1
|
Luyken AK, Lappe C, Viard R, Löhle M, Kleinlein HR, Kuchcinski G, Langner S, Wenzel AM, Walter M, Weber MA, Storch A, Devos D, Walter U. High correlation of quantitative susceptibility mapping and echo intensity measurements of nigral iron overload in Parkinson's disease. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02856-1. [PMID: 39485510 DOI: 10.1007/s00702-024-02856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Quantitative susceptibility mapping (QSM) and transcranial sonography (TCS) offer proximal evaluations of iron load in the substantia nigra. Our prospective study aimed to investigate the relationship between QSM and TCS measurements of nigral iron content in patients with Parkinson's disease (PD). In secondary analyses, we wanted to explore the correlation of substantia nigra imaging data with clinical and laboratory findings. Eighteen magnetic resonance imaging and TCS examinations were performed in 15 PD patients at various disease stages. Susceptibility measures of substantia nigra were calculated from referenced QSM maps. Echogenicity of substantia nigra on TCS was measured planimetrically (echogenic area) and by digitized analysis (echo-intensity). Iron-related blood serum parameters were measured. Clinical assessments included the Unified PD Rating Scale and non-motor symptom scales. Substantia nigra susceptibility correlated with echogenic area (Pearson correlation, r = 0.53, p = 0.001) and echo-intensity (r = 0.78, p < 0.001). Individual asymmetry indices correlated between susceptibility and echogenic area measurements (r = 0.50, p = 0.042) and, more clearly, between susceptibility and echo-intensity measurements (r = 0.85, p < 0.001). Substantia nigra susceptibility (individual mean of bilateral measurements) correlated with serum transferrin saturation (Spearman test, r = 0.78, p < 0.001) and, by trend, with serum iron (r = 0.69, p = 0.004). Nigral echogenicity was not clearly related to serum values associated with iron metabolism. Susceptibility and echogenicity measurements were unrelated to PD duration, motor subtype, and severity of motor and non-motor symptoms. The present results support the assumption that iron accumulation is involved in the increase of nigral echogenicity in PD. Nigral echo-intensity probably reflects ferritin-bound iron, e.g. stored in microglia.
Collapse
Affiliation(s)
- Adrian Konstantin Luyken
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Chris Lappe
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
| | - Romain Viard
- UAR 2014 - US 41 - PLBS - Plateformes Lilloises en Biologie & Santé, University of Lille, Lille, France
- INSERM, Centre Hospitalier Universitaire (CHU) de Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, University of Lille, Lille, France
| | - Matthias Löhle
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
| | - Hanna Rebekka Kleinlein
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Grégory Kuchcinski
- UAR 2014 - US 41 - PLBS - Plateformes Lilloises en Biologie & Santé, University of Lille, Lille, France
- INSERM, Centre Hospitalier Universitaire (CHU) de Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, University of Lille, Lille, France
- Department of Neuroradiology, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Anne-Marie Wenzel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany
| | - David Devos
- INSERM, Centre Hospitalier Universitaire (CHU) de Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, University of Lille, Lille, France
- Neurology and Movement Disorders Department, Reference Center for Parkinson's Disease, Lille Center of Excellence for Neurodegenerative Disorders (LiCEND), Network of Centers of Excellence in Neurodegeneration (CoEN) Center, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
- Department of Pharmacology, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany.
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Otsuka FS, Otaduy MCG, Rodriguez RD, Langkammer C, Barbosa JHO, Salmon CEG. Biophysical contrast sources for magnetic susceptibility and R2* mapping: A combined 7 Tesla, mass spectrometry and electron paramagnetic resonance study. Neuroimage 2024:120892. [PMID: 39433113 DOI: 10.1016/j.neuroimage.2024.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 hours after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
Collapse
Affiliation(s)
- Fábio Seiji Otsuka
- InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Ribeirão Preto, São Paulo, Brazil.
| | - Maria Concepción Garcia Otaduy
- LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil
| | - Roberta Diehl Rodriguez
- LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil
| | | | - Jeam Haroldo Oliveira Barbosa
- InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Ribeirão Preto, São Paulo, Brazil; Setor de Radioterapia, Santa Casa de Misericórdia de Lavras, Minas Gerais, Brazil
| | - Carlos Ernesto Garrido Salmon
- InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Ribeirão Preto, São Paulo, Brazil; Departamento de Imagens Médicas, Hematologia e Oncologia Clínica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de Sãoo Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Rua C, Raman B, Rodgers CT, Newcombe VFJ, Manktelow A, Chatfield DA, Sawcer SJ, Outtrim JG, Lupson VC, Stamatakis EA, Williams GB, Clarke WT, Qiu L, Ezra M, McDonald R, Clare S, Cassar M, Neubauer S, Ersche KD, Bullmore ET, Menon DK, Pattinson K, Rowe JB. Quantitative susceptibility mapping at 7 T in COVID-19: brainstem effects and outcome associations. Brain 2024:awae215. [PMID: 39375207 PMCID: PMC7616766 DOI: 10.1093/brain/awae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 10/09/2024] Open
Abstract
Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.
Collapse
Affiliation(s)
- Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
- University of Cambridge Centre for Parkinson-plus, University of Cambridge, CambridgeCB2 0QQ, UK
- Invicro, Invicro London, Burlington Danes Building, Imperial College London, LondonW12 0NN, UK
- Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, OxfordOX3 9DU, UK
| | - Christopher T. Rodgers
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Virginia F. J. Newcombe
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Anne Manktelow
- Division of Anaesthesia, University of Cambridge, CambridgeCB2 0QQ, UK
| | | | - Stephen J. Sawcer
- Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Joanne G. Outtrim
- Division of Anaesthesia, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Victoria C. Lupson
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Emmanuel A. Stamatakis
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Guy B. Williams
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0QQ, UK
| | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DA, UK
| | - Lin Qiu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DA, UK
| | - Martyn Ezra
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DA, UK
| | - Rory McDonald
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DA, UK
| | - Stuart Clare
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DA, UK
| | - Mark Cassar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, OxfordOX3 9DU, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, OxfordOX3 9DU, UK
| | - Karen D. Ersche
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, UK
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Heidelberg69115, Germany
| | - Edward T. Bullmore
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, UK
| | - David K. Menon
- Wolfson Brain Imaging Centre, University of Cambridge, CambridgeCB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge, CambridgeCB2 0QQ, UK
| | - Kyle Pattinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DA, UK
| | - James B. Rowe
- University of Cambridge Centre for Parkinson-plus, University of Cambridge, CambridgeCB2 0QQ, UK
- Medical Research Council Cognition and Brain Sciences Unit, CambridgeCB2 7EF, UK
| | | | | | - the Oxford CMORE-NEURO group
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, OxfordOX3 9DU, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DA, UK
| |
Collapse
|
4
|
Wang J, Ekambaram S, Huang X, Mailman RB, Proctor EA, Dokholyan NV. Comprehensive mapping of the Interaction of levodopa and iron metabolism in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612928. [PMID: 39345474 PMCID: PMC11429739 DOI: 10.1101/2024.09.13.612928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Levodopa remains the primary treatment for Parkinson's disease (PD), yet its long-term use has been associated with iron accumulation in the brain, a phenomenon linked to neurodegeneration. We utilize deep machine learning to determine plausible molecular mechanisms that may underlie the effects of levodopa on iron metabolism. Using the DRIFT platform, we performed a proteome-wide target identification of levodopa and uncovered significant interactions potentially involved in cellular iron transport. Pathway analysis revealed that levodopa may influence critical iron-related pathways, including the response of EIF2AK1 to heme deficiency, heme signaling, and ABC-family protein-mediated transport. These findings suggest that levodopa may contribute to iron dysregulation in PD by interacting with iron transporters and modulating iron-related pathways. Because levodopa is used at relatively high doses in PD, our findings provide new insight into secondary effects unrelated to being a precursor of dopamine. This highlights the need for careful consideration of its effects on iron metabolism as a consequence of use in the long-term management of PD. Further experimental validation is required to confirm these interactions, and also to explore potential strategies to mitigate iron-related side effects while preserving therapeutic efficacy.
Collapse
|
5
|
Mohammadi S, Ghaderi S, Mohammadi H, Fatehi F. Simultaneous Increase of Mean Susceptibility and Mean Kurtosis in the Substantia Nigra as an MRI Neuroimaging Biomarker for Early-Stage Parkinson's Disease: A Systematic Review and Meta-Analysis. J Magn Reson Imaging 2024. [PMID: 39210501 DOI: 10.1002/jmri.29569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder. Early detection is crucial for treatment and slowing disease progression. HYPOTHESIS Simultaneous alterations in mean susceptibility (MS) from quantitative susceptibility mapping (QSM) and mean kurtosis (MK) from diffusion kurtosis imaging (DKI) can serve as reliable neuroimaging biomarkers for early-stage PD (ESPD) in the basal ganglia nuclei, including the substantia nigra (SN), putamen (PUT), globus pallidus (GP), and caudate nucleus (CN). STUDY TYPE Systematic review and meta-analysis. POPULATION One hundred eleven patients diagnosed with ESPD and 81 healthy controls (HCs) were included from four studies that utilized both QSM and DKI in both subject groups. FIELD STRENGTH/SEQUENCE Three-dimensional multi-echo gradient echo sequence for QSM and spin echo planar imaging sequence for DKI at 3 Tesla. ASSESSMENT A systematic review and meta-analysis using PRISMA guidelines searched PubMed, Web of Science, and Scopus. STATISTICAL TESTS Random-effects model, standardized mean difference (SMD) to compare MS and MK between ESPD patients and HCs, I2 statistic for heterogeneity, Newcastle-Ottawa Scale (NOS) for risk of bias, and Egger's test for publication bias. A P-value <0.05 was considered significant. RESULTS MS values were significantly higher in SN (SMD 0.72, 95% CI 0.31 to 1.12), PUT (SMD 0.68, 95% CI 0.29 to 1.07), and GP (SMD 0.53, 95% CI 0.19 to 0.87) in ESPD patients compared to HCs. CN did not show a significant difference in MS values (P = 0.15). MK values were significantly higher only in SN (SMD = 0.72, 95% CI 0.16 to 1.27). MK values were not significantly different in PUT (P = 1.00), GP (P = 0.97), and CN (P = 0.59). Studies had high quality (NOS 7-8) and no publication bias (P = 0.967). DATA CONCLUSION Simultaneous use of MS and MK may be useful as an early neuroimaging biomarker for ESPD detection and its differentiation from HCs, with significant differences observed in the SN. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
6
|
Ariz M, Martínez M, Alvarez I, Fernández-Seara MA, Castellanos G, Pastor P, Pastor MA, Ortiz de Solórzano C. Automatic Segmentation and Quantification of Nigrosome-1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease. J Magn Reson Imaging 2024; 60:534-547. [PMID: 37915245 DOI: 10.1002/jmri.29073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. PURPOSE Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. STUDY TYPE Prospective. SUBJECTS Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). FIELD STRENGTH/SEQUENCE 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). ASSESSMENT N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. STATISTICAL TESTS Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. RESULTS N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. DATA CONCLUSION This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Mikel Ariz
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona, Spain
| | - Martín Martínez
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
| | - Ignacio Alvarez
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Maria A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, and Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
- Movement Disorders Unit, Neurology, University of Navarra, Pamplona, Spain
| | - Carlos Ortiz de Solórzano
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Zhang YY, Jiang XH, Zhu PP, Zhuo WY, Liu LB. Advancements in understanding substantia nigra hyperechogenicity via transcranial sonography in Parkinson's disease and its clinical implications. Front Neurol 2024; 15:1407860. [PMID: 39091976 PMCID: PMC11291319 DOI: 10.3389/fneur.2024.1407860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Amidst rising Parkinson's disease (PD) incidence in an aging global population, the need for non-invasive and reliable diagnostic methods is increasingly critical. This review evaluates the strategic role of transcranial sonography (TCS) in the early detection and monitoring of PD. TCS's ability to detect substantia nigra hyperechogenicity offers profound insights into its correlation with essential neuropathological alterations-namely, iron accumulation, neuromelanin depletion, and glial proliferation-fundamental to PD's pathophysiology. Our analysis highlights TCS's advantages, including its non-invasiveness, cost-effectiveness, and ease of use, positioning it as an invaluable tool for early diagnosis and continual disease progression monitoring. Moreover, TCS assists in identifying potential risk and protective factors, facilitating tailored therapeutic strategies to enhance clinical outcomes. This review advocates expanding TCS utilization and further research to maximize its diagnostic and prognostic potential in PD management, contributing to a more nuanced understanding of the disease.
Collapse
Affiliation(s)
- Yuan-yuan Zhang
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Xu-hong Jiang
- Department of Health Management, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Pei-pei Zhu
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Wen-yan Zhuo
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Li-bin Liu
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Cohen Z, Lau L, Ahmed M, Jack CR, Liu C. Quantitative susceptibility mapping in the brain reflects spatial expression of genes involved in iron homeostasis and myelination. Hum Brain Mapp 2024; 45:e26688. [PMID: 38896001 PMCID: PMC11187871 DOI: 10.1002/hbm.26688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/21/2024] Open
Abstract
Quantitative susceptibility mapping (QSM) is an MRI modality used to non-invasively measure iron content in the brain. Iron exhibits a specific anatomically varying pattern of accumulation in the brain across individuals. The highest regions of accumulation are the deep grey nuclei, where iron is stored in paramagnetic molecule ferritin. This form of iron is considered to be what largely contributes to the signal measured by QSM in the deep grey nuclei. It is also known that QSM is affected by diamagnetic myelin contents. Here, we investigate spatial gene expression of iron and myelin related genes, as measured by the Allen Human Brain Atlas, in relation to QSM images of age-matched subjects. We performed multiple linear regressions between gene expression and the average QSM signal within 34 distinct deep grey nuclei regions. Our results show a positive correlation (p < .05, corrected) between expression of ferritin and the QSM signal in deep grey nuclei regions. We repeated the analysis for other genes that encode proteins thought to be involved in the transport and storage of iron in the brain, as well as myelination. In addition to ferritin, our findings demonstrate a positive correlation (p < .05, corrected) between the expression of ferroportin, transferrin, divalent metal transporter 1, several gene markers of myelinating oligodendrocytes, and the QSM signal in deep grey nuclei regions. Our results suggest that the QSM signal reflects both the storage and active transport of iron in the deep grey nuclei regions of the brain.
Collapse
Affiliation(s)
- Zoe Cohen
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Laurance Lau
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Maruf Ahmed
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Clifford R. Jack
- Mayo Foundation for Medical Education and ResearchRochesterMinnesotaUSA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
9
|
Taleb S, Varela-Mattatall G, Allen A, Haast R, Khan AR, Kalia V, Howard JL, MacDonald SJ, Menon RS, Lanting BA, Teeter MG. Assessing brain integrity in patients with long-term and well-functioning metal-based hip implants. J Orthop Res 2024; 42:1292-1302. [PMID: 38235918 DOI: 10.1002/jor.25785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Production of metal debris from implant wear and corrosion processes is now a well understood occurrence following hip arthroplasty. Evidence has shown that metal ions can enter the bloodstream and travel to distant organs including the brain, and in extreme cases, can induce sensorial and neurological diseases. Our objective was tosimultaneously analyze brain anatomy and physiology in patients with long-term and well-functioning implants. Included were subjects who had received total hip or hip resurfacing arthroplastywith an implantation time of a minimum of 7 years (n = 28) and age- and sex-matched controls (n = 32). Blood samples were obtained to measure ion concentrations of cobalt and chromium, and the Montreal Cognitive Assessment was performed. 3T MRI brain scans were completed with an MPRAGE sequence for ROI segmentation and multiecho gradient echo sequences to generate QSM and R2* maps. Mean QSM and R2* values were recorded for five deep brain and four middle and cortical brain structures on both hemispheres: pallidum, putamen, caudate, amygdala, hippocampus, anterior cingulate, inferior temporal, and cerebellum. No differences in QSM or R2* or cognition scores were found between both groups (p > 0.6654). No correlation was found between susceptibility and blood ion levels for cobalt or chromium in any region of the brain. No correlation was found between blood ion levels and cognition scores. Clinical significance: Results suggest that metal ions released by long-term and well-functioning implants do not affect brain integrity.
Collapse
Affiliation(s)
- Shahnaz Taleb
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Gabriel Varela-Mattatall
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Abbigail Allen
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Roy Haast
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Ali R Khan
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Vishal Kalia
- Department of Medical Imaging, Schulich School of Medicine & Dentistry, Division of Musculoskeletal Imaging, Western University, London, Ontario, Canada
| | - James L Howard
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Steven J MacDonald
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Ravi S Menon
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brent A Lanting
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Matthew G Teeter
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Mohammadi S, Ghaderi S, Fatehi F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique. Brain Imaging Behav 2024:10.1007/s11682-024-00895-6. [PMID: 38758278 DOI: 10.1007/s11682-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI technique that accurately measures iron concentration in brain tissues. This meta-analysis synthesized evidence from 30 studies that used QSM to quantify the iron levels in the putamen. The PRISMA statement was adhered to when conducting the systematic reviews and meta-analyses. We conducted a meta-analysis using a random-effects model, as well as subgroup analyses (disease type, geographic region, field strength, coil, disease type, age, and sex) and sensitivity analysis. A total of 1247 patients and 1035 controls were included in the study. Pooled results showed a standardized mean difference (SMD) of 0.41 (95% CI 0.19 to 0.64), with the strongest effect seen in Alzheimer's disease (AD) at 1.01 (95% CI 0.50 to 1.52). Relapsing-remitting multiple sclerosis (RRMS) also showed increased putaminal iron at 0.37 (95% CI 0.177 to 0.58). No significant differences were observed in Parkinson's disease (PD). No significant differences were found between subgroups based on geographic region, field strength, coil, disease type, age, and sex. The studies revealed significant heterogeneity, with field strength as the primary source, while other factors, such as disease type, location, age, sex, and coil type, may have contributed. The sensitivity analysis showed that these factors did not have a significant influence on the overall results. In summary, this meta-analysis supports abnormalities in putaminal iron content across different diseases with neurodegeneration, especially AD and RRMS, as measured by QSM. This highlights the potential of QSM as an imaging biomarker to better understand disease mechanisms involving disturbances in brain iron homeostasis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
11
|
Yan S, Lu J, Li Y, Cho J, Zhang S, Zhu W, Wang Y. Spatiotemporal patterns of brain iron-oxygen metabolism in patients with Parkinson's disease. Eur Radiol 2024; 34:3074-3083. [PMID: 37853173 DOI: 10.1007/s00330-023-10283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Iron deposition and mitochondrial dysfunction are closely associated with the genesis and progression of Parkinson's disease (PD). This study aims to extract susceptibility and oxygen extraction fraction (OEF) values of deep grey matter (DGM) to explore spatiotemporal progression patterns of brain iron-oxygen metabolism in PD. METHODS Ninety-five PD patients and forty healthy controls (HCs) were included. Quantitative susceptibility mapping (QSM) and OEF maps were computed from MRI multi-echo gradient echo data. Analysis of covariance (ANCOVA) was used to compare mean susceptibility and OEF values in DGM between early-stage PD (ESP), advanced-stage PD (ASP) patients and HCs. Then Granger causality analysis on the pseudo-time-series of MRI data was applied to assess the causal effect of early altered nuclei on iron content and oxygen extraction in other DGM nuclei. RESULTS The susceptibility values in substantia nigra (SN), red nucleus, and globus pallidus (GP) significantly increased in PD patients compared with HCs, while the iron content in GP did not elevate obviously until the late stage. The mean OEF values for the caudate nucleus, putamen, and dentate nucleus were higher in ESP patients than in ASP patients or/and HCs. We also found that iron accumulation progressively expands from the midbrain to the striatum. These alterations were correlated with clinical features and improved AUC for early PD diagnosis to 0.824. CONCLUSIONS Abnormal cerebral iron deposition and tissue oxygen utilization in PD measured by QSM and OEF maps could reflect pathological alterations in neurodegenerative processes and provide valuable indicators for disease identification and management. CLINICAL RELEVANCE STATEMENT Noninvasive assessment of cerebral iron-oxygen metabolism may serve as clinical evidence of pathological changes in PD and improve the validity of diagnosis and disease monitoring. KEY POINTS • Quantitative susceptibility mapping and oxygen extraction fraction maps indicated the cerebral pathology of abnormal iron accumulation and oxygen metabolism in Parkinson's disease. • Iron deposition is mainly in the midbrain, while altered oxygen metabolism is concentrated in the striatum and cerebellum. • The susceptibility and oxygen extraction fraction values in subcortical nuclei were associated with clinical severity.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, 107 North Second Road, Shihezi, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Varga Z, Keller J, Robinson SD, Serranova T, Nepozitek J, Zogala D, Trnka J, Ruzicka E, Sonka K, Dusek P. Whole brain pattern of iron accumulation in REM sleep behavior disorder. Hum Brain Mapp 2024; 45:e26675. [PMID: 38590155 PMCID: PMC11002348 DOI: 10.1002/hbm.26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.
Collapse
Affiliation(s)
- Zsoka Varga
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Jiri Keller
- Radiodiagnostic DepartmentNa Homolce HospitalPragueCzech Republic
| | - Simon Daniel Robinson
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaAustria
| | - Tereza Serranova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - David Zogala
- Department of Nuclear Medicine, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Jiri Trnka
- Department of Nuclear Medicine, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
- Department of Radiology, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| |
Collapse
|
14
|
Chen L, Shin HG, van Zijl PC, Li X. Exploiting gradient-echo frequency evolution: Probing white matter microstructure and extracting bulk susceptibility-induced frequency for quantitative susceptibility mapping. Magn Reson Med 2024; 91:1676-1693. [PMID: 38102838 PMCID: PMC10880384 DOI: 10.1002/mrm.29958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/08/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE This work is to investigate the microstructure-induced frequency shift in white matter (WM) with crossing fibers and to separate the microstructure-related frequency shift from the bulk susceptibility-induced frequency shift by model fitting the gradient-echo (GRE) frequency evolution for potentially more accurate quantitative susceptibility mapping (QSM). METHODS A hollow-cylinder fiber model (HCFM) with two fiber populations was developed to investigate GRE frequency evolutions in WM voxels with microstructural orientation dispersion. The simulated and experimentally measured TE-dependent local frequency shift was then fitted to a simplified frequency evolution model to obtain a microstructure-related frequency difference parameter (∆ f $$ \Delta f $$ ) and a TE-independent bulk susceptibility-induced frequency shift (C f $$ {C}_f $$ ). The obtainedC f $$ {C}_f $$ was then used for QSM reconstruction. Reconstruction performances were evaluated using a numerical head phantom and in vivo data and then compared to other multi-echo combination methods. RESULTS GRE frequency evolutions and∆ f $$ \Delta f $$ -based tissue parameters in both parallel and crossing fibers determined from our simulations were comparable to those observed in vivo. The TE-dependent frequency fitting method outperformed other multi-echo combination methods in estimatingC f $$ {C}_f $$ in simulations. The fitted∆ f $$ \Delta f $$ ,C f $$ {C}_f $$ , and QSM could be improved further by navigator-based B0 fluctuation correction. CONCLUSION A HCFM with two fiber populations can be used to characterize microstructure-induced frequency shifts in WM regions with crossing fibers. HCFM-based TE-dependent frequency fitting provides tissue contrast related to microstructure (∆ f $$ \Delta f $$ ) and in addition may help improve the quantification accuracy ofC f $$ {C}_f $$ and the corresponding QSM.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Hyeong-Geol Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Guan X, Lancione M, Ayton S, Dusek P, Langkammer C, Zhang M. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping. Neuroimage 2024; 289:120547. [PMID: 38373677 DOI: 10.1016/j.neuroimage.2024.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Scott Ayton
- Florey Institute, The University of Melbourne, Australia
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Auenbruggerplatz 22, Prague 8036, Czechia
| | | | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| |
Collapse
|
16
|
Duan M, Pan R, Gao Q, Wu X, Lin H, Yuan J, Zhang Y, Liu L, Tian Y, Fu T. A rapid multi-parametric quantitative MR imaging method to assess Parkinson's disease: a feasibility study. BMC Med Imaging 2024; 24:58. [PMID: 38443786 PMCID: PMC10916029 DOI: 10.1186/s12880-024-01229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND MULTIPLEX is a single-scan three-dimensional multi-parametric MRI technique that provides 1 mm isotropic T1-, T2*-, proton density- and susceptibility-weighted images and the corresponding quantitative maps. This study aimed to investigate its feasibility of clinical application in Parkinson's disease (PD). METHODS 27 PD patients and 23 healthy control (HC) were recruited and underwent a MULTIPLEX scanning. All image reconstruction and processing were automatically performed with in-house C + + programs on the Automatic Differentiation using Expression Template platform. According to the HybraPD atlas consisting of 12 human brain subcortical nuclei, the region-of-interest (ROI) based analysis was conducted to extract quantitative parameters, then identify PD-related abnormalities from the T1, T2* and proton density maps and quantitative susceptibility mapping (QSM), by comparing patients and HCs. RESULTS The ROI-based analysis revealed significantly decreased mean T1 values in substantia nigra pars compacta and habenular nuclei, mean T2* value in subthalamic nucleus and increased mean QSM value in subthalamic nucleus in PD patients, compared to HCs (all p values < 0.05 after FDR correction). The receiver operating characteristic analysis showed all these four quantitative parameters significantly contributed to PD diagnosis (all p values < 0.01 after FDR correction). Furthermore, the two quantitative parameters in subthalamic nucleus showed hemicerebral differences in regard to the clinically dominant side among PD patients. CONCLUSIONS MULTIPLEX might be feasible for clinical application to assist in PD diagnosis and provide possible pathological information of PD patients' subcortical nucleus and dopaminergic midbrain regions.
Collapse
Affiliation(s)
- Min Duan
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Pan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yamei Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Lindong Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China.
| | - Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Alushaj E, Handfield-Jones N, Kuurstra A, Morava A, Menon RS, Owen AM, Sharma M, Khan AR, MacDonald PA. Increased iron in the substantia nigra pars compacta identifies patients with early Parkinson'sdisease: A 3T and 7T MRI study. Neuroimage Clin 2024; 41:103577. [PMID: 38377722 PMCID: PMC10944193 DOI: 10.1016/j.nicl.2024.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson's disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD. We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated k-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI). PD patients had higher QSM values in the SNc at both 3T (padj = 0.001) and 7T (padj = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (padj = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82-0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79-0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc. This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.
Collapse
Affiliation(s)
- Erind Alushaj
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada; Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
| | - Nicholas Handfield-Jones
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada; Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
| | - Alan Kuurstra
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Anisa Morava
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Ravi S Menon
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| | - Manas Sharma
- Department of Radiology, Western University, London, Ontario N6A 3K7, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Ali R Khan
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Penny A MacDonald
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
18
|
Domínguez D JF, Stewart A, Burmester A, Akhlaghi H, O'Brien K, Bollmann S, Caeyenberghs K. Improving quantitative susceptibility mapping for the identification of traumatic brain injury neurodegeneration at the individual level. Z Med Phys 2024:S0939-3889(24)00001-1. [PMID: 38336583 DOI: 10.1016/j.zemedi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Emerging evidence suggests that traumatic brain injury (TBI) is a major risk factor for developing neurodegenerative disease later in life. Quantitative susceptibility mapping (QSM) has been used by an increasing number of studies in investigations of pathophysiological changes in TBI. However, generating artefact-free quantitative susceptibility maps in brains with large focal lesions, as in the case of moderate-to-severe TBI (ms-TBI), is particularly challenging. To address this issue, we utilized a novel two-pass masking technique and reconstruction procedure (two-pass QSM) to generate quantitative susceptibility maps (QSMxT; Stewart et al., 2022, Magn Reson Med.) in combination with the recently developed virtual brain grafting (VBG) procedure for brain repair (Radwan et al., 2021, NeuroImage) to improve automated delineation of brain areas. We used QSMxT and VBG to generate personalised QSM profiles of individual patients with reference to a sample of healthy controls. METHODS Chronic ms-TBI patients (N = 8) and healthy controls (N = 12) underwent (multi-echo) GRE, and anatomical MRI (MPRAGE) on a 3T Siemens PRISMA scanner. We reconstructed the magnetic susceptibility maps using two-pass QSM from QSMxT. We then extracted values of magnetic susceptibility in grey matter (GM) regions (following brain repair via VBG) across the whole brain and determined if they deviate from a reference healthy control group [Z-score < -3.43 or > 3.43, relative to the control mean], with the aim of obtaining personalised QSM profiles. RESULTS Using two-pass QSM, we achieved susceptibility maps with a substantial increase in quality and reduction in artefacts irrespective of the presence of large focal lesions, compared to single-pass QSM. In addition, VBG minimised the loss of GM regions and exclusion of patients due to failures in the region delineation step. Our findings revealed deviations in magnetic susceptibility measures from the HC group that differed across individual TBI patients. These changes included both increases and decreases in magnetic susceptibility values in multiple GM regions across the brain. CONCLUSIONS We illustrate how to obtain magnetic susceptibility values at the individual level and to build personalised QSM profiles in ms-TBI patients. Our approach opens the door for QSM investigations in more severely injured patients. Such profiles are also critical to overcome the inherent heterogeneity of clinical populations, such as ms-TBI, and to characterize the underlying mechanisms of neurodegeneration at the individual level more precisely. Moreover, this new personalised QSM profiling could in the future assist clinicians in assessing recovery and formulating a neuroscience-guided integrative rehabilitation program tailored to individual TBI patients.
Collapse
Affiliation(s)
- Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Ashley Stewart
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Hamed Akhlaghi
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Emergency Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
19
|
Krishnan S, George SS, Radhakrishnan V, Raghavan S, Thomas B, Thulaseedharan JV, Puthenveedu DK. Quantitative susceptibility mapping from basal ganglia and related structures: correlation with disease severity in progressive supranuclear palsy. Acta Neurol Belg 2024; 124:151-160. [PMID: 37580639 DOI: 10.1007/s13760-023-02352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVE We examined whether mean magnetic susceptibility values from deep gray matter structures in patients with progressive supranuclear palsy (PSP) differed from those in patients with Parkinson's disease (PD) and healthy volunteers, and correlated with the PSP rating scale. METHODS Head of caudate nucleus, putamen, globus pallidus, substantia nigra and red nucleus were the regions of interest. Mean susceptibility values from these regions in PSP patients were estimated using quantitative susceptibility mapping. Correlations with clinical severity of disease as measured by the PSP rating scale were examined. The mean susceptibility values were also compared with those from healthy volunteers and age- and disease duration-matched patients with PD. RESULTS Data from 26 healthy volunteers, 26 patients with PD and 27 patients with PSP, were analysed. Patients with PSP had higher mean susceptibility values from all regions of interest when compared to both the other groups. The PSP rating scale scores correlated strongly with mean susceptibility values from the red nucleus and moderately with those from the putamen and substantia nigra. The scores did not correlate with mean susceptibility values from the caudate nucleus or globus pallidus. In patients with PD, the motor deficits correlated moderately with mean susceptibility values from substantia nigra. CONCLUSIONS In patients with PSP, mean susceptibility values indicating the severity of mineralization of basal ganglia and related structures correlate with disease severity, the correlation of red nucleus being the strongest. Further studies are warranted to explore whether mean susceptibility values could serve as biomarkers for PSP.
Collapse
Affiliation(s)
- Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| | - Sneha Susan George
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Sheelakumari Raghavan
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Jissa Vinoda Thulaseedharan
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Divya Kalikavil Puthenveedu
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
20
|
Fan Y, Li X, Ma J, Yang D, Liang K, Shen Y, Wei W, Dong L, Liu C, She Z, Qi X, Shi X, Gu Q, Zheng J, Li D. Increased plasma lipocalin-2 levels are associated with nonmotor symptoms and neuroimaging features in patients with Parkinson's disease. J Neurosci Res 2024; 102:e25303. [PMID: 38361408 DOI: 10.1002/jnr.25303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Lipocalin-2 (LCN2) is essential for the regulation of neuroinflammation and cellular uptake of iron. This study aimed to evaluate plasma LCN2 levels and explore their correlation with clinical and neuroimaging features in Parkinson's disease (PD) patients. Enzyme-linked immunosorbent assay (ELISA) was used to measure plasma LCN2 levels in 120 subjects. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales. Voxel-based morphometry (VBM) was used to evaluate brain volume alterations, and quantitative susceptibility mapping (QSM) was used to quantitatively analyze brain iron deposition in 46 PD patients. Plasma LCN2 levels were significantly higher in PD patients than those in healthy controls. LCN2 levels were negatively correlated with Montreal Cognitive Assessment (MoCA) scores, total brain gray matter volume (GMV), and GMV/total intracranial volume (TIV) ratio, but positively correlated with Hamilton Anxiety Rating Scale (HAMD) scores and mean QSM values of the bilateral substantial nigra (SN). Receiver operating characteristic (ROC) curves confirmed that plasma LCN2 levels had good predictive accuracy for PD. The results suggest that plasma LCN2 levels have potential as a biomarker for the diagnosis of PD. LCN2 may be a therapeutic target for neuroinflammation and brain iron deposition.
Collapse
Affiliation(s)
- Yongyan Fan
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaohuan Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dawei Yang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Keke Liang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Linrui Dong
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chuanze Liu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Zonghan She
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuelin Qi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoxue Shi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Qi Gu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
22
|
Duanmu X, Wen J, Tan S, Guo T, Zhou C, Wu H, Wu J, Cao Z, Liu X, Chen J, Wu C, Qin J, Gu L, Yan Y, Zhang B, Zhang M, Guan X, Xu X. Aberrant dentato-rubro-thalamic pathway in action tremor but not rest tremor: A multi-modality magnetic resonance imaging study. CNS Neurosci Ther 2023; 29:4160-4171. [PMID: 37408389 PMCID: PMC10651946 DOI: 10.1111/cns.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/14/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
AIMS The purpose of this study was to clarify the dentato-rubro-thalamic (DRT) pathway in action tremor in comparison to normal controls (NC) and disease controls (i.e., rest tremor) by using multi-modality magnetic resonance imaging (MRI). METHODS This study included 40 essential tremor (ET) patients, 57 Parkinson's disease (PD) patients (29 with rest tremor, 28 without rest tremor), and 41 NC. We used multi-modality MRI to comprehensively assess major nuclei and fiber tracts of the DRT pathway, which included decussating DRT tract (d-DRTT) and non-decussating DRT tract (nd-DRTT), and compared the differences in DRT pathway components between action and rest tremor. RESULTS Bilateral dentate nucleus (DN) in the ET group had excessive iron deposition compared with the NC group. Compared with the NC group, significantly decreased mean diffusivity and radial diffusivity were observed in the left nd-DRTT in the ET group, which were negatively correlated with tremor severity. No significant difference in each component of the DRT pathway was observed between the PD subgroup or the PD and NC. CONCLUSION Aberrant changes in the DRT pathway may be specific to action tremor and were indicating that action tremor may be related to pathological overactivation of the DRT pathway.
Collapse
Affiliation(s)
- Xiaojie Duanmu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luyan Gu
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
23
|
Madden DJ, Merenstein JL. Quantitative susceptibility mapping of brain iron in healthy aging and cognition. Neuroimage 2023; 282:120401. [PMID: 37802405 PMCID: PMC10797559 DOI: 10.1016/j.neuroimage.2023.120401] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain iron is present even among healthy older adults. To better understand the topographical pattern of iron accumulation and its relation to cognitive aging, we conducted an integrative review of 47 QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter nuclei vary with regard to age-related effects, which are most prominent in the putamen, and age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions during healthy aging. The third theme focused on the behavioral relevance of iron content and indicated that higher iron in both deep gray matter and cortical regions was related to decline in fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, suggest that iron interacts with imaging measures of brain function, white matter degradation, and the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new insights into healthy neurocognitive aging.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA
| |
Collapse
|
24
|
Wang C, Wen L, Wang K, Wu R, Li M, Zhang Y, Gao Z. Visualization of ferroptosis in brain diseases and ferroptosis-inducing nanomedicine for glioma. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:179-194. [PMID: 38023817 PMCID: PMC10656630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
A remarkable body of new data establishes that many degenerative brain diseases and some acute injury situations in the brain may be associated with ferroptosis. In recent years, ferroptosis has also attracted great interest in the cancer research community, partly because it is a unique mode of cell death distinct from other forms and thus has great therapeutic potential for brain cancer. Glioblastoma is a highly aggressive and fatal human cancer, accounting for 60% of all primary brain tumors. Despite the development of various pharmacological and surgical modalities, the survival rates of high-grade gliomas have remained poor over the past few decades. Recent evidence has revealed that ferroptosis is involved in tumor initiation, progression, and metastasis, and manipulating ferroptosis could offer a novel strategy for glioma management. Nanoparticles have been exploited as multifunctional platforms that can cross the blood-brain barrier and deliver therapeutic agents to the brain to address the pressing need for accurate visualization of ferroptosis and glioma treatment. To create efficient and durable ferroptosis inducers, many researchers have engineered nanocomposites to induce a more effective ferroptosis for therapy. In this review, we present the mechanism of ferroptosis and outline the current strategies of imaging and nanotherapy of ferroptosis in brain diseases, especially glioma. We aim to provide up-to-date information on ferroptosis and emphasize the potential clinical implications of ferroptosis for glioma diagnosis and treatment. However, regulation of ferroptosis in vivo remains challenging due to a lack of compounds.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Li Wen
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Kun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Yajing Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| |
Collapse
|
25
|
Chen M, Wang Y, Zhang C, Li J, Li Z, Guan X, Bao J, Zhang Y, Cheng J, Wei H. Free water and iron content in the substantia nigra at different stages of Parkinson's disease. Eur J Radiol 2023; 167:111030. [PMID: 37579561 DOI: 10.1016/j.ejrad.2023.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Abnormalities in free water (FW) and susceptibility values exist in the substantia nigra (SN) of patients with Parkinson's disease (PD), but their role in characterizing the disease processes remains uncertain. This study investigated these values at various SN locations and stages of PD, and their relationship with clinical symptoms. METHOD FW and quantitative susceptibility mapping (QSM) values were evaluated in the anterior and posterior SN, along with swallow-tail-sign (STS) ratings, in patients with PD (early-stage: n = 39; middle-to-advanced-stage: n = 97) and healthy controls (n = 82). The correlation between these indices and motor and non-motor symptoms, and their capability to distinguish PD from healthy controls, were also examined. RESULTS Increased FW in the anterior and posterior SN and increased QSM values in the posterior SN were observed in both early-stage and middle-to-advanced-stage PD patients (p < 0.05). However, there was no significant difference in FW, QSM values, or STS ratings among patients at different stages. FW and QSM values correlated with motor symptoms in middle-to-advanced-stage patients (p < 0.05), while STS ratings were associated with non-motor symptoms (p < 0.05). Additionally, combining FW and QSM values in the posterior SN with STS ratings in logistic regression showed better performance in distinguishing PD (area under curve = 0.931) compared to using STS ratings alone (area under curve = 0.880). CONCLUSIONS Findings suggest elevated FW and iron content in PD at different stages, with dissociation in SN location between the two indices. Elevated signals are related to the motor symptom severity in middle-to-advanced-stage patients, and may have the potential for PD diagnosis and symptom assessment.
Collapse
Affiliation(s)
- Mingxing Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yutong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Li
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China; Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Coray RC, Berberat J, Zimmermann J, Seifritz E, Stock AK, Beste C, Cole DM, Unschuld PG, Quednow BB. Striatal Iron Deposition in Recreational MDMA (Ecstasy) Users. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:956-966. [PMID: 36848948 DOI: 10.1016/j.bpsc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/30/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND The common club drug MDMA (also known as ecstasy) enhances mood, sensory perception, energy, sociability, and euphoria. While MDMA has been shown to produce neurotoxicity in animal models, research on its potential neurotoxic effects in humans is inconclusive and has focused primarily on the serotonin system. METHODS We investigated 34 regular, largely pure MDMA users for signs of premature neurodegenerative processes in the form of increased iron load in comparison to a group of 36 age-, sex-, and education-matched MDMA-naïve control subjects. We used quantitative susceptibility mapping, a novel tool able to detect even small tissue (nonheme) iron accumulations. Cortical and relevant subcortical gray matter structures were grouped into 8 regions of interest and analyzed. RESULTS Significantly increased iron deposition in the striatum was evident in the MDMA user group. The effect survived correction for multiple comparisons and remained after controlling for relevant confounding factors, including age, smoking, and stimulant co-use. Although no significant linear relationship between measurements of the amounts of MDMA intake (hair analysis and self-reports) and quantitative susceptibility mapping values was observed, increased striatal iron deposition might nevertheless point to MDMA-induced neurotoxic processes. Additional factors (hyperthermia and simultaneous co-use of other substances) that possibly amplify neurotoxic effects of MDMA during the state of acute intoxication are discussed. CONCLUSIONS The demonstrated increased striatal iron accumulation may indicate that regular MDMA users have an increased risk potential for neurodegenerative diseases with progressing age.
Collapse
Affiliation(s)
- Rebecca C Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland.
| | - Jatta Berberat
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland; Institute of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland; Translational Psychiatry Lab, University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Paul G Unschuld
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Nepozitek J, Varga Z, Dostalova S, Perinova P, Keller J, Robinson S, Ibarburu V, Prihodova I, Bezdicek O, Ruzicka E, Sonka K, Dusek P. Magnetic susceptibility changes in the brainstem reflect REM sleep without atonia severity in isolated REM sleep behavior disorder. NPJ Parkinsons Dis 2023; 9:112. [PMID: 37452075 PMCID: PMC10349141 DOI: 10.1038/s41531-023-00557-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
REM sleep without atonia (RWA) is the hallmark of isolated REM sleep behavior disorder (iRBD) and is caused by neurodegeneration of brainstem structures. Previously, quantitative susceptibility mapping (QSM) was shown to detect microstructural tissue changes in neurodegenerative diseases. The goal of the study was to compare brainstem magnetic susceptibility (MS) in iRBD and controls using the voxel-based QSM approach and to examine the association between brainstem MS and severity of RWA in iRBD. Sixty iRBD patients and 41 healthy controls were included in the study. Phasic, tonic, mixed RWA and SINBAR score was quantified. QSM maps were reconstructed with QSMbox software from a multi-gradient-echo sequence acquired at 3T MRI system and normalized using a custom T1 template. Voxel-based analysis with age and gender as covariates was performed using a two-sample t-test model for between-group comparison and using a linear regression model for association with the RWA parameters. Statistical maps were generated using threshold free cluster enhancement with p-value p < 0.05, corrected for family wise error. Compared to controls, the iRBD group had higher MS in bilateral substantia nigra (SN), red nucleus and the ventral tegmental area. MS positively correlated with iRBD duration in the right pedunculotegmental nucleus and white matter of caudal mesencephalic and pontine tegmentum and with phasic RWA in bilateral SN. QSM was able to detect MS abnormalities in several brainstem structures in iRBD. Association of MS levels in the brainstem with the intensity of RWA suggests that increased iron content in SN is related to RWA severity.
Collapse
Affiliation(s)
- Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Zsoka Varga
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Simona Dostalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavla Perinova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Keller
- Radiodiagnostic Department, Na Homolce Hospital, Prague, Czech Republic
| | - Simon Robinson
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Veronika Ibarburu
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Iva Prihodova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
28
|
Carlos AF, Josephs KA. The Role of Clinical Assessment in the Era of Biomarkers. Neurotherapeutics 2023; 20:1001-1018. [PMID: 37594658 PMCID: PMC10457273 DOI: 10.1007/s13311-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Hippocratic Medicine revolved around the three main principles of patient, disease, and physician and promoted the systematic observation of patients, rational reasoning, and interpretation of collected information. Although these remain the cardinal features of clinical assessment today, Medicine has evolved from a more physician-centered to a more patient-centered approach. Clinical assessment allows physicians to encounter, observe, evaluate, and connect with patients. This establishes the patient-physician relationship and facilitates a better understanding of the patient-disease relationship, as the ultimate goal is to diagnose, prognosticate, and treat. Biomarkers are at the core of the more disease-centered approach that is currently revolutionizing Medicine as they provide insight into the underlying disease pathomechanisms and biological changes. Genetic, biochemical, radiographic, and clinical biomarkers are currently used. Here, we define a seven-level theoretical construct for the utility of biomarkers in neurodegenerative diseases. Level 1-3 biomarkers are considered supportive of clinical assessment, capable of detecting susceptibility or risk factors, non-specific neurodegeneration or dysfunction, and/or changes at the individual level which help increase clinical diagnostic accuracy and confidence. Level 4-7 biomarkers have the potential to surpass the utility of clinical assessment through detection of early disease stages and prediction of underlying pathology. In neurodegenerative diseases, biomarkers can potentiate, but cannot substitute, clinical assessment. In this current era, aside from adding to the discovery, evaluation/validation, and implementation of more biomarkers, clinical assessment remains crucial to maintaining the personal, humanistic, and sociocultural aspects of patient care. We would argue that clinical assessment is a custom that should never go obsolete.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA
| |
Collapse
|
29
|
Zhang D, Yao J, Sun J, Wang J, Chen L, He H, Wu T. Iron accumulation in the ventral tegmental area in Parkinson's disease. Front Aging Neurosci 2023; 15:1187684. [PMID: 37448687 PMCID: PMC10338054 DOI: 10.3389/fnagi.2023.1187684] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The ventral tegmental area (VTA) is less affected compared to substantia nigra pars compacta (SNc) in Parkinson's disease (PD). This study aimed to quantitatively evaluate iron content in the VTA across different stages of PD in order to help explain the selective loss of dopamine neurons in PD. Methods Quantitative susceptibility mapping (QSM) data were obtained from 101 PD patients, 35 idiopathic rapid eye movement sleep behavior disorder (RBD) patients, and 62 healthy controls (HCs). The mean QSM values in the VTA and SNc were calculated and compared among the groups. Results Both RBD and PD patients had increased iron values in the bilateral SNc compared with HCs. RBD and PD patients in the Hoehn-Yahr (H & Y) stage 1 did not show elevated iron values in the VTA, while PD patients with more than 1.5 H & Y staging had increased iron values in bilateral VTA compared to HCs. Discussion This study shows that there is no increased iron accumulation in the VTA during the prodromal and early clinical stages of PD, but iron deposition increases significantly as the disease becomes more severe.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Cogswell PM, Fan AP. Multimodal comparisons of QSM and PET in neurodegeneration and aging. Neuroimage 2023; 273:120068. [PMID: 37003447 PMCID: PMC10947478 DOI: 10.1016/j.neuroimage.2023.120068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Audrey P Fan
- Department of Biomedical Engineering and Department of Neurology, University of California, Davis, 1590 Drew Avenue, Davis, CA 95618, USA
| |
Collapse
|
31
|
Li Z, Feng R, Liu Q, Feng J, Lao G, Zhang M, Li J, Zhang Y, Wei H. APART-QSM: an improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method. Neuroimage 2023; 274:120148. [PMID: 37127191 DOI: 10.1016/j.neuroimage.2023.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The brain tissue phase contrast in MRI sequences reflects the spatial distributions of multiple substances, such as iron, myelin, calcium, and proteins. These substances with paramagnetic and diamagnetic susceptibilities often colocalize in one voxel in brain regions. Both opposing susceptibilities play vital roles in brain development and neurodegenerative diseases. Conventional QSM methods only provide voxel-averaged susceptibility value and cannot disentangle intravoxel susceptibilities with opposite signs. Advanced susceptibility imaging methods have been recently developed to distinguish the contributions of opposing susceptibility sources for QSM. The basic concept of separating paramagnetic and diamagnetic susceptibility proportions is to include the relaxation rate R2* with R2' in QSM. The magnitude decay kernel, describing the proportionality coefficient between R2' and susceptibility, is an essential reconstruction coefficient for QSM separation methods. In this study, we proposed a more comprehensive complex signal model that describes the relationship between 3D GRE signal and the contributions of paramagnetic and diamagnetic susceptibility to the frequency shift and R2* relaxation. The algorithm is implemented as a constrained minimization problem in which the voxel-wise magnitude decay kernel and sub-voxel susceptibilities are determined alternately in each iteration until convergence. The calculated voxel-wise magnitude decay kernel could realistically model the relationship between the R2' relaxation and the volume susceptibility. Thus, the proposed method effectively prevents the errors of the magnitude decay kernel from propagating to the final susceptibility separation reconstruction. Phantom studies, ex vivo macaque brain experiments, and in vivo human brain imaging studies were conducted to evaluate the ability of the proposed method to distinguish paramagnetic and diamagnetic susceptibility sources. The results demonstrate that the proposed method provides state-of-the-art performances for quantifying brain iron and myelin compared to previous QSM separation methods. Our results show that the proposed method has the potential to simultaneously quantify whole brain iron and myelin during brain development and aging. The proposed model was also deployed with multiple-orientation complex GRE data input measurements, resulting in high-quality QSM separation maps with more faithful tissue delineation between brain structures compared to those reconstructed by single-orientation QSM separation methods.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyan Lao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Xu Y, Huang X, Geng X, Wang F. Meta-analysis of iron metabolism markers levels of Parkinson's disease patients determined by fluid and MRI measurements. J Trace Elem Med Biol 2023; 78:127190. [PMID: 37224790 DOI: 10.1016/j.jtemb.2023.127190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Parkinson' s disease (PD) is a progressive neurodegenerative disease featured neuropathologically by the loss of dopaminergic neurons of the substantia nigra (SN). Iron overload in the SN is mainly relative to the pathology and pathogenesis of PD. Postmortem samples of PD has indicated the increased levels of brain iron. However, there is no consensus on iron content through iron-sensitive magnetic resonance imaging (MRI) techniques and the alteration of iron and iron related metabolism markers levels in blood and cerebrospinal fluids (CSF) are still unclear based on the current studies. In this study, we performed a meta-analysis to explore the iron concentration and iron metabolism markers levels through iron-sensitive MRI quantification and body fluid. METHODS A comprehensive literature search was performed in PubMed, EMBASE and Cochrane Library databases for relevant published studies that analyzed iron load in the SN of PD patients using quantitative susceptibility mapping (QSM) or susceptibility weighting imaging (SWI), and iron metabolism markers, iron, ferritin, transferrin, total iron-binding capacity(TIBC)in CSF sample or serum/plasma sample (from Jan 2010 to Sep 2022 to filter these inaccurate researches attributed to unadvanced equipment, inaccurate analytical methods). Standardized mean differences (SMD) or mean differences (MD) and 95% confidence intervals (CI) with random or fixed effect model was used to estimate the results. RESULTS Forty-two articles fulfilled the inclusion criteria including 19 for QSM, 6 for SWI, and 17 for serum/plasma/CSF sample including 2874 PD patients and 2821 healthy controls (HCs). Our meta-analysis results founded a notable difference for QSM values increase (19.67, 95% CI=18.69-20.64) and for SWI measurements (-1.99, 95% CI= -3.52 to -0.46) in the SN in PD patients. However, the serum/plasma/CSF iron levels and serum/plasma ferritin, transferrin, total iron-binding capacity (TIBC) did not differ significantly between PD patients and HCs. CONCLUSIONS Our meta-analysis showed the consistent increase in the SN in PD patients using QSM and SWI techniques of iron-sensitive MRI measures while no significant differences were observed in other iron metabolism markers levels.
Collapse
Affiliation(s)
- Yiyuan Xu
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xinyu Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
33
|
Wang H, Song L, Li M, Yang Z, Wang ZC. Association between susceptibility value and cerebral blood flow in the bilateral putamen in patients undergoing hemodialysis. J Cereb Blood Flow Metab 2023; 43:433-445. [PMID: 36284493 PMCID: PMC9941863 DOI: 10.1177/0271678x221134384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hemodialysis (HD) is the most regularly applied replacement therapy for end-stage renal disease, but it may result in brain injuries. The correlation between cerebral blood flow (CBF) alteration and iron deposition has not been investigated in patients undergoing HD. Ferritin level may be a dominant factor in CBF and iron deposition change. We hypothesize that ferritin level might be the key mediator between iron deposition and CBF alteration. The correlation in the putamen was estimated between the susceptibility values and CBF in patients undergoing HD. Compared with healthy controls, patients showed more altered global susceptibility values and CBF. The susceptibility value was negatively correlated with CBF in the putamen in patients. Moreover, the susceptibility value was negatively correlated with ferritin level and positively correlated with serum iron level in the putamen of patients. CBF was positively correlated with ferritin level and negatively correlated with serum iron level in the putamen of patients. These findings indicate that iron dyshomeostasis and vascular damage might exist in the putamen in patients. The results revealed that iron dyshomeostasis and vascular damage in the putamen may be potential neural mechanisms for neurodegenerative processes in patients undergoing HD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Song
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of Neuromelanin MR Imaging in Parkinson Disease. J Magn Reson Imaging 2023; 57:337-352. [PMID: 36017746 PMCID: PMC10086789 DOI: 10.1002/jmri.28414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegenerative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and the locus coeruleus. Another major biomarker is brain iron, which often increases in concert with NM degeneration. These biomarkers have the potential to improve diagnostic certainty in differentiating between PD and other neurodegenerative disorders similar to PD, as well as provide a better understanding of pathophysiology. Mapping NM in vivo has clinical importance for gauging the premotor phase of PD when there is a greater than 50% loss of dopaminergic SNpc melanized neurons. As a metal ion chelator, NM can absorb iron. When NM is released from neurons, it deposits iron into the intracellular tissues of the SNpc; the result is iron that can be imaged and measured using quantitative susceptibility mapping. An increase of iron also leads to the disappearance of the nigrosome-1 sign, another neuroimage biomarker for PD. Therefore, mapping NM and iron changes in the SNpc are a practical means for improving early diagnosis of PD and in monitoring disease progression. In this review, we discuss the functions and location of NM, how NM-MRI is performed, the automatic mapping of NM and iron content, how NM-related imaging biomarkers can be used to enhance PD diagnosis and differentiate it from other neurodegenerative disorders, and potential advances in NM imaging methods. With major advances currently evolving for rapid imaging and artificial intelligence, NM-related biomarkers are likely to have increasingly important roles for enhancing diagnostic capabilities in PD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Henry Ford Hospital, Parkinson's Disease and Movement Disorders Program, Detroit, Michigan, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,SpinTech, Inc, Bingham Farms, Michigan, USA
| |
Collapse
|
35
|
Cao Q, Huang J, Tang D, Qian H, Yan K, Shi X, Li Y, Zhang J. Application value of multiparametric MRI for evaluating iron deposition in the substantia nigra in Parkinson's disease. Front Neurol 2023; 13:1096966. [PMID: 36686531 PMCID: PMC9846143 DOI: 10.3389/fneur.2022.1096966] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Objective This study aimed to investigate the application value of multi-parametric magnetic resonance imaging (MRI) in the diagnosis of iron deposition in the substantia nigra dense zone in Parkinson's disease (PD) and to evaluate the diagnostic value of the correlation among multi-parametric imaging indicators, clinical stage, and disease duration. Materials and methods Thirty-six patients with clinically confirmed PD and 36 healthy controls were enrolled. The disease course was recorded, and PD severity was graded using the Hoehn-Yahr (H-Y) scale. All subjects underwent magnetic sensitivity weighted imaging (SWI), neuromelanin magnetic resonance imaging (NM-MRI), and a T2*mapping sequence. Based on the fusion of the NM-MRI and SWI amplitude maps, phase maps, and T2*MAPPING value maps, NM-MRI was used to delineate the dense zone of the substantia nigra, which was divided into three sub-regions: upper, middle, and lower. In this way, the amplitude, phase, and R2* values of each sub-region and the average value of the sum of the three sub-regions were obtained simultaneously in the SWI amplitude, phase, and T2*MAPPING maps. The multi-parameter imaging indices were compared between the two groups, and the correlation between them and clinical indices was evaluated in the PD group. Results The upper (amplitude, phase value, R2* value), middle, and lower (amplitude) right substantia nigra compact zones were significantly different between the PD and control groups. The upper (phase value, R2* value) and middle (amplitude) areas of the left substantia nigra compact zone were also significantly different between the two groups (all P < 0.05). The mean values (amplitude, phase value, R2* value) of the right substantia nigra densification zone and the mean values (phase value) of the left substantia nigra densification zone were also significantly different (all P < 0.05). Amplitudes in the middle and lower parts of the right substantia nigra dense zone were negatively correlated with the H-Y grade (middle: r = -0.475, P = 0.003; lower: r = -0.331, P = 0.049). Amplitudes of the middle and lower parts of the dense zone of the left substantia nigra were negatively correlated with the H-Y grade (middle: r = -0.342, P = 0.041; lower: r = -0.399, P = 0.016). The average amplitude of the right substantia nigra compact zone was negatively correlated with the H-Y grade (r = -0.367, P = 0.027). The average R2* value of the compact zone of the left substantia nigra was positively correlated with the H-Y grade (r = 0.345, P = 0.040). Conclusion Multiparametric MRI sequence examination has application value in the evaluation of iron deposition in the dense zone of the substantia nigra in PD. Combined with NM-MRI, fusion analysis is beneficial for accurately locating the substantia nigra compact zone and quantitatively analyzing the iron deposition in different sub-regions. Quantitative iron deposition in the middle and lower parts of the substantia nigra dense zone may become an imaging biological indicator for early diagnosis, severity evaluation, and follow-up evaluation of PD and is thus conducive for clinical diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Qing Cao
- Department of Radiology, Guangzhou Xinhai Hospital, Guangzhou, Guangdong, China
| | - Jinjin Huang
- Department of Neurosurgery, The PLA 74th Group Army Hospital of Chinese, Guangzhou, Guangdong, China
| | - Dongping Tang
- Department of Science and Education Department, Guangzhou Xinhai Hospital, Guangzhou, Guangdong, China
| | - Hao Qian
- Department of Neurology, Guangzhou Xinhai Hospital, Guangzhou, Guangdong, China
| | - Kun Yan
- Department of Neurology, Guangzhou Xinhai Hospital, Guangzhou, Guangdong, China
| | - Xun Shi
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Yaowei Li
- Department of Radiology, Guangzhou Xinhai Hospital, Guangzhou, Guangdong, China,*Correspondence: Yaowei Li ✉
| | - Jiangong Zhang
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China,Jiangong Zhang ✉
| |
Collapse
|
36
|
Yao J, Morrison MA, Jakary A, Avadiappan S, Chen Y, Luitjens J, Glueck J, Driscoll T, Geschwind MD, Nelson AB, Villanueva-Meyer JE, Hess CP, Lupo JM. Comparison of quantitative susceptibility mapping methods for iron-sensitive susceptibility imaging at 7T: An evaluation in healthy subjects and patients with Huntington's disease. Neuroimage 2023; 265:119788. [PMID: 36476567 DOI: 10.1016/j.neuroimage.2022.119788] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is a promising tool for investigating iron dysregulation in neurodegenerative diseases, including Huntington's disease (HD). Many diverse methods have been proposed to generate accurate and robust QSM images. In this study, we evaluated the performance of different dipole inversion algorithms for iron-sensitive susceptibility imaging at 7T on healthy subjects of a large age range and patients with HD. We compared an iterative least-squares-based method (iLSQR), iterative methods that use regularization, single-step approaches, and deep learning-based techniques. Their performance was evaluated by comparing: (1) deviations from a multiple-orientation QSM reference; (2) visual appearance of QSM maps and the presence of artifacts; (3) susceptibility in subcortical brain regions with age; (4) regional brain susceptibility with published postmortem brain iron quantification; and (5) susceptibility in HD-affected basal ganglia regions between HD subjects and healthy controls. We found that single-step QSM methods with either total variation or total generalized variation constraints (SSTV/SSTGV) and the single-step deep learning method iQSM generally provided the best performance in terms of correlation with iron deposition and were better at differentiating between healthy controls and premanifest HD individuals, while deep learning QSM methods trained with multiple-orientation susceptibility data created QSM maps that were most similar to the multiple orientation reference and with the best visual scores.
Collapse
Affiliation(s)
- Jingwen Yao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Yicheng Chen
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA; UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco & Berkeley, CA, USA; Meta Platforms, Inc., Mountain View, CA, USA
| | - Johanna Luitjens
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Glueck
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Theresa Driscoll
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael D Geschwind
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA; UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco & Berkeley, CA, USA.
| |
Collapse
|
37
|
Zhang D, Yao J, Sun J, Tong Q, Zhu S, Wang J, Chen L, Ma J, He H, Wu T. Quantitative Susceptibility Mapping and Free Water Imaging of Substantia Nigra in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2469-2478. [PMID: 36404557 DOI: 10.3233/jpd-223499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The utility of imaging methods to detect iron content in the substantia nigra pars compacta (SNc) and free water imaging in the posterior substantia nigra (pSN) has the potential to be imaging markers for the detection of Parkinson's disease (PD). OBJECTIVE This study aimed to compare the discriminative power of above methods, and whether the combination can improve the diagnostic potential of PD. METHODS Quantitative susceptibility mapping (QSM) and diffusion-weighted data were obtained from 41 healthy controls (HC), 37 patients with idiopathic REM sleep behavior disorder (RBD), and 65 patients with PD. Mean QSM values of bilateral SNc and mean isotropic volume fraction (Viso) values of bilateral pSN (mean QSM|Viso values of bilateral SNc|pSN) were separately calculated and compared among the groups. RESULTS Mean QSM|Viso values of bilateral SNc|pSN were significantly higher for RBD and PD patients compared to HC and were significantly higher in PD patients than in RBD patients. The power of the mean QSM|Viso values of bilateral SNc|pSN and combined mean QSM and Viso values was 0.873, 0.870, and 0.961 in discriminating PD and HC, 0.779, 0.719, and 0.864 in discriminating RBD from HC, 0.634, 0.636, and 0.689 in discriminating PD and RBD patients. CONCLUSION QSM and free water imaging have similar discriminative power in the detection of prodromal and clinical PD, while combination of these two methods increases discriminative power. Our findings suggest that the combination of QSM and free water imaging has the potential to become an imaging marker for the diagnosis of PD.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Silei Zhu
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinghong Ma
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Guan X, Guo T, Zhou C, Wu J, Zeng Q, Li K, Luo X, Bai X, Wu H, Gao T, Gu L, Liu X, Cao Z, Wen J, Chen J, Wei H, Zhang Y, Liu C, Song Z, Yan Y, Pu J, Zhang B, Xu X, Zhang M. Altered brain iron depositions from aging to Parkinson's disease and Alzheimer's disease: A quantitative susceptibility mapping study. Neuroimage 2022; 264:119683. [PMID: 36243270 DOI: 10.1016/j.neuroimage.2022.119683] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Brain iron deposition is a promising marker for human brain health, providing insightful information for understanding aging as well as neurodegenerations, e.g., Parkinson's disease (PD) and Alzheimer's disease (AD). To comprehensively evaluate brain iron deposition along with aging, PD-related neurodegeneration, from prodromal PD (pPD) to clinical PD (cPD), and AD-related neurodegeneration, from mild cognitive impairment (MCI) to AD, a total of 726 participants from July 2013 to December 2020, including 100 young adults, 189 old adults, 184 pPD, 171 cPD, 31 MCI and 51 AD patients, were included. Quantitative susceptibility mapping data were acquired and used to quantify regional magnetic susceptibility, and the resulting spatial standard deviations were recorded. A general linear model was applied to perform the inter-group comparison. As a result, relative to young adults, old adults showed significantly higher iron deposition with higher spatial variation in all of the subcortical nuclei (p < 0.01). pPD showed a high spatial variation of iron distribution in the subcortical nuclei except for substantia nigra (SN); and iron deposition in SN and red nucleus (RN) were progressively increased from pPD to cPD (p < 0.01). AD showed significantly higher iron deposition in caudate and putamen with higher spatial variation compared with old adults, pPD and cPD (p < 0.01), and significant iron deposition in SN compared with old adults (p < 0.01). Also, linear regression models had significances in predicting motor score in pPD and cPD (Rmean = 0.443, Ppermutation = 0.001) and cognition score in MCI and AD (Rmean = 0.243, Ppermutation = 0.037). In conclusion, progressive iron deposition in the SN and RN may characterize PD-related neurodegeneration, namely aging to cPD through pPD. On the other hand, extreme iron deposition in the caudate and putamen may characterize AD-related neurodegeneration.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Qingze Zeng
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Kaicheng Li
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Xiao Luo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Xueqin Bai
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Ting Gao
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Zhengye Cao
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Zhe Song
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| |
Collapse
|
39
|
Reduced basal ganglia tissue-iron concentration in school-age children with attention-deficit/hyperactivity disorder is localized to limbic circuitry. Exp Brain Res 2022; 240:3271-3288. [PMID: 36301336 DOI: 10.1007/s00221-022-06484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Dopamine-related abnormalities in the basal ganglia have been implicated in attention-deficit/hyperactivity disorder (ADHD). Iron plays a critical role in supporting dopaminergic function, and reduced brain iron and serum ferritin levels have been linked to ADHD symptom severity in children. Furthermore, the basal ganglia is a central brain region implicated in ADHD psychopathology and involved in motor and reward functions as well as emotional responding. The present study repurposed diffusion tensor imaging (DTI) to examine effects of an ADHD diagnosis and sex on iron deposition within the basal ganglia in children ages 8-12 years. We further explored associations between brain iron levels and ADHD symptom severity and affective symptoms. We observed reduced iron levels in children with ADHD in the bilateral limbic region of the striatum, as well as reduced levels of iron-deposition in males in the sensorimotor striatal subregion, regardless of diagnosis. Across the whole sample, iron-deposition increased with age in all regions. Brain-behavior analyses revealed that, across diagnostic groups, lower tissue-iron levels in bilateral limbic striatum correlated with greater ADHD symptom severity, whereas lower tissue-iron levels in the left limbic striatum only correlated with anxious, depressive and affective symptom severity. This study sheds light on the neurobiological underpinnings of ADHD, specifically highlighting the localization of tissue-iron deficiency in limbic regions, and providing support for repurposing DTI for brain iron analyses. Our findings highlight the need for further investigation of iron as a biomarker in the diagnosis and treatment of ADHD and sex differences.
Collapse
|
40
|
Khedher L, Bonny JM, Marques A, Durand E, Pereira B, Chupin M, Vidal T, Chassain C, Defebvre L, Carriere N, Fraix V, Moro E, Thobois S, Metereau E, Mangone G, Vidailhet M, Corvol JC, Lehéricy S, Menjot de Champfleur N, Geny C, Spampinato U, Meissner W, Frismand S, Schmitt E, Doé de Maindreville A, Portefaix C, Remy P, Fénelon G, Luc Houeto J, Colin O, Rascol O, Peran P, Durif F. Intrasubject subcortical quantitative referencing to boost MRI sensitivity to Parkinson's disease. Neuroimage Clin 2022; 36:103231. [PMID: 36279753 PMCID: PMC9668635 DOI: 10.1016/j.nicl.2022.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Several postmortem studies have shown iron accumulation in the substantia nigra of Parkinson's disease patients. Iron concentration can be estimated via MRI-R2∗ mapping. To assess the changes in R2∗ occurring in Parkinson's disease patients compared to controls, a multicentre transversal study was carried out on a large cohort of Parkinson's disease patients (n = 163) with matched controls (n = 82). In this study, 44 patients and 11 controls were removed due to motion artefacts, 21 patient and 6 controls to preserve matching. Thus, 98 patients and 65 age and sex-matched healthy subjects were selected with enough image quality. The study was conducted on patients with early to late stage Parkinson's disease. The images were acquired at 3Tesla in 12 clinical centres. R2∗ values were measured in subcortical regions of interest (substantia nigra, red nucleus, striatum, globus pallidus externus and globus pallidus internus) contralateral (dominant side) and ipsilateral (non dominant side) to the most clinically affected hemibody. As the observed inter-subject R2∗ variability was significantly higher than the disease effect, an original strategy (intrasubject subcortical quantitative referencing, ISQR) was developed using the measurement of R2∗ in the red nucleus as an intra-subject reference. R2∗ values significantly increased in Parkinson's disease patients when compared with controls; in the substantia nigra (SN) in the dominant side (D) and in the non dominant side (ND), respectively (PSN_D and PSN_ND < 0.0001). After stratification into four subgroups according to the disease duration, no significant R2∗ difference was found in all regions of interest when comparing Parkinson's disease subgroups. By applying our ISQR strategy, R2(ISQR)∗ values significantly increased in the substantia nigra (PSN_D and PSN_ND < 0.0001) when comparing all Parkinson's disease patients to controls. R2(ISQR)∗ values in the substantia nigra significantly increased with the disease duration (PSN_D = 0.01; PSN_ND = 0.03) as well as the severity of the disease (Hoehn & Yahr scale <2 and ≥ 2, PSN_D = 0.02). Additionally, correlations between R2(ISQR)∗ and clinical features, mainly related to the severity of the disease, were found. Our results support the use of ISQR to reduce variations not directly related to Parkinson's disease, supporting the concept that ISQR strategy is useful for the evaluation of Parkinson's disease.
Collapse
Affiliation(s)
- Laila Khedher
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France,AgroResonance, INRAE, 2018. Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, doi: 10.15454/1.5572398324758228E12, France,Corresponding author at: AgroResonance, INRAE, UR370 QuaPA, Saint-Genès-Champanelle F-63122, France.
| | - Jean-Marie Bonny
- AgroResonance, INRAE, 2018. Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, doi: 10.15454/1.5572398324758228E12, France,AgroResonance UR370 QuaPA - INRAE, Saint-Genès-Champanelle 63122, France
| | - Ana Marques
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France,Clermont-Ferrand University Hospital, Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand, France
| | - Elodie Durand
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France,Clermont-Ferrand University Hospital, Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand, France
| | - Bruno Pereira
- Clermont-Ferrand University Hospital, Biostatistics Unit (DRCI), Clermont-Ferrand, France
| | - Marie Chupin
- Sorbonne Université, Institut du Cerveau - ICM, CATI, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Département de Neurologie and NS-PARK/FCRIN Network, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tiphaine Vidal
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France,Clermont-Ferrand University Hospital, Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand, France
| | - Carine Chassain
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France,Clermont-Ferrand University Hospital, Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand, France
| | - Luc Defebvre
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172 University of Lille, Lille, France
| | - Nicolas Carriere
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172 University of Lille, Lille, France
| | - Valerie Fraix
- Service de Neurologie, CHU de Grenoble and NS-PARK/FCRIN Network, Université Grenoble Alpes, Grenoble Institute of Neuroscience, Grenoble, France
| | - Elena Moro
- Service de Neurologie, CHU de Grenoble and NS-PARK/FCRIN Network, Université Grenoble Alpes, Grenoble Institute of Neuroscience, Grenoble, France
| | - Stéphane Thobois
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France,Université Claude Bernard, Lyon I, Lyon, France,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Elise Metereau
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France,Université Claude Bernard, Lyon I, Lyon, France,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Département de Neurologie and NS-PARK/FCRIN Network, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie Vidailhet
- Sorbonne Université, Institut du Cerveau - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Département de Neurologie and NS-PARK/FCRIN Network, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Département de Neurologie and NS-PARK/FCRIN Network, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Sorbonne Université, Institut du Cerveau - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Département de Neurologie and NS-PARK/FCRIN Network, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Menjot de Champfleur
- Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier, France,I2FH, Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de Montpellier, Montpellier, France
| | - Christian Geny
- Department of Geriatrics and NS-PARK/FCRIN Network, Montpellier University Hospital, Montpellier University, Montpellier, France,EuroMov Laboratory, University of Montpellier, 700 Avenue du Pic Saint Loup, Montpellier, Montpellier 34090, France
| | - Umberto Spampinato
- Service de Neurologie - Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, Bordeaux F-33000, France
| | - Wassilios Meissner
- Service de Neurologie - Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, Bordeaux F-33000, France,Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, Bordeaux F-33000, France,Dept. Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Solène Frismand
- Service de Neurologie and NS-PARK/FCRIN Network, CHRU-Nancy, Nancy, France
| | - Emmanuelle Schmitt
- Service de Neurologie and NS-PARK/FCRIN Network, CHRU-Nancy, Nancy, France
| | | | - Christophe Portefaix
- Department of Radiology, Hôpital Maison blanche, Reims, France,CReSTIC Laboratory (EA 3804), University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Remy
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor, AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Gilles Fénelon
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor, AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Jean Luc Houeto
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d’Investigation Clinique CIC1402, Service de Neurologie and NS-PARK/FCRIN Network, Poitiers, France – CHU - Centre Expert Parkinson de Limoges, Limoges, France
| | - Olivier Colin
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d’Investigation Clinique CIC1402, Service de Neurologie and NS-PARK/FCRIN Network, Poitiers, France– CH Brive la Gaillarde, France
| | - Olivier Rascol
- Centre d'Investigation Clinique CIC 1436, UMR 1214 TONIC and NS-PARK/FCRIN Network, INSERM, CHU de Toulouse et Université de Toulouse3, Toulouse, France
| | - Patrice Peran
- Centre d'Investigation Clinique CIC 1436, UMR 1214 TONIC and NS-PARK/FCRIN Network, INSERM, CHU de Toulouse et Université de Toulouse3, Toulouse, France
| | - Franck Durif
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France,Clermont-Ferrand University Hospital, Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand, France
| | | |
Collapse
|
41
|
Marvel CL, Chen L, Joyce MR, Morgan OP, Iannuzzelli KG, LaConte SM, Lisinski JM, Rosenthal LS, Li X. Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3. Front Neurosci 2022; 16:919765. [PMID: 36061587 PMCID: PMC9433989 DOI: 10.3389/fnins.2022.919765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background In spinocerebellar ataxia type 3 (SCA3), volume loss has been reported in the basal ganglia, an iron-rich brain region, but iron content has not been examined. Recent studies have reported that patients with SCA6 have markedly decreased iron content in the cerebellar dentate, coupled with severe volume loss. Changing brain iron levels can disrupt cognitive and motor functions, yet this has not been examined in the SCAs, a disease in which iron-rich regions are affected. Methods In the present study, we used quantitative susceptibility mapping (QSM) to measure tissue magnetic susceptibility (indicating iron concentration), structural volume, and normalized susceptibility mass (indicating iron content) in the cerebellar dentate and basal ganglia in people with SCA3 (n = 10) and SCA6 (n = 6) and healthy controls (n = 9). Data were acquired using a 7T Philips MRI scanner. Supplemental measures assessed motor, cognitive, and mood domains. Results Putamen volume was lower in both SCA groups relative to controls, replicating prior findings. Dentate susceptibility mass and volume in SCA6 was lower than in SCA3 or controls, also replicating prior findings. The novel finding was that higher basal ganglia susceptibility mass in SCA6 correlated with lower cognitive performance and greater motor impairment, an association that was not observed in SCA3. Cerebellar dentate susceptibility mass, however, had the opposite relationship with cognition and motor function in SCA6, suggesting that, as dentate iron is depleted, it relocated to the basal ganglia, which contributed to cognitive and motor decline. By contrast, basal ganglia volume loss, rather than iron content, appeared to drive changes in motor function in SCA3. Conclusion The associations of higher basal ganglia iron with lower motor and cognitive function in SCA6 but not in SCA3 suggest the potential for using brain iron deposition profiles beyond the cerebellar dentate to assess disease states within the cerebellar ataxias. Moreover, the role of the basal ganglia deserves greater attention as a contributor to pathologic and phenotypic changes associated with SCA.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle R. Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine G. Iannuzzelli
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen M. LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan M. Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Nebel MB, Lidstone DE, Wang L, Benkeser D, Mostofsky SH, Risk BB. Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder? Neuroimage 2022; 257:119296. [PMID: 35561944 PMCID: PMC9233079 DOI: 10.1016/j.neuroimage.2022.119296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
The exclusion of high-motion participants can reduce the impact of motion in functional Magnetic Resonance Imaging (fMRI) data. However, the exclusion of high-motion participants may change the distribution of clinically relevant variables in the study sample, and the resulting sample may not be representative of the population. Our goals are two-fold: 1) to document the biases introduced by common motion exclusion practices in functional connectivity research and 2) to introduce a framework to address these biases by treating excluded scans as a missing data problem. We use a study of autism spectrum disorder in children without an intellectual disability to illustrate the problem and the potential solution. We aggregated data from 545 children (8-13 years old) who participated in resting-state fMRI studies at Kennedy Krieger Institute (173 autistic and 372 typically developing) between 2007 and 2020. We found that autistic children were more likely to be excluded than typically developing children, with 28.5% and 16.1% of autistic and typically developing children excluded, respectively, using a lenient criterion and 81.0% and 60.1% with a stricter criterion. The resulting sample of autistic children with usable data tended to be older, have milder social deficits, better motor control, and higher intellectual ability than the original sample. These measures were also related to functional connectivity strength among children with usable data. This suggests that the generalizability of previous studies reporting naïve analyses (i.e., based only on participants with usable data) may be limited by the selection of older children with less severe clinical profiles because these children are better able to remain still during an rs-fMRI scan. We adapt doubly robust targeted minimum loss based estimation with an ensemble of machine learning algorithms to address these data losses and the resulting biases. The proposed approach selects more edges that differ in functional connectivity between autistic and typically developing children than the naïve approach, supporting this as a promising solution to improve the study of heterogeneous populations in which motion is common.
Collapse
Affiliation(s)
- Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liwei Wang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| |
Collapse
|
43
|
Lancione M, Donatelli G, Del Prete E, Campese N, Frosini D, Cencini M, Costagli M, Biagi L, Lucchi G, Tosetti M, Godani M, Arnaldi D, Terzaghi M, Provini F, Pacchetti C, Cortelli P, Bonanni E, Ceravolo R, Cosottini M. Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. Neuroimage 2022; 260:119454. [PMID: 35810938 DOI: 10.1016/j.neuroimage.2022.119454] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.
Collapse
Affiliation(s)
- Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Graziella Donatelli
- Imago7 Research Foundation, Pisa, Italy; Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | - Eleonora Del Prete
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Cencini
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Mauro Costagli
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Giacomo Lucchi
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | | | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Chen Y, Genc O, Poynton CB, Banerjee S, Hess CP, Lupo JM. Comparison of quantitative susceptibility mapping methods on evaluating radiation-induced cerebral microbleeds and basal ganglia at 3T and 7T. NMR IN BIOMEDICINE 2022; 35:e4666. [PMID: 35075701 PMCID: PMC10443943 DOI: 10.1002/nbm.4666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Quantitative susceptibility mapping (QSM) has the potential for being a biomarker for various diseases because of its ability to measure tissue susceptibility related to iron deposition, myelin, and hemorrhage from the phase signal of a T2 *-weighted MRI. Despite its promise as a quantitative marker, QSM is faced with many challenges, including its dependence on preprocessing of the raw phase data, the relatively weak tissue signal, and the inherently ill posed relationship between the magnetic dipole and measured phase. The goal of this study was to evaluate the effects of background field removal and dipole inversion algorithms on noise characteristics, image uniformity, and structural contrast for cerebral microbleed (CMB) quantification at both 3T and 7T. We selected four widely used background phase removal and five dipole field inversion algorithms for QSM and applied them to volunteers and patients with CMBs, who were scanned at two different field strengths, with ground truth QSM reference calculated using multiple orientation scans. 7T MRI provided QSM images with lower noise than did 3T MRI. QSIP and VSHARP + iLSQR achieved the highest white matter homogeneity and vein contrast, with QSIP also providing the highest CMB contrast. Compared with ground truth COSMOS QSM images, overall good correlations between susceptibility values of dipole inversion algorithms and the COSMOS reference were observed in basal ganglia regions, with VSHARP + iLSQR achieving the susceptibility values most similar to COSMOS across all regions. This study can provide guidance for selecting the most appropriate QSM processing pipeline based on the application of interest and scanner field strength.
Collapse
Affiliation(s)
- Yicheng Chen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Ozan Genc
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Clare B. Poynton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | | | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurology, University of California, San Francisco, CA
| | - Janine M. Lupo
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| |
Collapse
|
45
|
Rao IY, Hanson LR, Johnson JC, Rosenbloom MH, Frey WH. Brain Glucose Hypometabolism and Iron Accumulation in Different Brain Regions in Alzheimer's and Parkinson's Diseases. Pharmaceuticals (Basel) 2022; 15:551. [PMID: 35631378 PMCID: PMC9143620 DOI: 10.3390/ph15050551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine the relationship between the presence of glucose hypometabolism (GHM) and brain iron accumulation (BIA), two potential pathological mechanisms in neurodegenerative disease, in different regions of the brain in people with late-onset Alzheimer's disease (AD) or Parkinson's disease (PD). Studies that conducted fluorodeoxyglucose positron emission tomography (FDG-PET) to map GHM or quantitative susceptibility mapping-magnetic resonance imaging (QSM-MRI) to map BIA in the brains of patients with AD or PD were reviewed. Regions of the brain where GHM or BIA were reported in each disease were compared. In AD, both GHM and BIA were reported in the hippocampus, temporal, and parietal lobes. GHM alone was reported in the cingulate gyrus, precuneus and occipital lobe. BIA alone was reported in the caudate nucleus, putamen and globus pallidus. In PD, both GHM and BIA were reported in thalamus, globus pallidus, putamen, hippocampus, and temporal and frontal lobes. GHM alone was reported in cingulate gyrus, caudate nucleus, cerebellum, and parietal and occipital lobes. BIA alone was reported in the substantia nigra and red nucleus. GHM and BIA are observed independent of one another in various brain regions in both AD and PD. This suggests that GHM is not always necessary or sufficient to cause BIA and vice versa. Hypothesis-driven FDG-PET and QSM-MRI imaging studies, where both are conducted on individuals with AD or PD, are needed to confirm or disprove the observations presented here about the potential relationship or lack thereof between GHM and BIA in AD and PD.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - Julia C. Johnson
- HealthPartners Struthers Parkinson’s Center, Minneapolis, MN 55427, USA;
| | - Michael H. Rosenbloom
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - William H. Frey
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
46
|
Mao H, Dou W, Chen K, Wang X, Wang X, Guo Y, Zhang C. Evaluating iron deposition in gray matter nuclei of patients with unilateral middle cerebral artery stenosis using quantitative susceptibility mapping. Neuroimage Clin 2022; 34:103021. [PMID: 35500369 PMCID: PMC9065429 DOI: 10.1016/j.nicl.2022.103021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/17/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
Abstract
Iron mediated oxidative stress is involved in the process of brain injury after long-term ischemia. While increased iron deposition in the affected brain regions was observed in animal models of ischemic stroke, potential changes in the brain iron content in clinical patients with cerebral ischemia remain unclear. Quantitative susceptibility mapping (QSM), a non-invasive magnetic resonance imaging technique, can be used to evaluate iron content in the gray matter (GM) nuclei reliably. In this study, we aimed to quantitatively evaluate iron content changes in GM nuclei of patients with long-term unilateral middle cerebral artery (MCA) stenosis/occlusion-related cerebral ischemia using QSM. Forty-six unilateral MCA stenosis/occlusion patients and 38 age-, sex- and education-matched healthy controls underwent QSM. Clinical variables of history of hypertension, diabetes, hyperlipidemia, hyperhomocysteinemia, smoking, and drinking in all patients were evaluated. The iron-related susceptibility of GM nucleus subregions, including the bilateral caudate nucleus (CN), putamen (PU), globus pallidus (GP), thalamus, substantia nigra (SN), red nucleus, and dentate nucleus, was assessed. Susceptibility was compared between the bilateral GM nuclei in patients and controls. Receiver operating characteristic curve analysis was used to evaluate the efficacy of QSM susceptibility in distinguishing patients with unilateral MCA stenosis/occlusion from healthy controls. Multiple linear regression analysis was used to evaluate the relationship between ipsilateral susceptibility levels and clinical variables. Except for the CN, the susceptibility in most bilateral GM nucleus subregions was comparable in healthy controls, whereas for patients with unilateral MCA stenosis/occlusion, the ipsilateral PU, GP, and SN exhibited significantly higher susceptibility than the contralateral side (all P < 0.05). Compared with controls, susceptibility of the ipsilateral PU, GP, and SN and of contralateral PU in patients were significantly increased (all P < 0.05). The area under the curve (AUC) was greater for the ipsilateral PU than for the GP and SN (AUC = 0.773, 0.662 and 0.681; all P < 0.05). Multiple linear regression analysis showed that the increased susceptibility of the ipsilateral PU was significantly associated with hypertension, of the ipsilateral GP associated with smoking, and of the ipsilateral SN associated with diabetes (all P < 0.05). Our findings provide support for abnormal iron accumulation in the GM nuclei after chronic MCA stenosis/occlusion and its correlation with some cerebrovascular disease risk factors. Therefore, iron deposition in the GM nuclei, as measured by QSM, may be a potential biomarker for long-term cerebral ischemia.
Collapse
Affiliation(s)
- Huimin Mao
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Weiqiang Dou
- MR Research, GE Healthcare, Beijing 10076, China
| | - Kunjian Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Xinyu Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Xinyi Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China.
| | - Yu Guo
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Chao Zhang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China
| |
Collapse
|
47
|
Yang L, Cheng Y, Sun Y, Xuan Y, Niu J, Guan J, Rong Y, Jia Y, Zhuang Z, Yan G, Wu R. Combined Application of Quantitative Susceptibility Mapping and Diffusion Kurtosis Imaging Techniques to Investigate the Effect of Iron Deposition on Microstructural Changes in the Brain in Parkinson's Disease. Front Aging Neurosci 2022; 14:792778. [PMID: 35370619 PMCID: PMC8965454 DOI: 10.3389/fnagi.2022.792778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Brain iron deposition and microstructural changes in brain tissue are associated with Parkinson's disease (PD). However, the correlation between these factors in Parkinson's disease has been little studied. This study aimed to use quantitative susceptibility mapping combined with diffusion kurtosis imaging to investigate the effects of iron deposition on microstructural tissue alterations in the brain. METHODS Quantitative susceptibility mapping and diffusion kurtosis imaging were performed on 24 patients with early PD, 13 patients with advanced PD, and 25 healthy controls. The mean values of magnetic susceptibility and diffusion kurtosis were calculated for the bilateral substantia nigra, red nucleus, putamen, globus pallidus, and caudate nucleus, and compared between the groups. Correlation analyses between the diffusion kurtosis of each nucleus and its magnetic susceptibility parameters in PD patients and healthy controls were performed. RESULTS The study found a significant increase in iron deposition in the substantia nigra, red nucleus, putamen and globus pallidus, bilaterally, in patients with PD. Mean kurtosis values were increased in the substantia nigra but decreased in the globus pallidus; axial kurtosis values were decreased in both the substantia nigra and red nucleus; radial kurtosis values were increased in the substantia nigra but showed an opposite trend in the globus pallidus and caudate nucleus. In the substantia nigra of patients with PD, magnetic susceptibility was positively correlated with mean and radial kurtosis values, and negatively correlated with axial kurtosis. None of these correlations were significantly different in the control group. In the putamen, magnetic susceptibility was positively correlated with mean, axial, and radial kurtosis only in patients with advanced-stage PD. CONCLUSION Our study provides new evidence for brain iron content and microstructural alterations in patients with PD. Iron deposition may be a common mechanism for microstructural alterations in the substantia nigra and putamen of patients with PD. Tracking the dynamic changes in iron content and microstructure throughout the course of PD will help us to better understand the dynamics of iron metabolism and microstructural alterations in the pathogenesis of PD and to develop new approaches to monitor and treat PD.
Collapse
Affiliation(s)
- Lin Yang
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yan Cheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yongyan Sun
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Zhuhai Hospital, Zhuhai, China
| | - Yinghua Xuan
- Department of Basic Medicine, Xiamen Medical College, Xiamen, China
| | - Jianping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yunjie Rong
- Department of Ultrasound, Foshan Women and Children’s Hospital Affiliated to Southern Medical University, Foshan, China
| | - Yanlong Jia
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Zerui Zhuang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
48
|
Reith TP, Prah MA, Choi EJ, Lee J, Wujek R, Al-Gizawiy M, Chitambar CR, Connelly JM, Schmainda KM. Basal Ganglia Iron Content Increases with Glioma Severity Using Quantitative Susceptibility Mapping: A Potential Biomarker of Tumor Severity. Tomography 2022; 8:789-797. [PMID: 35314642 PMCID: PMC8938779 DOI: 10.3390/tomography8020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Gliomas have been found to alter iron metabolism and transport in ways that result in an expansion of their intracellular iron compartments to support aggressive tumor growth. This study used deep neural network trained quantitative susceptibility mapping to assess basal ganglia iron concentrations in glioma patients. MATERIALS AND METHODS Ninety-two patients with brain lesions were initially enrolled in this study and fifty-nine met the inclusion criteria. Susceptibility-weighted images were collected at 3.0 T and used to construct quantitative susceptibility maps via a deep neural network-based method. The regions of interest were manually drawn within basal ganglia structures and the mean voxel intensities were extracted and averaged across multiple slices. One-way ANCOVA tests were conducted to compare the susceptibility values of groups of patients based on tumor grade while controlling for age, sex, and tumor type. RESULTS The mean basal ganglia susceptibility for patients with grade IV tumors was higher than that for patients with grade II tumors (p = 0.00153) and was also higher for patients with grade III tumors compared to patients with grade II tumors (p = 0.020), after controlling for age, sex, and tumor type. Patient age influenced susceptibility values (p = 0.00356), while sex (p = 0.69) and tumor type (p = 0.11) did not. CONCLUSIONS The basal ganglia iron content increased with glioma severity. Basal ganglia iron levels may thus be a useful biomarker in glioma prognosis and treatment, especially with regard to iron-based cancer therapies.
Collapse
Affiliation(s)
- Thomas P. Reith
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
| | - Melissa A. Prah
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
| | - Eun-Jung Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (E.-J.C.); (J.L.)
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (E.-J.C.); (J.L.)
| | - Robert Wujek
- Medical College of Wisconsin, Biomedical Engineering, Marquette University, 1515 W. Wisconsin Ave., Milwaukee, WI 53233, USA;
| | - Mona Al-Gizawiy
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
| | - Christopher R. Chitambar
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
- Medical College of Wisconsin, Hematology & Oncology, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Jennifer M. Connelly
- Medical College of Wisconsin, Neurology & Neurosurgery, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;
| | - Kathleen M. Schmainda
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
- Medical College of Wisconsin, Radiology, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
49
|
Cao T, Ma S, Wang N, Gharabaghi S, Xie Y, Fan Z, Hogg E, Wu C, Han F, Tagliati M, Haacke EM, Christodoulou AG, Li D. Three-dimensional simultaneous brain mapping of T1, T2, T2∗ and magnetic susceptibility with MR Multitasking. Magn Reson Med 2022; 87:1375-1389. [PMID: 34708438 PMCID: PMC8776611 DOI: 10.1002/mrm.29059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE To develop a new technique that enables simultaneous quantification of whole-brain T1 , T2 , T 2 ∗ , as well as susceptibility and synthesis of six contrast-weighted images in a single 9.1-minute scan. METHODS The technique uses hybrid T2 -prepared inversion-recovery pulse modules and multi-echo gradient-echo readouts to collect k-space data with various T1, T2, and T 2 ∗ weightings. The underlying image is represented as a six-dimensional low-rank tensor consisting of three spatial dimensions and three temporal dimensions corresponding to T1 recovery, T2 decay, and multi-echo behaviors, respectively. Multiparametric maps were fitted from reconstructed image series. The proposed method was validated on phantoms and healthy volunteers, by comparing quantitative measurements against corresponding reference methods. The feasibility of generating six contrast-weighted images was also examined. RESULTS High quality, co-registered T1 , T2 , and T 2 ∗ susceptibility maps were generated that closely resembled the reference maps. Phantom measurements showed substantial consistency (R2 > 0.98) with the reference measurements. Despite the significant differences of T1 (p < .001), T2 (p = .002), and T 2 ∗ (p = 0.008) between our method and the references for in vivo studies, excellent agreement was achieved with all intraclass correlation coefficients greater than 0.75. No significant difference was found for susceptibility (p = .900). The framework is also capable of synthesizing six contrast-weighted images. CONCLUSION The MR Multitasking-based 3D brain mapping of T1 , T2 , T 2 ∗ , and susceptibility agrees well with the reference and is a promising technique for multicontrast and quantitative imaging.
Collapse
Affiliation(s)
- Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sara Gharabaghi
- Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elliot Hogg
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chaowei Wu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fei Han
- Siemens Medical Solutions USA, Inc., Los Angeles, California, USA
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - E. Mark Haacke
- Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
- The MRI Institute for Biomedical Research, Bingham Farms, MI, USA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
50
|
Howard CM, Jain S, Cook AD, Packard LE, Mullin HA, Chen N, Liu C, Song AW, Madden DJ. Cortical iron mediates age-related decline in fluid cognition. Hum Brain Mapp 2022; 43:1047-1060. [PMID: 34854172 PMCID: PMC8764476 DOI: 10.1002/hbm.25706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023] Open
Abstract
Brain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.
Collapse
Affiliation(s)
- Cortney M. Howard
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Shivangi Jain
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Psychological and Brain SciencesUniversity of IowaIowa CityIowaUSA
| | - Angela D. Cook
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Lauren E. Packard
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Hollie A. Mullin
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Nan‐kuei Chen
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Chunlei Liu
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Allen W. Song
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - David J. Madden
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|