1
|
Jung YS, Radhakrishnan K, Kim HJ, Kim YH, Lee CH, Choi HS. Macrophage stimulating protein is a novel transcriptional target of estrogen related receptor gamma in alcohol-intoxicated mice. Cell Signal 2024; 116:111059. [PMID: 38237793 DOI: 10.1016/j.cellsig.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Macrophage stimulating protein (MSP) is a multifunctional serum protein produced in the liver, belonging to the plasminogen-related kringle protein family. It exerts diverse biological functions by activating a transmembrane receptor protein-tyrosine kinase known as RON in humans and SKT in mice. MSP plays a pivotal role in innate immunity and is involved in various activities such as cell survival, migration, and phagocytosis. Elucidating the regulatory mechanisms governing MSP gene expression is of great importance. In this study, we comprehensively elucidate the molecular mechanism underlying hepatic MSP gene expression in response to alcoholism. Exposure to ethanol specifically upregulated the expression of ERRγ and MSP in the liver, while not in other organs. Liver-specific knockout of the cannabinoid receptor type 1 (CB1R), an upstream regulator of ERRγ, inhibited the alcohol-induced upregulation of MSP expression. Overexpression of ERRγ alone was sufficient to enhance MSP expression in hepatic cell lines and in mice. Conversely, knockdown of ERRγ in cell lines or liver-specific knockout of ERRγ in mice reversed ethanol-induced MSP gene expression. Promoter studies revealed the direct binding of ERRγ to the MSP gene promoter at the ERR response element (ERRE), resulting in the positive regulation of MSP gene expression in response to alcohol. This finding was further supported by ERRE-mutated MSP-luciferase reporter assays. Notably, treatment with GSK5182, an ERRγ-specific inverse agonist, significantly suppressed alcohol-induced hepatic MSP expression. Collectively, we exposed a novel mechanistic understanding of how alcohol-induced ERRγ controls the transcriptional regulation of MSP gene expression in the liver.
Collapse
Affiliation(s)
- Yoon Seok Jung
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyo-Jin Kim
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Angelin B, Domingues MR, Li X, Kutter C, Korach-André M. Molecular programming modulates hepatic lipid metabolism and adult metabolic risk in the offspring of obese mothers in a sex-specific manner. Commun Biol 2022; 5:1057. [PMID: 36195702 PMCID: PMC9532402 DOI: 10.1038/s42003-022-04022-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected. Females from obese mothers display important changes in hepatic transcriptional activity and triglycerides profile which may prevent the damaging effects of maternal obesity compared to males. These differences are sustained later in life, resulting in a better metabolic balance in female offspring. In conclusion, sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in offspring liver, explaining the sexual dimorphism in obesity-associated metabolic risk. Sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in the livers of female and male offspring, contributing to the sexual dimorphism in obesity-associated metabolic risk.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bo Angelin
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden. .,Department of Gene Technology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
3
|
Qiao A, Ma W, Jiang Y, Han C, Yan B, Zhou J, Qin G. Hepatic Sam68 Regulates Systemic Glucose Homeostasis and Insulin Sensitivity. Int J Mol Sci 2022; 23:ijms231911469. [PMID: 36232770 PMCID: PMC9569775 DOI: 10.3390/ijms231911469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic glucose production (HGP) is an important component of glucose homeostasis, and deregulated HGP, particularly through gluconeogenesis, contributes to hyperglycemia and pathology of type-2 diabetes (T2D). It has been shown that the gluconeogenic gene expression is governed primarily by the transcription factor cAMP-response element (CRE)-binding protein (CREB) and its coactivator, CREB-regulated transcriptional coactivator 2 (CRTC2). Recently, we have discovered that Sam68, an adaptor protein and Src kinase substrate, potently promotes hepatic gluconeogenesis by promoting CRTC2 stability; however, the detailed mechanisms remain unclear. Here we show that in response to glucagon, Sam68 increases CREB/CRTC2 transactivity by interacting with CRTC2 in the CREB/CRTC2 complex and occupying the CRE motif of promoters, leading to gluconeogenic gene expression and glucose production. In hepatocytes, glucagon promotes Sam68 nuclear import, whereas insulin elicits its nuclear export. Furthermore, ablation of Sam68 in hepatocytes protects mice from high-fat diet (HFD)-induced hyperglycemia and significantly increased hepatic and peripheral insulin sensitivities. Thus, hepatic Sam68 potentiates CREB/CRTC2-mediated glucose production, contributes to the pathogenesis of insulin resistance, and may serve as a therapeutic target for T2D.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Correspondence: (A.Q.); (G.Q.); Tel.: +205-934-6690 (G.Q.); Fax: +205-934-9101 (G.Q.)
| | - Wenxia Ma
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ying Jiang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chaoshan Han
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Baolong Yan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Correspondence: (A.Q.); (G.Q.); Tel.: +205-934-6690 (G.Q.); Fax: +205-934-9101 (G.Q.)
| |
Collapse
|
4
|
Xu X, Qi P, Zhang Y, Sun H, Yan Y, Sun W, Liu S. Effect of Selenium Treatment on Central Insulin Sensitivity: A Proteomic Analysis in β-Amyloid Precursor Protein/Presenilin-1 Transgenic Mice. Front Mol Neurosci 2022; 15:931788. [PMID: 35875664 PMCID: PMC9302600 DOI: 10.3389/fnmol.2022.931788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Prior studies have demonstrated a close association between brain insulin resistance and Alzheimer’s disease (AD), while selenium supplementation was shown to improve insulin homeostasis in AD patients and to exert neuroprotective effects in a mouse model of AD. However, the mechanisms underlying the neuroprotective actions of selenium remain incompletely understood. In this study, we performed a label-free liquid chromatography-tandem mass spectrometry (LC–MS/MS) quantitative proteomics approach to analyze differentially expressed proteins (DEPs) in the hippocampus and cerebral cortex of Aβ precursor protein (APP)/presenilin-1 (PS1) mice following 2 months of treatment with sodium selenate. A total of 319 DEPs (205 upregulated and 114 downregulated proteins) were detected after selenium treatment. Functional enrichment analysis revealed that the DEPs were mainly enriched in processes affecting axon development, neuron differentiation, tau protein binding, and insulin/insulin-like growth factor type 1 (IGF1)-related pathways. These results demonstrate that a number of insulin/IGF1 signaling pathway-associated proteins are differentially expressed in ways that are consistent with reduced central insulin resistance, suggesting that selenium has therapeutic value in the treatment of neurodegenerative and metabolic diseases such as AD and non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Xia Xu
- Department of Nursing, School of Nursing, Shandong Xiehe University, Jinan, China
| | - Pishui Qi
- Department of Pharmacy, Shandong Rongjun General Hospital, Jinan, China
| | - Ying Zhang
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
| | - Huihuan Sun
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
| | - Yong Yan
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian, China
- *Correspondence: Wenxiu Sun,
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
- Shudong Liu,
| |
Collapse
|
5
|
Kim GT, Devi S, Sharma A, Cho KH, Kim SJ, Kim BR, Kwon SH, Park TS. Upregulation of the serine palmitoyltransferase subunit SPTLC2 by endoplasmic reticulum stress inhibits the hepatic insulin response. Exp Mol Med 2022; 54:573-584. [PMID: 35513574 PMCID: PMC9166747 DOI: 10.1038/s12276-022-00766-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is induced by various conditions, such as inflammation and the presence of excess nutrients. Abnormal accumulation of unfolded proteins leads to the activation of a collective signaling cascade, termed the unfolded protein response (UPR). ER stress is reported to perturb hepatic insulin response metabolism while promoting insulin resistance. Here, we report that ER stress regulates the de novo biosynthesis of sphingolipids via the activation of serine palmitoyltransferase (SPT), a rate-limiting enzyme involved in the de novo biosynthesis of ceramides. We found that the expression levels of Sptlc1 and Sptlc2, the major SPT subunits, were upregulated and that the cellular concentrations of ceramide and dihydroceramide were elevated by acute ER stress inducers in primary hepatocytes and HepG2 cells. Sptlc2 was upregulated and ceramide levels were elevated by tunicamycin in the livers of C57BL/6J wild-type mice. Analysis of the Sptlc2 promoter demonstrated that the transcriptional activation of Sptlc2 was mediated by the spliced form of X-box binding protein 1 (sXBP1). Liver-specific Sptlc2 transgenic mice exhibited increased ceramide levels in the liver and elevated fasting glucose levels. The insulin response was reduced by the inhibition of the phosphorylation of insulin receptor β (IRβ). Collectively, these results demonstrate that ER stress induces activation of the de novo biosynthesis of ceramide and contributes to the progression of hepatic insulin resistance via the reduced phosphorylation of IRβ in hepatocytes. A lipid molecule called ceramide is key to regulating the body’s insulin response, which controls blood sugar, and thus may hold keys to new treatments for metabolic diseases such as diabetes. Although ceramide levels were known to be raised in obesity and diabetes, the mechanism remained unclear. Tae-Sik Park at Gachon University, Sungnam, South Korea, and Sang-Ho Kwon at Augusta University, USA, and co-workers investigated how excess ceramide production is triggered and the blood sugar regulation consequences. They found that the liver-specific SPTLC2 transgenic mice fed a high-fat diet had increased levels of an enzyme activity of serine palmitoyltransferase which led to synthesis of high levels of ceramide in the liver. The high ceramide levels suppressed insulin signaling, imbalancing blood sugar levels and causing liver toxicity. Therapies that inhibit ceramide synthesis show promise for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Goon-Tae Kim
- Department of Life Science, Gachon University, Sungnam, Korea
| | - Shivani Devi
- Department of Life Science, Gachon University, Sungnam, Korea
| | - Amitesh Sharma
- Department of Life Science, Gachon University, Sungnam, Korea
| | - Kyung-Hee Cho
- Department of Life Science, Gachon University, Sungnam, Korea
| | - Su-Jung Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul, Korea
| | - Bo-Rahm Kim
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Korea. .,Lipidomia Inc., Sungnam, Korea.
| |
Collapse
|
6
|
Wang Y, Zhao H, Yang L, Zhang H, Yu X, Fei W, Zhen Y, Gao Z, Chen S, Ren L. Quantitative proteomics analysis based on tandem mass tag labeling coupled with labeling coupled with liquid chromatography-tandem mass spectrometry discovers the effect of silibinin on non-alcoholic fatty liver disease in mice. Bioengineered 2022; 13:6750-6766. [PMID: 35246007 PMCID: PMC9208462 DOI: 10.1080/21655979.2022.2045837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, the beneficial effects of silibinin (SIL) on nonalcoholic fatty liver disease (NAFLD) have attracted widespread attention. We tried to study the intervention effect of SIL on NAFLD, and explore the potential mechanisms and targets of SIL on NAFLD improvement. Thirty-three male C57BL6/J mice were divided into three groups, and, respectively, fed a normal diet (ND), a high-fat diet (HFD) or a HFD given SIL treatment (HFD+SIL). Biochemical indexes and histopathological changes of mice in each group were detected. In addition, quantitative proteomics analysis based on tandem mass tag (TMT) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis was performed on protein changes in the livers. SIL could reduce the weight of mice, reduce liver lipid deposition, and improve glucose metabolism. Through comparison among the three experimental groups, a total of 30 overlapping proteins were found. These identified proteins were closely linked to liver lipid metabolism and energy homeostasis. Moreover, some drug targets were found, namely perilipin-2, phosphatidate phosphatase LPIN1, farnesyl pyrophosphate synthase, and glutathione S-transferase A1. In conclusions, high-fat diet increases the expressions of proteins implicated in lipid synthesis and transport in the liver, which can result in disorders of liver lipid metabolism. SIL can decrease liver lipid deposition and increase insulin sensitivity by regulating the expressions of these proteins. It not only improves the disorder of lipid metabolism in vivo, but also improves the disorder of glucose metabolism.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Hang Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Liying Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xian Yu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenjie Fei
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhe Gao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Han HS, Kim SG, Kim YS, Jang SH, Kwon Y, Choi D, Huh T, Moon E, Ahn E, Seong JK, Kweon HS, Hwang GS, Lee DH, Cho KW, Koo SH. A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Mol Metab 2022; 55:101402. [PMID: 34838715 PMCID: PMC8689247 DOI: 10.1016/j.molmet.2021.101402] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Diet-induced obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which instigates severe metabolic disorders, including cirrhosis, hepatocellular carcinoma, and type 2 diabetes. We have shown that hepatic depletion of CREB regulated transcription co-activator (CRTC) 2 protects mice from the progression of diet-induced fatty liver phenotype, although the exact mechanism by which CRTC2 modulates this process is elusive to date. Here, we investigated the role of hepatic CRTC2 in the instigation of NAFLD in mammals. METHODS Crtc2 liver-specific knockout (Crtc2 LKO) mice and Crtc2 flox/flox (Crtc2 f/f) mice were fed a high fat diet (HFD) for 7-8 weeks. Body weight, liver weight, hepatic lipid contents, and plasma triacylglycerol (TG) levels were determined. Western blot analysis was performed to determine Sirtuin (SIRT) 1, tuberous sclerosis complex (TSC) 2, and mammalian target of rapamycin complex (mTORC) 1 activity in the liver. Effects of Crtc2 depletion on lipogenesis was determined by measuring lipogenic gene expression (western blot analysis and qRT-PCR) in the liver as well as Oil red O staining in hepatocytes. Effects of miR-34a on mTORC1 activity and hepatic lipid accumulation was assessed by AAV-miR-34a virus in mice and Ad-miR-34a virus and Ad-anti-miR-34a virus in hepatocytes. Autophagic flux was assessed by western blot analysis after leupeptin injection in mice and bafilomycin treatment in hepatocytes. Lipophagy was assessed by transmission electron microscopy and confocal microscopy. Expression of CRTC2 and p-S6K1 in livers of human NAFLD patients was assessed by immunohistochemistry. RESULTS We found that expression of CRTC2 in the liver is highly induced upon HFD-feeding in mice. Hepatic depletion of Crtc2 ameliorated HFD-induced fatty liver disease phenotypes, with a pronounced inhibition of the mTORC1 pathway in the liver. Mechanistically, we found that expression of TSC2, a potent mTORC1 inhibitor, was enhanced in Crtc2 LKO mice due to the decreased expression of miR-34a and the subsequent increase in SIRT1-mediated deacetylation processes. We showed that ectopic expression of miR-34a led to the induction of mTORC1 pathway, leading to the hepatic lipid accumulation in part by limiting lipophagy and enhanced lipogenesis. Finally, we found a strong association of CRTC2, miR-34a and mTORC1 activity in the NAFLD patients in humans, demonstrating a conservation of signaling pathways among species. CONCLUSIONS These data collectively suggest that diet-induced activation of CRTC2 instigates the progression of NAFLD by activating miR-34a-mediated lipid accumulation in the liver via the simultaneous induction of lipogenesis and inhibition of lipid catabolism. Therapeutic approach to specifically inhibit CRTC2 activity in the liver could be beneficial in combating NAFLD in the future.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, South Korea
| | - Young Seok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, South Korea
| | - Si-Hyong Jang
- Department of Pathology, College of Medicine, Soonchunhyang University Chonan Hospital, Cheonan, Chungcoenognam-do, 31151, South Korea
| | - Yongmin Kwon
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Dahee Choi
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Tom Huh
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Eunyoung Moon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, South Korea
| | - Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, South Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, South Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, South Korea
| | - Dae Ho Lee
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do, 31151, South Korea.
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
8
|
Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J 2022; 46:15-37. [PMID: 34965646 PMCID: PMC8831809 DOI: 10.4093/dmj.2021.0280] [Citation(s) in RCA: 267] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022] Open
Abstract
Insulin resistance is the pivotal pathogenic component of many metabolic diseases, including type 2 diabetes mellitus, and is defined as a state of reduced responsiveness of insulin-targeting tissues to physiological levels of insulin. Although the underlying mechanism of insulin resistance is not fully understood, several credible theories have been proposed. In this review, we summarize the functions of insulin in glucose metabolism in typical metabolic tissues and describe the mechanisms proposed to underlie insulin resistance, that is, ectopic lipid accumulation in liver and skeletal muscle, endoplasmic reticulum stress, and inflammation. In addition, we suggest potential therapeutic strategies for addressing insulin resistance.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Division of Molecular Medicine, Gachon University College of Medicine, Incheon, Korea
- Corresponding author: Cheol Soo Choi https://orcid.org/0000-0001-9627-058X Division of Molecular Medicine, Gachon University College of Medicine, 21 Namdongdaero 774beon-gil, Namdong-gu, Incheon 21565, Korea E-mail:
| |
Collapse
|
9
|
Fan Y, Wolford BN, Lu H, Liang W, Sun J, Zhou W, Rom O, Mahajan A, Surakka I, Graham SE, Liu Z, Kim H, Ramdas S, Fritsche LG, Nielsen JB, Gabrielsen ME, Hveem K, Yang D, Song J, Garcia-Barrio MT, Zhang J, Liu W, Zhang K, Willer CJ, Chen YE. Type 2 diabetes sex-specific effects associated with E167K coding variant in TM6SF2. iScience 2021; 24:103196. [PMID: 34746691 PMCID: PMC8554487 DOI: 10.1016/j.isci.2021.103196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
The rs58542926C >T (E167K) variant of the transmembrane 6 superfamily member 2 gene (TM6SF2) is associated with increased risks for nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). Nevertheless, the role of the TM6SF2 rs58542926 variant in glucose metabolism is poorly understood. We performed a sex-stratified analysis of the association between the rs58542926C >T variant and T2D in multiple cohorts. The E167K variant was significantly associated with T2D, especially in males. Using an E167K knockin (KI) mouse model, we found that male but not the female KI mice exhibited impaired glucose tolerance. As an ER membrane protein, TM6SF2 was found to interact with inositol-requiring enzyme 1 α (IRE1α), a primary ER stress sensor. The male Tm6sf2 KI mice exhibited impaired IRE1α signaling in the liver. In conclusion, the E167K variant of TM6SF2 is associated with glucose intolerance primarily in males, both in humans and mice.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Vontz Center, 3125 Eden Avenue, Cincinnati, OH45267, USA
| | - Brooke N. Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jinjian Sun
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109, USA
| | - Oren Rom
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA71103, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ida Surakka
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Sarah E. Graham
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Shweta Ramdas
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars G. Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jonas B. Nielsen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Maiken Elvestad Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Dongshan Yang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jun Song
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Minerva T. Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Cristen J. Willer
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Protective effects of p-coumaric acid against high-fat diet-induced metabolic dysregulation in mice. Biomed Pharmacother 2021; 142:111969. [PMID: 34333285 DOI: 10.1016/j.biopha.2021.111969] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
p-Coumaric acid (PC), a naturally occurring phytochemical, possesses antioxidant and anti-inflammatory properties; however, the mechanisms underlying its protective effects against obesity-related metabolic dysfunction are largely unknown. Here, we treated C57BL/6J mice to a high-fat diet (HFD) with or without PC (10 mg/kg body weight/day) for 16 weeks to determine whether PC ameliorates HFD-induced obesity, insulin resistance, inflammation, and non-alcoholic fatty liver disease (NAFLD). We found no significant differences in food intake and body weight between the groups. However, PC-treated mice showed significantly lower white adipose tissue (WAT) weight, adipocyte size, and plasma leptin level, which were associated with decreased lipogenic enzyme activity and mRNA expression of their genes in the epididymal WAT. Moreover, hepatic lipogenic enzymes activities and expression of their genes and proteins were decreased with concomitant increases in hepatic fatty acid oxidation and mRNA expression of its gene; fecal lipid excretion was significantly increased, resulting in decreased liver weight, hepatic lipid levels, lipid droplet accumulation, and plasma aspartate aminotransferase and lipid levels. Additionally, PC-treated mice showed lower fasting blood glucose, plasma resistin, and MCP-1 levels, HOMA-IR, and mRNA expression of inflammatory genes in the epididymal WAT and liver. Our findings reveal potential mechanisms underlying the action of PC against HFD-induced adiposity, NAFLD, and other metabolic disturbances.
Collapse
|
11
|
Qiao A, Zhou J, Xu S, Ma W, Boriboun C, Kim T, Yan B, Deng J, Yang L, Zhang E, Song Y, Ma YC, Richard S, Zhang C, Qiu H, Habegger KM, Zhang J, Qin G. Sam68 promotes hepatic gluconeogenesis via CRTC2. Nat Commun 2021; 12:3340. [PMID: 34099657 PMCID: PMC8185084 DOI: 10.1038/s41467-021-23624-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes. Hepatic gluconeogenesis is important for glucose homeostasis and a therapeutic target for type 2 diabetes. Here, the authors show that the RNA-binding adaptor protein Sam68 promotes the expression level of gluconeogenic genes and increases blood glucose levels by stabilizing the transcriptional coactivator CRTC2, while hepatic Sam68 deletion alleviates hyperglycemia in mice.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shiyue Xu
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Wenxia Ma
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Chan Boriboun
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Teayoun Kim
- Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Baolong Yan
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Jianxin Deng
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Liu Yang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Eric Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Anne & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stephane Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science Georgia State University, Atlanta, GA, USA
| | - Kirk M Habegger
- Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA. .,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Mateus T, Martins F, Nunes A, Herdeiro MT, Rebelo S. Metabolic Alterations in Myotonic Dystrophy Type 1 and Their Correlation with Lipin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041794. [PMID: 33673200 PMCID: PMC7918590 DOI: 10.3390/ijerph18041794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary and multisystemic disease, characterized by progressive distal muscle weakness and myotonia. Despite huge efforts, the pathophysiological mechanisms underlying DM1 remain elusive. In this review, the metabolic alterations observed in patients with DM1 and their connection with lipin proteins are discussed. We start by briefly describing the epidemiology, the physiopathological and systemic features of DM1. The molecular mechanisms proposed for DM1 are explored and summarized. An overview of metabolic syndrome, dyslipidemia, and the summary of metabolic alterations observed in patients with DM1 are presented. Patients with DM1 present clinical evidence of metabolic alterations, namely increased levels of triacylglycerol and low-density lipoprotein, increased insulin and glucose levels, increased abdominal obesity, and low levels of high-density lipoprotein. These metabolic alterations may be associated with lipins, which are phosphatidate phosphatase enzymes that regulates the triacylglycerol levels, phospholipids, lipid signaling pathways, and are transcriptional co-activators. Furthermore, lipins are also important for autophagy, inflammasome activation and lipoproteins synthesis. We demonstrate the association of lipin with the metabolic alterations in patients with DM1, which supports further clinical studies and a proper exploration of lipin proteins as therapeutic targets for metabolic syndrome, which is important for controlling many diseases including DM1.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Rebelo
- Correspondence: ; Tel.: +351-924-406-306; Fax: +351-234-372-587
| |
Collapse
|
13
|
Lutkewitte AJ, Finck BN. Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity. Biomolecules 2020; 10:E1386. [PMID: 33003344 PMCID: PMC7600782 DOI: 10.3390/biom10101386] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms.
Collapse
Affiliation(s)
| | - Brian N. Finck
- Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA;
| |
Collapse
|
14
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
15
|
Schmitz-Peiffer C. Deconstructing the Role of PKC Epsilon in Glucose Homeostasis. Trends Endocrinol Metab 2020; 31:344-356. [PMID: 32305097 DOI: 10.1016/j.tem.2020.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
The failure of insulin to suppress glucose production by the liver is a key aspect of the insulin resistance seen in type 2 diabetes. Lipid-activated protein kinase C epsilon has long been identified as an important mediator of diet-induced glucose intolerance and hepatic insulin resistance and the current view emphasizes a mechanism involving phosphorylation of the insulin receptor by the kinase to inhibit downstream insulin action. However, the significance of this direct effect in the liver has now been challenged by tissue-specific deletion of PKCε, which demonstrated a more prominent role for the kinase in adipose tissue to promote glucose intolerance. New insights regarding the role of PKCε therefore contribute to the understanding of indirect effects on hepatic glucose metabolism.
Collapse
Affiliation(s)
- Carsten Schmitz-Peiffer
- Garvan Institute of Medical Research, Darlinghurst Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
16
|
Kim GT, Kim SJ, Park SH, Lee D, Park TS. Hepatic Expression of the Serine Palmitoyltransferase Subunit Sptlc2 Reduces Lipid Droplets in the Liver by Activating VLDL Secretion. J Lipid Atheroscler 2020; 9:291-303. [PMID: 32821738 PMCID: PMC7379091 DOI: 10.12997/jla.2020.9.2.291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 01/22/2023] Open
Abstract
Objective Ceramide is a signaling molecule that contributes to insulin resistance and hepatosteatosis. In the present study, we activated de novo ceramide synthesis by inducing the hepatic expression of Sptlc2 to investigate the role of ceramide in glucose and lipid metabolism. Methods We first constructed an adenovirus containing Sptlc2 (AdSptlc2), which encodes a major catalytic subunit of serine palmitoyltransferase (SPT). We then infected hepatocytes and mice fed a regular diet with AdSptlc2 to activate de novo ceramide biosynthesis. The liver-specific effects of ceramide biosynthesis on glucose and lipid metabolism were investigated by measuring changes in insulin signaling, lipid droplet formation, and very low-density lipoprotein (VLDL) secretion. Results In HepG2 hepatocytes, adenoviral Sptlc2 expression inhibited insulin signaling and increased ceramide levels via activation of c-Jun N-terminal kinase and serine phosphorylation of insulin receptor substrate 1. In contrast, in mice, AdSptlc2 infection decreased plasma glucose levels by downregulating gluconeogenic genes and increased plasma triglyceride levels by increasing VLDL secretion. In mice infected with AdSptlc2, glucose intolerance and insulin sensitivity improved, while pyruvate utilization via gluconeogenesis decreased. Conclusion Hepatic ceramide was found to modulate hepatosteatosis and the insulin response via increased VLDL secretion and inhibition of gluconeogenesis in vivo. Although inhibition of the insulin response was observed in vitro, the compensatory mechanism of relieving ceramide-induced stress and reducing ceramide levels resulted in improvements of glucose and lipid metabolic profiles in vivo. This discrepancy between in vitro and in vivo regulation mechanisms suggests that ceramide plays a role in non-alcoholic fatty liver disease and insulin resistance.
Collapse
Affiliation(s)
- Goon-Tae Kim
- Department of Life Science, Gachon University, Seongnam, Korea
| | - Su-Jung Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul, Korea
| | - Si-Hyun Park
- Department of Life Science, Gachon University, Seongnam, Korea
| | - Dongyup Lee
- Department of Life Science, Gachon University, Seongnam, Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Seongnam, Korea
| |
Collapse
|
17
|
Ling Q, Huang H, Han Y, Zhang C, Zhang X, Chen K, Wu L, Tang R, Zheng Z, Zheng S, Li L, Wang B. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: From bench to bedside. Am J Transplant 2020; 20:701-713. [PMID: 31654553 DOI: 10.1111/ajt.15665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Tacrolimus (TAC), the mainstay of maintenance immunosuppressive agents, plays a crucial role in new-onset diabetes after transplant (NODAT). Previous studies investigating the diabetogenic effects of TAC have focused on the β cells of islets. In this study, we found that TAC contributed to NODAT through directly affecting hepatic metabolic homeostasis. In mice, TAC-induced hypoglycemia rather than hyperglycemia during starvation via suppressing gluconeogenetic genes, suggesting the limitation of fasting blood glucose in the diagnosis of NODAT. In addition, TAC caused hepatic insulin resistance and triglyceride accumulation through insulin receptor substrate (IRS)2/AKT and sterol regulatory element binding protein (SREBP1) signaling, respectively. Furthermore, we found a pivotal role of CREB-regulated transcription coactivator 2 (CRTC2) in TAC-induced metabolic disorders. The restoration of hepatic CRTC2 alleviated the metabolic disorders through its downstream molecules (eg, PCK1, IRS2, and SREBP1). Consistent with the findings from bench, low CRTC2 expression in graft hepatocytes was an independent risk factor for NODAT (odds ratio = 2.692, P = .023, n = 135). Integrating grafts' CRTC2 score into the clinical model could significantly increase the predictive capacity (areas under the receiver operating characteristic curve: 0.71 vs 0.79, P = .048). Taken together, in addition to its impact on pancreatic cells, TAC induces "hematogenous diabetes" via CRTC2 signaling. Liver-targeted management may be of help to prevent or heal TAC-associated diabetes.
Collapse
Affiliation(s)
- Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Yuqiu Han
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenzhi Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Xueyou Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Kangchen Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Li Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Jung YS, Kim YH, Radhakrishnan K, kim J, Kim DK, Lee JH, Oh H, Lee IK, Kim W, Cho SJ, Choi CS, Dooley S, Egan JM, Lee CH, Choi HS. An inverse agonist of estrogen-related receptor γ regulates 2-arachidonoylglycerol synthesis by modulating diacylglycerol lipase expression in alcohol-intoxicated mice. Arch Toxicol 2020; 94:427-438. [DOI: https:/doi.org/10.1007/s00204-019-02648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/12/2019] [Indexed: 09/18/2023]
|
19
|
An inverse agonist of estrogen-related receptor γ regulates 2-arachidonoylglycerol synthesis by modulating diacylglycerol lipase expression in alcohol-intoxicated mice. Arch Toxicol 2020; 94:427-438. [PMID: 31912162 PMCID: PMC10131092 DOI: 10.1007/s00204-019-02648-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
Abstract
Chronic alcohol feeding increases the levels of 2-arachidonoylglycerol (2-AG) in the liver, which activates hepatic cannabinoid receptor type 1 (CB1R), leading to oxidative liver injury. 2-AG biosynthesis is catalyzed by diacylglycerol lipase (DAGL). However, the mechanisms regulating hepatic DAGL gene expression and 2-AG production are largely unknown. In this study, we show that CB1R-induced estrogen-related receptor γ (ERRγ) controls hepatic DAGL gene expression and 2-AG levels. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic CB1R agonist, significantly upregulated ERRγ, DAGLα, and DAGLβ, and increased 2-AG levels in the liver (10 mg/kg) and hepatocytes (10 μM) of wild-type (WT) mice. ERRγ overexpression upregulated DAGLα and DAGLβ expressions and increased 2-AG levels, whereas ERRγ knockdown abolished ACEA-induced DAGLα, DAGLβ, and 2-AG in vitro and in vivo. Promoter assays showed that ERRγ positively regulated DAGLα and DAGLβ transcription by binding to the ERR response element in the DAGLα and DAGLβ promoters. Chronic alcohol feeding (27.5% of total calories) induced hepatic steatosis and upregulated ERRγ, leading to increased DAGLα, DAGLβ, or 2-AG in WT mice, whereas these alcohol-induced effects did not occur in hepatocyte-specific CB1R knockout mice or in those treated with the ERRγ inverse agonist GSK5182 (40 mg/kg in mice and 10 μM in vitro). Taken together, these results indicate that suppression of alcohol-induced DAGLα and DAGLβ gene expressions and 2-AG levels by an ERRγ-specific inverse agonist may be a novel and attractive therapeutic approach for the treatment of alcoholic liver disease.
Collapse
|
20
|
Liu C, Liu Y, Liang L, Cui S, Zhang Y. RNA-Seq based transcriptome analysis during bovine viral diarrhoea virus (BVDV) infection. BMC Genomics 2019; 20:774. [PMID: 31651237 PMCID: PMC6813989 DOI: 10.1186/s12864-019-6120-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bovine viral diarrhoea virus (BVDV) is the member of the genus Pestivirus within the Flaviviridae family and responsible for severe economic losses in the cattle industry. BVDV can employ 'infect-and-persist' strategy and 'hit-and-run' strategy to remain associated with hosts and thus contributes to BVDV circulation in cattle herds. BVDV have also evolved various strategies to evade the innate immunity of host. To further understand the mechanisms by which BVDV overcomes the host cell innate immune response and provide more clues for further understanding the BVDV-host interaction, in this descriptive study, we conducted a investigation of differentially expressed genes (DEGs) of the host during BVDV infection by RNA-Seq analysis. RESULTS Our analysis identified 1297, 1732, 3072, and 1877 DEGs in the comparison groups mock vs. MDBK cells infected with BVDV post 2 h (MBV2h), mock vs. MBV6h, mock vs. MBV12h, and mock vs. MBV24h, respectively. The reproducibility and repeatability of the results were validated by RT-qPCR. Enrichment analyses of GO annotations and KEGG pathways revealed the host DEGs that are potentially induced by BVDV infection and may participate in BVDV-host interactions. Protein-protein interaction (PPI) network analyses identified the potential interactions among the DEGs. Our findings suggested that BVDV infection induced the upregulation of genes involved in lipid metabolism. The expression of genes that have antiviral roles, including ISG15, Mx1, OSA1Y, were found to be downregulated and are thus potentially associated with the inhibition of host innate immune system during BVDV infection. The expression levels of F3, C1R, KNG1, CLU, C3, FB, SERPINA5, SERPINE1, C1S, F2RL2, and C2, which belong to the complement and coagulation signalling cascades, were downregulated during BVDV infection, which suggested that the complement system might play a crucial role during BVDV infection. CONCLUSION In this descriptive study, our findings revealed the changes in the host transcriptome expression profile during BVDV infection and suggested that BVDV-infection induced altering the host's metabolic network, the inhibition of the expression of antiviral proteins and genes within the complement system might be contributed to BVDV proliferation. The above findings provided unique insights for further studies on the mechanisms underlying BVDV-host interactions.
Collapse
Affiliation(s)
- Cun Liu
- College of veterinary medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, 100193, China
| | - Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, 100193, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, 100193, China.
| | - Yanming Zhang
- College of veterinary medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Kim DK, Kim YH, Lee JH, Jung YS, Kim J, Feng R, Jeon TI, Lee IK, Cho SJ, Im SS, Dooley S, Osborne TF, Lee CH, Choi HS. Estrogen-related receptor γ controls sterol regulatory element-binding protein-1c expression and alcoholic fatty liver. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158521. [PMID: 31479733 DOI: 10.1016/j.bbalip.2019.158521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
Although SREBP-1c regulates key enzymes required for hepatic de novo lipogenesis, the mechanisms underlying transcriptional regulation of SREBP-1c in pathogenesis of alcoholic fatty liver is still incompletely understood. In this study, we investigated the role of ERRγ in alcohol-mediated hepatic lipogenesis and examined the possibility to ameliorate alcoholic fatty liver through its inverse agonist. Hepatic ERRγ and SREBP-1c expression was increased by alcohol-mediated activation of CB1 receptor signaling. Deletion and mutation analyses of the Srebp-1c gene promoter showed that ERRγ directly regulates Srebp-1c gene transcription via binding to an ERR-response element. Overexpression of ERRγ significantly induced SREBP-1c expression and fat accumulation in liver of mice, which were blocked in Srebp-1c-knockout hepatocytes. Conversely, liver-specific ablation of ERRγ gene expression attenuated alcohol-mediated induction of SREBP-1c expression. Finally, an ERRγ inverse agonist, GSK5182, significantly ameliorates fatty liver disease in chronically alcohol-fed mice through inhibition of SREBP-1c-mediated fat accumulation. ERRγ mediates alcohol-induced hepatic lipogenesis by upregulating SREBP-1c expression, which can be blunted by the inverse agonist for ERRγ, which may be an attractive therapeutic strategy for the treatment of alcoholic fatty liver disease in human.
Collapse
Affiliation(s)
- Don-Kyu Kim
- Department of Molecular Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yoon Seok Jung
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Rilu Feng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim 105760, Germany
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim 105760, Germany
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research, Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701, USA
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
22
|
Abstract
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Collapse
|
23
|
Wu W, Wu Q, Liu X. Chronic activation of FXR-induced liver growth with tissue-specific targeting Cyclin D1. Cell Cycle 2019; 18:1784-1797. [PMID: 31223053 DOI: 10.1080/15384101.2019.1634955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (FXR) plays essential roles in maintaining bile acid and lipid homeostasis by regulating diverse target genes. And its agonists were promising agents for treating various liver diseases. Nevertheless, the potential side effect of chronic FXR activation by specific agonists is not fully understood. In this study, we investigated the mechanism of FXR agonist WAY-362450 induced liver enlargement during treating liver diseases. We demonstrated that chronic ingestion of WAY-362450 induced liver hypertrophy instead of hyperplasia in mouse. Global transcriptional pattern was also examined in mouse livers after treatment with WAY-362450 by RNA-seq assay. Through GO and KEGG enrichment analyses, we demonstrated that the expression of Cyclin D1 (Ccnd1) among the cell cycle-regulating genes was notably increased in WAY-362450-treated mouse liver. Activation of FXR-induced Ccnd1 expression in hepatocyte in a time-dependent manner in vivo and in vitro. Through bioinformatics analysis and ChIP assay, we identified FXR as a direct transcriptional activator of Ccnd1 through binding to a potential enhancer, which was specifically active in livers. We also found active histone acetylation was essential for Ccnd1 induction by FXR. Thus, our study indicated that activation of FXR-induced harmless liver hypertrophy with spatiotemporal modulation of Ccnd1. With a better understanding of the mechanism of tissue-specific gene regulation by FXR, it is beneficial for development and appropriate application of its specific agonist in preventing hepatic diseases.
Collapse
Affiliation(s)
- Weibin Wu
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory of Embryo Original Diseases , Shanghai , China.,c Shanghai Municipal Key Clinical Specialty , Shanghai , China
| | - Qing Wu
- d Department of Gynecology and Obstetrics , Central Hospital of Minhang District , Shanghai , China
| | - Xinmei Liu
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory of Embryo Original Diseases , Shanghai , China.,c Shanghai Municipal Key Clinical Specialty , Shanghai , China
| |
Collapse
|
24
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
25
|
HIF-1-dependent lipin1 induction prevents excessive lipid accumulation in choline-deficient diet-induced fatty liver. Sci Rep 2018; 8:14230. [PMID: 30242180 PMCID: PMC6155071 DOI: 10.1038/s41598-018-32586-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Adaptive responses to hypoxia regulate hepatic lipid metabolism, but their consequences in nonalcoholic fatty liver disease (NAFLD) are largely unknown. Here, we show that hypoxia inducible factor-1 (HIF-1), a key determinant of hypoxic adaptations, prevents excessive hepatic lipid accumulation in the progression of NAFLD. When exposed to a choline-deficient diet (CDD) for 4 weeks, the loss of hepatic Hif-1α gene accelerated liver steatosis with enhanced triglyceride accumulation in the liver compared to wild-type (WT) livers. Expression of genes involved in peroxisomal fatty acid oxidation was suppressed significantly in CDD-treated WT livers, whereas this reduction was further enhanced in Hif-1α-deficient livers. A lack of induction and nuclear accumulation of lipin1, a key regulator of the PPARα/PGC-1α pathway, could be attributed to impaired peroxisomal β-oxidation in Hif-1α-deficient livers. The lipin1-mediated binding of PPARα to the acyl CoA oxidase promoter was markedly reduced in Hif-1α-deficient mice exposed to a CDD. Moreover, forced Lipin1 expression restored the aberrant lipid accumulation caused by Hif-1α deletion in cells incubated in a choline-deficient medium. These results strongly suggest that HIF-1 plays a crucial role in the regulation of peroxisomal lipid metabolism by activating the expression and nuclear accumulation of lipin1 in NAFLD.
Collapse
|
26
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
27
|
Qiu Y, Sui X, Cao S, Li X, Ning Y, Wang S, Yin L, Zhi X. Steroidogenic Acute Regulatory Protein (StAR) Overexpression Reduces Inflammation and Insulin Resistance in Obese Mice. J Cell Biochem 2017; 118:3932-3942. [DOI: 10.1002/jcb.26046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yanyan Qiu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Xianxian Sui
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Shengxuan Cao
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Yanxia Ning
- Department of Internal Medicine School of Medicine, Virginia Commonwealth University Richmond Virginia
| | - Songmei Wang
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Lianhua Yin
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiuling Zhi
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| |
Collapse
|
28
|
Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol Sci 2017; 38:649-665. [PMID: 28551355 DOI: 10.1016/j.tips.2017.04.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Although ample evidence links hepatic lipid accumulation with hepatic insulin resistance, the mechanistic basis of this association is incompletely understood and controversial. Diacylglycerols (DAGs) and ceramides have emerged as the two best-studied putative mediators of lipid-induced hepatic insulin resistance. Both lipids were first associated with insulin resistance in skeletal muscle and were subsequently hypothesized to mediate insulin resistance in the liver. However, the putative roles for DAGs and ceramides in hepatic insulin resistance have proved more complex than originally imagined, with various genetic and pharmacologic manipulations yielding a vast and occasionally contradictory trove of data to sort. In this review we examine the state of this field, turning a critical eye toward both DAGs and ceramides as putative mediators of lipid-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Max C Petersen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald I Shulman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Qiu Y, Sui X, Zhan Y, Xu C, Li X, Ning Y, Zhi X, Yin L. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance. Biochim Biophys Acta Mol Basis Dis 2017; 1863:978-990. [PMID: 28153708 DOI: 10.1016/j.bbadis.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/18/2016] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yanyan Qiu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianxian Sui
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongkun Zhan
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanxia Ning
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Laboratory of Medical Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Lianhua Yin
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Kajimoto K, Suemitsu E, Sato Y, Sakurai Y, Harashima H. Liver-Specific Silencing of Lipin1 Reduces Fat Mass as Well as Hepatic Triglyceride Biosynthesis in Mice. Biol Pharm Bull 2017; 39:1653-1661. [PMID: 27725442 DOI: 10.1248/bpb.b16-00353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipin1, a bifunctional protein, regulates fatty acid utilization in the triglyceride biosynthesis pathway. In the current study, using a liver-specific in vivo short interfering RNA (siRNA) delivery system, we examined the pathological and physiological roles of hepatic Lipin1 in the development of insulin resistance and the maintenance of systemic energy homeostasis. Liver-specific silencing of Lipin1 expression was achieved by the systemic administration of siRNA against Lpin1 mRNA (siLpin1)-loaded lipid nanoparticles (LNPs) to wild type mice at 3-4 d intervals for 25 d. The siLpin1-treated mice showed normal blood glucose levels and insulin sensitivity, however, triglyceride (TG) levels were reduced in liver and peripheral blood of them. The knockdown of hepatic Lipin1 in mice led to marked decrease in adipose tissue mass and adipocyte diameters in epididymal and inguinal fat depots without the undesired silencing of Lipin1 in adipose tissue. In summary, we report for the first time that the down-regulation of hepatic Lipin1 expression leads to less adiposity as well as a decrease in TG level in the liver and blood circulation, without any alterations in the glucose tolerance and blood glucose levels. Our findings may provide new insights into the physiological roles of hepatic Lipin1 in systemic energy homeostasis.
Collapse
|
31
|
Jung YS, Lee JM, Kim DK, Lee YS, Kim KS, Kim YH, Kim J, Lee MS, Lee IK, Kim SH, Cho SJ, Jeong WI, Lee CH, Harris RA, Choi HS. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression. PLoS One 2016; 11:e0159425. [PMID: 27455076 PMCID: PMC4959684 DOI: 10.1371/journal.pone.0159425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion.
Collapse
MESH Headings
- Animals
- Cell Line
- Fibroblast Growth Factors/genetics
- Gene Expression Regulation/drug effects
- Gene Knockdown Techniques
- Hepatocytes/metabolism
- Humans
- Male
- Mice
- Mice, Knockout
- Orphan Nuclear Receptors/genetics
- Orphan Nuclear Receptors/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Yoon Seok Jung
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Soo Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki-Sun Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
- Boryung Central Research Institute, Ansan, 15425, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Robert A. Harris
- Richard Roudebush Veterans Affairs Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, Indiana, United States of America
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice. Nutrients 2016; 8:nu8050305. [PMID: 27213439 PMCID: PMC4882717 DOI: 10.3390/nu8050305] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/24/2023] Open
Abstract
Several in vitro and in vivo studies have reported the anti-inflammatory, anti-diabetic and anti-obesity effects of the flavonoid apigenin. However, the long-term supplementary effects of low-dose apigenin on obesity are unclear. Therefore, we investigated the protective effects of apigenin against obesity and related metabolic disturbances by exploring the metabolic and transcriptional responses in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed an HFD or apigenin (0.005%, w/w)-supplemented HFD for 16 weeks. In HFD-fed mice, apigenin lowered plasma levels of free fatty acid, total cholesterol, apolipoprotein B and hepatic dysfunction markers and ameliorated hepatic steatosis and hepatomegaly, without altering food intake and adiposity. These effects were partly attributed to upregulated expression of genes regulating fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain and cholesterol homeostasis, downregulated expression of lipolytic and lipogenic genes and decreased activities of enzymes responsible for triglyceride and cholesterol ester synthesis in the liver. Moreover, apigenin lowered plasma levels of pro-inflammatory mediators and fasting blood glucose. The anti-hyperglycemic effect of apigenin appeared to be related to decreased insulin resistance, hyperinsulinemia and hepatic gluconeogenic enzymes activities. Thus, apigenin can ameliorate HFD-induced comorbidities via metabolic and transcriptional modulations in the liver.
Collapse
|
33
|
Chae M, Jung JY, Bae IH, Kim HJ, Lee TR, Shin DW. Lipin-1 expression is critical for keratinocyte differentiation. J Lipid Res 2015; 57:563-73. [PMID: 26658689 DOI: 10.1194/jlr.m062588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Indexed: 12/19/2022] Open
Abstract
Lipin-1 is an Mg(2+)-dependent phosphatidate phosphatase that facilitates the dephosphorylation of phosphatidic acid to generate diacylglycerol. Little is known about the expression and function of lipin-1 in normal human epidermal keratinocytes (NHEKs). Here, we demonstrate that lipin-1 is present in basal and spinous layers of the normal human epidermis, and lipin-1 expression is gradually downregulated during NHEK differentiation. Interestingly, lipin-1 knockdown (KD) inhibited keratinocyte differentiation and caused G1 arrest by upregulating p21 expression. Cell cycle arrest by p21 is required for commitment of keratinocytes to differentiation, but must be downregulated for the progress of keratinocyte differentiation. Therefore, reduced keratinocyte differentiation results from sustained upregulation of p21 by lipin-1 KD. Lipin-1 KD also decreased the phosphorylation/activation of protein kinase C (PKC)α, whereas lipin-1 overexpression increased PKCα phosphorylation. Treatment with PKCα inhibitors, like lipin-1 KD, stimulated p21 expression, while lipin-1 overexpression reduced p21 expression, implicating PKCα in lipin-1-induced regulation of p21 expression. Taken together, these results suggest that lipin-1-mediated downregulation of p21 is critical for the progress of keratinocyte differentiation after the initial commitment of keratinocytes to differentiation induced by p21, and that PKCα is involved in p21 expression regulation by lipin-1.
Collapse
Affiliation(s)
- Minjung Chae
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji-Yong Jung
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Il-Hong Bae
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
34
|
El Kebbaj R, Andreoletti P, El Hajj HI, El Kharrassi Y, Vamecq J, Mandard S, Saih FE, Latruffe N, El Kebbaj MS, Lizard G, Nasser B, Cherkaoui-Malki M. Argan oil prevents down-regulation induced by endotoxin on liver fatty acid oxidation and gluconeogenesis and on peroxisome proliferator-activated receptor gamma coactivator-1α, (PGC-1α), peroxisome proliferator-activated receptor α (PPARα) and estrogen related receptor α (ERRα). BIOCHIMIE OPEN 2015; 1:51-59. [PMID: 29632829 PMCID: PMC5889474 DOI: 10.1016/j.biopen.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/20/2015] [Indexed: 01/04/2023]
Abstract
In patients with sepsis, liver metabolism and its capacity to provide other organs with energetic substrates are impaired. This and many other pathophysiological changes seen in human patients are reproduced in mice injected with purified endotoxin (lipopolysaccharide, LPS). In the present study, down-regulation of genes involved in hepatic fatty acid oxidation (FAOx) and gluconeogenesis in mice exposed to LPS was challenged by nutritional intervention with Argan oil. Mice given a standard chow supplemented or not with either 6% (w/w) Argan oil (AO) or 6% (w/w) olive oil (OO) prior to exposure to LPS were explored for liver gene expressions assessed by mRNA transcript levels and/or enzyme activities. AO (or OO) food supplementation reveals that, in LPS-treated mice, hepatic expression of genes involved in FAOx and gluconeogenesis was preserved. This preventive protection might be related to the recovery of the gene expressions of nuclear receptors peroxisome proliferator-activated receptor α (PPARα) and estrogen related receptor α (ERRα) and their coactivator peroxisome proliferator-activated receptor gamma coactivator-1α, (PGC-1α). These preventive mechanisms conveyed by AO against LPS-induced metabolic dysregulation might add new therapeutic potentialities in the management of human sepsis. Argan oil prevents LPS-treated mice from liver dysregulation of FAOx and gluconeogenesis. Argan oil improves hepatic expression of PPARα and ERRα, and their coactivators PGC-1α and Lipin-1. New preventive mechanisms conveyed by Argan oil against LPS-induced metabolic dysregulation.
Collapse
Key Words
- ACADL, acyl CoA dehydrogenase long-chain
- ACADM, acyl CoA dehydrogenase medium-chain
- ACADS, acyl CoA dehydrogenase short-chain
- ACOX1, acyl-CoA oxidase 1
- AO, Argan oil
- Argan oil
- Beta-oxidation
- Coactivator
- ERRα, estrogen related receptor α
- G6PH, glucose-6-phosphatase
- Gluconeogenesis
- Glut2, glucose transporter 2
- Glut4, glucose transporter 4
- HNF-4α, hepatic nuclear factor-4α
- LPS, lipopolysaccharide
- Nuclear receptor
- OO, olive oil
- PEPCK, phospoenolpyruvate carboxykinase
- PGC-1α, peroxisome proliferator-activated receptor γ coactivator-1α
- PPARα, peroxisome proliferator-activated receptor α
Collapse
Affiliation(s)
- Riad El Kebbaj
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France.,Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco.,Laboratoire des Sciences et Technologies de la Santé, Institut supérieur des sciences de la santé Université Hassan I, Route de Casablanca. 14 BP 539, 26 000 Settat, Morocco
| | - Pierre Andreoletti
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - Hammam I El Hajj
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - Youssef El Kharrassi
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France.,Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco
| | - Joseph Vamecq
- INSERM and HMNO, CBP, CHRU Lille, 59037 Lille and RADEME EA 7364, Faculté de Médecine, Université de Lille 2, 59045 Lille, France
| | - Stéphane Mandard
- Lipness Team, INSERM, Research Center UMR866 and LabEx LipSTIC, Université de Bourgogne-Franche Comté, Dijon, France
| | - Fatima-Ezzahra Saih
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France.,Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco
| | - Norbert Latruffe
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - M'Hammed Saïd El Kebbaj
- Laboratoire de recherche sur les lipoprotéines et l'Athérosclérose, Faculté des Sciences Ben M'sik, Avenue Cdt Driss El Harti, BP 7955, Université Hassan II-Mohammedia-Casablanca, Morocco
| | - Gérard Lizard
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - Boubker Nasser
- Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco
| | - Mustapha Cherkaoui-Malki
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| |
Collapse
|
35
|
Zhang Y, Kim DK, Lee JM, Park SB, Jeong WI, Kim SH, Lee IK, Lee CH, Chiang JYL, Choi HS. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression. Biochem J 2015; 470:181-93. [PMID: 26348907 PMCID: PMC5333639 DOI: 10.1042/bj20141494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/29/2015] [Indexed: 12/30/2022]
Abstract
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Cells, Cultured
- Cholesterol 7-alpha-Hydroxylase/biosynthesis
- Cholesterol 7-alpha-Hydroxylase/genetics
- Drug Inverse Agonism
- Ethanol/pharmacology
- Gene Expression
- Glycerides/pharmacology
- HEK293 Cells
- Hepatocytes/metabolism
- Humans
- Liver/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Promoter Regions, Genetic
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Yaochen Zhang
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Bum Park
- Chemical Biology Laboratory, School of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-338, Republic of Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio University's Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, U.S.A
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
36
|
Does Diacylglycerol Accumulation in Fatty Liver Disease Cause Hepatic Insulin Resistance? BIOMED RESEARCH INTERNATIONAL 2015; 2015:104132. [PMID: 26273583 PMCID: PMC4529893 DOI: 10.1155/2015/104132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023]
Abstract
Numerous studies conducted on obese humans and various rodent models of obesity have identified a correlation between hepatic lipid content and the development of insulin resistance in liver and other tissues. Despite a large body of the literature on this topic, the cause and effect relationship between hepatic steatosis and insulin resistance remains controversial. If, as many believe, lipid aggregation in liver drives insulin resistance and other metabolic abnormalities, there are significant unanswered questions as to which lipid mediators are causative in this cascade. Several published papers have now correlated levels of diacylglycerol (DAG), the penultimate intermediate in triglyceride synthesis, with development of insulin resistance and have postulated that this occurs via activation of protein kinase C signaling. Although many studies have confirmed this relationship, many others have reported a disconnect between DAG content and insulin resistance. It has been postulated that differences in methods for DAG measurement, DAG compartmentalization within the cell, or fatty acid composition of the DAG may explain these discrepancies. The purpose of this review is to compare and contrast some of the relevant findings in this area and to discuss a number of unanswered questions regarding the relationship between DAG and insulin resistance.
Collapse
|
37
|
Rojas JM, Bruinstroop E, Printz RL, Alijagic-Boers A, Foppen E, Turney MK, George L, Beck-Sickinger AG, Kalsbeek A, Niswender KD. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation. Mol Metab 2015; 4:210-21. [PMID: 25737956 PMCID: PMC4338317 DOI: 10.1016/j.molmet.2015.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous system (CNS) neuropeptide Y (NPY); in fact, a single intracerebroventricular (icv) administration of NPY in lean fasted rats elevates hepatic VLDL-TG secretion and does so, in large part, via signaling through the CNS NPY Y1 receptor. Thus, our overarching hypothesis is that elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate liver lipid metabolism. METHODS Chow-fed Zucker fatty (ZF) rats were pair-fed by matching their caloric intake to that of lean controls and effects on body weight, plasma TG, and liver content of TG and phospholipid (PL) were compared to ad-libitum (ad-lib) fed ZF rats. Additionally, lean 4-h fasted rats with intact or disrupted hepatic sympathetic innervation were treated with icv NPY or NPY Y1 receptor agonist to identify novel hepatic mechanisms by which NPY promotes VLDL particle maturation and secretion. RESULTS Manipulation of plasma TG levels in obese ZF rats, through pair-feeding had no effect on liver TG content; however, hepatic PL content was substantially reduced and was tightly correlated with plasma TG levels. Treatment with icv NPY or a selective NPY Y1 receptor agonist in lean fasted rats robustly activated key hepatic regulatory proteins, stearoyl-CoA desaturase-1 (SCD-1), ADP-ribosylation factor-1 (ARF-1), and lipin-1, known to be involved in remodeling liver PL into TG for VLDL maturation and secretion. Lastly, we show that the effects of CNS NPY on key liporegulatory proteins are attenuated by hepatic sympathetic denervation. CONCLUSIONS These data support a model in which CNS NPY modulates mediators of hepatic PL remodeling and VLDL maturation to stimulate VLDL-TG secretion that is dependent on the Y1 receptor and sympathetic signaling to the liver.
Collapse
Key Words
- AGPAT, 1-acyl-glycerol-3-phosphate acyltransferase
- ARF-1, ADP-ribosylation factor-1
- ApoB, apolipoprotein B
- CNS, central nervous system
- Cyto, cytoplasmic
- DAG, diacylglycerol
- DGAT, diacylglycerol acyltransferase
- ER, endoplasmic reticulum
- FFA(s), free fatty acid(s)
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HDAC-1, histone deacetylase-1
- Lipin-1
- NE, norepinephrine
- NPY Y1 receptor
- NPY, neuropeptide Y
- Nuc, nuclear
- PA, phosphatidic acid
- PAP-1, phosphatidic acid phosphatase-1
- PF, pair-fed
- PL, phospholipid
- PLD, phospholipase D
- POMC, proopiomelanocortin
- Phospholipid
- RPL13A, ribosomal protein L13a
- RT-PCR, real-time PCR
- SCD-1, stearoyl-CoA desaturase-1
- SNS, sympathetic nervous system
- Sham, sham-denervation
- Sx, sympathetic denervation
- Sympathetic denervation
- TG, triglyceride
- Triglyceride
- VLDL
- VLDL, very low-density lipoprotein
- Veh, vehicle
- ZF, Zucker fatty
- ad-lib, ad-libitum
- icv, intracerebroventricular
Collapse
Affiliation(s)
- Jennifer M. Rojas
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aldijana Alijagic-Boers
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maxine K. Turney
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Leena George
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Bioscience, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Kevin D. Niswender
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
38
|
Schweitzer GG, Chen Z, Gan C, McCommis KS, Soufi N, Chrast R, Mitra MS, Yang K, Gross RW, Finck BN. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice. J Lipid Res 2015; 56:848-58. [PMID: 25722343 DOI: 10.1194/jlr.m055962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1(-/-) mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1(-/-) mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1(-/-) mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1(-/-) mice were not protected from intrahepatic accumulation of diacylglycerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload.
Collapse
Affiliation(s)
| | - Zhouji Chen
- Washington University School of Medicine, St. Louis, MO 63110
| | - Connie Gan
- Washington University School of Medicine, St. Louis, MO 63110
| | - Kyle S McCommis
- Washington University School of Medicine, St. Louis, MO 63110
| | - Nisreen Soufi
- Washington University School of Medicine, St. Louis, MO 63110
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Kui Yang
- Washington University School of Medicine, St. Louis, MO 63110
| | - Richard W Gross
- Washington University School of Medicine, St. Louis, MO 63110
| | - Brian N Finck
- Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
39
|
Arai T, Kato Y, Ishimoto K, Kanai M, Shinjo S, Sayama K, Suzuki T, Doi T, Johnson RS, Suematsu M, Goda N. WITHDRAWN: Loss of hepatic HIF-1α accelerates lipid accumulation by inhibiting peroxisomal fatty acid oxidation in nonalcoholic fatty liver disease. J Hepatol 2015:S0168-8278(15)00074-4. [PMID: 25681160 DOI: 10.1016/j.jhep.2015.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/09/2015] [Accepted: 01/29/2015] [Indexed: 12/04/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Takatomo Arai
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Yuki Kato
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Kenji Ishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mai Kanai
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Satoko Shinjo
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Keimon Sayama
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Tomohiro Suzuki
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University; JST, ERATO, Suematsu Gas Biology Project, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan.
| |
Collapse
|
40
|
Sun X, Dang F, Zhang D, Yuan Y, Zhang C, Wu Y, Wang Y, Liu Y. Glucagon-CREB/CRTC2 signaling cascade regulates hepatic BMAL1 protein. J Biol Chem 2015; 290:2189-97. [PMID: 25480789 PMCID: PMC4303670 DOI: 10.1074/jbc.m114.612358] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Energy metabolism follows a diurnal pattern responding to the cycles of light and food exposures. Although food availability is a potent synchronizer of peripheral circadian clock in mammals, the underlying mechanism remains elusive. Here, we found that the temporal signals of fasting and refeeding hormones regulate the transcription of Bmal1, a key transcription activator of molecular clock, in the liver. During fasting, glucagon, a major fasting hormone, activates CREB/CRTC2 transcriptional complex that is recruited to Bmal1 promoter to induce its expression. Furthermore, we showed that CRTC2 is required for basal transcriptional regulation of Bmal1 by experiments using either adenovirus-mediated CRTC2 RNAi knockdown or primary Crtc2 null hepatocytes. On the other hand, insulin suppresses fasting-induced Bmal1 expression by inhibiting CRTC2 activity after refeeding. Taken together, our results indicate CRTC2 as a key component of the circadian oscillator that integrates the mammalian clock and energy metabolism.
Collapse
Affiliation(s)
- Xiujie Sun
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031, the University of the Chinese Academy of Sciences, Beijing 100049, and
| | - Fabin Dang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031, the University of the Chinese Academy of Sciences, Beijing 100049, and
| | - Deyi Zhang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031, the University of the Chinese Academy of Sciences, Beijing 100049, and
| | - Yuan Yuan
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031, the University of the Chinese Academy of Sciences, Beijing 100049, and
| | - Cui Zhang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031
| | - Yuting Wu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031
| | - Yiguo Wang
- the Ministry of Education Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031,
| |
Collapse
|
41
|
Bon H, Wadhwa K, Schreiner A, Osborne M, Carroll T, Ramos-Montoya A, Ross-Adams H, Visser M, Hoffmann R, Ahmed AA, Neal DE, Mills IG. Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res 2014; 13:620-635. [PMID: 25548099 DOI: 10.1158/1541-7786.mcr-13-0182-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete. IMPLICATIONS This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.
Collapse
Affiliation(s)
- Hélène Bon
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Karan Wadhwa
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Alexander Schreiner
- Microscopy and Imaging Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Michelle Osborne
- Genomics Core, Cambridge Research Institute, Cambridge, CB2 ORE, UK
| | - Thomas Carroll
- Bioinformatics Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | | | - Helen Ross-Adams
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Matthieu Visser
- Health Care Innovation, Philips Research, Eidhoven, Netherlands
| | - Ralf Hoffmann
- Molecular Diagnostics, Philips Research, Eindhoven, Netherlands
| | - Ahmed Ashour Ahmed
- Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS and Nuffield Department of Obstetrics and Gynaecology, University of Oxford, OX3 9DU, UK
| | - David E Neal
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.,Department of Oncology, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Ian G Mills
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Oslo University Hospital, 0424 Oslo, Norway.,Department of Cancer Prevention, Oslo University Hospital, 0424 Oslo, Norway.,Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo and Oslo University Hospital, N-0349, Oslo, Norway
| |
Collapse
|
42
|
Oh KJ, Han HS, Kim MJ, Koo SH. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep 2014; 46:567-74. [PMID: 24238363 PMCID: PMC4133859 DOI: 10.5483/bmbrep.2013.46.12.248] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 02/04/2023] Open
Abstract
Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed.
Collapse
Affiliation(s)
| | | | | | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul 136-713, Korea
| |
Collapse
|
43
|
Agarwal AK, Sankella S. Phosphatidic acid: a new therapeutic lead to suppress hepatic glucose production. ACTA ACUST UNITED AC 2014; 4:323-326. [PMID: 26413162 DOI: 10.2217/dmt.14.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anil K Agarwal
- Division of Nutrition & Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shireesha Sankella
- Division of Nutrition & Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
44
|
In-depth metabolic phenotyping of genetically engineered mouse models in obesity and diabetes. Mamm Genome 2014; 25:508-21. [PMID: 24792749 DOI: 10.1007/s00335-014-9520-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/10/2014] [Indexed: 01/09/2023]
Abstract
The world-wide prevalence of obesity and diabetes has increased sharply during the last two decades. Accordingly, the metabolic phenotyping of genetically engineered mouse models is critical for evaluating the functional roles of target genes in obesity and diabetes, and for developing new therapeutic targets. In this review, we discuss the practical meaning of metabolic phenotyping, the strategy of choosing appropriate tests, and considerations when designing and performing metabolic phenotyping in mice.
Collapse
|
45
|
Targeting Hepatic Glycerolipid Synthesis and Turnover to Treat Fatty Liver Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/498369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of metabolic abnormalities ranging from simple hepatic steatosis (accumulation of neutral lipid) to development of steatotic lesions, steatohepatitis, and cirrhosis. NAFLD is extremely prevalent in obese individuals and with the epidemic of obesity; nonalcoholic steatohepatitis (NASH) has become the most common cause of liver disease in the developed world. NASH is rapidly emerging as a prominent cause of liver failure and transplantation. Moreover, hepatic steatosis is tightly linked to risk of developing insulin resistance, diabetes, and cardiovascular disease. Abnormalities in hepatic lipid metabolism are part and parcel of the development of NAFLD and human genetic studies and work conducted in experimentally tractable systems have identified a number of enzymes involved in fat synthesis and degradation that are linked to NAFLD susceptibility as well as progression to NASH. The goal of this review is to summarize the current state of our knowledge on these pathways and focus on how they contribute to etiology of NAFLD and related metabolic diseases.
Collapse
|
46
|
Sankella S, Garg A, Horton JD, Agarwal AK. Hepatic gluconeogenesis is enhanced by phosphatidic acid which remains uninhibited by insulin in lipodystrophic Agpat2-/- mice. J Biol Chem 2014; 289:4762-77. [PMID: 24425876 DOI: 10.1074/jbc.m113.530998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study we examined the role of phosphatidic acid (PA) in hepatic glucose production (HGP) and development of hepatic insulin resistance in mice that lack 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2). Liver lysophosphatidic acid and PA levels were increased ∼2- and ∼5-fold, respectively, in male Agpat2(-/-) mice compared with wild type mice. In the absence of AGPAT2, the liver can synthesize PAs by activating diacylglycerol kinase or phospholipase D, both of which were elevated in the livers of Agpat2(-/-) mice. We found that PAs C16:0/18:1 and C18:1/20:4 enhanced HGP in primary WT hepatocytes, an effect that was further enhanced in primary hepatocytes from Agpat2(-/-) mice. Lysophosphatidic acids C16:0 and C18:1 failed to increase HGP in primary hepatocytes. The activation of HGP was accompanied by an up-regulation of the key gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. This activation was suppressed by insulin in the WT primary hepatocytes but not in the Agpat2(-/-) primary hepatocytes. Thus, the lack of normal insulin signaling in Agpat2(-/-) livers allows unrestricted PA-induced gluconeogenesis significantly contributing to the development of hyperglycemia in these mice.
Collapse
Affiliation(s)
- Shireesha Sankella
- From the Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and Center for Human Nutrition
| | | | | | | |
Collapse
|
47
|
Vasiljević A, Veličković N, Bursać B, Djordjevic A, Milutinović DV, Nestorović N, Matić G. Enhanced prereceptor glucocorticoid metabolism and lipogenesis impair insulin signaling in the liver of fructose-fed rats. J Nutr Biochem 2013; 24:1790-7. [DOI: 10.1016/j.jnutbio.2013.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/18/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
|
48
|
Kim DK, Gang GT, Ryu D, Koh M, Kim YN, Kim SS, Park J, Kim YH, Sim T, Lee IK, Choi CS, Park SB, Lee CH, Koo SH, Choi HS. Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis. Diabetes 2013; 62:3093-102. [PMID: 23775767 PMCID: PMC3749343 DOI: 10.2337/db12-0946] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM.
Collapse
Affiliation(s)
- Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Gil-Tae Gang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dongryeol Ryu
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Yo-Na Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Su Sung Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Jinyoung Park
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Taebo Sim
- Chemical Kinomics Research Center, Future Convergence Research Division, Korean Institute of Science and Technology, Seoul, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine and World Class University Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
- Gil Medical Center, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul, Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| | - Seung-Hoi Koo
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Medical Sciences, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| |
Collapse
|
49
|
He J, Gao J, Xu M, Ren S, Stefanovic-Racic M, O'Doherty RM, Xie W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 2013; 62:1876-87. [PMID: 23349477 PMCID: PMC3661619 DOI: 10.2337/db12-1039] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pregnane X receptor (PXR), along with its sister receptor constitutive androstane receptor (CAR), was initially characterized as a xenobiotic receptor that regulates drug metabolism. In this study, we have uncovered an unexpected endobiotic role of PXR in obesity and type 2 diabetes. PXR ablation inhibited high-fat diet (HFD)-induced obesity, hepatic steatosis, and insulin resistance, which were accounted for by increased oxygen consumption, increased mitochondrial β-oxidation, inhibition of hepatic lipogenesis and inflammation, and sensitization of insulin signaling. In an independent model, introducing the PXR(-/-) allele into the ob/ob background also improved body composition and relieved the diabetic phenotype. The ob/ob mice deficient of PXR showed increased oxygen consumption and energy expenditure, as well as inhibition of gluconeogenesis and increased rate of glucose disposal during euglycemic clamp. Mechanistically, the metabolic benefits of PXR ablation were associated with the inhibition of c-Jun NH2-terminal kinase activation and downregulation of lipin-1, a novel PXR target gene. The metabolic benefit of PXR ablation was opposite to the reported prodiabetic effect of CAR ablation. Our results may help to establish PXR as a novel therapeutic target, and PXR antagonists may be used for the prevention and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jinhan He
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Martin O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Wen Xie,
| |
Collapse
|
50
|
Kok BPC, Dyck JRB, Harris TE, Brindley DN. Differential regulation of the expressions of the PGC-1α splice variants, lipins, and PPARα in heart compared to liver. J Lipid Res 2013; 54:1662-1677. [PMID: 23505321 DOI: 10.1194/jlr.m036624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) and PPARγ coactivator 1α (PGC-1α) are crucial transcriptional regulators for genes involved in FA oxidation. Lipin-1 is essential for this increased capacity for β-oxidation in fasted livers, and it is also a phosphatidate phosphatase involved in triacylglycerol and phospholipid synthesis. Little is known about the regulation of these proteins in the heart during fasting, where there is increased FA esterification and oxidation. Lipin-1, lipin-2, lipin-3, carnitine palmitoyltransferase-1b (Cpt1b), and PGC-1α-b mRNA were increased by glucocorticoids and cAMP in neonatal rat cardiomyocytes. However, Cpt1b upregulation was caused by increased PPARα activation rather than expression. By contrast, the effects of PPARα in fasted livers are mediated through increased expression. During fasting, the expressions of PGC-1α-b and PGC-1α-c are increased in mouse hearts, and this is explained by increased cAMP-dependent signaling. By contrast, PGC-1α-a expression is increased in liver. Contrary to our expectations, lipin-1 expression was decreased and lipin-2 remained unchanged in hearts compared with increases in fasted livers. Our results identify novel differences in the regulation of lipins, PPARα, and PGC-1α splice variants during fasting in heart versus liver, even though the ultimate outcome in both tissues is to increase FA turnover and oxidation.
Collapse
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Biochemistry, and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David N Brindley
- Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|