescence of Copper Nanoclusters for a Split-Type Matrix Metalloproteinase 14 Sensing Platform. Anal Chem 2024; 96:7265-7273. [PMID: 38649306 DOI: 10.1021/acs.analchem.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
31
|
Queiroz GCDAD, Dias FCR, Torres SMD, Pereira MDF, Morais DB, Silva WED, Silva Junior VAD. Bioconjugate based on cisplatin and bacterial exopolysaccharide with reduced side effects: A novel proposal for cancer treatment. J Trace Elem Med Biol 2024; 83:127374. [PMID: 38266419 DOI: 10.1016/j.jtemb.2023.127374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In the search for alternatives that attenuate the toxicity associated to oncologic treatment with cisplatin (CDDP) and considering the potential health-beneficial properties of exopolysaccharides (EPS) produced by lactic acid bacteria, it was aimed on this study to evaluate the cytotoxic, toxicologic and antitumoral efficacy of a bioconjugate based on CDDP and EPS, on the experimental tumor of sarcoma 180. METHODS After the synthesis of the cis-[Pt(NH3)2(Cl)2] complex and of the conjugate containing Lactobacillus fermentum exopolysaccharide was tested both in vitro and in vivo for evaluating the acute toxicity. RESULTS The antitumoral study was performed using mice transplanted with sarcoma 180. The bioconjugate showed low to medium cytotoxicity for the cell lines tested, as well moderated acute toxicity. After determining the LD50, the following experimental groups were established for the antitumor assay: Control (NaCl 0,9%), CDDP (1 mg/kg), EPS and bioconjugate composition (200 mg/kg). The bioconjugate promoted a 38% regression in tumor mass when compared to the control, and a regression of 41% when compared to CDDP. Liver histopathological analysis revealed discrete alterations in animals treated with (CDDP + EPS) when compared to control. The bioconjugate also minimized changes in the renal parenchyma resulting from the tumor. CONCLUSION Our results indicate that when CDDP is associated with EPS, this composition was more biocompatible, showing itself as a potent chemotherapeutic agent and lower tissue toxicity.
Collapse
Affiliation(s)
- Gian Carlo D Angelo de Queiroz
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil
| | - Fernanda Carolina Ribeiro Dias
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil; Department of Structural Biology, Federal University of Triangulo Mineiro, UFTM, Uberaba, MG, Brazil.
| | - Sandra Maria de Torres
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil
| | | | - Danielle Barbosa Morais
- Departamento de Morfologia, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Wagner Eduardo da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil
| | | |
Collapse
|
32
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
33
|
Kenny-Ganzert IW, Sherwood DR. The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane. Semin Cell Dev Biol 2024; 154:23-34. [PMID: 37422376 PMCID: PMC10592375 DOI: 10.1016/j.semcdb.2023.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Cell invasion through basement membrane barriers is crucial during many developmental processes and in immune surveillance. Dysregulation of invasion also drives the pathology of numerous human diseases, such as metastasis and inflammatory disorders. Cell invasion involves dynamic interactions between the invading cell, basement membrane, and neighboring tissues. Owing to this complexity, cell invasion is challenging to study in vivo, which has hampered the understanding of mechanisms controlling invasion. Caenorhabditis elegans anchor cell invasion is a powerful in vivo model where subcellular imaging of cell-basement membrane interactions can be combined with genetic, genomic, and single-cell molecular perturbation studies. In this review, we outline insights gained by studying anchor cell invasion, which span transcriptional networks, translational regulation, secretory apparatus expansion, dynamic and adaptable protrusions that breach and clear basement membrane, and a complex, localized metabolic network that fuels invasion. Together, investigation of anchor cell invasion is building a comprehensive understanding of the mechanisms that underlie invasion, which we expect will ultimately facilitate better therapeutic strategies to control cell invasive activity in human disease.
Collapse
Affiliation(s)
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
34
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Shen M, Li K, Wang L, Feng L, Zhang X, Zhang H, Zhou H, Pei G. ZIP4 upregulation aggravates nucleus pulposus cell degradation by promoting inflammation and oxidative stress by mediating the HDAC4-FoxO3a axis. Aging (Albany NY) 2024; 16:685-700. [PMID: 38217540 PMCID: PMC10817398 DOI: 10.18632/aging.205412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/18/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Extracellular matrix metabolism dysregulation in nucleus pulposus (NP) cells represents a crucial pathophysiological feature of intervertebral disc degeneration (IDD). Our study elucidates the role and mechanism of Testis expressed 11 (TEX11, also called ZIP4) extracellular matrix degradation in the NP. MATERIALS AND METHODS Interleukin-1β (IL-1β) and H2O2 were used to treat NP cells to establish an IDD cell model. Normal NP tissues and NP tissues from IDD patients were harvested. ZIP4 mRNA and protein profiles in NP cells and tissues were examined. Enzyme-linked immunosorbent assay (ELISA) confirmed the profiles of TNF-α, IL-6, MDA, and SOD in NP cells. The alterations of reactive oxygen species (ROS), lactate dehydrogenase (LDH), COX2, iNOS, MMP-3, MMP-13, collagen II, aggrecan, FoxO3a, histone deacetylase 4 (HDAC4), Sirt1 and NF-κB levels in NP cells were determined using different assays. RESULTS The ZIP4 profile increased in the NP tissues of IDD patients and IL-1β- or H2O2-treated NP cells. ZIP4 upregulation bolstered inflammation and oxidative stress in NP cells undergoing IL-1β treatment and exacerbated their extracellular matrix degradation, whereas ZIP4 knockdown produced the opposite outcome. Mechanistically, ZIP4 upregulated HDAC4 and enhanced NF-κB phosphorylation while repressing Sirt1 and FoxO3a phosphorylation levels. HDAC4 knockdown or Sirt1 promotion attenuated the effects mediated by ZIP4 overexpression in NP cells. CONCLUSIONS ZIP4 upregulation aggravates the extracellular matrix (ECM) degradation of NP cells by mediating inflammation and oxidative stress through the HDAC4-FoxO3a axis.
Collapse
Affiliation(s)
- Mingkui Shen
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Kuankuan Li
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Lulu Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyu Zhang
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Haoping Zhang
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Honggang Zhou
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
36
|
Yang H, Zhang C, Yang M, Liu J, Zhang Y, Liu D, Zhang X. Variations of plasma oxidative stress levels in male patients with chronic schizophrenia. Correlations with psychopathology and matrix metalloproteinase-9: a case-control study. BMC Psychiatry 2024; 24:20. [PMID: 38172869 PMCID: PMC10765744 DOI: 10.1186/s12888-023-05479-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Accumulating evidence has indicated that oxidative stress (OS) and matrix metalloproteinase-9 (MMP-9) may contribute to the mechanism of schizophrenia. In the present study, we aimed to evaluate the associations of OS parameters and MMP-9 levels with psychopathological symptoms in male chronic schizophrenia patients. METHODS This study was an observational, cross-sectional, retrospective case-control study. Plasma hydrogen peroxide (H2O2), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), serum matrix metalloproteinase-9 (MMP-9), and tissue inhibitors of metalloproteinases-1 (TIMP-1) levels were assayed in 80 male patients with chronic schizophrenia and 80 matched healthy controls. Schizophrenia symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS). Multivariate regression was used to analyze relationships between OS parameters and MMP-9, and clinical symptoms. RESULTS Our results demonstrated that levels of antioxidant enzymes, SOD, GSH-Px, H2O2, and MDA were significantly decreased, whereas CAT and MMP-9 levels were increased in patients with schizophrenia, when compared with healthy controls (all P < 0.05). In schizophrenia patients, correlation analyses showed that H2O2 levels were significantly and positively correlated with PANSS positive scores, CAT and MDA levels were significant negatively correlated with PANSS negative scores and PANSS total scores, and MDA levels were significantly positively correlated with MMP-9 levels (all P < 0.05). However, we did not find that MMP-9 played an interaction role between OS parameters and PANSS total scores and subscales scores (all P > 0.05). CONCLUSIONS Our results showed that alterations of plasma OS parameters in male patients with chronic schizophrenia were associated with psychopathology and MMP-9, suggesting that OS and neuroinflammation may play important role in the mechanism of schizophrenia.
Collapse
Affiliation(s)
- Haidong Yang
- Medical College of Soochow University, 215137, Suzhou, PR China
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, 215137, Suzhou, P.R. China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Junjun Liu
- Medical College of Soochow University, 215137, Suzhou, PR China
| | - Yuting Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Dongliang Liu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Xiaobin Zhang
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, 215137, Suzhou, P.R. China.
| |
Collapse
|
37
|
Koek G, Schmitz SM, Bednarsch J, Heise D, Longerich T, Bakers F, Trautwein C, Luedde T, Ulmer TF, Neumann UP. Living-Donor Liver Transplantation for a Large Hepatocellular Carcinoma in a Genetically Identical Twin Sister. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:56-61. [PMID: 38195109 PMCID: PMC10783995 DOI: 10.1055/a-2214-1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 01/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is, to date, the most common malignant tumor of the liver and is commonly staged with the Milan criteria. While deceased-donor liver transplantations (DDLT) are reserved for patients within the Milan criteria, living-donor liver transplantation (LDLT) might be a curative option for patients outside the Milan criteria. We here report a case of a 32-year-old woman who developed a giant, unresectable HCC out of a hepatocellular adenoma (HCA) after a pregnancy. The genetically identical twin sister donated her left hemi-liver after ethical approval and preoperative screening. No long-term immunosuppressive therapy was necessary, and after more than eight years, both are in perfect health and the recipient gave birth to a second child. This case shows that in certain situations large HCCs outside the standard criteria can be cured by LT. Careful evaluation of both donor and recipient should be performed for indications like this to assure optimal clinical outcome.
Collapse
Affiliation(s)
- Ger Koek
- Department of Internal Medicine, Division of Gastroenterology/Hepatology, Maastricht UMC+, Maastricht, Netherlands
| | - Sophia M. Schmitz
- General-, Visceral and Transplantation Surgery, Universitätsklinikum Essen, Essen, Germany
- General-, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Bednarsch
- General-, Visceral and Transplantation Surgery, Universitätsklinikum Essen, Essen, Germany
- General-, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Heise
- General-, Visceral and Transplantation Surgery, Universitätsklinikum Essen, Essen, Germany
- General-, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Bakers
- Department of Radiology, Maastricht UMC+, Maastricht, Netherlands
| | - Christian Trautwein
- Department of Gastroenterology Metabolic Disorders and Internal Intensive Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Tom Florian Ulmer
- General-, Visceral and Transplantation Surgery, Universitätsklinikum Essen, Essen, Germany
- General-, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery, Maastricht UMC+, Maastricht, Netherlands
| | - Ulf Peter Neumann
- General-, Visceral and Transplantation Surgery, Universitätsklinikum Essen, Essen, Germany
- General-, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery, Maastricht UMC+, Maastricht, Netherlands
| |
Collapse
|
38
|
Karmakar S, Lal G. Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses. Methods Mol Biol 2024; 2761:181-207. [PMID: 38427238 DOI: 10.1007/978-1-0716-3662-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Serotonin signaling regulates wide arrays of both neural and extra-neural functions. Serotonin is also found to affect cancer progression directly as well as indirectly by modulating the immune cells. In the brain, serotonin plays a key role in regulating various functions; disturbance of the normal activities of serotonin leads to various mental illnesses, including the neuroinflammatory response in the central nervous system (CNS). The neuroinflammatory response can be initiated in various psychological illnesses and brain cancer. Serotonergic signaling can impact the functions of both glial as well as the immune cells. It can also affect the tumor immune microenvironment and the inflammatory response associated with brain cancers. Apart from this, many drugs used for treatment of psychological illness are known to modulate serotonergic system and can cross the blood-brain barrier. Understanding the role of serotonergic pathways in regulating neuroinflammatory response and brain cancer will provide a new paradigm in modulating the serotonergic components in treating brain cancer and associated inflammation-induced brain damages.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India.
| |
Collapse
|
39
|
Afshar K, Sanaei MJ, Ravari MS, Pourbagheri-Sigaroodi A, Bashash D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell Biochem Funct 2023; 41:930-952. [PMID: 37665068 DOI: 10.1002/cbf.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.
Collapse
Affiliation(s)
- Kimiya Afshar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Abdel-Hamid NM, Zakaria SM, Ansary AM, El-Senduny FF, El-Shishtawy MM. The expression of tuftelin 1 as a new theranostic marker in early diagnosis and as a therapeutic target in hepatocellular carcinoma. Cell Biochem Funct 2023; 41:788-800. [PMID: 37470499 DOI: 10.1002/cbf.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Currently, many challenges are associated with hepatocellular carcinoma (HCC) as the failure of early diagnosis, and the lack of effective therapy. This study aimed to investigate the possible role of tuftelin 1 (TUFT 1) in the early diagnosis of HCC and evaluate the potential contribution of the TUFT 1/Ca+2 /phosphinositol 3 kinase (PI3K) pathway in dantrolene sodium (Dan) therapeutic outcomes. The study was performed on two sets of rats, the staging (30 rats) and treatment sets (80 rats). HCC was induced by a single dose of diethylnitrosamine (DENA). The hepatic content of TUFT 1 protein was assayed via western blot and immunohistochemistry (IHC), while PI3K, vascular endothelial growth factor (VEGF), Cyclin D1, and matrix-metalloproteinase-9 (MMP-9) contents were assessed using enzyme-linked immunosorbent assay. Hepatic and serum calcium were measured colorimetrically. Furthermore, the nuclear proliferation marker, (Ki-67), (Kiel [Ki] where the antibody was produced in the University Department of Pathology and the original clone number is 67)-expression was assessed by IHC. TUFT 1/Ca+2 /PI3K signaling pathway was progressively activated in the 3 studied stages of HCC with subsequent upregulation of angiogenesis, cell cycle, and metastasis. More interestingly, Dan led to TUFT 1/Ca+2 /PI3K pathway disruption by diminution of the hepatic contents of TUFT 1, calcium, PI3K, VEGF, Cyclin D1, and MMP-9 in a dose-dependent pattern. TUFT 1 can serve as a theranostic biomarker in HCC. Moreover, Dan exerted an antineoplastic effect against HCC via the interruption of TUFT 1/Ca+2 /PI3K pathway.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sherin M Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abeer M Ansary
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry (Biochemistry Division), Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
41
|
El Sayed SM. Al-Hijamah (Prophetic Wet Cupping Therapy) is a Novel Adjuvant Treatment for Viral Hepatitis That Excretes Viral Particles and Excess Ferritin Percutaneously, Synergizes Pharmacotherapy, Enhances Antiviral Immunity and Helps Better HCC Prevention and Treatment: A Novel Evidence-Based Combination with Prophetic Medicine Remedies. J Hepatocell Carcinoma 2023; 10:1527-1546. [PMID: 37727876 PMCID: PMC10505647 DOI: 10.2147/jhc.s409526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023] Open
Abstract
Viral hepatitis progresses to liver cirrhosis and HCC. Several challenges are facing Sovaldi treatment to viral C hepatitis, eg, viral resistance, difficulty to treat all genotypes, and inability to access treatments in low-income countries. Also, current treatments to Hepatitis B are still challenging. Ideal treatments to viral hepatitis should decrease the viral load, enhance antiviral immunity and repair the viruses-induced tissue damage. That is still beyond reach. High serum ferritin in viral hepatitis correlates with chronicity, increased necro-inflammation, hepatotoxicity, progression to cirrhosis, progression to HCC, unresponsiveness to treatments and viremia. Previously, Al-hijamah (wet cupping therapy of prophetic medicine) significantly cleared thalassemic children of causative pathological substances (CPS), eg, excess ferritin, free radicals and serum lipids. Moreover, Al-hijamah significantly increased the antioxidant power and potentiated the natural antiviral immunity, eg, increasing CD4 count, CD8 count and CD4/CD8 ratio. Prophet Muhammad peace be upon him said: "If there is a benenvolence (benefit) in any of your medicines, benefit will be in shrtat mihjam (Al-hijamah), honey drink, and a stinge of fire compatible with disease and I do not like to cauterize". Likewise, the author suggests Al-hijamah as a novel promising adjuvant treatment for viral hepatitis (B and C) for percutaneous excretion of CPS as hepatitis viral particles, excess ferritin, inflammatory mediators, free radicals, and antigen-antibody complexes. Published reports proved that Al-hijamah exerted tissue-protective effects, and cleared blood through the fenestrated skin capillaries in a pressure-dependent and size-dependent manner (a kidney-like manner). That collectively may decrease the viral load for better HCC prevention and supports the evidence-based Taibah theory (Taibah mechanism). Same therapeutic benefits apply to other viral illnesses as AIDS. Even after HCC development, Al-hijamah is quite mandatory for excretion and clearance of CPS that favor malignancy, eg, lactate (Warburg effect), growth factors, metalloproteinases, and others. Al-hijamah-induced immune potentiation benefits HCC patients. Combining Al-hijamah with other natural antioxidant remedies of prophetic medicine, eg, nigella sativa, costus, natural honey, Zamzam water and others will maximize the therapeutic benefits. In conclusion, Al-hijamah and other prophetic medicine remedies are recommended adjuvants to current pharmacological treatments to viral hepatitis and HCC.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Al-Hijamah Clinic, Medical University Center, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Clinical Biochemistry & Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
- Prophetic Medicine Course & Research, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
42
|
Zheng X, Ren B, Gao Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed Pharmacother 2023; 165:115272. [PMID: 37544283 DOI: 10.1016/j.biopha.2023.115272] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Tight junctions (TJs) are crucial for intercellular connections. The abnormal expression of proteins related to TJs can result in TJ destruction, structural damage, and endothelial and epithelial cell dysfunction. These factors are associated with the occurrence and progression of several diseases. Studies have shown that blood-brain barrier (BBB) damage and dysfunction are the prominent pathological features of stroke. TJs are directly associated with the BBB integrity. In this article, we first discuss the structure and function of BBB TJ-related proteins before focusing on the crucial events that cause TJ dysfunction and BBB damage, as well as the regulatory mechanisms that affect the qualitative and quantitative expression of TJ proteins during ischemic stroke. Multiple regulatory mechanisms, including phosphorylation, matrix metalloproteinases (MMPs), and microRNAs, regulate TJ-related proteins and affect BBB permeability. Some signaling pathways and mechanisms have been demonstrated to have dual functions. Hopefully, our understanding of the regulation of BBB TJs in ischemic stroke will be applied to the development of targeted medications and therapeutic therapies.
Collapse
Affiliation(s)
- Xiangyi Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
43
|
Güler Ş, Torul D, Kurt-Bayrakdar S, Tayyarcan EK, Çamsarı Ç, Boyacı İH. Evaluation of antibacterial efficacy of Lawsonia inermis Linn (henna) on periodontal pathogens using agar well diffusion and broth microdilution methods: An in-vitro study. Biomedicine (Taipei) 2023; 13:25-30. [PMID: 37937057 PMCID: PMC10627213 DOI: 10.37796/2211-8039.1411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/13/2023] [Indexed: 11/09/2023] Open
Abstract
Background Although widely explored in medicine, limited evidence exists in the literature regarding the efficacy of Lawsonia inermis Linn (henna) in the dental field. Aim This study aimed to investigate the antibacterial effect of henna on Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in vitro. Methods The agar well diffusion and broth microdilution methods were used to evaluate the antibacterial effect of henna extracts. Dimethyl sulfoxide was used to prepare the ethanol extract of henna, and distilled water was used to prepare the water extract. For both ethanol and water extracts, 4 different concentrations were prepared as 15, 30, 60, and 120 mg/mL. Results It was determined that the water and ethanol extracts of the henna samples did not show an inhibition zone on P.gingivalis and A.actinomycetemcomitans. As a result of the evaluations made with the broth microdilution method, it was found that the ethanol extract had a higher inhibitory effect on both bacteria, and both extracts had more inhibitory effects against A.actinomycetemcomitans. Conclusion To understand the effect of henna on periodontal pathogens, more comprehensive in vitro studies should be performed on henna samples at different concentrations and with different bases.
Collapse
Affiliation(s)
- Şevki Güler
- Private Practice, Güler Dent Samsun Oral and Dental Health Polyclinic, Samsun,
Turkey
| | - Damla Torul
- Ordu University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ordu,
Turkey
| | - Sevda Kurt-Bayrakdar
- Eskişehir Osmangazi University, Faculty of Dentistry, Department of Periodontology, Eskişehir,
Turkey
| | - Emine Kübra Tayyarcan
- Hacettepe University, Faculty of Engineering, Department of Food Engineering, Ankara,
Turkey
| | - Çağrı Çamsarı
- Bolu Abant İzzet Baysal University, Innovative Food Technologies Development Application and Research Center, Bolu,
Turkey
| | - İsmail Hakkı Boyacı
- Hacettepe University, Faculty of Engineering, Department of Food Engineering, Ankara,
Turkey
| |
Collapse
|
44
|
Ponce-Lopez T, González Álvarez Tostado JA, Dias F, Montiel Maltez KH. Metformin Prevents NDEA-Induced Memory Impairments Associated with Attenuating Beta-Amyloid, Tumor Necrosis Factor-Alpha, and Interleukin-6 Levels in the Hippocampus of Rats. Biomolecules 2023; 13:1289. [PMID: 37759689 PMCID: PMC10526195 DOI: 10.3390/biom13091289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
N-nitrosodiethylamine (NDEA) is a potential carcinogen known to cause liver tumors and chronic inflammation, diabetes, cognitive problems, and signs like Alzheimer's disease (AD) in animals. This compound is classified as probably carcinogenic to humans. Usual sources of exposure include food, beer, tobacco, personal care products, water, and medications. AD is characterized by cognitive decline, amyloid-β (Aβ) deposit, tau hyperphosphorylation, and cell loss. This is accompanied by neuroinflammation, which involves release of microglial cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin 1β (IL-1β), by nuclear factor kappa B (NF-κB) upregulation; each are linked to AD progression. Weak PI3K/Akt insulin-signaling inhibits IRS-1 phosphorylation, activates GSK3β and promotes tau hyperphosphorylation. Metformin, an antihyperglycemic agent, has potent anti-inflammatory efficacy. It reduces proinflammatory cytokines such as IL-6, IL-1β, and TNF-α via NF-κB inhibition. Metformin also reduces reactive oxidative species (ROS) and modulates cognitive disorders reported due to brain insulin resistance links. Our study examined how NDEA affects spatial memory in Wistar rats. We found that all NDEA doses tested impaired memory. The 80 µg/kg dose of NDEA increased levels of Aβ1-42, TNF-α, and IL-6 in the hippocampus, which correlated with memory loss. Nonetheless, treatment with 100 mg/kg of metformin attenuated the levels of pro-inflammatory cytokines and Aβ1-42, and enhanced memory. It suggests that metformin may protect against NDEA-triggered memory issues and brain inflammation.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Avenida Universidad Anáhuac 46, Lomas Anáhuac, Huixquilucan C.P. 52786, Estado de México, Mexico
| | | | | | | |
Collapse
|
45
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
He J, Zhang HP. Research progress on the anti-tumor effect of Naringin. Front Pharmacol 2023; 14:1217001. [PMID: 37663256 PMCID: PMC10469811 DOI: 10.3389/fphar.2023.1217001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Naringin is a kind of natural dihydro flavone, which mainly exists in citrus fruits of the Rutaceae family, as well as traditional Chinese medicines such as trifoliate orange, fingered citron, exocarpium citri grandis, and rhizoma dynamite. Modern pharmacological studies have shown that Naringin has excellent anti-tumor activity. Through reviewing the relevant literature at home and abroad in recent years, we summarized the pharmacological mechanism of Naringin to play an anti-cancer role in blocking tumor cell cycle, inhibiting tumor cell proliferation, inducing tumor cell apoptosis, inhibiting tumor cell invasion and metastasis, inducing tumor cell autophagy, reversing tumor cell drug resistance and enhancing chemotherapeutic drug sensitivity, as well as anti-inflammatory to prevent canceration, alleviate Adverse drug reaction of chemotherapy, activate and strengthen immunity, It provides theoretical basis and reference basis for further exploring the anticancer potential of Naringin and its further development and utilization.
Collapse
Affiliation(s)
- Jing He
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Ping Zhang
- Oncology Department, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| |
Collapse
|
47
|
Abdel-Hamid NM, ElNakeeb NA, El-Senduny FF. Efficient chemosensitizing and antimetastatic combinations of a naturally occurring trans-ferulic acid with different chemotherapies on an in vitro hepatocellular carcinoma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1741-1747. [PMID: 36811666 DOI: 10.1007/s00210-023-02431-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Trans-ferulic acid (TFA) is a polyphenolic compound present in many dietary supplements. The aim of this study was to get better chemotherapeutic outcomes through treatment protocols for human hepatocellular carcinoma (HCC). This study focused on the exploration of the in vitro influence of a combination of TFA with 5-fluorouracil (5-FU), doxorubicin (DOXO), and cisplatin (CIS) on HepG2 cell line. Treatment with 5-FU, DOXO, and CIS alone down-regulated oxidative stress and alpha-fetoprotein (AFP), and decreased cell migration through the depression of metalloproteinases (MMP-3, MMP-9, and MMP-12) expression. Co-treatment with TFA synergized the effects of these chemotherapies by decreased MMP-3, MMP-9, and MMP-12 expression, and gelatinolytic activity of both MMP-9 and MMP-2 in cancer cells. TFA significantly reduced the elevated levels of AFP and NO, and depressed cell migration ability (metastasis) in HepG2 groups. Co-treatment with TFA elevated the chemotherapeutic potency of 5-FU, DOXO, and CIS in managing HCC.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Nadia A ElNakeeb
- Department of Chemistry, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
48
|
Fredsgaard M, Kaniki SEK, Antonopoulou I, Chaturvedi T, Thomsen MH. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023; 28:5312. [PMID: 37513186 PMCID: PMC10384198 DOI: 10.3390/molecules28145312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.
Collapse
Affiliation(s)
| | | | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | | | | |
Collapse
|
49
|
Ebrahimi S, Mirzavi F, Hashemy SI, Khaleghi Ghadiri M, Stummer W, Gorji A. The in vitro anti-cancer synergy of neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid in glioblastoma. Biofactors 2023; 49:900-911. [PMID: 37092793 DOI: 10.1002/biof.1953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant type of cerebral neoplasm in adults with a poor prognosis. Currently, combination therapy with different anti-cancer agents is at the forefront of GBM research. Hence, this study aims to evaluate the potential anti-cancer synergy of a clinically approved neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid (5-ALA), a prodrug that elicits fluorescent porphyrins in gliomas on U-87 human GBM cells. We found that aprepitant and 5-ALA effectively inhibited GBM cell viability. The combinatorial treatment of these drugs exerted potent synergistic growth inhibitory effects on GBM cells. Moreover, aprepitant and 5-ALA induced apoptosis and altered the levels of apoptotic genes (up-regulation of Bax and P53 along with downregulation of Bcl-2). Furthermore, aprepitant and 5-ALA increased the accumulation of protoporphyrin IX, a highly pro-apoptotic and fluorescent photosensitizer. Aprepitant and 5-ALA significantly inhibited GBM cell migration and reduced matrix metalloproteinases (MMP-2 and MMP-9) activities. Importantly, all these effects were more prominent following aprepitant-5-ALA combination treatment than either drug alone. Collectively, the combination of aprepitant and 5-ALA leads to considerable synergistic anti-proliferative, pro-apoptotic, and anti-migratory effects on GBM cells and provides a firm basis for further evaluation of this combination as a novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Polloni L, Costa TR, Morais LP, Borges BC, Teixeira SC, de Melo Fernandes TA, Correia LIV, Bastos LM, Amorim FG, Quinton L, Soares AM, Silva MJB, Ferro EAV, Lopes DS, de Melo Rodrigues Ávila V. Oxidative stress induced by Pollonein-LAAO, a new L-amino acid oxidase from Bothrops moojeni venom, prompts prostate tumor spheroid cell death and impairs the cellular invasion process in vitro. Cell Signal 2023:110785. [PMID: 37364850 DOI: 10.1016/j.cellsig.2023.110785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells produce abnormal levels of reactive oxygen species (ROS) that contribute to promote their malignant phenotype. In this framework, we hypothesized that the change in ROS concentration above threshold could impair key events of prostate cancer cells (PC-3) progression. Our results demonstrated that Pollonein-LAAO, a new L-amino acid oxidase obtained from Bothrops moojeni venom, was cytotoxic to PC-3 cells in two-dimensional and in tumor spheroid assays. Pollonein-LAAO was able to increase the intracellular ROS generation that culminates in cell death from apoptosis by both intrinsic and extrinsic pathways due to the up-regulation of TP53, BAX, BAD, TNFRSF10B and CASP8. Additionally, Pollonein-LAAO reduced mitochondrial membrane potential and caused G0/G1 phase to delay, due to the up-regulation of CDKN1A and the down-regulation of the expression of CDK2 and E2F. Interestingly, Pollonein-LAAO inhibited critical steps of the cellular invasion process (migration, invasion and adhesion), due to the down-regulation of SNAI1, VIM, MMP2, ITGA2, ITGAV and ITGB3. Furthermore, the Pollonein-LAAO effects were associated with the intracellular ROS production, since the presence of catalase restored the invasiveness of PC-3 cells. In this sense, this study contributes to the potential use of Pollonein-LAAO as ROS-based agent to enhance the current understanding of cancer treatment strategies.
Collapse
Affiliation(s)
- Lorena Polloni
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Lorena Pinheiro Morais
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | | | - Luciana Machado Bastos
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | - Loïc Quinton
- Department of Chemistry, University of Liège, Liège, Belgium
| | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ) Rondônia, Federal University of Rondônia (UNIR), and National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT-EPIAMO), Porto Velho, RO, Brazil
| | | | | | - Daiana Silva Lopes
- Multidisciplinary Institute for Health, Federal University of Bahia - UFBA, Vitoria da Conquista, BA, Brazil
| | | |
Collapse
|