1
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Sha K, Zhang R, Maolake A, Singh S, Chatta G, Eng KH, Nastiuk KL, Krolewski JJ. Androgen deprivation triggers a cytokine signaling switch to induce immune suppression and prostate cancer recurrence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569685. [PMID: 38405929 PMCID: PMC10888871 DOI: 10.1101/2023.12.01.569685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Androgen deprivation therapy (ADT) is an effective but not curative treatment for advanced and recurrent prostate cancer (PC). We investigated the mechanisms controlling the response to androgen-deprivation by surgical castration in genetically-engineered mouse models (GEMM) of PC, using high frequency ultrasound imaging to rigorously measure tumor volume. Castration initially causes almost all tumors to shrink in volume, but many tumors subsequently recur within 5-10 weeks. Blockade of tumor necrosis factor (TNF) signaling a few days in advance of castration surgery, using a TNFR2 ligand trap, prevents regression in a PTEN-deficient GEMM. Following tumor regression, a basal stem cell-like population within the tumor increases along with TNF protein levels. Tumor cell lines in culture recapitulate these in vivo observations, suggesting that basal stem cells are the source of TNF. When TNF signaling blockade is administered immediately prior to castration, tumors regress but recurrence is prevented, implying that a late wave of TNF secretion within the tumor, which coincides with the expression of NFkB regulated genes, drives recurrence. The inhibition of signaling downstream of one NFkB-regulated protein, chemokine C-C motif ligand 2 (CCL2), prevents post-castration tumor recurrence, phenocopying post-castration (late) TNF signaling blockade. CCL2 was originally identified as a macrophage chemoattractant and indeed at late times after castration gene sets related to chemotaxis and migration are up-regulated. Importantly, enhanced CCL2 signaling during the tumor recurrence phase coincides with an increase in pro-tumorigenic macrophages and a decrease in CD8 T cells, suggesting that recurrence is driven at least in part by tumor immunosuppression. In summary, we demonstrate that a therapy-induced switch in TNF signaling, a consequence of the increased stem cell-like character of the residual tumor cells surviving ADT, induces an immunosuppressive tumor microenvironment and concomitant tumor recurrence.
Collapse
|
3
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Socciarelli F, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Dinalankara W, Jere M, Valencia I, Saladino C, Stone J, Unkenholz C, Garner R, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. Nat Commun 2024; 15:363. [PMID: 38191471 PMCID: PMC10774315 DOI: 10.1038/s41467-023-44210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher Saladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason Stone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richard Garner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad K Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francisca Nunes de Almeida
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK.
| |
Collapse
|
4
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Jere M, Unkenholz C, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534769. [PMID: 37034687 PMCID: PMC10081210 DOI: 10.1101/2023.03.29.534769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pier V. Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohammad K. Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francisca Nunes de Almeida
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher E. Barbieri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Buhigas C, Warren AY, Leung WK, Whitaker HC, Luxton HJ, Hawkins S, Kay J, Butler A, Xu Y, Woodcock DJ, Merson S, Frame FM, Sahli A, Abascal F, Martincorena I, Bova GS, Foster CS, Campbell P, Maitland NJ, Neal DE, Massie CE, Lynch AG, Eeles RA, Cooper CS, Wedge DC, Brewer DS. The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates. Mol Cancer 2022; 21:183. [PMID: 36131292 PMCID: PMC9494848 DOI: 10.1186/s12943-022-01644-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/17/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.
Collapse
Affiliation(s)
- Claudia Buhigas
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Wing-Kit Leung
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Hayley C Whitaker
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Hayley J Luxton
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Steve Hawkins
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Jonathan Kay
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Adam Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Yaobo Xu
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Dan J Woodcock
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Sue Merson
- The Institute of Cancer Research, London, SW7 3RP, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, YO10 5DD, North Yorkshire, UK
| | - Atef Sahli
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - G Steven Bova
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33014, Tampere, FI, Finland
| | | | - Peter Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, YO10 5DD, North Yorkshire, UK
| | - David E Neal
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Charlie E Massie
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Andy G Lynch
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- School of Medicine/School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9AJ, UK
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, London and Sutton, SM2 5PT, UK
| | - Colin S Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- The Institute of Cancer Research, London, SW7 3RP, UK
| | - David C Wedge
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- Earlham Institute, Norwich, NR4 7UZ, UK.
| |
Collapse
|
6
|
Vitek RA, Huang W, Geiger PG, Heninger E, Lang JM, Jarrard DF, Beebe DJ, Johnson BP. Fresh tissue procurement and preparation for multicompartment and multimodal analysis of the prostate tumor microenvironment. Prostate 2022; 82:836-849. [PMID: 35226381 PMCID: PMC9010374 DOI: 10.1002/pros.24326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostatic cancers include a diverse microenvironment of tumor cells, cancer-associated fibroblasts, and immune components. This tumor microenvironment (TME) is a known driving force of tumor survival after treatment, but the standard-of-care tissue freezing or fixation in pathology practice limit the use of available approaches/tools to study the TME's functionality in tumor resistance. Thus, there is a need for approaches that satisfy both clinical and laboratory endpoints for TME study. Here we present methods for clinical case identification, tissue processing, and analytical workflow that are compatible with standard histopathology while enabling molecular and functional interrogation of prostate TME components. METHODS We first performed a small retrospective review to identify cases where submission of alternate prostate tissue slices and a parallel live tissue processing protocol complement traditional histopathology and enable viable multicompartment analysis of the TME. Then, we tested its compatibility with commonly employed methods to study the microenvironment including quantification of components both in situ and after tissue dissociation. We also evaluated tissue digestion conditions and cell isolation techniques to aid various molecular and functional endpoints. RESULTS We identified Gleason Grade Group 3+ clinical cases where tumor volume was sufficient to allow slicing of unfixed tissue and distribution of alternating tissue slices to standard-of-care histopathology and viable multi-modal TME analyses. No single method was found that preserved cellular sub-types for all downstream readouts; instead, tissues were further divided so techniques could be catered to each endpoint. For instance, we show that incorporating the protease dispase into tissue dissociation improves viability for culture and functional analyses but hinders immune cell analysis by flow cytometry. We also found that flow activated cell sorting provides highly pure cell populations for quantitative reverse-transcription polymerase chain reaction and RNA-seq while isolation using antibody-labeled paramagnetic particles facilitated functional coculture experiments. CONCLUSIONS The identification of candidate cases and use of these techniques enable translational research and the development of molecular and functional assays to facilitate prostate TME study without compromising standard-of-care histopathological diagnosis. This allows bridging clinical histopathology and further interrogation of the prostate TME and promises to advance our understanding of tumor biology and unveil new predictive and prognostic markers of prostate cancer progression.
Collapse
Affiliation(s)
- Ross A. Vitek
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
| | - Wei Huang
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
| | - Peter G. Geiger
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
| | - Erika Heninger
- Carbone Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
| | - Joshua M. Lang
- Carbone Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
- Department of MedicineUniversity of WisconsinMadisonWisconsinUSA
| | | | - David J. Beebe
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Carbone Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
| | - Brian P. Johnson
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
7
|
Leach DA, Fernandes RC, Bevan CL. Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R112-R131. [PMID: 37435460 PMCID: PMC10259329 DOI: 10.1530/eo-22-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 07/13/2023]
Abstract
Androgen signalling, through the transcription factor androgen receptor (AR), is vital to all stages of prostate development and most prostate cancer progression. AR signalling controls differentiation, morphogenesis, and function of the prostate. It also drives proliferation and survival in prostate cancer cells as the tumour progresses; given this importance, it is the main therapeutic target for disseminated disease. AR is also essential in the surrounding stroma, for the embryonic development of the prostate and controlling epithelial glandular development. Stromal AR is also important in cancer initiation, regulating paracrine factors that excite cancer cell proliferation, but lower stromal AR expression correlates with shorter time to progression/worse outcomes. The profile of AR target genes is different between benign and cancerous epithelial cells, between castrate-resistant prostate cancer cells and treatment-naïve cancer cells, between metastatic and primary cancer cells, and between epithelial cells and fibroblasts. This is also true of AR DNA-binding profiles. Potentially regulating the cellular specificity of AR binding and action are pioneer factors and coregulators, which control and influence the ability of AR to bind to chromatin and regulate gene expression. The expression of these factors differs between benign and cancerous cells, as well as throughout disease progression. The expression profile is also different between fibroblast and mesenchymal cell types. The functional importance of coregulators and pioneer factors in androgen signalling makes them attractive therapeutic targets, but given the contextual expression of these factors, it is essential to understand their roles in different cancerous and cell-lineage states.
Collapse
Affiliation(s)
- Damien A Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rayzel C Fernandes
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
8
|
Boutry J, Tissot S, Ujvari B, Capp JP, Giraudeau M, Nedelcu AM, Thomas F. The evolution and ecology of benign tumors. Biochim Biophys Acta Rev Cancer 2021; 1877:188643. [PMID: 34715267 DOI: 10.1016/j.bbcan.2021.188643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022]
Abstract
Tumors are usually classified into two main categories - benign or malignant, with much more attention being devoted to the second category given that they are usually associated with more severe health issues (i.e., metastatic cancers). Here, we argue that the mechanistic distinction between benign and malignant tumors has narrowed our understanding of neoplastic processes. This review provides the first comprehensive discussion of benign tumors in the context of their evolution and ecology as well as interactions with their hosts. We compare the genetic and epigenetic profiles, cellular activities, and the involvement of viruses in benign and malignant tumors. We also address the impact of intra-tumoral cell composition and its relationship with the tumoral microenvironment. Lastly, we explore the differences in the distribution of benign and malignant neoplasia across the tree of life and provide examples on how benign tumors can also affect individual fitness and consequently the evolutionary trajectories of populations and species. Overall, our goal is to bring attention to the non-cancerous manifestations of tumors, at different scales, and to stimulate research on the evolutionary ecology of host-tumor interactions on a broader scale. Ultimately, we suggest that a better appreciation of the differences and similarities between benign and malignant tumors is fundamental to our understanding of malignancy both at mechanistic and evolutionary levels.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin, University, Vic., Australia
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France; LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
9
|
Ylitalo EB, Thysell E, Landfors M, Brattsand M, Jernberg E, Crnalic S, Widmark A, Hultdin M, Bergh A, Degerman S, Wikström P. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clin Epigenetics 2021; 13:133. [PMID: 34193246 PMCID: PMC8244194 DOI: 10.1186/s13148-021-01119-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with metastatic prostate cancer (PC) are treated with androgen deprivation therapy (ADT) that initially reduces metastasis growth, but after some time lethal castration-resistant PC (CRPC) develops. A better understanding of the tumor biology in bone metastases is needed to guide further treatment developments. Subgroups of PC bone metastases based on transcriptome profiling have been previously identified by our research team, and specifically, heterogeneities related to androgen receptor (AR) activity have been described. Epigenetic alterations during PC progression remain elusive and this study aims to explore promoter gene methylation signatures in relation to gene expression and tumor AR activity. MATERIALS AND METHODS Genome-wide promoter-associated CpG methylation signatures of a total of 94 tumor samples, including paired non-malignant and malignant primary tumor areas originating from radical prostatectomy samples (n = 12), and bone metastasis samples of separate patients with hormone-naive (n = 14), short-term castrated (n = 4) or CRPC (n = 52) disease were analyzed using the Infinium Methylation EPIC arrays, along with gene expression analysis by Illumina Bead Chip arrays (n = 90). AR activity was defined from expression levels of genes associated with canonical AR activity. RESULTS Integrated epigenome and transcriptome analysis identified pronounced hypermethylation in malignant compared to non-malignant areas of localized prostate tumors. Metastases showed an overall hypomethylation in relation to primary PC, including CpGs in the AR promoter accompanied with induction of AR mRNA levels. We identified a Methylation Classifier for Androgen receptor activity (MCA) signature, which separated metastases into two clusters (MCA positive/negative) related to tumor characteristics and patient prognosis. The MCA positive metastases showed low methylation levels of genes associated with canonical AR signaling and patients had a more favorable prognosis after ADT. In contrast, MCA negative patients had low AR activity associated with hypermethylation of AR-associated genes, and a worse prognosis after ADT. CONCLUSIONS A promoter methylation signature classifies PC bone metastases into two groups and predicts tumor AR activity and patient prognosis after ADT. The explanation for the methylation diversities observed during PC progression and their biological and clinical relevance need further exploration.
Collapse
Affiliation(s)
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopedics, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Kim JH, Han IH, Shin SJ, Park SY, Chung HY, Ryu JS. Signaling Role of Adipocyte Leptin in Prostate Cell Proliferation Induced by Trichomonas vaginalis. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:235-249. [PMID: 34218595 PMCID: PMC8255495 DOI: 10.3347/kjp.2021.59.3.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Leptin is a type of adipokine mainly produced by adipocytes and reported to be overproduced in prostate cancer. However, it is not known whether it stimulates the proliferation of prostate cells. In this study, we investigated whether benign prostatic hyperplasia epithelial cells (BPH-1 cells) infected with Trichomonas vaginalis induced the proliferation of prostate cells via a leptin signaling pathway. To investigate the effect of crosstalk between adipocyte leptin and inflamed epithelial cell in proliferation of prostate cells, adipocytes 3T3-L1 cells were incubated in conditioned medium of BPH-1 cells infected with T. vaginalis (T. vaginalis-conditioned medium, TCM), and then the adipocyte-conditioned medium (ATCM) was identified to cause proliferation of prostate cells. BPH-1 cells incubated with live T. vaginalis released pro-inflammatory cytokines, and conditioned medium of these cells caused migration of adipocytes. When prostate stromal cells and BPH-1 cells were incubated with adipocyte conditioned medium containing leptin, their growth rates increased as did expression of the leptin receptor (known as OBR) and signaling molecules such as JAK2/STAT3, Notch and survivin. Moreover, blocking the OBR reduced this proliferation and the expression of leptin signaling molecules in response to ATCM. In conclusion, our findings show that inflamed BPH-1 cells infected with T. vaginalis induce the proliferation of prostate cells through leptin-OBR signaling. Therefore, it is likely that T. vaginalis contributes to prostate enlargement in BPH via adipocyte leptin released as a result of inflammation of the prostate.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung-Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Hyo-Yeoung Chung
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
11
|
Dzaparidze G, Kazachonok D, Gvozdkov A, Taelma H, Laht K, Minajeva A. Diagnostic significance of stromal changes in biopsies of prostate adenocarcinoma. Pathol Res Pract 2021; 222:153436. [PMID: 33857855 DOI: 10.1016/j.prp.2021.153436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/24/2022]
Abstract
The diagnostic value of stromal changes in carcinomas, including prostate, is under debate; in terms of limited sample tissue of biopsy, in addition to glandular alterations, the stromal changes could have additional diagnostic value, but the results in clinical settings are controversial. The research aims to evaluate the potential of stromal changes as a supplementary tool to predict the presence of higher grade carcinomas in the prostate using Masson's trichrome and Fanconi anemia complementation group M (FANCM) antibody stainings. 385 biopsies and corresponding radical prostatectomy specimens were analyzed to evaluate the rates of the diversity of ISUP grades. Of 128 upgraded prostatectomy cases, 82 were diagnosed with ISUP Gleason Grade 1 (GG1) in a biopsy. All 82 cancerous samples were stained with Masson's trichrome and FACNM antibody and compared with 82 samples without cancer to see if there was a difference in stromal composition. Additionally, 50 GG1 samples without the upgrade were stained to demonstrate if stromal changes can predict less differentiated carcinomas in the prostate. In FANCM stained samples, the average percentage of positively staining stroma over the total in non-upgraded GG1 biopsies was 36 % (13-59 %, SD = 11); 34 % (9-58, SD = 13) in samples from the upgraded cancerous group, and 44 % (22-69, SD = 11) in samples without cancer. In Masson's trichrome stained samples, with collagen quantified, the percentage in non-upgraded GG1 biopsies was 41 % (20-78 %, SD = 11); 44 % (23-89, SD = 15) in samples from upgraded cancerous group and 37 % (15-57, SD = 9) in samples without cancer. In both FANCM and Masson's trichrome, no statistical significance was found between upgraded and non-upgraded groups (p = 0.84 and p = 0.5, respectively), although some upgrades from GG1 to GG4 showed extreme values. The statistical significance was found in cancerous vs. benign samples with both FANCM (p < 0.01) and Masson's trichrome (p = 0.012). The main limiting factor is a significant overlap in staining intensity between cancerous and cancer-free groups.
Collapse
Affiliation(s)
- Georgi Dzaparidze
- East-Tallinn Central Hospital, Tallinn, Estonia; The University of Tartu, Tartu, Estonia.
| | | | | | | | - Kristi Laht
- East-Tallinn Central Hospital, Tallinn, Estonia
| | | |
Collapse
|
12
|
Qin H, Yang Y, Jiang B, Pan C, Chen W, Diao W, Ding M, Cao W, Zhang Z, Chen M, Gao J, Zhao X, Qiu X, Guo H. SOX9 in prostate cancer is upregulated by cancer-associated fibroblasts to promote tumor progression through HGF/c-Met-FRA1 signaling. FEBS J 2021; 288:5406-5429. [PMID: 33705609 DOI: 10.1111/febs.15816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 01/13/2023]
Abstract
Transcription factor SOX9 was a biomarker for prostate cancer (Pca) with poor prognosis. Nevertheless, the regulatory mechanism underlying SOX9 upregulation still remains unclear. Several cytokines have been reported to be involved in the regulation of SOX9, suggesting that cancer-associated fibroblasts (CAFs), one of the main sources of secreted factors in the tumor microenvironment (TME), may play a role in regulating SOX9 expression. Herein, an in vitro model of paracrine interaction between primary CAFs and Pca cells was applied to investigate the molecular mechanism of SOX9 upregulation during Pca progression. The regulatory axis was validated by in vivo experiments and The Cancer Genome Atlas data. Conditional medium of CAFs (CAF-CM) upregulated the expression of SOX9, which was mutually proved to be essential for CAF-induced tumor progression. Further analysis showed that hepatocyte growth factor (HGF) secreted by CAFs was responsible for SOX9 elevation in Pca cells, via the activation of c-Met signaling. Mechanistically, HGF/c-Met signaling specifically activated MEK1/2-ERK1/2 pathway, which induced phosphorylation and upregulation of FRA1, which then transcriptionally upregulated SOX9 by binding to the promoter of SOX9 gene. Moreover, we identified that HGF/c-Met-ERK1/2-FRA1-SOX9 axis was relatively conserved between human and mouse species by validating in mouse Pca cells. Our results reveal a novel insight into the molecular mechanism that SOX9 in Pca cells is promoted by CAFs through HGF/c-Met-ERK1/2-FRA1 axis. Furthermore, SOX9 may serve as an alternative marker for the activated HGF/c-Met signaling to enroll the optimal Pca patients for HGF/c-Met inhibition treatment, since it is much more stable and easier to detect.
Collapse
Affiliation(s)
- Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Yang Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Bo Jiang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Wenmin Cao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Zhenxing Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Mengxia Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Jie Gao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Xiaozhi Zhao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Xuefeng Qiu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| |
Collapse
|
13
|
Long X, Wu L, Zeng X, Wu Z, Hu X, Jiang H, Lv Z, Yang C, Cai Y, Yang K, Li Y. Biomarkers in previous histologically negative prostate biopsies can be helpful in repeat biopsy decision-making processes. Cancer Med 2020; 9:7524-7536. [PMID: 32860339 PMCID: PMC7571822 DOI: 10.1002/cam4.3419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022] Open
Abstract
To evaluate whether the addition of biomarkers to traditional clinicopathological parameters may help to increase the accurate prediction of prostate re‐biopsy outcome. A training cohort with 98 patients and a validation cohort with 72 patients were retrospectively recruited into our study. Immunohistochemical analysis was used to evaluate the immunoreactivity of a group of biomarkers in the initial negative biopsy normal‐looking tissues of the training and validation cohorts. p‐STAT3, Mcm2, and/or MSR1 were selected out of 10 biomarkers to construct a biomarker index for predicting cancer and high‐grade prostate cancer (HGPCa) in the training cohort based on the stepwise logistic regression analysis; these biomarkers were then validated in the validation cohort. In the training cohort study, we found that the biomarker index was independently associated with the re‐biopsy outcomes of cancer and HGPCa. Moreover supplementing the biomarker index with traditional clinical‐pathological parameters can improve the area under the receiver operating characteristic curve of the model from 0.722 to 0.842 and from 0.735 to 0.842, respectively, for predicting cancer and HGPCa at re‐biopsy. In the decision‐making analysis, we found the model supplemented with the biomarker index can improve patients’ net benefit. The application of the model to clinical practice, at a 10% risk threshold, would reduce the number of biopsies by 34.7% while delaying the diagnosis of 7.8% cancers and would reduce the number of biopsies by 73.5% while delaying the diagnosis of 17.8% HGPCas. Taken together, supplementing the biomarker index with clinicopathological parameters may help urologists in re‐biopsy decision‐making processes.
Collapse
Affiliation(s)
- Xingbo Long
- Department of Urology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Longxiang Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiting Zeng
- Department of Ophthalmology, The Affiliated XiangTan Hospital XiangYa Medical College CSU (XiangTan Central Hospital), XiangTan, Hunan, China
| | - Zhijian Wu
- Department of Urology, Chenzhou No.1 People's Hospital, ChengZhou, Hunan, China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huichuan Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengtong Lv
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Changzhao Yang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Ion Channel Profiling in Prostate Cancer: Toward Cell Population-Specific Screening. Rev Physiol Biochem Pharmacol 2020; 181:39-56. [PMID: 32737754 DOI: 10.1007/112_2020_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the last three decades, a growing number of studies have implicated ion channels in all essential processes of prostate carcinogenesis, including cell proliferation, apoptosis, migration, and angiogenesis. The changes in the expression of individual ion channels show a specific profile, making these proteins promising clinical biomarkers that may enable better molecular subtyping of the disease and lead to more rapid and accurate clinical decision-making. Expression profiles and channel function are mainly based on the tumoral tissue itself, in this case, the epithelial cancer cell population. To date, little data on the ion channel profile of the cancerous prostate stroma are available, even though tumor interactions with the microenvironment are crucial in carcinogenesis and each distinct population plays a specific role in tumor progression. In this review, we describe ion channel expression profiles specific for the distinct cell population of the tumor microenvironment (stromal, endothelial, neuronal, and neuroendocrine cell populations) and the technical approaches used for efficient separation and screening of these cell populations.
Collapse
|
15
|
Sambyal K, Singh RV. Production aspects of testosterone by microbial biotransformation and future prospects. Steroids 2020; 159:108651. [PMID: 32360419 DOI: 10.1016/j.steroids.2020.108651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
In human males, TS plays a key role in maintaining health and sexual functioning. Cholesterol acts as a precursor molecule for its biosynthesis. The microbial biotransformation of cholesterol by numerous microbes like bacteria, fungi, yeasts, etc. has led to the synthesis of TS out of human body making it a great example for industrial steroid production due to its therapeutic properties. Biotransformation through microbes is more advantageous over chemical synthesis as it gives higher conversion rates, higher specificity; reaction goes under mild conditions like temperature and neutral pH, thus being an effective alternate to chemical route. Current review focuses on production aspects of TS by microbial biotransformation and its future prospects with recent advancement.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Dzaparidze G, Anion E, Laan M, Minajeva A. The decline of FANCM immunohistochemical expression in prostate cancer stroma correlates with the grade group. Pathol Int 2020; 70:542-550. [PMID: 32462745 DOI: 10.1111/pin.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
Prostate adenocarcinoma (PCa) stromal markers have recently gained attention as complementary diagnostic tools. The DNA reparation complex protein FANCM has been shown to express in the normal prostate stroma and FANCM gene alterations to be associated with PCa susceptibility; this has led to the hypothesis that an insufficient level of FANCM expression may provide additional information for the evaluation of PCa. The study cohort comprised 60 radical prostatectomy specimens. The controls involved 11 autopsies (CTRL) and non-cancerous tissue (NCT) areas from the prostatectomy specimen. The samples were stained with the FANCM antibody. The quantification of the stromal staining index (SSI) was made using ImageJ and QuPath. Overall, 655 regions of interest (ROI) were analyzed. FANCM expression appeared equally intense and stroma specific in both CTRL and NCT, indicating the absence of underlying baseline alterations. Within the age span of the cohort 47-89 years, no significant effect of the age of the patients on the FANCM expression was seen. FANCM demonstrated Gleason grade (G) dependent decline in PCa, being statistically significant in controls versus G1 and G2 versus G3. In other adjacent International Society of Urological Pathology (ISUP) groups, it remained insignificant, still being meaningful between high and low-grade cancers.
Collapse
Affiliation(s)
| | | | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ave Minajeva
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Resveratrol Suppresses Prostate Cancer Epithelial Cell Scatter/Invasion by Targeting Inhibition of Hepatocyte Growth Factor (HGF) Secretion by Prostate Stromal Cells and Upregulation of E-cadherin by Prostate Cancer Epithelial Cells. Int J Mol Sci 2020; 21:ijms21051760. [PMID: 32143478 PMCID: PMC7084722 DOI: 10.3390/ijms21051760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer mortality is primarily attributed to metastasis and the resulting compromise of organs secondary to the initial tumor site. Metastasis is a multi-step process in which the tumor cells must first acquire a migratory phenotype and invade through the surrounding tissue for spread to distant organs in the body. The ability of malignant cells to migrate and breach surrounding tissue/matrix barriers is among the most daunting challenges to disease management for men in the United States diagnosed with prostate cancer (CaP), especially since, at diagnosis, a high proportion of patients already have occult or clinically-detectable metastasis. The interaction between hepatocyte growth factor (HGF) secreted by the stroma, with its receptor c-Met located in the epithelium, must occur for epithelial CaP cells to become migratory. We studied the effects of grape-derived phytochemical resveratrol on the transition of epithelial tumor cells from sedentary to a mobile, penetrant phenotype. A time lapse microscopy assay was used to monitor the acquisition of the migratory phenotype by resveratrol. The results show that resveratrol inhibits HGF-mediated interaction between the stroma and epithelium and suppresses epithelial CaP cell migration by attenuating the control of epithelial-to-mesenchymal transition (EMT).
Collapse
|
18
|
Sampaio CF, Prates KV, Siervo GEML, Mathias PCDF, Fernandes GSA. Impairment of testicular development in rats exposed to acephate during maternal gestation and lactation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5482-5488. [PMID: 31853845 DOI: 10.1007/s11356-019-07209-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Acephate is an organophosphate insecticide that disrupts the endocrine system and impairs the male reproductive system. Thus, the aim of the present study was to evaluate whether exposure to acephate during maternal gestation and lactation histologically damages the testes of male Wistar rats in adulthood. For this study, adult Wistar rats were divided into the following groups: ACE-mother, (2.5 mg/kg/bw, gestational day (GD) 7 to postnatal day (PND) 21) and oil-mother (corn oil (control), GD 7 to PND 21). The male offspring (PND 90) were euthanized, and the prostates and testes were collected and weighed. The testes were utilized for histopathological analyses and to determine the sperm count. A spermatogenesis kinetic analysis revealed an increased number of seminiferous tubules in stages I-VI in the ACE-mother group. Additionally, we observed a decrease in the epithelium and the diameters of the evaluated seminiferous tubules and in the number of Sertoli cells in the group exposed to acephate. The sperm count analysis showed no difference between the groups. We conclude that maternal exposure to the pesticide acephate did not affect testicular function, but led to the impairment of testicular development and morphology of the tissue in adulthood.
Collapse
Affiliation(s)
- Carolina Ferreira Sampaio
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Kelly Valério Prates
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Gláucia Eloisa Munhoz Lion Siervo
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, 86057-970, Brazil
- Department of General Pathology, Biological Sciences Center, State University of Londrina-UEL, Londrina, Paraná, 86057-970, Brazil
| | - Paulo Cézar de Freitas Mathias
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
19
|
Ishii K, Matsuoka I, Sasaki T, Nishikawa K, Kanda H, Imai H, Hirokawa Y, Iguchi K, Arima K, Sugimura Y. Loss of Fibroblast-Dependent Androgen Receptor Activation in Prostate Cancer Cells is Involved in the Mechanism of Acquired Resistance to Castration. J Clin Med 2019; 8:jcm8091379. [PMID: 31484364 PMCID: PMC6780155 DOI: 10.3390/jcm8091379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Loss of androgen receptor (AR) dependency in prostate cancer (PCa) cells is associated with progression to castration-resistant prostate cancer (CRPC). The tumor stroma is enriched in fibroblasts that secrete AR-activating factors. To investigate the roles of fibroblasts in AR activation under androgen deprivation, we used three sublines of androgen-sensitive LNCaP cells (E9 and F10 cells: low androgen sensitivity; and AIDL cells: androgen insensitivity) and original fibroblasts derived from patients with PCa. We performed in vivo experiments using three sublines of LNCaP cells and original fibroblasts to form homotypic tumors. The volume of tumors derived from E9 cells plus fibroblasts was reduced following androgen deprivation therapy (ADT), whereas that of F10 or AIDL cells plus fibroblasts was increased even after ADT. In tumors derived from E9 cells plus fibroblasts, serum prostate-specific antigen (PSA) decreased rapidly after ADT, but was still detectable. In contrast, serum PSA was increased even in F10 cells inoculated alone. In indirect cocultures with fibroblasts, PSA production was increased in E9 cells. Epidermal growth factor treatment stimulated Akt and p44/42 mitogen-activated protein kinase phosphorylation in E9 cells. Notably, AR splice variant 7 was detected in F10 cells. Overall, we found that fibroblast-secreted AR-activating factors modulated AR signaling in E9 cells after ADT and loss of fibroblast-dependent AR activation in F10 cells may be responsible for CRPC progression.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Izumi Matsuoka
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kohei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hideki Kanda
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hiroshi Imai
- Pathology Division, Mie University Hospital, Tsu, Mie 514-8507, Japan.
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Gifu 501-1196, Japan.
| | - Kiminobu Arima
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
20
|
Pieterse Z, Sinha D, Kaur P. Pericytes in Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:125-135. [PMID: 31147875 DOI: 10.1007/978-3-030-16908-4_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pericytes have long been known to contribute indirectly to tumour growth by regulating angiogenesis. Thus, remodelling tumour blood vessels to maintain blood supply is critical for continued tumour growth. A role for pericytes in restricting leakage of tumour cells through blood vessels has also become evident given that adequate pericyte coverage of these blood vessels is critical for maintaining vascular permeability. Interestingly, the relocation of pericytes from blood vessels to the tumour microenvironment results in the emergence of different properties in these cells that actively promote tumour growth and metastasis-functions not associated with their well-studied role in vascular stability and permeability. These form the focus of this review.
Collapse
Affiliation(s)
- Zalitha Pieterse
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Devbarna Sinha
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Pritinder Kaur
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.
| |
Collapse
|
21
|
Budna-Tukan J, Świerczewska M, Mazel M, Cieślikowski WA, Ida A, Jankowiak A, Antczak A, Nowicki M, Pantel K, Azria D, Zabel M, Alix-Panabières C. Analysis of Circulating Tumor Cells in Patients with Non-Metastatic High-Risk Prostate Cancer before and after Radiotherapy Using Three Different Enumeration Assays. Cancers (Basel) 2019; 11:cancers11060802. [PMID: 31185699 PMCID: PMC6627099 DOI: 10.3390/cancers11060802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
The characterization of circulating tumor cells (CTCs) can lead to a promising strategy for monitoring residual or relapsing prostate cancer (PCa) after local therapy. The aim of this study was to compare three innovative technologies for CTC enumeration in 131 high-risk patients with PCa, before and after radiotherapy, combined with androgen deprivation. The CTC number was tested using the FDA-cleared CellSearch® system, the dual fluoro-EPISPOT assay that only detects functional CTCs, and the in vivo CellCollector® technology. The highest percentage of CTC-positive patients was detected with the CellCollector® (48%) and dual fluoro-EPISPOT (42%) assays, while the CellSearch® system presented the lowest rate (14%). Although the concordance among methods was only 23%, the cumulative positivity rate was 79%. A matched-pair analysis of the samples before, and after, treatment suggested a trend toward a decrease in CTC count after treatment with all methods. CTC tended to be positivity correlated with age for the fluoro-EPISPOT assay and with PSA level from the data of three assays. Combining different CTC assays improved CTC detection rates in patients with non-metastatic high-risk PCa before and after treatment. Our findings do not support the hypothesis that radiotherapy leads to cancer cell release in the circulation.
Collapse
Affiliation(s)
- Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Martine Mazel
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France.
| | | | - Agnieszka Ida
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland.
| | - Agnieszka Jankowiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Andrzej Antczak
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - David Azria
- Radiation Oncology Department, Montpellier Cancer Institute, 34298 Montpellier, France.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France.
| |
Collapse
|
22
|
Mezawa Y, Daigo Y, Takano A, Miyagi Y, Yokose T, Yamashita T, Morimoto C, Hino O, Orimo A. CD26 expression is attenuated by TGF-β and SDF-1 autocrine signaling on stromal myofibroblasts in human breast cancers. Cancer Med 2019; 8:3936-3948. [PMID: 31140748 PMCID: PMC6639198 DOI: 10.1002/cam4.2249] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Human breast carcinoma‐associated fibroblasts (CAFs) increasingly acquire both transforming growth factor‐β (TGF‐β) and stromal cell‐derived factor‐1 (SDF‐1) signaling in an autocrine fashion during tumor progression. Such signaling mediates activated myofibroblastic and tumor‐promoting properties in these fibroblasts. CD26/dipeptidyl peptidase‐4 is a serine protease that cleaves various chemokines including SDF‐1. Stromal CD26 expression is reportedly undetectable in human skin squamous cell carcinomas. However, whether stromal CD26 expression is also downregulated in human breast cancers and which stromal cells potentially lack CD26 expression remain elusive. To answer these questions, sections prepared from 239 human breast carcinomas were stained with antibodies against CD26 and α‐smooth muscle actin (α‐SMA), a marker for activated myofibroblasts. We found that tumor‐associated stroma involving α‐SMA‐positive myofibroblasts stained negative or negligible for CD26 in 118 out of 193 (61.1%) tumors, whereas noncancerous stromal regions of the breast showed considerable staining for CD26. This decreased stromal CD26 staining in tumors also tends to be associated with poor outcomes for breast cancer patients. Moreover, we demonstrated that CD26 staining is attenuated on stromal myofibroblasts in human breast cancers. Consistently, CD26 expression is significantly downregulated in cultured CAF myofibroblasts extracted from human breast carcinomas as compared to control human mammary fibroblasts. Inhibition of TGF‐β or SDF‐1 signaling in CAFs by shRNA clearly upregulated the CD26 expression. Taken together, these findings indicate that CD26 expression is attenuated by TGF‐β‐ and SDF‐1‐autocrine signaling on stromal myofibroblasts in human mammary carcinomas, and that decreased stromal CD26 expression has potential as a prognostic marker.
Collapse
Affiliation(s)
- Yoshihiro Mezawa
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan.,Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan.,Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Toshinari Yamashita
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Juntendo University, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Orimo
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
23
|
Bailey C, Bourne RM, Siow B, Johnston EW, Brizmohun Appayya M, Pye H, Heavey S, Mertzanidou T, Whitaker H, Freeman A, Patel D, Shaw GL, Sridhar A, Hawkes DJ, Punwani S, Alexander DC, Panagiotaki E. VERDICT MRI validation in fresh and fixed prostate specimens using patient-specific moulds for histological and MR alignment. NMR IN BIOMEDICINE 2019; 32:e4073. [PMID: 30779863 PMCID: PMC6519204 DOI: 10.1002/nbm.4073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The VERDICT framework for modelling diffusion MRI data aims to relate parameters from a biophysical model to histological features used for tumour grading in prostate cancer. Validation of the VERDICT model is necessary for clinical use. This study compared VERDICT parameters obtained ex vivo with histology in five specimens from radical prostatectomy. A patient-specific 3D-printed mould was used to investigate the effects of fixation on VERDICT parameters and to aid registration to histology. A rich diffusion data set was acquired in each ex vivo prostate before and after fixation. At both time points, data were best described by a two-compartment model: the model assumes that an anisotropic tensor compartment represents the extracellular space and a restricted sphere compartment models the intracellular space. The effect of fixation on model parameters associated with tissue microstructure was small. The patient-specific mould minimized tissue deformations and co-localized slices, so that rigid registration of MRI to histology images allowed region-based comparison with histology. The VERDICT estimate of the intracellular volume fraction corresponded to histological indicators of cellular fraction, including high values in tumour regions. The average sphere radius from VERDICT, representing the average cell size, was relatively uniform across samples. The primary diffusion direction from the extracellular compartment of the VERDICT model aligned with collagen fibre patterns in the stroma obtained by structure tensor analysis. This confirmed the biophysical relationship between ex vivo VERDICT parameters and tissue microstructure from histology.
Collapse
Affiliation(s)
- Colleen Bailey
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Sunnybrook Research InstituteTorontoONCanada
| | - Roger M. Bourne
- Discipline of Medical Radiation SciencesThe University of SydneySydneyAustralia
| | - Bernard Siow
- Centre for Advanced Biomedical ImagingUniversity College LondonLondonUK
- ImagingFrancis Crick InstituteLondonUK
| | | | | | - Hayley Pye
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
- Department of UrologyUniversity College London HospitalsLondonUK
| | - Susan Heavey
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
- Department of UrologyUniversity College London HospitalsLondonUK
| | | | - Hayley Whitaker
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - Alex Freeman
- Department of Research PathologyUniversity College LondonLondonUK
| | - Dominic Patel
- Department of Research PathologyUniversity College LondonLondonUK
| | - Greg L. Shaw
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
- Department of UrologyUniversity College London HospitalsLondonUK
| | - Ashwin Sridhar
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
- Department of UrologyUniversity College London HospitalsLondonUK
| | - David J. Hawkes
- Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Shonit Punwani
- Centre for Medical ImagingUniversity College LondonLondonUK
| | | | | |
Collapse
|
24
|
Chakrabarty B, Lee S, Exintaris B. Generation and Regulation of Spontaneous Contractions in the Prostate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:195-215. [PMID: 31183828 DOI: 10.1007/978-981-13-5895-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spontaneous myogenic contractions have been shown to be significantly upregulated in prostate tissue collected from men with Benign Prostatic Hyperplasia (BPH), an extremely common disorder of the ageing male. Although originally thought likely to be involved in 'housekeeping' functions, mixing prostatic secretions to prevent stagnation, these spontaneous myogenic contractions provide a novel opportunity to understand and treat BPH. This treatment potential differs from previous models, which focused exclusively on attenuating nerve-mediated neurogenic contractions. Previous studies in the rodent prostate have provided an insight into the mechanisms underlying the regulation of myogenic contractions. 'Prostatic Interstitial Cells' (PICs) within the prostate appear to generate pacemaker potentials, which arise from the summation of number of spontaneous transient depolarisations triggered by the spontaneous release of Ca2+ from internal stores and the opening of Ca2+-activated Cl- channels. Pacemaker potentials then conduct into neighbouring smooth muscle cells to generate spontaneous slow waves. These slow waves trigger the firing of 'spike-like' action potentials, Ca2+ entry and contraction, which are not attenuated by blockers of neurotransmission. However, these spontaneous prostatic contractions can be modulated by the autonomic nervous system. Here, we discuss the mechanisms underlying rodent and human prostate myogenic contractions and the actions of existing and novel pharmacotherapies for the treatment of BPH. Understanding the generation of human prostatic smooth muscle tone will confirm the mechanism of action of existing drugs, inform the identification and effectiveness of new pharmacotherapies, as well as predict patient outcomes.
Collapse
Affiliation(s)
- Basu Chakrabarty
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Melbourne, VIC, Australia
| | - Sophie Lee
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Melbourne, VIC, Australia
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Park IN, Kim TB. Second to fourth digit ratio and lung function (forced vital capacity): predictors of maximum urinary flow rate after holmium laser enucleation of the prostate. Andrology 2018; 7:172-177. [PMID: 30450730 DOI: 10.1111/andr.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Maximum urinary flow rate (Qmax) is usually increased after holmium laser enucleation of the prostate (HoLEP). However, improvements vary between patients and results regarding potential predictors of Qmax after HoLEP are inconsistent. Thus, we investigated pre-operative variables including second to fourth digit ratio (digit ratio) and pulmonary function test (PFT) findings as potential predictors of Qmax after HoLEP. METHODS One hundred and ninety-five consecutive patients with benign prostatic hyperplasia (BPH) who underwent HoLEP were enrolled. Before HoLEP, PFTs were performed and lengths of second and fourth digits of right hands were measured by a single investigator using a digital vernier caliper. To identify independent predictors of Qmax after HoLEP, univariate and multivariate analyses were performed using linear regression models. RESULTS Mean age and total prostate volume for all 195 study subjects were 69.4 years and 63.3 mL respectively. Mean pre-operative and post-operative Qmax values were 8.7 and 26.2 mL/sec respectively. Univariate analysis showed age (r = -0.181, p = 0.014), digit ratio (r = 0.213, p = 0.004), lung function (forced vital capacity (FVC): r = 0.218, p = 0.005; forced expiratory volume in 1 sec (FEV1): r = 0.166, p = 0.034), pre-operative Qmax (r = 0.264, p = 0.000), pre-operative voided volume (VV) (r = 0.158, p = 0.033), and post-operative VV (r = 0.311, p = 0.000) were associated with post-operative Qmax, whereas multivariate analysis showed that digit ratio (β = 0.285, p = 0.001), FVC (β = 0.340, p = 0.039), and post-operative VV (β = 0.301, p = 0.000) independently predicted post-operative Qmax. CONCLUSIONS The independent predictors of Qmax after HoLEP were digit ratio and lung function (FVC) as well as post-operative VV. This means that the higher a man's digit ratio and lung function (FVC), the higher his Qmax after HoLEP.
Collapse
Affiliation(s)
- I-N Park
- Department of Pulmonology, Inje University Seoul Paik Hospital, Seoul, Korea
| | - T B Kim
- Department of Urology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
26
|
Blebbistatin modulates prostatic cell growth and contrapctility through myosin II signaling. Clin Sci (Lond) 2018; 132:2189-2205. [PMID: 30279228 DOI: 10.1042/cs20180294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
To investigate the effect of blebbistatin (BLEB, a selective myosin inhibitor) on regulating contractility and growth of prostate cells and to provide insight into possible mechanisms associated with these actions. BLEB was incubated with cell lines of BPH-1 and WPMY-1, and intraprostatically injected into rats. Cell growth was determined by flow cytometry, and in vitro organ bath studies were performed to explore muscle contractility. Smooth muscle (SM) myosin isoform (SM1/2, SM-A/B, and LC17a/b) expression was determined via competitive reverse transcriptase PCR. SM myosin heavy chain (MHC), non-muscle (NM) MHC isoforms (NMMHC-A and NMMHC-B), and proteins related to cell apoptosis were further analyzed via Western blotting. Masson's trichrome staining was applied to tissue sections. BLEB could dose-dependently trigger apoptosis and retard the growth of BPH-1 and WPMY-1. Consistent with in vitro effect, administration of BLEB to the prostate could decrease rat prostatic epithelial and SM cells via increased apoptosis. Western blotting confirmed the effects of BLEB on inducing apoptosis through a mechanism involving MLC20 dephosphorylation with down-regulation of Bcl-2 and up-regulation of BAX and cleaved caspase 3. Meanwhile, NMMHC-A and NMMHC-B, the downstream proteins of MLC20, were found significantly attenuated in BPH-1 and WPMY-1 cells, as well as rat prostate tissues. Additionally, BLEB decreased SM cell number and SM MHC expression, along with attenuated phenylephrine-induced contraction and altered prostate SMM isoform composition with up-regulation of SM-B and down-regulation of LC17a, favoring a faster contraction. Our novel data demonstrate BLEB regulated myosin expression and functional activity. The mechanism involved MLC20 dephosphorylation and altered SMM isoform composition.
Collapse
|
27
|
Xiao J, Yang W, Xu B, Zhu H, Zou J, Su C, Rong J, Wang T, Chen Z. Expression of fibronectin in esophageal squamous cell carcinoma and its role in migration. BMC Cancer 2018; 18:976. [PMID: 30314454 PMCID: PMC6186055 DOI: 10.1186/s12885-018-4850-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fibronectin (FN) is a high-molecular-weight glycoprotein component of the extracellular matrix involved in cell adhesion, migration, metastasis, proliferation and differentiation, as well as embryogenesis, wound healing, and blood coagulation. Considerable recent research has established that tumor expression of FN is closely associated with tumor formation and development as well as disease prognosis. However, the mechanisms underlying this relationship have remained unclear. The aim of this study was to investigate FN protein expression in esophageal squamous cell carcinoma (ESCC) and determine its potential prognostic relevance, while also elucidating the source and function of FN. METHODS We conducted immunohistochemical analyses of protein expression in primary tumors of ESCC patients and analyzed their association with standard prognostic parameters and clinical outcomes. Expression of FN in two ESCC cell lines (Eca-109 and TE-1) was also examined by RT-PCR, immunofluorescence, and ELISA. ESCC cells were cultured in a microenvironment containing a high FN content, and changes in their morphology and migration ability were assessed by microscopy, wound-healing assays, and Transwell assays. RESULTS FN expression in ESCC specimens was mainly detected in the tumor stroma, with very little FN detected in tumor cells. Stromal FN content in ESCC specimens was associated with lymphatic metastasis (P = 0.032) and prognosis. In this latter context, patients with high tumor stromal expression of FN showed worse overall survival (P = 0.002) and progression-free survival (P < 0.001) than those with low expression of FN. Interestingly, FN expression and secretion in ESCC cell lines (Eca-109 and TE-1) was found to be low, but these cells adopted a more migratory phenotype when cultured in vitro in a microenvironment containing high levels of FN. CONCLUSIONS High FN expression in the stroma of ESCC tumors is closely associated with poor prognosis of patients. High stromal FN content facilitates tumor cell metastasis by promoting morphological changes and improving the motility and migratory ability of ESCC cells.
Collapse
Affiliation(s)
- Jiefei Xiao
- Department of Extracorporeal Circulation, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Weilin Yang
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Bo Xu
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Haoshuai Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jianyong Zou
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Chunhua Su
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jian Rong
- Department of Extracorporeal Circulation, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, Guangdong, China. .,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Zhenguang Chen
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
28
|
Mishra R, Haldar S, Placencio V, Madhav A, Rohena-Rivera K, Agarwal P, Duong F, Angara B, Tripathi M, Liu Z, Gottlieb RA, Wagner S, Posadas EM, Bhowmick NA. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest 2018; 128:4472-4484. [PMID: 30047926 PMCID: PMC6159981 DOI: 10.1172/jci99397] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is an androgen-dependent disease subject to interactions between the tumor epithelium and its microenvironment. Here, we found that epigenetic changes in prostatic cancer-associated fibroblasts (CAF) initiated a cascade of stromal-epithelial interactions. This facilitated lethal prostate cancer growth and development of resistance to androgen signaling deprivation therapy (ADT). We identified a Ras inhibitor, RASAL3, as epigenetically silenced in human prostatic CAF, leading to oncogenic Ras activity driving macropinocytosis-mediated glutamine synthesis. Interestingly, ADT further promoted RASAL3 epigenetic silencing and glutamine secretion by prostatic fibroblasts. In an orthotopic xenograft model, subsequent inhibition of macropinocytosis and glutamine transport resulted in antitumor effects. Stromal glutamine served as a source of energy through anaplerosis and as a mediator of neuroendocrine differentiation for prostate adenocarcinoma. Antagonizing the uptake of glutamine restored sensitivity to ADT in a castration-resistant xenograft model. In validating these findings, we found that prostate cancer patients on ADT with therapeutic resistance had elevated blood glutamine levels compared with those with therapeutically responsive disease (odds ratio = 7.451, P = 0.02). Identification of epigenetic regulation of Ras activity in prostatic CAF revealed RASAL3 as a sensor for metabolic and neuroendocrine reprogramming in prostate cancer patients failing ADT.
Collapse
Affiliation(s)
| | | | | | - Anisha Madhav
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | - Roberta A. Gottlieb
- Department of Medicine, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shawn Wagner
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Neil A. Bhowmick
- Department of Medicine, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
| |
Collapse
|
29
|
Ishii K, Sasaki T, Iguchi K, Kajiwara S, Kato M, Kanda H, Hirokawa Y, Arima K, Mizokami A, Sugimura Y. Interleukin-6 induces VEGF secretion from prostate cancer cells in a manner independent of androgen receptor activation. Prostate 2018; 78:849-856. [PMID: 29707793 DOI: 10.1002/pros.23643] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The reduced androgen-sensitivity of prostate cancer (PCa) cells is an important clinical development because of its association with the cells' progression to castration-resistant prostate cancer (CRPC). During androgen deprivation therapy (ADT), stroma-derived growth factors and cytokines can activate the androgen receptor (AR). For example, IL-6 is a multifunctional cytokine that is involved in the malignancy of PCa cells through AR activation. In the present study, we used an androgen-sensitive human PCa cell line (LNCaP) and its sublines to investigate the relationship between the responsiveness of PCa cells to IL-6 treatment and the cellular AR signaling pathway. METHODS The androgen-low-sensitive F10 and E9 cells were obtained from LNCaP cells by limiting dilution method in regular culture condition. In contrast, the androgen-insensitive AIDL cells were established from LNCaP cells by continuous passaging in hormone-depleted condition. Original carcinoma-associated fibroblasts (CAFs) PCaSC-8 and PCaSC-9 cells were isolated from needle biopsy samples of PCa patients. RESULTS In fibroblasts derived from PCa patients, IL-6 secretion was generally higher than that observed with normal fibroblasts. In contrast, IL-6 secretion was not detected in LNCaP and its sublines. The soluble IL-6 receptor was detected in PCa cells but not in fibroblasts. IL-6 treatment suppressed cell growth of LNCaP, F10, and E9 cells but not AIDL cells and it was accompanied with neuroendocrine-like differentiation. Induction of PSA secretion was observed in IL-6-treated LNCaP and F10 cells. VEGF secretion was strongly induced in IL-6-treated LNCaP and AIDL cells. IL-6-induced VEGF secretion was significantly suppressed by a PI3K inhibitor (LY294002) and it was accompanied by inhibited phosphorylation of Akt. CONCLUSIONS Our results suggest that IL-6 might induce VEGF secretion from PCa cells in a manner independent of AR activation. To prevent IL-6-induced VEGF secretion, inhibition of the PI3K/AKT signaling pathway could be an important pharmacological goal regardless of ADT.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinya Kajiwara
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hideki Kanda
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kiminobu Arima
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
30
|
Kim JH, Han IH, Kim YS, Noh CS, Ryu JS. Proliferation of prostate epithelia induced by IL-6 from stroma reacted with Trichomonas vaginalis. Parasite Immunol 2018; 40:e12531. [PMID: 29633291 DOI: 10.1111/pim.12531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
Benign prostatic hyperplasia (BPH) is characterized by the proliferation of stromal and epithelial cell types in the prostate, and interactions between the two types of cells. We demonstrated previously that proliferation of prostate stromal cells was induced by BPH epithelial cells in response to Trichomonas vaginalis (Tv) infection via crosstalk with mast cells. In this study, we investigated whether IL-6 released by the proliferating stromal cells in turn induce the BPH epithelial cells to multiply. When culture supernatants of the proliferating prostate stromal cells were added to BPH epithelial cells, the latter multiplied, and expression of cyclin D1, FGF2 and Bcl-2 increased. Blocking the IL-6 signalling pathway with anti-IL-6R antibody or JAK1/2 inhibitor inhibited the proliferation of the BPH epithelial cells and reduced the expression of IL-6, IL-6R and STAT3. Also, epithelial-mesenchymal transition was detected in the proliferating BPH epithelial cells. In conclusion, IL-6 released from proliferating prostate stromal cells induced by BPH epithelial cells infected with Tv in turn induces multiplication of the BPH epithelial cells. This result provides first evidence that the inflammatory microenvironment of prostate stromal cells resulting from Tv infection induces the proliferation of prostate epithelial cells by stromal-epithelial interaction.
Collapse
Affiliation(s)
- J-H Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - I-H Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Y-S Kim
- Department of Biochemistry and Molecular Biology, Hanyang University College of Medicine, Seoul, Korea
| | - C-S Noh
- Department of Internal Medicine, Hallym University Han River Seongshim Hospital, Seoul, Korea
| | - J-S Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Zhao Q, Eichten A, Parveen A, Adler C, Huang Y, Wang W, Ding Y, Adler A, Nevins T, Ni M, Wei Y, Thurston G. Single-Cell Transcriptome Analyses Reveal Endothelial Cell Heterogeneity in Tumors and Changes following Antiangiogenic Treatment. Cancer Res 2018; 78:2370-2382. [PMID: 29449267 DOI: 10.1158/0008-5472.can-17-2728] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Angiogenesis involves dynamic interactions between specialized endothelial tip and stalk cells that are believed to be regulated in part by VEGF and Dll4-Notch signaling. However, our understanding of this process is hampered by limited knowledge of the heterogeneity of endothelial cells and the role of different signaling pathways in specifying endothelial phenotypes. Here, we characterized by single-cell transcriptomics the heterogeneity of mouse endothelial cells and other stromal cells during active angiogenesis in xenograft tumors as well as from adult normal heart, following pharmacologic inhibition of VEGF and Dll4-Notch signaling. We classified tumor endothelial cells into three subpopulations that appeared to correspond with tip-like, transition, and stalk-like cells. Previously identified markers for tip and stalk cells were confirmed and several novel ones discovered. Blockade of VEGF rapidly inhibited cell-cycle genes and strongly reduced the proportion of endothelial tip cells in tumors. In contrast, blockade of Dll4 promoted endothelial proliferation as well as tip cell markers; blockade of both pathways inhibited endothelial proliferation but preserved some tip cells. We also phenotypically classified other tumor stromal cells and found that tumor-associated fibroblasts responded to antiangiogenic drug treatments by upregulating hypoxia-associated genes and producing secreted factors involved in angiogenesis. Overall, our findings better define the heterogeneity of tumor endothelial and other stromal cells and reveal the roles of VEGF and Dll4-Notch in specifying tumor endothelial phenotype, highlighting the response of stromal cells to antiangiogenic therapies.Significance: These findings provide a framework for defining subpopulations of endothelial cells and tumor-associated fibroblasts and their rapid changes in gene expression following antiangiogenic treatment. Cancer Res; 78(9); 2370-82. ©2018 AACR.
Collapse
Affiliation(s)
- Qi Zhao
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Asma Parveen
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Ying Huang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Wei Wang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Yueming Ding
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | | | - Min Ni
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Yi Wei
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | |
Collapse
|
32
|
Kovalenko YA, Zharikov YO. [Portal cholangiocarcinoma: epidemiology, staging principles and aspects of tumor biology]. Khirurgiia (Mosk) 2017:85-91. [PMID: 29186104 DOI: 10.17116/hirurgia20171185-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Yu O Zharikov
- A.V. Vishnevsky Institute of Surgery, Moscow, Russia
| |
Collapse
|
33
|
Yazdani S, Bansal R, Prakash J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:101-116. [PMID: 28720422 DOI: 10.1016/j.addr.2017.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Myofibroblasts are the key players in extracellular matrix remodeling, a core phenomenon in numerous devastating fibrotic diseases. Not only in organ fibrosis, but also the pivotal role of myofibroblasts in tumor progression, invasion and metastasis has recently been highlighted. Myofibroblast targeting has gained tremendous attention in order to inhibit the progression of incurable fibrotic diseases, or to limit the myofibroblast-induced tumor progression and metastasis. In this review, we outline the origin of myofibroblasts, their general characteristics and functions during fibrosis progression in three major organs: liver, kidneys and lungs as well as in cancer. We will then discuss the state-of-the art drug targeting technologies to myofibroblasts in context of the above-mentioned organs and tumor microenvironment. The overall objective of this review is therefore to advance our understanding in drug targeting to myofibroblasts, and concurrently identify opportunities and challenges for designing new strategies to develop novel diagnostics and therapeutics against fibrosis and cancer.
Collapse
Affiliation(s)
- Saleh Yazdani
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
34
|
Crosstalk between the Androgen Receptor and PPAR Gamma Signaling Pathways in the Prostate. PPAR Res 2017; 2017:9456020. [PMID: 29181019 PMCID: PMC5664321 DOI: 10.1155/2017/9456020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023] Open
Abstract
Nuclear receptors are a superfamily of ligand-activated transcription factors that play critical roles in the regulation of normal biological processes and several disease states. Of the nuclear receptors expressed within the prostate, the androgen receptor (AR) promotes the differentiation of prostatic epithelial cells and stimulates production of enzymes needed for liquefaction of semen. Multiple forms of AR also promote the growth of both early and late stage prostate cancers. As a result, drugs that target the AR signaling pathway are routinely used to treat patients with advanced forms of prostate cancer. Data also suggest that a second member of the nuclear receptor superfamily, the peroxisome proliferator activated receptor gamma (PPARγ), is a tumor suppressor that regulates growth of normal prostate and prostate cancers. Recent studies indicate there is a bidirectional interaction between AR and PPARγ, with each receptor influencing the expression and/or activity of the other within prostatic tissues. In this review, we examine how AR and PPARγ each regulate the growth and development of normal prostatic epithelial cells and prostate cancers. We also discuss interactions between the AR and PPARγ signaling pathways and how those interactions may influence prostate biology.
Collapse
|
35
|
Chen P, Yin J, Guo YM, Xiao H, Wang XH, DiSanto ME, Zhang XH. The expression and functional activities of smooth muscle myosin and non-muscle myosin isoforms in rat prostate. J Cell Mol Med 2017; 22:576-588. [PMID: 28990332 PMCID: PMC5742693 DOI: 10.1111/jcmm.13345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non-muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM-A/B) and myosin light chain 17 isoforms (LC17a/b ), and isoform ratios were determined via competitive RT-PCR. SM MHC and NM MHC isoforms (NMMHC-A, NMMHC-B and NMMHC-C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM-A/SM-B at the mRNA level. Meanwhile, isoforms of NMMHC-A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC-A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre-contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction.
Collapse
Affiliation(s)
- Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences of Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xin-Hua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Kessler C, Pardo A, Tur MK, Gattenlöhner S, Fischer R, Kolberg K, Barth S. Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer. J Cancer Res Clin Oncol 2017; 143:2025-2038. [PMID: 28667390 DOI: 10.1007/s00432-017-2472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Despite great progress in the diagnosis and treatment of localized prostate cancer (PCa), there remains a need for new diagnostic markers that can accurately distinguish indolent and aggressive variants. One promising approach is the antibody-based targeting of prostate stem cell antigen (PSCA), which is frequently overexpressed in PCa. Here, we show the construction of a molecular imaging probe comprising a humanized scFv fragment recognizing PSCA genetically fused to an engineered version of the human DNA repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT), the SNAP-tag, enabling specific covalent coupling to various fluorophores for diagnosis of PCa. Furthermore, the recombinant immunotoxin (IT) PSCA(scFv)-ETA' comprising the PSCA(scFv) and a truncated version of Pseudomonas exotoxin A (PE, ETA') was generated. METHODS We analyzed the specific binding and internalization behavior of the molecular imaging probe PSCA(scFv)-SNAP in vitro by flow cytometry and live cell imaging, compared to the corresponding IT PSCA(scFv)-ETA'. The cytotoxic activity of PSCA(scFv)-ETA' was tested using cell viability assays. Specific binding was confirmed on formalin-fixed paraffin-embedded tissue specimen of early and advanced PCa. RESULTS Alexa Fluor® 647 labeling of PSCA(scFv)-SNAP confirmed selective binding to PSCA, leading to rapid internalization into the target cells. The recombinant IT PSCA(scFv)-ETA' showed selective binding leading to internalization and efficient elimination of target cells. CONCLUSIONS Our data demonstrate, for the first time, the specific binding, internalization, and cytotoxicity of a scFv-based fusion protein targeting PSCA. Immunohistochemical staining confirmed the specific ex vivo binding to primary PCa material.
Collapse
Affiliation(s)
- Claudia Kessler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Alessa Pardo
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Mehmet K Tur
- Institute for Pathology, Justus-Liebig University, Giessen, Germany
| | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Katharina Kolberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory, 7925, South Africa.
| |
Collapse
|
37
|
Leimgruber C, Quintar AA, Peinetti N, Scalerandi MV, Nicola JP, Miano JM, Maldonado CA. Testosterone Rescues the De-Differentiation of Smooth Muscle Cells Through Serum Response Factor/Myocardin. J Cell Physiol 2017; 232:2806-2817. [PMID: 27861881 DOI: 10.1002/jcp.25679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Prostatic smooth muscle cells (pSMCs) differentiation is a key factor for prostatic homeostasis, with androgens exerting multiple effects on these cells. Here, we demonstrated that the myodifferentiator complex Srf/Myocd is up-regulated by testosterone in a dose-dependent manner in primary cultures of rat pSMCs, which was associated to the increase in Acta2, Cnn1, and Lmod1 expressions. Blocking Srf or Myocd by siRNAs inhibited the myodifferentiator effect of testosterone. While LPS led to a dedifferentiated phenotype in pSMCs, characterized by down-regulation of Srf/Myocd and smooth muscle cell (SMC)-restricted genes, endotoxin treatment on Myocd-overexpressing cells did not result in phenotypic alterations. Testosterone at a physiological dose was able to restore the muscular phenotype by normalizing Srf/Myocd expression in inflammation-induced dedifferentiated pSMCs. Moreover, the androgen reestablished the proliferation rate and IL-6 secretion increased by LPS. These results provide novel evidence regarding the myodifferentiating role of testosterone on SMCs by modulating Srf/Myocd. Thus, androgens preserve prostatic SMC phenotype, which is essential to maintain the normal structure and function of the prostate. J. Cell. Physiol. 232: 2806-2817, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carolina Leimgruber
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Amado A Quintar
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nahuel Peinetti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María V Scalerandi
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan P Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
38
|
Xie B, Zhang G, Wang X, Xu X. Body mass index and incidence of nonaggressive and aggressive prostate cancer: a dose-response meta-analysis of cohort studies. Oncotarget 2017; 8:97584-97592. [PMID: 29228634 PMCID: PMC5722586 DOI: 10.18632/oncotarget.20930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
The relationship between body mass index (BMI) and incidence of prostate cancer is still inconclusive. We performed a dose-response meta-analysis of eligible cohort studies to evaluate potential association of BMI with prostate cancer risk by subtype of prostate cancer (nonaggressive and aggressive). A comprehensive literature search was performed in PubMed and Web of Science databases through March 22, 2017. Linear and non-linear dose-response meta-analyses were carried out to evaluate the effects of BMI on incidence of prostate cancer. A total of 21 cohort or nested case-control studies (17 for nonaggressive and 21 for aggressive prostate cancer) were included in this meta-analysis. For nonaggressive prostate cancer, the pooled relative risk (RR) per 5 kg/m2 increment of BMI with 95% confidence interval (CI) was 0.96 (95% CI 0.92–1.00). Sensitivity analysis indicated that this result was not robust and steady. For aggressive prostate cancer, a significant linear direct relationship with BMI (RR, 1.07; 95% CI 1.03–1.12) for every 5 kg/m2 increase was observed. Statistically significant heterogeneity was detected for nonaggressive prostate cancer (P = 0.020, I2 = 46.1%) but not for aggressive prostate cancer (P = 0.174, I2 = 22.4%). In conclusion, BMI level may be positively associated with aggressive prostate cancer risk. Further large prospective cohort studies are warranted to confirm the findings from our study.
Collapse
Affiliation(s)
- Bo Xie
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Guanjun Zhang
- Department of Urology, Hospital of Traditional Chinese Medicine of Shangyu, Shangyu 312300, Zhejiang, China
| | - Xiao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
39
|
McLean DT, Strand DW, Ricke WA. Prostate cancer xenografts and hormone induced prostate carcinogenesis. Differentiation 2017; 97:23-32. [PMID: 28923776 DOI: 10.1016/j.diff.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/17/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022]
Abstract
Despite the advancement of transgenic and gene knockout animal models in the prostate cancer research, there is still a need for utilizing xenograft models. Xenografts can be grown in multiple sites/organs within immunocompromised animals such as mice and rats. Although prostate xenografts have been derived from many species, human cells and tissues are the most commonly used due to their potential clinical significance. Xenograft models that progress from one state or stage to another are commonly used to address important scientific questions including malignant transformation, metastatic spread, and castration resistance. Utilization of xenografts are commonly being used to assess the biology and genetics of prostate cancer, as well as, for therapeutic benefit. In addition to models for the study of prostate cancer, xenografts are also utilized as a tool in precision medicine where patient derived xenografts (PDX) can be grown in multiple animals and assessed for therapeutic efficacy. The popularity of such xenograft models and PDXs have led to availability of these resources through public and commercial institutions. In this review, we describe both traditional and emerging models of prostate cancer and their potential uses. Further development of current models and introduction of new models will likely provide new insights and better understanding of prostatic carcinogenesis and progression.
Collapse
Affiliation(s)
- Dalton T McLean
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Urology, University of Wisconsin-Madison, Madison, WI, USA; Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Institute, Dallas, TX, USA
| | - William A Ricke
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Urology, University of Wisconsin-Madison, Madison, WI, USA; George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Daubriac J, Pandya UM, Huang KT, Pavlides SC, Gama P, Blank SV, Shukla P, Crawford SE, Gold LI. Hormonal and Growth Regulation of Epithelial and Stromal Cells From the Normal and Malignant Endometrium by Pigment Epithelium-Derived Factor. Endocrinology 2017; 158:2754-2773. [PMID: 28911166 DOI: 10.1210/en.2017-00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/16/2017] [Indexed: 12/19/2022]
Abstract
We discovered that pigment epithelium-derived factor (PEDF)-null mice have endometrial hyperplasia, the precursor to human type I endometrial cancer (ECA), which is etiologically linked to unopposed estrogen (E2), suggesting that this potent antiangiogenic factor might contribute to dysregulated growth and the development of type I ECA. Treatment of both ECA cell lines and primary ECA cells with recombinant PEDF dose dependently decreased cellular proliferation via an autocrine mechanism by blocking cells in G1 and G2 phases of the cell cycle. Consistent with the known opposing effects of E2 and progesterone (Pg) on endometrial proliferation, Pg increases PEDF protein synthesis and release, whereas E2 has the converse effect. Using PEDF luciferase promoter constructs containing two Pg and one E2 response elements, E2 reduced and Pg increased promoter activity due to distal response elements. Furthermore, E2 decreases and Pg increases PEDF secretion into conditioned media (CM) by both normal endometrial stromal fibroblasts (ESFs) and cancer-associated fibroblasts (CAFs), but only CM from ESFs mediated growth-inhibitory activity of primary endometrial epithelial cells (EECs). In addition, in cocultures with primary EECs, Pg-induced growth inhibition is mediated by ESFs, but not CAFs. This is consistent with reduced levels of Pg receptors on CAFs surrounding human malignant glands in vivo. Taken together, the data suggest that PEDF is a hormone-regulated negative autocrine mediator of endometrial proliferation, and that paracrine growth inhibition by soluble factors, possibly PEDF, released by ESFs in response to Pg, but not CAFs, exemplifies a tumor microenvironment that contributes to the pathogenesis of ECA.
Collapse
Affiliation(s)
- Julien Daubriac
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Unnati M Pandya
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Kuang-Tzu Huang
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Savvas C Pavlides
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Patricia Gama
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paolo, Sao Paolo 05508 000, Brazil
| | - Stephanie V Blank
- Department of Pathology, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Department of Gynecological Oncology, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Perlmutter Cancer Center, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Pratibha Shukla
- Department of Pathology, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Susan E Crawford
- NorthShore University Research Institute, Affiliate of Chicago Pritizker School of Medicine, Evanston, Illinois 60201
| | - Leslie I Gold
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Department of Pathology, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Perlmutter Cancer Center, New York University School of Medicine Langone Medical Center, New York, New York 10016
| |
Collapse
|
41
|
Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 2017; 45:229-236. [PMID: 28202677 DOI: 10.1042/bst20160387] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/13/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are major components of the surrounding stroma of carcinomas that emerge in the tumor microenvironment as a result of signals derived from the cancer cells. Biochemical cross-talk between cancer cells and CAFs as well as mechanical remodeling of the stromal extracellular matrix (ECM) by CAFs are important contributors to tumor cell migration and invasion, which are critical for cancer progression from a primary tumor to metastatic disease. In this review, we discuss key paracrine signaling pathways between CAFs and cancer cells that promote cancer cell migration and invasion. In addition, we discuss physical changes that CAFs exert on the stromal ECM to facilitate migration and invasion of cancer cells.
Collapse
|
42
|
Wang Y, Takeishi K, Li Z, Cervantes-Alvarez E, Collin de l'Hortet A, Guzman-Lepe J, Cui X, Zhu J. Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancy-related hallmarks. Organogenesis 2017; 13:83-94. [PMID: 28548903 DOI: 10.1080/15476278.2017.1322243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organ-like microenviroment and 3-dimensional (3D) cell culture conformations have been suggested as promising approaches to mimic in a micro-scale a whole organ cellular functions and interactions present in vivo. We have used this approach to examine biologic features of hepatocellular carcinoma (HCC) cells. In this study, we demonstrate that hepatocellular carcinoma (HCC) cells, fibroblasts, endothelial cells and extracellular matrix can generate organoid-like spheroids that enhanced numerous features of human HCC observed in vivo. We show that the addition of non-parenchymal cells such as fibroblast and endothelial cells is required for spheroid formation as well as the maintenance of the tissue-like structure. Furthermore, HCC cells cultured as spheroids with non-parenchymal cells express more neo-angiogenesis-related markers (VEGFR2, VEGF, HIF-α), tumor-related inflammatory factors (CXCR4, CXCL12, TNF-α) and molecules-related to induced epithelial-mesenchymal transition (TGFβ, Vimentin, MMP9) compared with organoids containing only HCC cells. These results demonstrate the importance of non-parenchymal cells in the cellular composition of HCC organoids. The novelty of the multicellular-based organotypic culture system strongly supports the integration of this approach in a high throughput approach to identified patient-specific HCC malignancy and accurate anti-tumor therapy screening after surgery.
Collapse
Affiliation(s)
- Yang Wang
- a Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China.,b Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Kazuki Takeishi
- b Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,c Department of Surgery and Science , Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Zhao Li
- a Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | - Eduardo Cervantes-Alvarez
- b Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,d PECEM, Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , México
| | | | - Jorge Guzman-Lepe
- b Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Xiao Cui
- a Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | - Jiye Zhu
- a Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| |
Collapse
|
43
|
Biancardi MF, dos Santos FCA, de Carvalho HF, Sanches BDA, Taboga SR. Female prostate: historical, developmental, and morphological perspectives. Cell Biol Int 2017; 41:1174-1183. [DOI: 10.1002/cbin.10759] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Manoel F. Biancardi
- Department of Histology, Embryology, and Cell Biology, Federal University of Goiás, Av. Esperança; Campus Samambaia; Goiânia, Goiás 74690-900 Brazil
| | - Fernanda C. A. dos Santos
- Department of Histology, Embryology, and Cell Biology, Federal University of Goiás, Av. Esperança; Campus Samambaia; Goiânia, Goiás 74690-900 Brazil
| | - Hernandes F. de Carvalho
- Department of Structural and Functional Biology, State University of Campinas; Av. Bertrand Russel; Campinas São Paulo 13084864 Brazil
| | - Bruno D. A. Sanches
- Department of Structural and Functional Biology, State University of Campinas; Av. Bertrand Russel; Campinas São Paulo 13084864 Brazil
| | - Sebastião R. Taboga
- Department of Biology, State University of São Paulo; R. Cristóvão Colombo 2265; São José do Rio Preto São Paulo 15054000 Brazil
| |
Collapse
|
44
|
Dambal S, Giangreco AA, Acosta AM, Fairchild A, Richards Z, Deaton R, Wagner D, Vieth R, Gann PH, Kajdacsy-Balla A, Van der Kwast T, Nonn L. microRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma. J Steroid Biochem Mol Biol 2017; 167:192-202. [PMID: 28089917 PMCID: PMC5304339 DOI: 10.1016/j.jsbmb.2017.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency increases the risk of lethal prostate adenocarcinomas (PCa) and the majority of older men are deficient. Although PCa arises from the epithelium, the surrounding stroma has hormonal regulatory control over the epithelium and contributes to carcinogenesis. Herein, we describe regulation of microRNAs (miRs) by the active hormone dihydroxyvitamin D (1,25(OH)2D) in human prostate stroma. 1,25(OH)2D binds the vitamin D receptor (VDR) transcription factor to regulate gene expression, including miRs, which have emerged as potent regulators of protein expression. 1,25(OH)2D-regulated miRs were identified by profiling in primary human prostatic stromal cells (PrS) and three miRs, miR-126-3p, miR 154-5p and miR-21-5p were subsequently validated in laser-capture micro-dissected prostate stromal tissue from a vitamin D3 clinical trial (N=45). Regulation of these miRs by 1,25(OH)2D was VDR-dependent. Network analysis of known and putative mRNA targets of these miRs was enriched with cancer and inflammation pathways, consistent with known roles of stroma and of vitamin D in carcinogenesis. Expression of the miR processing ribonuclease, DICER1, positively correlated with vitamin D metabolite levels in the clinical trial specimens. High epithelial/stromal ratios of DICER1 were significantly associated biochemical recurrence (OR 3.1, p=0.03) in a tissue microarray of 170 matched PCa patients. In summary, these results underscore the role of the prostate stroma in regulating responses to the hormone 1,25(OH)2D and identified miRs and DICER1 as being regulated in human prostate stroma. Regulation of stromal DICER1 by 1,25(OH)2D may also have clinical relevance in protection against aggressive PCa.
Collapse
Affiliation(s)
- Shweta Dambal
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Angeline A Giangreco
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Andres M Acosta
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrew Fairchild
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zachary Richards
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ryan Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis Wagner
- Department of Nutritional Sciences, Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Reinhold Vieth
- Department of Nutritional Sciences, Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, IL, United States
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, IL, United States
| | | | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, IL, United States.
| |
Collapse
|
45
|
Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017. [PMID: 28216578 DOI: 10.3390/ijms18020405.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive-regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
|
46
|
Tahmasebi Birgani M, Carloni V. Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017; 18:ijms18020405. [PMID: 28216578 PMCID: PMC5343939 DOI: 10.3390/ijms18020405] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
Affiliation(s)
- Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 63461, Iran.
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| |
Collapse
|
47
|
Leach DA, Trotta AP, Need EF, Risbridger GP, Taylor RA, Buchanan G. The prognostic value of stromal FK506-binding protein 1 and androgen receptor in prostate cancer outcome. Prostate 2017; 77:185-195. [PMID: 27718274 DOI: 10.1002/pros.23259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 09/07/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Improving our ability to predict cancer progression and response to conservative or radical intent therapy is critical if we are to prevent under or over treatment of individual patients. Whereas the majority of solid tumors now have a range of molecular and/or immunological markers to help define prognosis and treatment options, prostate cancer still relies mainly on histological grading and clinical parameters. We have recently reported that androgen receptor (AR) expression in stroma inversely associates with prostate cancer-specific survival, and that stromal AR reduces metastasis. For this paper, we tested the hypothesis that the AR-regulated gene FKBP51 could be used as a marker of AR activity to better predict outcome. METHODS Using immunohistochemistry on a cohort of 64 patient-matched benign and malignant prostate tissues, we assessed patient outcome by FKBP51 and AR levels. Immunoblot and RT-qPCR were used to demonstrate androgen regulation of FKBP51 in primary and primary human prostatic fibroblasts and fibroblast cell-lines. RESULTS As predicted by FKBP51 level, high AR activity in cancer stroma was associated with longer median survival (1,306 days) compared with high AR alone (699 days), whereas those with low AR and/or low FKBP51 did poorly (384 and 338 days, respectively). Survival could not be predicted on the basis cancer epithelial AR levels or activity, and was not associated with immunoreactivity in patient matched benign tissues. CONCLUSION FKBP51 improves the ability of stromal AR to predict prostate cancer-specific mortality. By adding additional immunological assessment, similar to what is already in place in a number of other cancers, we could better serve patients with prostate cancer in prognosis and informed treatment choices. Prostate 77:185-195, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damien A Leach
- The Basil Hetzel Institute for Translational Health Research, and Divisions of Medicine and Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Andrew P Trotta
- The Basil Hetzel Institute for Translational Health Research, and Divisions of Medicine and Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Eleanor F Need
- The Basil Hetzel Institute for Translational Health Research, and Divisions of Medicine and Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Gail P Risbridger
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Renea A Taylor
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Victoria, Australia
| | - Grant Buchanan
- The Basil Hetzel Institute for Translational Health Research, and Divisions of Medicine and Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
48
|
Kim JH, Kim SS, Han IH, Sim S, Ahn MH, Ryu JS. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell. Prostate 2016; 76:1431-44. [PMID: 27325623 DOI: 10.1002/pros.23227] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/09/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. METHODS To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. RESULTS BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. CONCLUSIONS The inflammatory mediators released by BPH epithelial cells in response to infection by trichomonads induce the migration and activation of mast cells. The activated mast cells induce the proliferation of prostate stromal cells via CXCL8-CXCR1 and CCL2-CCR2 signaling. Our results therefore show that the inflammatory response by BPH epithelial cells stimulated with T. vaginalis induce the proliferation of prostate stromal cells via crosstalk with mast cells. Prostate 76:1431-1444, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Sang-Su Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Seobo Sim
- Department of Environmental and Tropical Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju, Korea
| | - Myoung-Hee Ahn
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea.
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul, Korea.
| |
Collapse
|
49
|
Leach DA, Powell SM, Bevan CL. WOMEN IN CANCER THEMATIC REVIEW: New roles for nuclear receptors in prostate cancer. Endocr Relat Cancer 2016; 23:T85-T108. [PMID: 27645052 DOI: 10.1530/erc-16-0319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Prostate cancer has, for decades, been treated by inhibiting androgen signalling. This is effective in the majority of patients, but inevitably resistance develops and patients progress to life-threatening metastatic disease - hence the quest for new effective therapies for 'castrate-resistant' prostate cancer (CRPC). Studies into what pathways can drive tumour recurrence under these conditions has identified several other nuclear receptor signalling pathways as potential drivers or modulators of CRPC.The nuclear receptors constitute a large (48 members) superfamily of transcription factors sharing a common modular functional structure. Many of them are activated by the binding of small lipophilic molecules, making them potentially druggable. Even those for which no ligand exists or has yet been identified may be tractable to activity modulation by small molecules. Moreover, genomic studies have shown that in models of CRPC, other nuclear receptors can potentially drive similar transcriptional responses to the androgen receptor, while analysis of expression and sequencing databases shows disproportionately high mutation and copy number variation rates among the superfamily. Hence, the nuclear receptor superfamily is of intense interest in the drive to understand how prostate cancer recurs and how we may best treat such recurrent disease. This review aims to provide a snapshot of the current knowledge of the roles of different nuclear receptors in prostate cancer - a rapidly evolving field of research.
Collapse
Affiliation(s)
- Damien A Leach
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Sue M Powell
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
50
|
Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6841-6850. [PMID: 27570421 PMCID: PMC4974583 DOI: 10.3748/wjg.v22.i30.6841] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression.
Collapse
|