1
|
Tarpada SP, Heid J, Sun S, Lee M, Maslov A, Vijg J, Sen M. Blood and Bone-Derived DNA Methylation Ages Predict Mortality After Geriatric Hip Fracture: A Pilot Study. J Bone Joint Surg Am 2024:00004623-990000000-01256. [PMID: 39509524 DOI: 10.2106/jbjs.23.01468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
BACKGROUND The purpose of this study was to (1) perform the first analysis of bone-derived DNA methylation, (2) compare DNA methylation clocks derived from bone with those derived from whole blood, and (3) establish a relationship between DNA methylation age and 1-year mortality within the geriatric hip fracture population. METHODS Patients ≥65 years old who presented to a Level-I trauma center with a hip fracture were prospectively enrolled from 2020 to 2021. Preoperative whole blood and intraoperative bone samples were collected. Following DNA extraction, RRBS (reduced representation bisulfite sequencing) libraries for methylation clock analysis were prepared. Sequencing data were analyzed using computational algorithms previously described by Horvath et al. to build a regression model of methylation (biological) age for each tissue type. Student t tests were used to analyze differences (Δ) in methylation age versus chronological age. Correlation between blood and bone methylation ages was expressed using the Pearson R coefficient. RESULTS Blood and bone samples were collected from 47 patients. DNA extraction, sequencing, and methylation analysis were performed on 24 specimens from 12 subjects. Mean age at presentation was 85.4 ± 8.65 years. There was no difference in DNA extraction yield between the blood and bone samples (p = 0.935). The mean follow-up duration was 12.4 ± 4.3 months. The mortality cohort (4 patients, 33%) showed a mean ΔAgeBone of 18.33 ± 6.47 years and mean ΔAgeBlood of 16.93 ± 4.02 years. In comparison, the survival cohort showed a significantly lower mean ΔAgeBone and ΔAgeBlood (7.86 ± 6.7 and 7.31 ± 7.71 years; p = 0.026 and 0.039, respectively). Bone-derived methylation age was strongly correlated with blood-derived methylation age (R = 0.81; p = 0.0016). CONCLUSIONS Bone-derived DNA methylation clocks were found to be both feasible and strongly correlated with those derived from whole blood within a geriatric hip fracture population. Mortality was independently associated with the DNA methylation age, and that age was approximately 17 years greater than chronological age in the mortality cohort. The results of the present study suggest that prevention of advanced DNA methylation may play a key role in decreasing mortality following hip fracture. LEVEL OF EVIDENCE Prognostic Level I. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Sandip P Tarpada
- Department of Orthopaedic Surgery, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - Johanna Heid
- Department of Genetics, Montefiore Medical Center: Einstein Campus, Bronx, New York
| | - Shixiang Sun
- Department of Genetics, Montefiore Medical Center: Einstein Campus, Bronx, New York
| | - Moonsook Lee
- Department of Genetics, Montefiore Medical Center: Einstein Campus, Bronx, New York
| | - Alexander Maslov
- Department of Genetics, Montefiore Medical Center: Einstein Campus, Bronx, New York
| | - Jan Vijg
- Department of Genetics, Montefiore Medical Center: Einstein Campus, Bronx, New York
| | - Milan Sen
- Department of Genetics, Montefiore Medical Center: Einstein Campus, Bronx, New York
- Department of Orthopaedic Surgery, Montefiore Medical Center: Einstein Campus, Bronx, New York
- Division of Orthopedic Surgery, Department of Surgery, NYC Health + Hospitals/Jacobi, Bronx, New York
| |
Collapse
|
2
|
Kriukov D, Kuzmina E, Efimov E, Dylov DV, Khrameeva EE. Epistemic uncertainty challenges aging clock reliability in predicting rejuvenation effects. Aging Cell 2024; 23:e14283. [PMID: 39072888 PMCID: PMC11561706 DOI: 10.1111/acel.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Epigenetic aging clocks have been widely used to validate rejuvenation effects during cellular reprogramming. However, these predictions are unverifiable because the true biological age of reprogrammed cells remains unknown. We present an analytical framework to consider rejuvenation predictions from the uncertainty perspective. Our analysis reveals that the DNA methylation profiles across reprogramming are poorly represented in the aging data used to train clock models, thus introducing high epistemic uncertainty in age estimations. Moreover, predictions of different published clocks are inconsistent, with some even suggesting zero or negative rejuvenation. While not questioning the possibility of age reversal, we show that the high clock uncertainty challenges the reliability of rejuvenation effects observed during in vitro reprogramming before pluripotency and throughout embryogenesis. Conversely, our method reveals a significant age increase after in vivo reprogramming. We recommend including uncertainty estimation in future aging clock models to avoid the risk of misinterpreting the results of biological age prediction.
Collapse
Affiliation(s)
- Dmitrii Kriukov
- Skolkovo Institute of Science and TechnologyMoscowRussia
- Artificial Intelligence Research InstituteMoscowRussia
| | - Ekaterina Kuzmina
- Skolkovo Institute of Science and TechnologyMoscowRussia
- Artificial Intelligence Research InstituteMoscowRussia
| | - Evgeniy Efimov
- Skolkovo Institute of Science and TechnologyMoscowRussia
| | - Dmitry V. Dylov
- Skolkovo Institute of Science and TechnologyMoscowRussia
- Artificial Intelligence Research InstituteMoscowRussia
| | | |
Collapse
|
3
|
Zakar-Polyák E, Csordas A, Pálovics R, Kerepesi C. Profiling the transcriptomic age of single-cells in humans. Commun Biol 2024; 7:1397. [PMID: 39462118 PMCID: PMC11513945 DOI: 10.1038/s42003-024-07094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Although aging clocks predicting the age of individual organisms have been extensively studied, the age of individual cells remained largely unexplored. Most recently single-cell omics clocks were developed for the mouse, however, extensive profiling the age of human cells is still lacking. To fill this gap, here we use available scRNA-seq data of 1,058,909 blood cells of 508 healthy, human donors (between 19 and 75 years), for developing single-cell transcriptomic clocks and predicting the age of human blood cells. By the application of the proposed cell-type-specific single-cell clocks, our main observations are that (i) transcriptomic age is associated with cellular senescence; (ii) the transcriptomic age of classical monocytes as well as naive B and T cells is decreased in moderate COVID-19 followed by an increase for some cell types in severe COVID-19; and (iii) the human embryo cells transcriptomically rejuvenated at the morulae and blastocyst stages. In summary, here we demonstrate that single-cell transcriptomic clocks are useful tools to investigate aging and rejuvenation at the single-cell level.
Collapse
Affiliation(s)
- Enikő Zakar-Polyák
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary.
- Doctoral School of Informatics, Eötvös Loránd University, Budapest, Hungary.
| | - Attila Csordas
- AgeCurve Limited, Cambridge, UK
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Róbert Pálovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Csaba Kerepesi
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary.
| |
Collapse
|
4
|
Gorelov R, Hochedlinger K. A cellular identity crisis? Plasticity changes during aging and rejuvenation. Genes Dev 2024; 38:823-842. [PMID: 39293862 PMCID: PMC11535162 DOI: 10.1101/gad.351728.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Yao L, Yang C, Graff JC, Wang G, Wang G, Gu W. From Reactive to Proactive - The Future Life Design to Promote Health and Extend the Human Lifespan. Adv Biol (Weinh) 2024; 8:e2400148. [PMID: 39037380 DOI: 10.1002/adbi.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Disease treatment and prevention have improved the human lifespan. Current studies on aging, such as the biological clock and senolytic drugs have focused on the medical treatments of various disorders and health maintenance. However, to efficiently extend the human lifespan to its theoretical maximum, medicine can take a further proactive approach and identify the inapparent disorders that affect the gestation, body growth, and reproductive stages of the so-called "healthy" population. The goal is to upgrade the standard health status to a new level by targeting the inapparent disorders. Thus, future research can shift from reaction, response, and prevention to proactive, quality promotion and vigor prolonging; from single disease-oriented to multiple dimension protocol for a healthy body; from treatment of symptom onset to keep away from disorders; and from the healthy aging management to a healthy promotion design beginning at the birth.
Collapse
Affiliation(s)
- Lan Yao
- College of Health management, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang, 150081, China
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chengyuan Yang
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - J Carolyn Graff
- Department of Health Promotion and Disease Prevention, College of Nursing, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Guiying Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150007, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150007, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Research Service, Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| |
Collapse
|
6
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Ying K, Tyshkovskiy A, Chen Q, Latorre-Crespo E, Zhang B, Liu H, Matei-Dediu B, Poganik JR, Moqri M, Kirschne K, Lasky-Su J, Gladyshev VN. High-dimensional Ageome Representations of Biological Aging across Functional Modules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613599. [PMID: 39345525 PMCID: PMC11429788 DOI: 10.1101/2024.09.17.613599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aging process involves numerous molecular changes that lead to functional decline and increased disease and mortality risk. While epigenetic aging clocks have shown accuracy in predicting biological age, they typically provide single estimates for the samples and lack mechanistic insights. In this study, we challenge the paradigm that aging can be sufficiently described with a single biological age estimate. We describe Ageome, a computational framework for measuring the epigenetic age of thousands of molecular pathways simultaneously in mice and humans. Ageome is based on the premise that an organism's overall biological age can be approximated by the collective ages of its functional modules, which may age at different rates and have different biological ages. We show that, unlike conventional clocks, Ageome provides a high-dimensional representation of biological aging across cellular functions, enabling comprehensive assessment of aging dynamics within an individual, in a population, and across species. Application of Ageome to longevity intervention models revealed distinct patterns of pathway-specific age deceleration. Notably, cell reprogramming, while rejuvenating cells, also accelerated aging of some functional modules. When applied to human cohorts, Ageome demonstrated heterogeneity in predictive power for mortality risk, and some modules showed better performance in predicting the onset of age-related diseases, especially cancer, compared to existing clocks. Together, the Ageome framework offers a comprehensive and interpretable approach for assessing aging, providing insights into mechanisms and targets for intervention.
Collapse
Affiliation(s)
- Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna Liu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | - Benyamin Matei-Dediu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jesse R. Poganik
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kristina Kirschne
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Mayo Clinic, Rochester, MN, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Horvath S, Zhang J, Haghani A, Lu AT, Fei Z. Fundamental equations linking methylation dynamics to maximum lifespan in mammals. Nat Commun 2024; 15:8093. [PMID: 39285199 PMCID: PMC11405513 DOI: 10.1038/s41467-024-51855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
We describe a framework that addresses concern that the rate of change in any aging biomarker displays a trivial inverse relation with maximum lifespan. We apply this framework to methylation data from the Mammalian Methylation Consortium. We study the relationship of lifespan with the average rate of change in methylation (AROCM) from two datasets: one with 90 dog breeds and the other with 125 mammalian species. After examining 54 chromatin states, we conclude three key findings: First, a reciprocal relationship exists between the AROCM in bivalent promoter regions and maximum mammalian lifespan: AROCM ∝ 1/MaxLifespan. Second, the correlation between average methylation and age bears no relation to maximum lifespan, Cor(Methyl,Age) ⊥ MaxLifespan. Third, the rate of methylation change in young animals is related to that in old animals: Young animals' AROCM ∝ Old AROCM. These findings critically hinge on the chromatin context, as different results emerge in other chromatin contexts.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Department of Biostatistics, University of California, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Joshua Zhang
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Amin Haghani
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Ake T Lu
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Zhe Fei
- Department of Statistics, University of California, Riverside, CA, USA.
| |
Collapse
|
9
|
Félix J, Díaz-Del Cerro E, Garrido A, De La Fuente M. Characterization of a natural model of adult mice with different rate of aging. Mech Ageing Dev 2024; 222:111991. [PMID: 39278278 DOI: 10.1016/j.mad.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Aging is a heterogeneous process, so individuals of the same age may be aging at a different rate. A natural model of premature aging in mice have been proposed based on the poor response to the T-maze. Those that take longer to cross the intersection are known as Prematurely Aging Mice (PAM), while those that show an exceptional response are known as Exceptional non-PAM (E-NPAM), being the rest non-PAM (NPAM). Although many aspects of PAM and E-NPAM have been described, some aspects of their brain aging have not been studied. Similarly, it is known that PAM, NPAM and E-NPAM show a different rate of aging and longevity, but the differences between these three groups in behavior, immune function and oxidative-inflammatory state are unknown. The present study aims to deepen the study of brain aging in PAM and E-NPAM, and to study the differences in behavior, immunity, and oxidative-inflammatory state of peritoneal leukocytes between PAM, NPAM and E-NPAM. Results show deteriorated brains in PAM. Moreover, NPAM show an oxidative state similar to E-NPAM, an anxiety similar to PAM, and an intermediate immunity and lifespan between PAM and E-NPAM. In conclusion, immune function seems to be more associated with the longevity achieved.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Antonio Garrido
- Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain; Department of Biosciences, School of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, Madrid, Spain.
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
10
|
Gorelov R, Weiner A, Huebner A, Yagi M, Haghani A, Brooke R, Horvath S, Hochedlinger K. Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks. Stem Cell Reports 2024; 19:1242-1254. [PMID: 39178844 PMCID: PMC11411293 DOI: 10.1016/j.stemcr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
Epigenetic clocks, built on DNA methylation patterns of bulk tissues, are powerful age predictors, but their biological basis remains incompletely understood. Here, we conducted a comparative analysis of epigenetic age in murine muscle, epithelial, and blood cell types across lifespan. Strikingly, our results show that cellular subpopulations within these tissues, including adult stem and progenitor cells as well as their differentiated progeny, exhibit different epigenetic ages. Accordingly, we experimentally demonstrate that clocks can be skewed by age-associated changes in tissue composition. Mechanistically, we provide evidence that the observed variation in epigenetic age among adult stem cells correlates with their proliferative state, and, fittingly, forced proliferation of stem cells leads to increases in epigenetic age. Collectively, our analyses elucidate the impact of cell type composition, differentiation state, and replicative potential on epigenetic age, which has implications for the interpretation of existing clocks and should inform the development of more sensitive clocks.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Weiner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Masaki Yagi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA 90502, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA; Epigenetic Clock Development Foundation, Torrance, CA 90502, USA; Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Bonder MJ, Clark SJ, Krueger F, Luo S, Agostinho de Sousa J, Hashtroud AM, Stubbs TM, Stark AK, Rulands S, Stegle O, Reik W, von Meyenn F. scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood. Nat Commun 2024; 15:7567. [PMID: 39217176 PMCID: PMC11366017 DOI: 10.1038/s41467-024-51833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Ageing is the accumulation of changes and decline of function of organisms over time. The concept and biomarkers of biological age have been established, notably DNA methylation-based clocks. The emergence of single-cell DNA methylation profiling methods opens the possibility of studying the biological age of individual cells. Here, we generate a large single-cell DNA methylation and transcriptome dataset from mouse peripheral blood samples, spanning a broad range of ages. The number of genes expressed increases with age, but gene-specific changes are small. We next develop scEpiAge, a single-cell DNA methylation age predictor, which can accurately predict age in (very sparse) publicly available datasets, and also in single cells. DNA methylation age distribution is wider than technically expected, indicating epigenetic age heterogeneity and functional differences. Our work provides a foundation for single-cell and sparse data epigenetic age predictors, validates their functionality and highlights epigenetic heterogeneity during ageing.
Collapse
Affiliation(s)
- Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Stephen J Clark
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
| | - Felix Krueger
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - Siyuan Luo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Aida M Hashtroud
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas M Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Chronomics Limited, London, UK
| | | | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolf Reik
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Department of Medical and Molecular Genetics, King's College London, London, UK.
| |
Collapse
|
12
|
Tharmapalan V, Wagner W. Biomarkers for aging of blood - how transferable are they between mice and humans? Exp Hematol 2024; 140:104600. [PMID: 39128692 DOI: 10.1016/j.exphem.2024.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks. Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronologic age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging. Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, although mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.
Collapse
Affiliation(s)
- Vithurithra Tharmapalan
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
13
|
Zocher S. Targeting neuronal epigenomes for brain rejuvenation. EMBO J 2024; 43:3312-3326. [PMID: 39009672 PMCID: PMC11329789 DOI: 10.1038/s44318-024-00148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases, Tatzberg 41, 01307, Dresden, Germany.
| |
Collapse
|
14
|
Félix J, Martínez de Toda I, Díaz-Del Cerro E, González-Sánchez M, De la Fuente M. Frailty and biological age. Which best describes our aging and longevity? Mol Aspects Med 2024; 98:101291. [PMID: 38954948 DOI: 10.1016/j.mam.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Frailty and Biological Age are two closely related concepts; however, frailty is a multisystem geriatric syndrome that applies to elderly subjects, whereas biological age is a gerontologic way to describe the rate of aging of each individual, which can be used from the beginning of the aging process, in adulthood. If frailty reaches less consensus on the definition, it is a term much more widely used than this of biological age, which shows a clearer definition but is scarcely employed in social and medical fields. In this review, we suggest that this Biological Age is the best to describe how we are aging and determine our longevity, and several examples support our proposal.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology (Unit of Genetics), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
15
|
Pośpiech E, Bar A, Pisarek-Pacek A, Karaś A, Branicki W, Chlopicki S. Epigenetic clock in the aorta and age-related endothelial dysfunction in mice. GeroScience 2024; 46:3993-4002. [PMID: 38381284 PMCID: PMC11226569 DOI: 10.1007/s11357-024-01086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/20/2024] [Indexed: 02/22/2024] Open
Abstract
While epigenetic age (EA) of mouse blood can be determined using DNA methylation analysis at three CpG sites in the Prima1, Hsf4 and Kcns1 genes it is not known whether this approach is useful for predicting vascular biological age. In this study we validated the 3-CpG estimator for age prediction in mouse blood, developed a new predictive model for EA in mouse aorta, and assessed whether epigenetic age acceleration (EAA) measured with blood and aorta samples correlates with age-dependent endothelial dysfunction. Endothelial function was characterized in vivo by MRI in 8-96-week-old C57BL/6 mice. Arterial stiffness was measured by USG-doppler. EA-related changes within 41 CpG sites in Prima1, Kcns1 and Hsf4 loci, were analyzed in the aorta and blood using bisulfite amplicon high-throughput sequencing. Progressive age-dependent endothelial dysfunction and changes in arterial stiffness were observed in 36-96-week-old C57BL/6 mice. Methylation levels of the investigated loci correlated with chronological age in blood and the aorta. The new model for EA estimation in aorta included three cytosines located in the Kcns1 and Hsf4, explained R2 = 87.8% of the variation in age, and predicted age with an mean absolute error of 9.6 weeks in the independent test set. EAA in the aorta was associated with endothelial dysfunction in the abdominal aorta and femoral artery what was consistent with the EAA direction estimated in blood samples. The rate of vascular biological ageing in mice, reflected by the age-dependent systemic endothelial dysfunction, could be estimated using DNA methylation measurements at three loci in aorta and blood samples.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Al. Powstancow Wielkopolskich 72, 70-204, Szczecin, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Aleksandra Pisarek-Pacek
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Agnieszka Karaś
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
- Institute of Forensic Research, Westerplatte 9, 31-033, Kraków, Poland.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland.
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
16
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Yang F, Guo X, Bao Y, Li R. The role of ribosomal DNA methylation in embryonic development, aging and diseases. Epigenetics Chromatin 2024; 17:23. [PMID: 39085958 PMCID: PMC11290161 DOI: 10.1186/s13072-024-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.8S and 28S). While historical investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore its functional roles in various biological processes. In this review, we summarize the main findings of rDNA methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations, related biological processes and potential applications of rDNA methylation. We present an overview of current related research and identify gaps in this field.
Collapse
Affiliation(s)
- Fei Yang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xutong Guo
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rujiao Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Sailer LL, Haghani A, Zoller JA, Li CZ, Ophir AG, Horvath S. Epigenetic aging studies of pair bonding in prairie voles. Sci Rep 2024; 14:17439. [PMID: 39075111 PMCID: PMC11286801 DOI: 10.1038/s41598-024-67641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
The quality of romantic relationships can predict health consequences related to aging. DNA methylation-based biomarkers of aging accurately estimate chronological age. We developed several highly accurate epigenetic aging clocks, based on highly conserved mammalian CpGs, for the socially monogamous prairie vole (Microtus ochrogaster). In addition, our dual-species human-vole clock accurately measured relative age and illustrates high species conservation of epigenetic aging effects. Next, we assessed how pair bonding impacts epigenetic aging. We did not find evidence that pair-bonded voles exhibit accelerated or decelerated epigenetic aging effects in blood, ear, liver, or brain tissue. Our epigenome wide association study identified CpGs in five genes strongly associated with pair bonding: Foxp4, Phf2, Mms22l, Foxb1, and Eif1ad. Overall, we present accurate DNA methylation-based estimators of age for a species of great interest to researchers studying monogamy in animals. We did not find any evidence that sex-naive animals age differently from pair-bonded animals.
Collapse
Affiliation(s)
- Lindsay L Sailer
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Joseph A Zoller
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA, USA
| | - Caesar Z Li
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA.
| | - Steve Horvath
- Altos Labs, San Diego, USA.
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
20
|
Moqri M, Cipriano A, Simpson DJ, Rasouli S, Murty T, de Jong TA, Nachun D, de Sena Brandine G, Ying K, Tarkhov A, Aberg KA, van den Oord E, Zhou W, Smith A, Mackall C, Gladyshev VN, Horvath S, Snyder MP, Sebastiano V. PRC2-AgeIndex as a universal biomarker of aging and rejuvenation. Nat Commun 2024; 15:5956. [PMID: 39009581 PMCID: PMC11250797 DOI: 10.1038/s41467-024-50098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
DNA methylation (DNAm) is one of the most reliable biomarkers of aging across mammalian tissues. While the age-dependent global loss of DNAm has been well characterized, DNAm gain is less characterized. Studies have demonstrated that CpGs which gain methylation with age are enriched in Polycomb Repressive Complex 2 (PRC2) targets. However, whole-genome examination of all PRC2 targets as well as determination of the pan-tissue or tissue-specific nature of these associations is lacking. Here, we show that low-methylated regions (LMRs) which are highly bound by PRC2 in embryonic stem cells (PRC2 LMRs) gain methylation with age in all examined somatic mitotic cells. We estimated that this epigenetic change represents around 90% of the age-dependent DNAm gain genome-wide. Therefore, we propose the "PRC2-AgeIndex," defined as the average DNAm in PRC2 LMRs, as a universal biomarker of cellular aging in somatic cells which can distinguish the effect of different anti-aging interventions.
Collapse
Affiliation(s)
- Mahdi Moqri
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Andrea Cipriano
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel J Simpson
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Tineke Anna de Jong
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel Nachun
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Kejun Ying
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrei Tarkhov
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edwin van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew Smith
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Crystal Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Division of Hematology and Oncology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Stem Cell Transplantation and Cell Therapy, School of Medicine, Stanford University, Stanford, CA, USA
| | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
- Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Meyer DH, Schumacher B. Aging clocks based on accumulating stochastic variation. NATURE AGING 2024; 4:871-885. [PMID: 38724736 PMCID: PMC11186771 DOI: 10.1038/s43587-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/28/2024] [Indexed: 05/15/2024]
Abstract
Aging clocks have provided one of the most important recent breakthroughs in the biology of aging, and may provide indicators for the effectiveness of interventions in the aging process and preventive treatments for age-related diseases. The reproducibility of accurate aging clocks has reinvigorated the debate on whether a programmed process underlies aging. Here we show that accumulating stochastic variation in purely simulated data is sufficient to build aging clocks, and that first-generation and second-generation aging clocks are compatible with the accumulation of stochastic variation in DNA methylation or transcriptomic data. We find that accumulating stochastic variation is sufficient to predict chronological and biological age, indicated by significant prediction differences in smoking, calorie restriction, heterochronic parabiosis and partial reprogramming. Although our simulations may not explicitly rule out a programmed aging process, our results suggest that stochastically accumulating changes in any set of data that have a ground state at age zero are sufficient for generating aging clocks.
Collapse
Affiliation(s)
- David H Meyer
- Institute for Genome Stability in Aging and Disease, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Tarkhov AE, Lindstrom-Vautrin T, Zhang S, Ying K, Moqri M, Zhang B, Tyshkovskiy A, Levy O, Gladyshev VN. Nature of epigenetic aging from a single-cell perspective. NATURE AGING 2024; 4:854-870. [PMID: 38724733 DOI: 10.1038/s43587-024-00616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Age-related changes in DNA methylation (DNAm) form the basis of the most robust predictors of age-epigenetic clocks-but a clear mechanistic understanding of exactly which aspects of aging are quantified by these clocks is lacking. Here, to clarify the nature of epigenetic aging, we juxtapose the dynamics of tissue and single-cell DNAm in mice. We compare these changes during early development with those observed during adult aging in mice, and corroborate our analyses with a single-cell RNA sequencing analysis within the same multiomics dataset. We show that epigenetic aging involves co-regulated changes as well as a major stochastic component, and this is consistent with transcriptional patterns. We further support the finding of stochastic epigenetic aging by direct tissue and single-cell DNAm analyses and modeling of aging DNAm trajectories with a stochastic process akin to radiocarbon decay. Finally, we describe a single-cell algorithm for the identification of co-regulated and stochastic CpG clusters showing consistent transcriptomic coordination patterns. Together, our analyses increase our understanding of the basis of epigenetic clocks and highlight potential opportunities for targeting aging and evaluating longevity interventions.
Collapse
Affiliation(s)
- Andrei E Tarkhov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Retro Biosciences Inc., Redwood City, CA, USA.
| | - Thomas Lindstrom-Vautrin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Orr Levy
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Sandalova E, Maier AB. Targeting the epigenetically older individuals for geroprotective trials: the use of DNA methylation clocks. Biogerontology 2024; 25:423-431. [PMID: 37968337 DOI: 10.1007/s10522-023-10077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/15/2023] [Indexed: 11/17/2023]
Abstract
Chronological age is the most important risk factor for the incidence of age-related diseases. The pace of ageing determines the magnitude of that risk and can be expressed as biological age. Targeting fundamental pathways of human aging with geroprotectors has the potential to lower the biological age and therewith prolong the healthspan, the period of life one spends in good health. Target populations for geroprotective interventions should be chosen based on the ageing mechanisms being addressed and the expected effect of the geroprotector on the primary outcome. Biomarkers of ageing, such as DNA methylation age, can be used to select populations for geroprotective interventions and as a surrogate outcome. Here, the use of DNA methylation clocks for selecting target populations for geroprotective intervention is explored.
Collapse
Affiliation(s)
- Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore.
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore.
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Miliotou E, de Lázaro I. A Youthful Touch: Reversal of Aging Hallmarks by Cell Reprogramming. Cells Tissues Organs 2024:1-13. [PMID: 38768583 DOI: 10.1159/000539415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity. SUMMARY Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions. KEY MESSAGES Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.
Collapse
Affiliation(s)
- Eleni Miliotou
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, New York, New York, USA
- Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Irene de Lázaro
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, New York, New York, USA
- Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
- Harvard John A. Paulson School of Engineering, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Karetnikov DI, Romanov SE, Baklaushev VP, Laktionov PP. Age Prediction Using DNA Methylation Heterogeneity Metrics. Int J Mol Sci 2024; 25:4967. [PMID: 38732187 PMCID: PMC11084170 DOI: 10.3390/ijms25094967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Dynamic changes in genomic DNA methylation patterns govern the epigenetic developmental programs and accompany the organism's aging. Epigenetic clock (eAge) algorithms utilize DNA methylation to estimate the age and risk factors for diseases as well as analyze the impact of various interventions. High-throughput bisulfite sequencing methods, such as reduced-representation bisulfite sequencing (RRBS) or whole genome bisulfite sequencing (WGBS), provide an opportunity to identify the genomic regions of disordered or heterogeneous DNA methylation, which might be associated with cell-type heterogeneity, DNA methylation erosion, and allele-specific methylation. We systematically evaluated the applicability of five scores assessing the variability of methylation patterns by evaluating within-sample heterogeneity (WSH) to construct human blood epigenetic clock models using RRBS data. The best performance was demonstrated by the model based on a metric designed to assess DNA methylation erosion with an MAE of 3.686 years. We also trained a prediction model that uses the average methylation level over genomic regions. Although this region-based model was relatively more efficient than the WSH-based model, the latter required the analysis of just a few short genomic regions and, therefore, could be a useful tool to design a reduced epigenetic clock that is analyzed by targeted next-generation sequencing.
Collapse
Affiliation(s)
- Dmitry I. Karetnikov
- Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Stanislav E. Romanov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology, Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Petr P. Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
27
|
Zoller J, Horvath S. MammalMethylClock R package: software for DNA methylation-based epigenetic clocks in mammals. Bioinformatics 2024; 40:btae280. [PMID: 38656974 PMCID: PMC11091737 DOI: 10.1093/bioinformatics/btae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
MOTIVATION Epigenetic clocks are prediction methods based on DNA methylation levels in a given species or set of species. Defined as multivariate regression models, these DNA methylation-based biomarkers of age or mortality risk are useful in species conservation efforts and in preclinical studies. RESULTS We present an R package called MammalMethylClock for the construction, assessment, and application of epigenetic clocks in different mammalian species. The R package includes the utility for implementing pre-existing mammalian clocks from the Mammalian Methylation Consortium. AVAILABILITY AND IMPLEMENTATION The source code and documentation manual for MammalMethylClock, and clock coefficient .csv files that are included within this software package, can be found on Zenodo at https://doi.org/10.5281/zenodo.10971037.
Collapse
Affiliation(s)
- Joseph Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, United States
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, United States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
- Altos Labs, San Diego, CA, 92121, United States
| |
Collapse
|
28
|
Valainathan SR, Xie Q, Arroyo V, Rautou PE. Prognosis algorithms for acute decompensation of cirrhosis and ACLF. Liver Int 2024. [PMID: 38591751 DOI: 10.1111/liv.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Accurate prediction of survival in patients with cirrhosis is crucial, as patients who are unlikely to survive in the short-term need to be oriented to liver transplantation and to novel therapeutic approaches. Patients with acute decompensation of cirrhosis without or with organ dysfunction/failure, the so-called acute-on-chronic liver failure (ACLF), have a particularly high short-term mortality. Recognizing the specificity of this clinical situation, dedicated classifications and scores have been developed over the last 15 years, including variables (e.g. organ failures and systemic inflammation) not part of the formerly available cirrhosis severity scores, namely Child-Pugh score or MELD. For patients with acute decompensation of cirrhosis, it led to the development of a dedicated score, the Clif-C-AD score, independently validated. For more severe patients, three different scoring systems have been proposed, by European, Asian and North American societies namely Clif-C-ACLF, AARC score and NASCELD-ACLF respectively. These scores have been validated, and are widely used across the world. The differences and similarities between these scores, as well as their validation and limitations are discussed here. Even if these scores and classifications have been a step forward in favouring homogeneity between studies, and in helping making decisions for individual patients, their predictive value for mortality can still be improved as their area under the ROC curve does not exceed .8. Novel scores including biomarkers reflecting the pathophysiology of acute decompensation of cirrhosis might help reach that goal.
Collapse
Affiliation(s)
- Shantha R Valainathan
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
- AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
- Service de Réanimation polyvalente Centre hospitalier Victor Dupouy, Argenteuil, France
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Vicente Arroyo
- European Foundation for Study of Chronic Liver Failure, EF-Clif, Barcelona, Spain
| | - Pierre-Emmanuel Rautou
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
- AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| |
Collapse
|
29
|
Qi H, Lim QL, Kinoshita K, Nakajima N, Inoue-Murayama M. A cost-effective blood DNA methylation-based age estimation method in domestic cats, Tsushima leopard cats (Prionailurus bengalensis euptilurus) and Panthera species, using targeted bisulphite sequencing and machine learning models. Mol Ecol Resour 2024; 24:e13928. [PMID: 38234258 DOI: 10.1111/1755-0998.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Individual age can be used to design more efficient and suitable management plans in both in situ and ex situ conservation programmes for targeted wildlife species. DNA methylation is a promising marker of epigenetic ageing that can accurately estimate age from small amounts of biological material, which can be collected in a minimally invasive manner. In this study, we sequenced five targeted genetic regions and used 8-23 selected CpG sites to build age estimation models using machine learning methods at only about $3-7 per sample. Blood samples of seven Felidae species were used, ranging from small to big, and domestic to endangered species: domestic cats (Felis catus, 139 samples), Tsushima leopard cats (Prionailurus bengalensis euptilurus, 84 samples) and five Panthera species (96 samples). The models achieved satisfactory accuracy, with the mean absolute error of the most accurate models recorded at 1.966, 1.348 and 1.552 years in domestic cats, Tsushima leopard cats and Panthera spp. respectively. We developed the models in domestic cats and Tsushima leopard cats, which were applicable to individuals regardless of health conditions; therefore, these models are applicable to samples collected from individuals with diverse characteristics, which is often the case in conservation. We also showed the possibility of developing universal age estimation models for the five Panthera spp. using only two of the five genetic regions. We do not recommend building a common age estimation model for all the target species using our markers, because of the degraded performance of models that included all species.
Collapse
Affiliation(s)
- Huiyuan Qi
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Qi Luan Lim
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | | | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
30
|
de Lima Camillo LP. pyaging: a Python-based compendium of GPU-optimized aging clocks. Bioinformatics 2024; 40:btae200. [PMID: 38603598 PMCID: PMC11058068 DOI: 10.1093/bioinformatics/btae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024] Open
Abstract
MOTIVATION Aging is intricately linked to diseases and mortality. It is reflected in molecular changes across various tissues which can be leveraged for the development of biomarkers of aging using machine learning models, known as aging clocks. Despite advancements in the field, a significant challenge remains: the lack of robust, Python-based software tools for integrating and comparing these diverse models. This gap highlights the need for comprehensive solutions that can handle the complexity and variety of data in aging research. RESULTS To address this gap, I introduce pyaging, a comprehensive open-source Python package designed to facilitate aging research. pyaging harmonizes dozens of aging clocks, covering a range of molecular data types such as DNA methylation, transcriptomics, histone mark ChIP-Seq, and ATAC-Seq. The package is not limited to traditional model types; it features a diverse array, from linear and principal component models to neural networks and automatic relevance determination models. Thanks to a PyTorch-based backend that enables GPU acceleration, pyaging is capable of rapid inference, even when dealing with large datasets and complex models. In addition, the package's support for multi-species analysis extends its utility across various organisms, including humans, various mammals, and Caenorhabditis elegans. AVAILABILITY AND IMPLEMENTATION pyaging is accessible on GitHub, at https://github.com/rsinghlab/pyaging, and the distribution is available on PyPi, at https://pypi.org/project/pyaging/. The software is also archived on Zenodo, at https://zenodo.org/doi/10.5281/zenodo.10335011.
Collapse
|
31
|
Mitchell W, Goeminne LJE, Tyshkovskiy A, Zhang S, Chen JY, Paulo JA, Pierce KA, Choy AH, Clish CB, Gygi SP, Gladyshev VN. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. eLife 2024; 12:RP90579. [PMID: 38517750 PMCID: PMC10959535 DOI: 10.7554/elife.90579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Ludger JE Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Julie Y Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Kerry A Pierce
- Broad Institute of MIT and HarvardCambridgeUnited States
| | | | - Clary B Clish
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
32
|
Horvath S, Singh K, Raj K, Khairnar SI, Sanghavi A, Shrivastava A, Zoller JA, Li CZ, Herenu CB, Canatelli-Mallat M, Lehmann M, Habazin S, Novokmet M, Vučković F, Solberg Woods LC, Martinez AG, Wang T, Chiavellini P, Levine AJ, Chen H, Brooke RT, Gordevicius J, Lauc G, Goya RG, Katcher HL. Reversal of biological age in multiple rat organs by young porcine plasma fraction. GeroScience 2024; 46:367-394. [PMID: 37875652 PMCID: PMC10828479 DOI: 10.1007/s11357-023-00980-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young adult pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n = 613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain, liver, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n = 1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers, behavioral responses encompassing cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
- Altos Labs, Cambridge, UK.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, India
| | | | - Shraddha I Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, India
| | | | | | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Caesar Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Claudia B Herenu
- Institute for Experimental Pharmacology of Cordoba (IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Martina Canatelli-Mallat
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | | | | | | | - Leah C Solberg Woods
- Wake Forest University School of Medicine, Medical Center Drive, Winston Salem, NC, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Priscila Chiavellini
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Andrew J Levine
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rodolfo G Goya
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | | |
Collapse
|
33
|
Ying K, Liu H, Tarkhov AE, Sadler MC, Lu AT, Moqri M, Horvath S, Kutalik Z, Shen X, Gladyshev VN. Causality-enriched epigenetic age uncouples damage and adaptation. NATURE AGING 2024; 4:231-246. [PMID: 38243142 PMCID: PMC11070280 DOI: 10.1038/s43587-023-00557-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
Machine learning models based on DNA methylation data can predict biological age but often lack causal insights. By harnessing large-scale genetic data through epigenome-wide Mendelian randomization, we identified CpG sites potentially causal for aging-related traits. Neither the existing epigenetic clocks nor age-related differential DNA methylation are enriched in these sites. These CpGs include sites that contribute to aging and protect against it, yet their combined contribution negatively affects age-related traits. We established a new framework to introduce causal information into epigenetic clocks, resulting in DamAge and AdaptAge-clocks that track detrimental and adaptive methylation changes, respectively. DamAge correlates with adverse outcomes, including mortality, while AdaptAge is associated with beneficial adaptations. These causality-enriched clocks exhibit sensitivity to short-term interventions. Our findings provide a detailed landscape of CpG sites with putative causal links to lifespan and healthspan, facilitating the development of aging biomarkers, assessing interventions, and studying reversibility of age-associated changes.
Collapse
Affiliation(s)
- Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Hanna Liu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | - Andrei E Tarkhov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marie C Sadler
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ake T Lu
- Altos Labs, San Diego, CA, USA
- Departments of Human Genetics and Biostatistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Departments of Human Genetics and Biostatistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoltán Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xia Shen
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Zoller JA, Parasyraki E, Lu AT, Haghani A, Niehrs C, Horvath S. DNA methylation clocks for clawed frogs reveal evolutionary conservation of epigenetic aging. GeroScience 2024; 46:945-960. [PMID: 37270437 PMCID: PMC10828168 DOI: 10.1007/s11357-023-00840-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
To address how conserved DNA methylation-based epigenetic aging is in diverse branches of the tree of life, we generated DNA methylation data from African clawed frogs (Xenopus laevis) and Western clawed frogs (Xenopus tropicalis) and built multiple epigenetic clocks. Dual species clocks were developed that apply to both humans and frogs (human-clawed frog clocks), supporting that epigenetic aging processes are evolutionary conserved outside mammals. Highly conserved positively age-related CpGs are located in neural-developmental genes such as uncx, tfap2d as well as nr4a2 implicated in age-associated disease. We conclude that signatures of epigenetic aging are evolutionary conserved between frogs and mammals and that the associated genes relate to neural processes, altogether opening opportunities to employ Xenopus as a model organism to study aging.
Collapse
Affiliation(s)
- Joseph A Zoller
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.
- German Cancer Research Center (DKFZ), Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Steve Horvath
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
35
|
Griffin PT, Kane AE, Trapp A, Li J, Arnold M, Poganik JR, Conway RJ, McNamara MS, Meer MV, Hoffman N, Amorim JA, Tian X, MacArthur MR, Mitchell SJ, Mueller AL, Carmody C, Vera DL, Kerepesi C, Ying K, Noren Hooten N, Mitchell JR, Evans MK, Gladyshev VN, Sinclair DA. TIME-seq reduces time and cost of DNA methylation measurement for epigenetic clock construction. NATURE AGING 2024; 4:261-274. [PMID: 38200273 PMCID: PMC11332592 DOI: 10.1038/s43587-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.
Collapse
Affiliation(s)
- Patrick T Griffin
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Alice E Kane
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Institute for Systems Biology, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexandre Trapp
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jien Li
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Matthew Arnold
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Jesse R Poganik
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ryan J Conway
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Maeve S McNamara
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Margarita V Meer
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Noah Hoffman
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - João A Amorim
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Xiao Tian
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael R MacArthur
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Amber L Mueller
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Cell Metabolism, Cell Press, Cambridge, MA, USA
| | - Colleen Carmody
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Daniel L Vera
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control, Eötvös Loránd Research Network, Budapest, Hungary
| | - Kejun Ying
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Bertucci-Richter EM, Shealy EP, Parrott BB. Epigenetic drift underlies epigenetic clock signals, but displays distinct responses to lifespan interventions, development, and cellular dedifferentiation. Aging (Albany NY) 2024; 16:1002-1020. [PMID: 38285616 PMCID: PMC10866415 DOI: 10.18632/aging.205503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these changes can be modeled to produce epigenetic clocks capable of predicting chronological age with unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits their interpretability. Here, we develop a computational approach to spatially resolve the within read variability or "disorder" in DNA methylation patterns and test if age-associated changes in DNA methylation disorder underlie signals comprising epigenetic clocks. We find that epigenetic clock loci are enriched in regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation disorder and epigenetic clocks. We then develop epigenetic clocks that are based on regional disorder of DNA methylation patterns and compare their performance to other epigenetic clocks by investigating the influences of development, lifespan interventions, and cellular dedifferentiation. We identify common responses as well as critical differences between canonical epigenetic clocks and those based on regional disorder, demonstrating a fundamental decoupling of epigenetic aging processes. Collectively, we identify key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.
Collapse
Affiliation(s)
- Emily M. Bertucci-Richter
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Ethan P. Shealy
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
37
|
Han JDJ. The ticking of aging clocks. Trends Endocrinol Metab 2024; 35:11-22. [PMID: 37880054 DOI: 10.1016/j.tem.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Computational models that measure biological age and aging rate regardless of chronological age are called aging clocks. The underlying counting mechanisms of the intrinsic timers of these clocks are still unclear. Molecular mediators and determinants of aging rate point to the key roles of DNA damage, epigenetic drift, and inflammation. Persistent DNA damage leads to cellular senescence and the senescence-associated secretory phenotype (SASP), which induces cytotoxic immune cell infiltration; this further induces DNA damage through reactive oxygen and nitrogen species (RONS). I discuss the possibility that DNA damage (or the response to it, including epigenetic changes) is the fundamental counting unit of cell cycles and cellular senescence, that ultimately accounts for cell composition changes and functional decline in tissues, as well as the key intervention points.
Collapse
Affiliation(s)
- Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China; International Center for Aging and Cancer (ICAC), The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
38
|
Yan B, Yuan Q, Guryanova OA. Epigenetic Mechanisms in Hematologic Aging and Premalignant Conditions. EPIGENOMES 2023; 7:32. [PMID: 38131904 PMCID: PMC10743085 DOI: 10.3390/epigenomes7040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are essential for maintaining overall health by continuously generating blood cells throughout an individual's lifespan. However, as individuals age, the hematopoietic system undergoes significant functional decline, rendering them more susceptible to age-related diseases. Growing research evidence has highlighted the critical role of epigenetic regulation in this age-associated decline. This review aims to provide an overview of the diverse epigenetic mechanisms involved in the regulation of normal HSCs during the aging process and their implications in aging-related diseases. Understanding the intricate interplay of epigenetic mechanisms that contribute to aging-related changes in the hematopoietic system holds great potential for the development of innovative strategies to delay the aging process. In fact, interventions targeting epigenetic modifications have shown promising outcomes in alleviating aging-related phenotypes and extending lifespan in various animal models. Small molecule-based therapies and reprogramming strategies enabling epigenetic rejuvenation have emerged as effective approaches for ameliorating or even reversing aging-related conditions. By acquiring a deeper understanding of these epigenetic mechanisms, it is anticipated that interventions can be devised to prevent or mitigate the rates of hematologic aging and associated diseases later in life. Ultimately, these advancements have the potential to improve overall health and enhance the quality of life in aging individuals.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | | | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
39
|
Karimnia N, Harris J, Heazlewood SY, Cao B, Nilsson SK. Metabolic regulation of aged hematopoietic stem cells: key players and mechanisms. Exp Hematol 2023; 128:2-9. [PMID: 37778498 DOI: 10.1016/j.exphem.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Nazanin Karimnia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; School of Clinical Sciences, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| |
Collapse
|
40
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
41
|
Mitchell W, Goeminne LJ, Tyshkovskiy A, Zhang S, Chen JY, Paulo JA, Pierce KA, Choy AH, Clish CB, Gygi SP, Gladyshev VN. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.546730. [PMID: 37425825 PMCID: PMC10327104 DOI: 10.1101/2023.06.30.546730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Ludger J.E. Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Julie Y. Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Kerry A. Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Angelina H. Choy
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| |
Collapse
|
42
|
Bertucci-Richter EM, Parrott BB. The rate of epigenetic drift scales with maximum lifespan across mammals. Nat Commun 2023; 14:7731. [PMID: 38007590 PMCID: PMC10676422 DOI: 10.1038/s41467-023-43417-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
Epigenetic drift or "disorder" increases across the mouse lifespan and is suggested to underlie epigenetic clock signals. While the role of epigenetic drift in determining maximum lifespan across species has been debated, robust tests of this hypothesis are lacking. Here, we test if epigenetic disorder at various levels of genomic resolution explains maximum lifespan across four mammal species. We show that epigenetic disorder increases with age in all species and at all levels of genomic resolution tested. The rate of disorder accumulation occurs faster in shorter lived species and corresponds to species adjusted maximum lifespan. While the density of cytosine-phosphate-guanine dinucleotides ("CpGs") is negatively associated with the rate of age-associated disorder accumulation, it does not fully explain differences across species. Our findings support the hypothesis that the rate of epigenetic drift explains maximum lifespan and provide partial support for the hypothesis that CpG density buffers against epigenetic drift.
Collapse
Affiliation(s)
- Emily M Bertucci-Richter
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA.
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
43
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
44
|
Blokhina Y, Buchwalter A. Modeling the consequences of age-linked rDNA hypermethylation with dCas9-directed DNA methylation in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562830. [PMID: 37904963 PMCID: PMC10614900 DOI: 10.1101/2023.10.18.562830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ribosomal DNA (rDNA) genes encode the structural RNAs of the ribosome and are present in hundreds of copies in mammalian genomes. Age-linked DNA hypermethylation throughout the rDNA constitutes a robust "methylation clock" that accurately reports age, yet the consequences of hypermethylation on rDNA function are unknown. We confirmed that pervasive hypermethylation of rDNA occurs during mammalian aging and senescence while rDNA copy number remains stable. We found that DNA methylation is exclusively found on the promoters and gene bodies of inactive rDNA. To model the effects of age-linked methylation on rDNA function, we directed de novo DNA methylation to the rDNA promoter or gene body with a nuclease-dead Cas9 (dCas9) - DNA methyltransferase fusion enzyme in human cells. Hypermethylation at each target site had no detectable effect on rRNA transcription, nucleolar morphology, or cellular growth rate. Instead, human UBF and Pol I remain bound to rDNA promoters in the presence of increased DNA methylation. These data suggest that promoter methylation is not sufficient to impair transcription of the human rDNA and imply that the human rDNA transcription machinery may be resilient to age-linked rDNA hypermethylation.
Collapse
Affiliation(s)
- Yana Blokhina
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco
- present address: NewLimit, South San Francisco, CA
| | - Abigail Buchwalter
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco
| |
Collapse
|
45
|
Statsenko Y, Kuznetsov NV, Morozova D, Liaonchyk K, Simiyu GL, Smetanina D, Kashapov A, Meribout S, Gorkom KNV, Hamoudi R, Ismail F, Ansari SA, Emerald BS, Ljubisavljevic M. Reappraisal of the Concept of Accelerated Aging in Neurodegeneration and Beyond. Cells 2023; 12:2451. [PMID: 37887295 PMCID: PMC10605227 DOI: 10.3390/cells12202451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genetic and epigenetic changes, oxidative stress and inflammation influence the rate of aging, which diseases, lifestyle and environmental factors can further accelerate. In accelerated aging (AA), the biological age exceeds the chronological age. OBJECTIVE The objective of this study is to reappraise the AA concept critically, considering its weaknesses and limitations. METHODS We reviewed more than 300 recent articles dealing with the physiology of brain aging and neurodegeneration pathophysiology. RESULTS (1) Application of the AA concept to individual organs outside the brain is challenging as organs of different systems age at different rates. (2) There is a need to consider the deceleration of aging due to the potential use of the individual structure-functional reserves. The latter can be restored by pharmacological and/or cognitive therapy, environment, etc. (3) The AA concept lacks both standardised terminology and methodology. (4) Changes in specific molecular biomarkers (MBM) reflect aging-related processes; however, numerous MBM candidates should be validated to consolidate the AA theory. (5) The exact nature of many potential causal factors, biological outcomes and interactions between the former and the latter remain largely unclear. CONCLUSIONS Although AA is commonly recognised as a perspective theory, it still suffers from a number of gaps and limitations that assume the necessity for an updated AA concept.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Big Data Analytic Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Daria Morozova
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Katsiaryna Liaonchyk
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Gillian Lylian Simiyu
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Darya Smetanina
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Aidar Kashapov
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Sarah Meribout
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Rifat Hamoudi
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Fatima Ismail
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Suraiya Anjum Ansari
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bright Starling Emerald
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
46
|
Lyons CE, Razzoli M, Bartolomucci A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci Biobehav Rev 2023; 153:105359. [PMID: 37586578 PMCID: PMC10592082 DOI: 10.1016/j.neubiorev.2023.105359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Chronic stress is a risk factor for numerous aging-related diseases and has been shown to shorten lifespan in humans and other social mammals. Yet how life stress causes such a vast range of diseases is still largely unclear. In recent years, the impact of stress on health and aging has been increasingly associated with the dysregulation of the so-called hallmarks of aging. These are basic biological mechanisms that influence intrinsic cellular functions and whose alteration can lead to accelerated aging. Here, we review correlational and experimental literature (primarily focusing on evidence from humans and murine models) on the contribution of life stress - particularly stress derived from adverse social environments - to trigger hallmarks of aging, including cellular senescence, sterile inflammation, telomere shortening, production of reactive oxygen species, DNA damage, and epigenetic changes. We also evaluate the validity of stress-induced senescence and accelerated aging as an etiopathological proposition. Finally, we highlight current gaps of knowledge and future directions for the field, and discuss perspectives for translational geroscience.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
47
|
Akagi K, Koizumi K, Kadowaki M, Kitajima I, Saito S. New Possibilities for Evaluating the Development of Age-Related Pathologies Using the Dynamical Network Biomarkers Theory. Cells 2023; 12:2297. [PMID: 37759519 PMCID: PMC10528308 DOI: 10.3390/cells12182297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is the slowest process in a living organism. During this process, mortality rate increases exponentially due to the accumulation of damage at the cellular level. Cellular senescence is a well-established hallmark of aging, as well as a promising target for preventing aging and age-related diseases. However, mapping the senescent cells in tissues is extremely challenging, as their low abundance, lack of specific markers, and variability arise from heterogeneity. Hence, methodologies for identifying or predicting the development of senescent cells are necessary for achieving healthy aging. A new wave of bioinformatic methodologies based on mathematics/physics theories have been proposed to be applied to aging biology, which is altering the way we approach our understand of aging. Here, we discuss the dynamical network biomarkers (DNB) theory, which allows for the prediction of state transition in complex systems such as living organisms, as well as usage of Raman spectroscopy that offers a non-invasive and label-free imaging, and provide a perspective on potential applications for the study of aging.
Collapse
Affiliation(s)
- Kazutaka Akagi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Keiichi Koizumi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Makoto Kadowaki
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Isao Kitajima
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Shigeru Saito
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
48
|
Popescu I, Deelen J, Illario M, Adams J. Challenges in anti-aging medicine-trends in biomarker discovery and therapeutic interventions for a healthy lifespan. J Cell Mol Med 2023; 27:2643-2650. [PMID: 37610311 PMCID: PMC10494298 DOI: 10.1111/jcmm.17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
We are facing a growing aging population, along with increasing pressure on health systems, caused by the impact of chronic co-morbidities (i.e. cancer, cardiovascular and neurodegenerative diseases) and functional disabilities as people age. Relatively simple preventive lifestyle interventions, such as dietary restriction and physical exercise, are important contributors to active and healthy aging in the general population. However, as shown in model organisms or in 'in vitro' conditions, lifestyle-independent interventions may have additional health benefits and can even be conceived as possible reversers of the aging process. Thus, pharmaceutical laboratories, research institutes, and universities are putting more and more effort into finding new molecular pathways and druggable targets to develop gerotherapeutics. One approach is to target the driving mechanisms of aging, some of which, like cellular senescence and impaired autophagy, we discussed in an update on the biology of aging at AgingFit 2023 in Lille, France. We underline the importance of carefully and extensively testing senotherapeutics, given the pleiotropism and heterogeneity of targeted senescent cells within different organs, at different time frames. Other druggable targets emerging from new putative mechanisms, like those based on transcriptome imbalance, nucleophagy, protein phosphatase depletion, glutamine metabolism, or seno-antigenicity, have been evidenced by recent preclinical studies in classical models of aging but need to be validated in humans. Finally, we highlight several approaches in the discovery of biomarkers of healthy aging, as well as for the prediction of neurodegenerative diseases and the evaluation of rejuvenation strategies.
Collapse
Affiliation(s)
- Iuliana Popescu
- Barnstable Brown Diabetes Research CenterUniversity of Kentucky, College of MedicineLexingtonKentuckyUSA
| | - Joris Deelen
- Max Planck Institute for Biology of AgeingKölnGermany
| | - Maddalena Illario
- Department of Public Health and EDANFederico II University and HospitalNaplesItaly
| | | |
Collapse
|
49
|
Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Lowe R, Yan Q, Zhang J, Vu H, Ablaeva J, Acosta-Rodriguez VA, Adams DM, Almunia J, Aloysius A, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter GG, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke SM, Cooper LN, Cossette ML, Day J, DeYoung J, DiRocco S, Dold C, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Gorbunova V, Goya RG, Grant MJ, Green CB, Hales EN, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaitre JF, Levine AJ, Li C, Li X, Lim AR, Lin DTS, Lindemann DM, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, O'Brien JK, O'Tierney Ginn P, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pellegrini M, Peters KJ, Pedersen AB, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Seluanov A, Shafer ABA, Shanmuganayagam D, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmaohammadi E, Spangler ML, Spriggs MC, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Wallingford MC, Wang N, Wayne RK, Wilkinson GS, Williams CK, Williams RW, Yang XW, Yao M, Young BG, Zhang B, Zhang Z, Zhao P, Zhao Y, Zhou W, Zimmermann J, Ernst J, Raj K, Horvath S. Universal DNA methylation age across mammalian tissues. NATURE AGING 2023; 3:1144-1166. [PMID: 37563227 PMCID: PMC10501909 DOI: 10.1038/s43587-023-00462-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.
Collapse
Affiliation(s)
- A T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Z Fei
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Statistics, University of California, Riverside, Riverside, CA, USA
| | - A Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - T R Robeck
- Zoological SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - J A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Lowe
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Q Yan
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - J Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - H Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - V A Acosta-Rodriguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D M Adams
- Department of Biology, University of Maryland, College Park, MD, USA
| | - J Almunia
- Loro Parque Fundacion, Puerto de la Cruz, Spain
| | - A Aloysius
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - R Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A Arneson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - C S Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - G Banks
- School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, UK
| | - K Belov
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - N C Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - P Black
- Busch Gardens Tampa, Tampa, FL, USA
| | - D T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - E K Bors
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - C E Breeze
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - R T Brooke
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - J L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - G G Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - A Caulton
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - J M Cavin
- Gulf World, Dolphin Company, Panama City Beach, FL, USA
| | - L Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - I Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - H Chen
- Department of Pharmacology, Addiction Science and Toxicology, the University of Tennessee Health Science Center, Memphis, TN, USA
| | - K Cheng
- Medical Informatics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - P Chiavellini
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - O W Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S M Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - L N Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - M L Cossette
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - J Day
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - J DeYoung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S DiRocco
- SeaWorld of Florida, Orlando, FL, USA
| | - C Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | | | - C K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - S Emmrich
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E Erbay
- Altos Labs, San Francisco, CA, USA
| | - C Erlacher-Reid
- SeaWorld of Florida, Orlando, FL, USA
- SeaWorld Orlando, Orlando, FL, USA
| | - C G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - S H Ferguson
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - C J Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | | | - J M Gaillard
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - E Garde
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - L Gerber
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - V N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - R G Goya
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - M J Grant
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - C B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E N Hales
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - M B Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - D W Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - M Haulena
- Vancouver Aquarium, Vancouver, British Columbia, Canada
| | - K Herrick
- SeaWorld of California, San Diego, CA, USA
| | - A N Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - C J Hogg
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - T A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - T Huang
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Metabolism, Oishei Children's Hospital, Buffalo, NY, USA
| | | | - A J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - G Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - O Kashpur
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - H Katcher
- Yuvan Research, Mountain View, CA, USA
| | | | - V Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - H Kiaris
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M S Kobor
- Edwin S.H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Kordowitzki
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
- Institute for Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - W R Koski
- LGL Limited, King City, Ontario, Canada
| | - M Krützen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - S B Kwon
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Larison
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Center for Tropical Research, Institute for the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - S G Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Lehmann
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - J F Lemaitre
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - A J Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Li
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - X Li
- Technology Center for Genomics and Bioinformatics, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A R Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - D T S Lin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - T J Little
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - N Macoretta
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - D Maddox
- White Oak Conservation, Yulee, FL, USA
| | - C O Matkin
- North Gulf Oceanic Society, Homer, AK, USA
| | - J A Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - J Mergl
- Marineland of Canada, Niagara Falls, Ontario, Canada
| | - J J Meudt
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - G A Montano
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - K Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - J Munshi-South
- Louis Calder Center-Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - A Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M Nagy
- Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - P Narayan
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - P W Nathanielsz
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - N B Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Niehrs
- Institute of Molecular Biology, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - J K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - P O'Tierney Ginn
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - D T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Regulatory Genomics and Cancer Evolution, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - A G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - S Osborn
- SeaWorld of Texas, San Antonio, TX, USA
| | - E A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K M Parsons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - K C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - K J Peters
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A B Pedersen
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - D W Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - G M Pinho
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - J R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N A Prado
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY, USA
| | - P Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - B Rey
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - B R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - J Robbins
- Center for Coastal Studies, Provincetown, MA, USA
| | | | - J Russell
- SeaWorld of California, San Diego, CA, USA
| | - E Rydkina
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - L L Sailer
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - A B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, UT Health San Antonio and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | - K M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D Schmitt
- College of Agriculture, Missouri State University, Springfield, MO, USA
| | - T Schmitt
- SeaWorld of California, San Diego, CA, USA
| | | | - L B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - K E Sears
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - A W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - A Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - A B A Shafer
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - D Shanmuganayagam
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - K Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS University, Mumbai, India
| | - I Sinha
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Slone
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R G Snell
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - E Soltanmaohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M L Spangler
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | - L Staggs
- SeaWorld of Florida, Orlando, FL, USA
| | | | - K J Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | - D T Stewart
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | - V J Sugrue
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - B Szladovits
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - J S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Takasugi
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - M J Thompson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Van Bonn
- John G. Shedd Aquarium, Chicago, IL, USA
| | - S C Vernes
- School of Biology, the University of St Andrews, Fife, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - D Villar
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - H V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Division of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - N Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R K Wayne
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | - C K Williams
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - X W Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M Yao
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - B G Young
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - B Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Z Zhang
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - P Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Y Zhao
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - W Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Zimmermann
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Koblenz, Germany
| | - J Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - K Raj
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - S Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Tangili M, Slettenhaar AJ, Sudyka J, Dugdale HL, Pen I, Palsbøll PJ, Verhulst S. DNA methylation markers of age(ing) in non-model animals. Mol Ecol 2023; 32:4725-4741. [PMID: 37401200 DOI: 10.1111/mec.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Inferring the chronological and biological age of individuals is fundamental to population ecology and our understanding of ageing itself, its evolution, and the biological processes that affect or even cause ageing. Epigenetic clocks based on DNA methylation (DNAm) at specific CpG sites show a strong correlation with chronological age in humans, and discrepancies between inferred and actual chronological age predict morbidity and mortality. Recently, a growing number of epigenetic clocks have been developed in non-model animals and we here review these studies. We also conduct a meta-analysis to assess the effects of different aspects of experimental protocol on the performance of epigenetic clocks for non-model animals. Two measures of performance are usually reported, the R2 of the association between the predicted and chronological age, and the mean/median absolute deviation (MAD) of estimated age from chronological age, and we argue that only the MAD reflects accuracy. R2 for epigenetic clocks based on the HorvathMammalMethylChip4 was higher and the MAD scaled to age range lower, compared with other DNAm quantification approaches. Scaled MAD tended to be lower among individuals in captive populations, and decreased with an increasing number of CpG sites. We conclude that epigenetic clocks can predict chronological age with relatively high accuracy, suggesting great potential in ecological epigenetics. We discuss general aspects of epigenetic clocks in the hope of stimulating further DNAm-based research on ageing, and perhaps more importantly, other key traits.
Collapse
Affiliation(s)
- Marianthi Tangili
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Annabel J Slettenhaar
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joanna Sudyka
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Per J Palsbøll
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Center for Coastal Studies, Provincetown, Massachusetts, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|