1
|
Kim MC, Gate R, Lee DS, Tolopko A, Lu A, Gordon E, Shifrut E, Garcia-Nieto PE, Marson A, Ntranos V, Ye CJ. Method of moments framework for differential expression analysis of single-cell RNA sequencing data. Cell 2024; 187:6393-6410.e16. [PMID: 39454576 DOI: 10.1016/j.cell.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/06/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Differential expression analysis of single-cell RNA sequencing (scRNA-seq) data is central for characterizing how experimental factors affect the distribution of gene expression. However, distinguishing between biological and technical sources of cell-cell variability and assessing the statistical significance of quantitative comparisons between cell groups remain challenging. We introduce Memento, a tool for robust and efficient differential analysis of mean expression, variability, and gene correlation from scRNA-seq data, scalable to millions of cells and thousands of samples. We applied Memento to 70,000 tracheal epithelial cells to identify interferon-responsive genes, 160,000 CRISPR-Cas9 perturbed T cells to reconstruct gene-regulatory networks, 1.2 million peripheral blood mononuclear cells (PBMCs) to map cell-type-specific quantitative trait loci (QTLs), and the 50-million-cell CELLxGENE Discover corpus to compare arbitrary cell groups. In all cases, Memento identified more significant and reproducible differences in mean expression compared with existing methods. It also identified differences in variability and gene correlation that suggest distinct transcriptional regulation mechanisms imparted by perturbations.
Collapse
Affiliation(s)
- Min Cheol Kim
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Gate
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - David S Lee
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Andrew Lu
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Erin Gordon
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Shifrut
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Alexander Marson
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Vasilis Ntranos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Cordeiro B, Ahn JJ, Gawde S, Ucciferri C, Alvarez-Sanchez N, Revelo XS, Stickle N, Massey K, Brooks DG, Guthridge JM, Pardo G, Winer DA, Axtell RC, Dunn SE. Obesity intensifies sex-specific interferon signaling to selectively worsen central nervous system autoimmunity in females. Cell Metab 2024; 36:2298-2314.e11. [PMID: 39168127 PMCID: PMC11463735 DOI: 10.1016/j.cmet.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/29/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Obesity has been implicated in the rise of autoimmunity in women. We report that obesity induces a serum protein signature that is associated with T helper 1 (Th1), interleukin (IL)-17, and multiple sclerosis (MS) signaling pathways selectively in human females. Females, but not male mice, subjected to diet-induced overweightness/obesity (DIO) exhibited upregulated Th1/IL-17 inflammation in the central nervous system during experimental autoimmune encephalomyelitis, a model of MS. This was associated with worsened disability and a heightened expansion of myelin-specific Th1 cells in the peripheral lymphoid organs. Moreover, at steady state, DIO increased serum levels of interferon (IFN)-α and potentiated STAT1 expression and IFN-γ production by naive CD4+ T cells uniquely in female mice. This T cell phenotype was driven by increased adiposity and was prevented by the removal of ovaries or knockdown of the type I IFN receptor in T cells. Our findings offer a mechanistic explanation of how obesity enhances autoimmunity.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | | | - Saurabh Gawde
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA
| | - Carmen Ucciferri
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalie Stickle
- Bioinformatics and High Performance Computing Core, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kaylea Massey
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gabriel Pardo
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Multiple Sclerosis Center of Excellence, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel A Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA.
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Women's College Research Institute, Women's College Hospital, Toronto, ON M5G 1N8, Canada; Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, ON M4M 3M5, Canada.
| |
Collapse
|
3
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
4
|
Fernbach S, Mair NK, Abela IA, Groen K, Kuratli R, Lork M, Thorball CW, Bernasconi E, Filippidis P, Leuzinger K, Notter J, Rauch A, Hirsch HH, Huber M, Günthard HF, Fellay J, Kouyos RD, Hale BG. Loss of tolerance precedes triggering and lifelong persistence of pathogenic type I interferon autoantibodies. J Exp Med 2024; 221:e20240365. [PMID: 39017930 PMCID: PMC11253716 DOI: 10.1084/jem.20240365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Autoantibodies neutralizing type I interferons (IFN-Is) can underlie infection severity. Here, we trace the development of these autoantibodies at high-resolution using longitudinal samples from 1,876 well-treated individuals living with HIV over a 35-year period. Similar to general populations, ∼1.9% of individuals acquired anti-IFN-I autoantibodies as they aged (median onset ∼63 years). Once detected, anti-IFN-I autoantibodies persisted lifelong, and titers increased over decades. Individuals developed distinct neutralizing and non-neutralizing autoantibody repertoires at discrete times that selectively targeted combinations of IFNα, IFNβ, and IFNω. Emergence of neutralizing anti-IFNα autoantibodies correlated with reduced baseline IFN-stimulated gene levels and was associated with subsequent susceptibility to severe COVID-19 several years later. Retrospective measurements revealed enrichment of pre-existing autoreactivity against other autoantigens in individuals who later developed anti-IFN-I autoantibodies, and there was evidence for prior viral infections or increased IFN at the time of anti-IFN-I autoantibody triggering. These analyses suggest that age-related loss of self-tolerance prior to IFN-I immune-triggering poses a risk of developing lifelong functional IFN-I deficiency.
Collapse
Affiliation(s)
- Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nina K. Mair
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kevin Groen
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kuratli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marie Lork
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christian W. Thorball
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Paraskevas Filippidis
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Julia Notter
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans H. Hirsch
- Department of Biomedicine, Transplantation and Clinical Virology, University of Basel, Basel, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Ashby KM, Vobořil M, Salgado OC, Lee ST, Martinez RJ, O'Connor CH, Breed ER, Xuan S, Roll CR, Bachigari S, Heiland H, Stetson DB, Kotenko SV, Hogquist KA. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci Immunol 2024; 9:eadp1139. [PMID: 39058762 DOI: 10.1126/sciimmunol.adp1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Matouš Vobořil
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Oscar C Salgado
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - S Thera Lee
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan J Martinez
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christine H O'Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN 55455, USA
| | - Elise R Breed
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Shuya Xuan
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles R Roll
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Saumith Bachigari
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hattie Heiland
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kristin A Hogquist
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
7
|
Gaertner F, Ishikawa-Ankerhold H, Stutte S, Fu W, Weitz J, Dueck A, Nelakuditi B, Fumagalli V, van den Heuvel D, Belz L, Sobirova G, Zhang Z, Titova A, Navarro AM, Pekayvaz K, Lorenz M, von Baumgarten L, Kranich J, Straub T, Popper B, Zheden V, Kaufmann WA, Guo C, Piontek G, von Stillfried S, Boor P, Colonna M, Clauß S, Schulz C, Brocker T, Walzog B, Scheiermann C, Aird WC, Nerlov C, Stark K, Petzold T, Engelhardt S, Sixt M, Hauschild R, Rudelius M, Oostendorp RAJ, Iannacone M, Heinig M, Massberg S. Plasmacytoid dendritic cells control homeostasis of megakaryopoiesis. Nature 2024; 631:645-653. [PMID: 38987596 PMCID: PMC11254756 DOI: 10.1038/s41586-024-07671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.
Collapse
Affiliation(s)
- Florian Gaertner
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.
| | | | - Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wenwen Fu
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jutta Weitz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anne Dueck
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Bhavishya Nelakuditi
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Larissa Belz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Gulnoza Sobirova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Zhe Zhang
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatic Core facility, LMU Munich, Planegg-Martinsried, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU Munich, Planegg-Martinsried, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Chenglong Guo
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St Louis, MO, USA
| | - Sebastian Clauß
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Scheiermann
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - William C Aird
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Konstantin Stark
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Robert A J Oostendorp
- Laboratory of Stem Cell Physiology, Department of Internal Medicine III-Hematology and Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
8
|
Tan S, Liu M, Feng F, Li R, Tian R, Nie Z. Exploring the pathogenesis and immunological profiles of psoriasis complicated with MASLD. PLoS One 2024; 19:e0305217. [PMID: 38917217 PMCID: PMC11198785 DOI: 10.1371/journal.pone.0305217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Both psoriasis and metabolic dysfunction-associated steatotic liver disease (MASLD) are immune-mediated chronic inflammatory diseases. Psoriasis manifests itself mainly as skin damage, while MASLD mainly involves the liver promoting liver fibrosis, which has a significant impact on patient health and quality of life. Some clinical studies have shown that there are mutually reinforcing mechanisms between these two diseases, but they are not clearly defined, and this paper aims to further explore their common pathogenesis. METHODS Gene expression profiling datasets (GSE30999, GSE48452) and single cell datasets (GSE151177, GSE186328) for psoriasis and MASLD were downloaded from the Gene Expression Omnibus (GEO) database. Common differential gene sets were obtained by gene differential analysis, and then functional enrichment of differential genes was performed to find associated transcription factors and PPI protein network analysis. Single-cell datasets were validated for gene expression and explored for cellular communication, gene set differential analysis and immune infiltration analysis. RESULTS We identified seven common differential genes, all of which were upregulated.The IL-17 pathway, tumor necrosis factor (TNF-α) pathway were shown in strong association with both diseases, and five transcription factors regulating the differential genes were predicted. Two key genes (MMP9, CXCL10) and three key transcription factors (TF) (IRF1, STAT1, NFKB1) were obtained by PPI protein network analysis. Single cell dataset verified the expression of key genes, and combined with gene set differential analysis, immune infiltration revealed that CD4+ T cells, NK cells and macrophages were heavily infiltrated in both diseases. IL-17, IL-1 and cGAS-STING pathways were highly expressed in both diseases, and both diseases share a similar immune microenvironment. CONCLUSIONS Our study reveals the common pathogenesis of psoriasis and MASLD from gene expression to immune cell similarities and differences, identifies key genes and regulatory pathways common to both, and elucidates the similarities in the immune microenvironment of both diseases, providing new ideas for subsequent studies on targeted therapy.
Collapse
Affiliation(s)
- Shuhui Tan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyue Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fei Feng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruicheng Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Rui Tian
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | | |
Collapse
|
9
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
10
|
Edtmayer S, Witalisz-Siepracka A, Zdársky B, Heindl K, Weiss S, Eder T, Dutta S, Graichen U, Klee S, Sharif O, Wieser R, Győrffy B, Poli V, Casanova E, Sill H, Grebien F, Stoiber D. A novel function of STAT3β in suppressing interferon response improves outcome in acute myeloid leukemia. Cell Death Dis 2024; 15:369. [PMID: 38806478 PMCID: PMC11133483 DOI: 10.1038/s41419-024-06749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3β. While STAT3α is predominantly described as an oncogenic driver, STAT3β has been suggested to act as a tumor suppressor. To elucidate the role of STAT3β in AML, we established a mouse model of STAT3β-deficient, MLL-AF9-driven AML. STAT3β deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3β. Accordingly, STAT3β-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3β expression. Together, our data corroborate the tumor suppressive role of STAT3β in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3β/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3β/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- STAT3 Transcription Factor/metabolism
- Mice
- Signal Transduction
- Interferons/metabolism
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Mice, Inbred C57BL
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- Cell Line, Tumor
- Nitriles
- Pyrazoles
- Pyrimidines
Collapse
Affiliation(s)
- Sophie Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Agnieszka Witalisz-Siepracka
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Bernhard Zdársky
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Kerstin Heindl
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Stefanie Weiss
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Uwe Graichen
- Division Biostatistics and Data Science, Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sascha Klee
- Division Biostatistics and Data Science, Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dagmar Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
11
|
Gómez-Bañuelos E, Goldman DW, Andrade V, Darrah E, Petri M, Andrade F. Uncoupling interferons and the interferon signature explains clinical and transcriptional subsets in SLE. Cell Rep Med 2024; 5:101569. [PMID: 38744279 PMCID: PMC11148857 DOI: 10.1016/j.xcrm.2024.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Systemic lupus erythematosus (SLE) displays a hallmark interferon (IFN) signature. Yet, clinical trials targeting type I IFN (IFN-I) have shown variable efficacy, and blocking IFN-II failed to treat SLE. Here, we show that IFN type levels in SLE vary significantly across clinical and transcriptional endotypes. Whereas skin involvement correlated with IFN-I alone, systemic features like nephritis associated with co-elevation of IFN-I, IFN-II, and IFN-III, indicating additive IFN effects in severe SLE. Notably, while high IFN-II/-III levels without IFN-I had a limited effect on disease activity, IFN-II was linked to IFN-I-independent transcriptional profiles (e.g., OXPHOS and CD8+GZMH+ cells), and IFN-III enhanced IFN-induced gene expression when co-elevated with IFN-I. Moreover, dysregulated IFNs do not explain the IFN signature in 64% of patients or clinical manifestations including cytopenia, serositis, and anti-phospholipid syndrome, implying IFN-independent endotypes in SLE. This study sheds light on mechanisms underlying SLE heterogeneity and the variable response to IFN-targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | - Daniel W Goldman
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Victoria Andrade
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Michelle Petri
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224.
| |
Collapse
|
12
|
Ridnour LA, Cheng RY, Kedei N, Somasundaram V, Bhattacharyya DD, Basudhar D, Wink AL, Walke AJ, Kim C, Heinz WF, Edmondson EF, Butcher DO, Warner AC, Dorsey TH, Pore M, Kinders RJ, Lipkowitz S, Bryant RJ, Rittscher J, Wong ST, Hewitt SM, Chang JC, Shalaby A, Callagy GM, Glynn SA, Ambs S, Anderson SK, McVicar DW, Lockett SJ, Wink DA. Adjuvant COX inhibition augments STING signaling and cytolytic T cell infiltration in irradiated 4T1 tumors. JCI Insight 2024; 9:e165356. [PMID: 38912586 PMCID: PMC11383366 DOI: 10.1172/jci.insight.165356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Robert Ys Cheng
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource (CPTR) Nanoscale Protein Analysis, OSTR, CCR, NCI, NIH, Bethesda, Maryland, USA
| | | | | | | | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Abigail J Walke
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Caleb Kim
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Donna O Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Andrew C Warner
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research, and
| | - Robert J Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA
| | | | - Richard J Bryant
- Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jens Rittscher
- Institute of Biomedical Engineering, Big Data Institute, Ludwig Oxford Branch, University of Oxford, Oxford, United Kingdom
| | - Stephen Tc Wong
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | | | - Jenny C Chang
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | - Aliaa Shalaby
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Grace M Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - David A Wink
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| |
Collapse
|
13
|
Cao W. In sickness and in health-Type I interferon and the brain. Front Aging Neurosci 2024; 16:1403142. [PMID: 38774266 PMCID: PMC11106474 DOI: 10.3389/fnagi.2024.1403142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Type I interferons (IFN-I) represent a group of pleiotropic cytokines renowned for their antiviral activity and immune regulatory functions. A multitude of studies have unveiled a critical role of IFN-I in the brain, influencing various neurological processes and diseases. In this mini-review, I highlight recent findings on IFN-I's effects on brain aging, Alzheimer's disease (AD) progression, and central nervous system (CNS) homeostasis. The multifaceted influence of IFN-I on brain health and disease sheds light on the complex interplay between immune responses and neurological processes. Of particular interest is the cGAS-STING-IFN-I axis, which extensively participates in brain aging and various forms of neurodegeneration. Understanding the intricate role of IFN-I and its associated pathways in the CNS not only advances our comprehension of brain health and disease but also presents opportunities for developing interventions to modify the process of neurodegeneration and prevent age-related cognitive decline.
Collapse
Affiliation(s)
- Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
14
|
Fortelny N, Farlik M, Fife V, Gorki AD, Lassnig C, Maurer B, Meissl K, Dolezal M, Boccuni L, Ravi Sundar Jose Geetha A, Akagha MJ, Karjalainen A, Shoebridge S, Farhat A, Mann U, Jain R, Tikoo S, Zila N, Esser-Skala W, Krausgruber T, Sitnik K, Penz T, Hladik A, Suske T, Zahalka S, Senekowitsch M, Barreca D, Halbritter F, Macho-Maschler S, Weninger W, Neubauer HA, Moriggl R, Knapp S, Sexl V, Strobl B, Decker T, Müller M, Bock C. JAK-STAT signaling maintains homeostasis in T cells and macrophages. Nat Immunol 2024; 25:847-859. [PMID: 38658806 PMCID: PMC11065702 DOI: 10.1038/s41590-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.
Collapse
Affiliation(s)
- Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Victoria Fife
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna-Dorothea Gorki
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Caroline Lassnig
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Maurer
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Laura Boccuni
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Mojoyinola Joanna Akagha
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anzhelika Karjalainen
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Stephen Shoebridge
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Asma Farhat
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mann
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Esser-Skala
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Sitnik
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sophie Zahalka
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidi A Neubauer
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Mishra B, Ivashkiv LB. Interferons and epigenetic mechanisms in training, priming and tolerance of monocytes and hematopoietic progenitors. Immunol Rev 2024; 323:257-275. [PMID: 38567833 PMCID: PMC11102283 DOI: 10.1111/imr.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
Training and priming of innate immune cells involve preconditioning by PAMPs, DAMPs, and/or cytokines that elicits stronger induction of inflammatory genes upon secondary challenge. Previous models distinguish training and priming based upon whether immune activation returns to baseline prior to secondary challenge. Tolerance is a protective mechanism whereby potent stimuli induce refractoriness to secondary challenge. Training and priming are important for innate memory responses that protect against infection, efficacy of vaccines, and maintaining innate immune cells in a state of readiness; tolerance prevents toxicity from excessive immune activation. Dysregulation of these processes can contribute to pathogenesis of autoimmune/inflammatory conditions, post-COVID-19 hyperinflammatory states, or sepsis-associated immunoparalysis. Training, priming, and tolerance regulate similar "signature" inflammatory genes such as TNF, IL6, and IL1B and utilize overlapping epigenetic mechanisms. We review how interferons (IFNs), best known for activating JAK-STAT signaling and interferon-stimulated genes, also play a key role in regulating training, priming, and tolerance via chromatin-mediated mechanisms. We present new data on how monocyte-to-macrophage differentiation modulates IFN-γ-mediated priming, affects regulation of AP-1 and CEBP activity, and attenuates superinduction of inflammatory genes. We present a "training-priming continuum" model that integrates IFN-mediated priming into current concepts about training and tolerance and proposes a central role for STAT1 and IRF1.
Collapse
Affiliation(s)
- Bikash Mishra
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, New York, USA
| | - Lionel B Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
16
|
Bodega-Mayor I, Delgado-Wicke P, Arrabal A, Alegría-Carrasco E, Nicolao-Gómez A, Jaén-Castaño M, Espadas C, Dopazo A, Martín-Gayo E, Gaspar ML, de Andrés B, Fernández-Ruiz E. Tyrosine kinase 2 modulates splenic B cells through type I IFN and TLR7 signaling. Cell Mol Life Sci 2024; 81:199. [PMID: 38683377 PMCID: PMC11058799 DOI: 10.1007/s00018-024-05234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.
Collapse
Affiliation(s)
- Irene Bodega-Mayor
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pablo Delgado-Wicke
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Alejandro Arrabal
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Ana Nicolao-Gómez
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Marta Jaén-Castaño
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Cristina Espadas
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Martín-Gayo
- Immunology Department, Hospital Universitario de La Princesa and IIS-Princesa, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Luisa Gaspar
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Belén de Andrés
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Fernández-Ruiz
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain.
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Escoubas CC, Dorman LC, Nguyen PT, Lagares-Linares C, Nakajo H, Anderson SR, Barron JJ, Wade SD, Cuevas B, Vainchtein ID, Silva NJ, Guajardo R, Xiao Y, Lidsky PV, Wang EY, Rivera BM, Taloma SE, Kim DK, Kaminskaya E, Nakao-Inoue H, Schwer B, Arnold TD, Molofsky AB, Condello C, Andino R, Nowakowski TJ, Molofsky AV. Type-I-interferon-responsive microglia shape cortical development and behavior. Cell 2024; 187:1936-1954.e24. [PMID: 38490196 PMCID: PMC11015974 DOI: 10.1016/j.cell.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.
Collapse
Affiliation(s)
- Caroline C Escoubas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leah C Dorman
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Phi T Nguyen
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christian Lagares-Linares
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Haruna Nakajo
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah R Anderson
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jerika J Barron
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah D Wade
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz Cuevas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas J Silva
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ricardo Guajardo
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ellen Y Wang
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF SRTP program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brianna M Rivera
- Institute for Neurodegenerative Diseases/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sunrae E Taloma
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dong Kyu Kim
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizaveta Kaminskaya
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiromi Nakao-Inoue
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bjoern Schwer
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Scott HM, Smith MH, Coleman AK, Armijo KS, Chapman MJ, Apostalo SL, Wagner AR, Watson RO, Patrick KL. Serine/arginine-rich splicing factor 7 promotes the type I interferon response by activating Irf7 transcription. Cell Rep 2024; 43:113816. [PMID: 38393946 PMCID: PMC11056844 DOI: 10.1016/j.celrep.2024.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Tight regulation of macrophage immune gene expression is required to fight infection without risking harmful inflammation. The contribution of RNA-binding proteins (RBPs) to shaping the macrophage response to pathogens remains poorly understood. Transcriptomic analysis reveals that a member of the serine/arginine-rich (SR) family of mRNA processing factors, SRSF7, is required for optimal expression of a cohort of interferon-stimulated genes in macrophages. Using genetic and biochemical assays, we discover that in addition to its canonical role in regulating alternative splicing, SRSF7 drives transcription of interferon regulatory transcription factor 7 (IRF7) to promote antiviral immunity. At the Irf7 promoter, SRSF7 maximizes STAT1 transcription factor binding and RNA polymerase II elongation via cooperation with the H4K20me1 histone methyltransferase KMT5a (SET8). These studies define a role for an SR protein in activating transcription and reveal an RBP-chromatin network that orchestrates macrophage antiviral gene expression.
Collapse
Affiliation(s)
- Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Mackenzie H Smith
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kaitlyn S Armijo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Morgan J Chapman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Summer L Apostalo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
21
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
22
|
Al-Eitan L, Mihyar A, Zhang L, Bisht P, Jaenisch R. Genomic and biological variation in bat IFNs: An antiviral treatment approach. Rev Med Virol 2024; 34:e2488. [PMID: 37921610 DOI: 10.1002/rmv.2488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Bat-borne viruses have attracted considerable research, especially in relation to the Covid-19 pandemic. Although bats can carry multiple zoonotic viruses that are lethal to many mammalian species, they appear to be asymptomatic to viral infection despite the high viral loads contained in their bodies. There are several differences between bats and other mammals. One of the major differences between bats and other mammals is the bats' ability to fly, which is believed to have induced evolutionary changes. It may have also favoured them as suitable hosts for viruses. This is related to their tolerance to viral infection. Innate immunity is the first line of defence against viral infection, but bats have metamorphosed the type of responses induced by innate immunity factors such as interferons. The expression patterns of interferons differ, as do those of interferon-related genes such as interferon regulatory factors and interferon-stimulated genes that contribute to the antiviral response of infected cells. In addition, the signalling pathways related to viral infection and immune responses have been subject to evolutionary changes, including mutations compared to their homologues in other mammals and gene selection. This article discusses the differences in the interferon-mediated antiviral response in bats compared to that of other mammals and how these differences are correlated to viral tolerance in bats. The effect of bat interferons related genes on human antiviral response against bat-borne viruses is also discussed.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Liguo Zhang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Del Negro I, Pez S, Versace S, Marziali A, Gigli GL, Tereshko Y, Valente M. Impact of Disease-Modifying Therapies on Gut-Brain Axis in Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:6. [PMID: 38276041 PMCID: PMC10818907 DOI: 10.3390/medicina60010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Multiple sclerosis is a chronic, autoimmune-mediated, demyelinating disease whose pathogenesis remains to be defined. In past years, in consideration of a constantly growing number of patients diagnosed with multiple sclerosis, the impacts of different environmental factors in the pathogenesis of the disease have been largely studied. Alterations in gut microbiome composition and intestinal barrier permeability have been suggested to play an essential role in the regulation of autoimmunity. Thus, increased efforts are being conducted to demonstrate the complex interplay between gut homeostasis and disease pathogenesis. Numerous results confirm that disease-modifying therapies (DMTs) used for the treatment of MS, in addition to their immunomodulatory effect, could exert an impact on the intestinal microbiota, contributing to the modulation of the immune response itself. However, to date, the direct influence of these treatments on the microbiota is still unclear. This review intends to underline the impact of DMTs on the complex system of the microbiota-gut-brain axis in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Sara Pez
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Salvatore Versace
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Alessandro Marziali
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|
24
|
Nouri N, Cao RG, Bunsow E, Nehar-Belaid D, Marches R, Xu Z, Smith B, Heinonen S, Mertz S, Leber A, Smits G, van der Klis F, Mejías A, Banchereau J, Pascual V, Ramilo O. Young infants display heterogeneous serological responses and extensive but reversible transcriptional changes following initial immunizations. Nat Commun 2023; 14:7976. [PMID: 38042900 PMCID: PMC10693608 DOI: 10.1038/s41467-023-43758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Infants necessitate vaccinations to prevent life-threatening infections. Our understanding of the infant immune responses to routine vaccines remains limited. We analyzed two cohorts of 2-month-old infants before vaccination, one week, and one-month post-vaccination. We report remarkable heterogeneity but limited antibody responses to the different antigens. Whole-blood transcriptome analysis in an initial cohort showed marked overexpression of interferon-stimulated genes (ISGs) and to a lesser extent of inflammation-genes at day 7, which normalized one month post-vaccination. Single-cell RNA sequencing in peripheral blood mononuclear cells from a second cohort identified at baseline a predominantly naive immune landscape including ISGhi cells. On day 7, increased expression of interferon-, inflammation-, and cytotoxicity-related genes were observed in most immune cells, that reverted one month post-vaccination, when a CD8+ ISGhi and cytotoxic cluster and B cells expanded. Antibody responses were associated with baseline frequencies of plasma cells, B-cells, and monocytes, and induction of ISGs at day 7.
Collapse
Affiliation(s)
- Nima Nouri
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, 02141, USA
| | - Raquel Giacomelli Cao
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eleonora Bunsow
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bennett Smith
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Santtu Heinonen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sara Mertz
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Leber
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gaby Smits
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona van der Klis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Asunción Mejías
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Immunai, New York, NY, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Octavio Ramilo
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Yu H, Wu J, Li K, Huang Y, Wu T, Wang L, Huang Y. Integrated analysis of murine cornea identifies JAK/STAT signaling pathway upregulated specifically in female Vitamin A Deficient mice. Exp Eye Res 2023; 237:109714. [PMID: 37931772 DOI: 10.1016/j.exer.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
The Keratoconus (KC) is a corneal ectatic disease with unclear etiology. There are increasing studies that reported its association with a variety of inflammatory mechanisms. Vitamin A(VA) is an important nutrient related to inflammation regulation, and its deficiency may cause abnormalities of the ocular surface. However, the proportion of Vitamin A deficiency(VAD) was found surprisingly high among KC patients in our clinic practice. The aim of this study is to explore the effects of VAD on the transcriptome of corneas with the help of the VAD murine model and transcriptomics techniques. Blood samples of KC patients and non-KC controls (NC) were collected and the serum VA concentrations were measured and analyzed. A total of 52 NC and 39 KC were enrolled and the comparison of serum VA showed that the proportion of VAD in KC patients was 48.7% versus 1.9% in NC group. The further analysis of gender differences showed the proportion of VAD in female KC was 88.9% versus 36.7% in KC male patients. To explore the influence of VAD on cornea, the VAD mice fed with VAD diets were used. The RNA sequencing was employed to compare the corneal transcriptomic characteristics between the VAD female mice, NC female mice, VAD male mice and NC male mice. The transcriptome analysis revealed that the upregulated differential genes were mainly enriched in the immune response related pathways in VAD female mice versus NC female mice, especially the genes of JAK-STAT signaling pathway. The downstream molecules of JAK-STAT pathway were also significant after corneal mechanical scratching in female VAD mice. While, the differential genes between VAD male mice and NC male mice were estrogen signaling pathway instead of JAK-STAT pathway. This study indicates that VAD affects the transcriptomics of murine cornea with gender differences, which specifically affects the inflammatory status of the female murine cornea.
Collapse
Affiliation(s)
- Hanrui Yu
- Medical School of Chinese PLA, Beijing, China
| | - Jie Wu
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China; Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Kaixiu Li
- Medical School of Chinese PLA, Beijing, China
| | - Yulei Huang
- Medical School of Chinese PLA, Beijing, China
| | - Tengyun Wu
- Medical School of Chinese PLA, Beijing, China; Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China; The PLA Medical College, Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
26
|
Flagg M, Goldin K, Pérez-Pérez L, Singh M, Williamson BN, Pruett N, Hoang CD, de Wit E. Low level of tonic interferon signalling is associated with enhanced susceptibility to SARS-CoV-2 variants of concern in human lung organoids. Emerg Microbes Infect 2023; 12:2276338. [PMID: 37883246 PMCID: PMC10732190 DOI: 10.1080/22221751.2023.2276338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
There is tremendous heterogeneity in the severity of COVID-19 disease in the human population, and the mechanisms governing the development of severe disease remain incompletely understood. The emergence of SARS-CoV-2 variants of concern (VOC) Delta (B.1.617.2) and Omicron (B.1.1.529) further compounded this heterogeneity. Virus replication and host cell damage in the distal lung is often associated with severe clinical disease, making this an important site to consider when evaluating pathogenicity of SARS-CoV-2 VOCs. Using distal human lung organoids (hLOs) derived from multiple human donors, we compared the fitness and pathogenicity of SARS-CoV-2 VOC Delta and Omicron, along with an ancestral clade B variant D614G, and evaluated donor-dependent differences in susceptibility to infection. We observed substantial attenuation of Omicron in hLOs and demonstrated enhanced susceptibility to Omicron and D614G replication in hLOs from one donor. Transcriptomic analysis revealed that increased susceptibility to SARS-CoV-2 infection in these hLOs was associated with reduced tonic interferon signaling activity at baseline. We show that hLOs can be used to model heterogeneity of SARS-CoV-2 pathogenesis in humans, and propose that variability in tonic interferon signaling set point may impact susceptibility to SARS-CoV-2 VOCs and subsequent COVID-19 disease progression.
Collapse
Affiliation(s)
- Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
27
|
Dorrity TJ, Shin H, Wiegand KA, Aruda J, Closser M, Jung E, Gertie JA, Leone A, Polfer R, Culbertson B, Yu L, Wu C, Ito T, Huang Y, Steckelberg AL, Wichterle H, Chung H. Long 3'UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci Immunol 2023; 8:eadg2979. [PMID: 37862432 PMCID: PMC11056275 DOI: 10.1126/sciimmunol.adg2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/18/2023] [Indexed: 10/22/2023]
Abstract
Loss of RNA homeostasis underlies numerous neurodegenerative and neuroinflammatory diseases. However, the molecular mechanisms that trigger neuroinflammation are poorly understood. Viral double-stranded RNA (dsRNA) triggers innate immune responses when sensed by host pattern recognition receptors (PRRs) present in all cell types. Here, we report that human neurons intrinsically carry exceptionally high levels of immunostimulatory dsRNAs and identify long 3'UTRs as giving rise to neuronal dsRNA structures. We found that the neuron-enriched ELAVL family of genes (ELAVL2, ELAVL3, and ELAVL4) can increase (i) 3'UTR length, (ii) dsRNA load, and (iii) activation of dsRNA-sensing PRRs such as MDA5, PKR, and TLR3. In wild-type neurons, neuronal dsRNAs signaled through PRRs to induce tonic production of the antiviral type I interferon. Depleting ELAVL2 in WT neurons led to global shortening of 3'UTR length, reduced immunostimulatory dsRNA levels, and rendered WT neurons susceptible to herpes simplex virus and Zika virus infection. Neurons deficient in ADAR1, a dsRNA-editing enzyme mutated in the neuroinflammatory disorder Aicardi-Goutières syndrome, exhibited intolerably high levels of dsRNA that triggered PRR-mediated toxic inflammation and neuronal death. Depleting ELAVL2 in ADAR1 knockout neurons led to prolonged neuron survival by reducing immunostimulatory dsRNA levels. In summary, neurons are specialized cells where PRRs constantly sense "self" dsRNAs to preemptively induce protective antiviral immunity, but maintaining RNA homeostasis is paramount to prevent pathological neuroinflammation.
Collapse
Affiliation(s)
- Tyler J. Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenenni A. Wiegand
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Justin Aruda
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily Jung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jake A. Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Amanda Leone
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Polfer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Bruce Culbertson
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa Yu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine Wu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Takamasa Ito
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yuefeng Huang
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Mesev EV, Lin AE, Guare EG, Heller BL, Douam F, Adamson B, Toettcher JE, Ploss A. Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors. Sci Signal 2023; 16:eadf5494. [PMID: 37816090 PMCID: PMC10939449 DOI: 10.1126/scisignal.adf5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short "box motifs" within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.
Collapse
Affiliation(s)
- Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emma G. Guare
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brigitte L. Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Florian Douam
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. PLoS One 2023; 18:e0292368. [PMID: 37792852 PMCID: PMC10550192 DOI: 10.1371/journal.pone.0292368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e., cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data (https://viz.datascience.arizona.edu/3DEpiEx/).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Esha V. Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, Arizona, United States of America
| | - Reid S. Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences, College of Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Caitlyn E. Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
30
|
Wang J, Huang M, Du Y, Chen H, Li Z, Zhai T, Ou Z, Huang Y, Bu F, Zhen H, Pan R, Wang Y, Zhao X, Situ B, Zheng L, Hu X. Lactobacillus rhamnosus GG Regulates Host IFN-I Through the RIG-I Signalling Pathway to Inhibit Herpes Simplex Virus Type 2 Infection. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10137-8. [PMID: 37624569 DOI: 10.1007/s12602-023-10137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Numerous recent studies have demonstrated that the commensal microbiota plays an important role in host immunity against infections. During the infection process, viruses can exhibit substantial and close interactions with the commensal microbiota. However, the associated mechanism remains largely unknown. Therefore, in this study, we explored the specific mechanisms by which the commensal microbiota modulates host immunity against viral infections. We found that the expression levels of type I interferon (IFN-I) and antiviral priming were significantly downregulated following the depletion of the commensal microbiota due to treatment with broad-spectrum antibiotics (ABX). In addition, we confirmed a unique molecular mechanism underlying the induction of IFN-I mediated by the commensal microbiota. In vivo and in vitro experiments confirmed that Lactobacillus rhamnosus GG (LGG) can suppress herpes simplex virus type 2 (HSV-2) infection by inducing IFN-I expression via the retinoic acid-inducible gene-I (RIG-I) signalling pathway. Therefore, the commensal microbiota-induced production of IFN-I provides a potential therapeutic approach to combat viral infections. Altogether, understanding the complexity and the molecular aspects linking the commensal microbiota to health will help provide the basis for novel therapies already being developed.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqi Du
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoming Chen
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zixiong Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taiyu Zhai
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haojun Zhen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoru Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohan Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Tashiro K, Segawa T, Futami T, Suzuki M, Itou T. Establishment and characterization of a novel kidney cell line derived from the common bottlenose dolphin. In Vitro Cell Dev Biol Anim 2023; 59:536-549. [PMID: 37524977 DOI: 10.1007/s11626-023-00786-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023]
Abstract
Common bottlenose dolphin (Tursiops truncatus) is a well-known cetacean species that inhabits temperate and tropical seas worldwide. Limited supply and poor quality of samples hinder the investigation of the effects of various pathogens and environmental pollutants on this cetacean species. Cultured cells are useful for experimental studies; however, no cell lines derived from cetaceans are generally available. Therefore, in this study, we established a novel kidney cell line, TK-ST, derived from T. truncatus. Primary cells exhibited the morphological characteristics of epithelial and fibroblast cells, but their immortalization and passaging resulted in a predominantly epithelial cell morphology. TK-ST was immortalized using the large T SV40 antigen and human telomerase reverse transcriptase and exhibited long-term stable cell growth. TK-ST cells are generally cultured in Dulbecco's modified Eagle's medium with 10% fetal bovine serum at 37°C and 5% CO2 but can also be cultured in 5-20% fetal bovine serum and several other classical media commonly used for common animal cell culture. TK-ST cells were found to be susceptible to several viruses, including the dolphin morbillivirus (most important virus in cetaceans), and exhibited cytopathic effects, facilitating the replication of the dolphin morbillivirus. Furthermore, mRNA expression levels of cytokine genes were increased in TK-ST cells after stimulation with lipopolysaccharides and poly(I:C). Therefore, the novel TK-ST cell line derived in this study can potentially be used for further in vitro studies on cetaceans.
Collapse
Affiliation(s)
- Kaede Tashiro
- Nihon University Veterinary Research Center, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takao Segawa
- Nihon University Veterinary Research Center, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taketo Futami
- Minamichita Beachland Aquarium, 428-1 Okuda Mihama, Chita, Aichi, 470-3233, Japan
| | - Miwa Suzuki
- Department of Marine Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takuya Itou
- Nihon University Veterinary Research Center, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
32
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Scott HM, Smith MH, Coleman AK, Apostalo SL, Wagner AR, Watson RO, Patrick KL. Serine arginine-rich splicing factor (SRSF7) cooperates with the histone methyltransferase KMT5a to promote the type I interferon response via transcriptional activation of IRF7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540055. [PMID: 37503164 PMCID: PMC10369877 DOI: 10.1101/2023.05.09.540055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tight regulation of macrophage immune gene expression is required to fight infection without risking harmful inflammation. The contribution of RNA binding proteins (RBPs) to shaping the macrophage response to pathogens remains poorly understood. Transcriptomic analysis revealed that a member of the serine/arginine-rich (SR) family of mRNA processing factors, SRSF7, is required for optimal expression of a cohort of interferon stimulated genes (ISGs) in macrophages. Using genetic and biochemical assays, we discovered that in addition to its canonical role in regulating alternative splicing, SRSF7 drives transcription of interferon regulatory transcription factor 7 (IRF7) to promote antiviral immunity. At the Irf7 promoter, SRSF7 maximizes STAT1 transcription factor binding and RNA polymerase II elongation via cooperation with the H4K20me1 histone methyltransferase KMT5a (SET8). These studies define an unorthodox role for an SR protein in activating transcription and reveal an unappreciated RNA binding protein-chromatin network that orchestrates macrophage antiviral gene expression.
Collapse
|
34
|
Reid C, Flores-Villalva S, Remot A, Kennedy E, O'Farrelly C, Meade KG. Long-term in vivo vitamin D 3 supplementation modulates bovine IL-1 and chemokine responses. Sci Rep 2023; 13:10846. [PMID: 37407588 DOI: 10.1038/s41598-023-37427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Vitamin D deficiency at birth, followed by prolonged insufficiency in early life may predispose bovine calves to infection and disease. However, the effects of vitamin D levels on innate immunity are unclear due to the lack of long-term supplementation trials in vivo and reliable approaches for reproducibly assessing immune function. Here, a standardized whole blood immunophenotyping assay was used to compare innate immune responses to infection relevant ligands (LPS, Pam3CSK4 and R848) between Holstein-Friesian calves supplemented with vitamin D (n = 12) from birth until 7 months of age and control calves (n = 10) raised on an industry standard diet. Transcriptomic analysis in unstimulated whole blood cells revealed increased expression of type I interferons and chemokines in vitamin D supplemented calves, while IL-1 and inflammasome gene expression was decreased. In response to stimulation with the bacterial ligand LPS, supplemented calves had significantly increased expression of CASP1, CX3CR1, CAT, whereas STAT1 was decreased. Stimulation with the bacterial ligand Pam3CSK4 revealed increased expression of IL1A, IL1B and CAT genes; and decreased C5AR1 expression. In response to the viral ligand R848, STAT1 and S100A8 expression was significantly decreased. An increased IL-1 and inflammasome gene expression signature in vitamin D supplemented calves in response to LPS and Pam3CSK4 was also found, with ELISA confirming increased IL-1β protein production. In contrast, a decreased chemokine gene expression signature was found in response to R848 in supplemented animals, with decreased IL-8 protein expression exhibited in response to all PAMPs also found. These results demonstrated expression of several cytokine, chemokine and inflammasome genes were impacted by vitamin D supplementation in the first 7 months of life, with IL-8 expression particularly responsive to vitamin D. Overall, vitamin D supplementation induced differential innate immune responses of blood immune cells that could have important implications for disease susceptibility in cattle.
Collapse
Affiliation(s)
- Cian Reid
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Susana Flores-Villalva
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- CENID Salud Animal e Inocuidad, INIFAP, Mexico, Mexico
| | - Aude Remot
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Emer Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
35
|
Espada CE, Sari L, Cahill MP, Yang H, Phillips S, Martinez N, Kenney AD, Yount JS, Xiong Y, Lin MM, Wu L. SAMHD1 impairs type I interferon induction through the MAVS, IKKε, and IRF7 signaling axis during viral infection. J Biol Chem 2023; 299:104925. [PMID: 37328105 PMCID: PMC10404699 DOI: 10.1016/j.jbc.2023.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.
Collapse
Affiliation(s)
- Constanza E Espada
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Levent Sari
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael P Cahill
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas Martinez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Milo M Lin
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
36
|
Kang J, Huang M, Li J, Zhang K, Zhu C, Liu S, Zhou Z, Wang T, Wang Z. Enterovirus D68 VP3 Targets the Interferon Regulatory Factor 7 To Inhibit Type I Interferon Response. Microbiol Spectr 2023; 11:e0413822. [PMID: 37125923 PMCID: PMC10269600 DOI: 10.1128/spectrum.04138-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a globally emerging pathogen causing severe respiratory illnesses mainly in children. The protease from EV-D68 could impair type I interferon (IFN-I) production. However, the role of the EV-D68 structural protein in antagonizing host antiviral responses remains largely unknown. We showed that the EV-D68 structural protein VP3 interacted with IFN regulatory factor 7 (IRF7), and this interaction suppressed the phosphorylation and nuclear translocation of IRF7 and then repressed the transcription of IFN. Furthermore, VP3 inhibited the TNF receptor associated factor 6 (TRAF6)-induced ubiquitination of IRF7 by competitive interaction with IRF7. IRF7Δ305-503 showed much weaker interaction ability to VP3, and VP3Δ41-50 performed weaker interaction ability with IRF7. The VP3 from enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) was also found to interact with the IRF7 protein. These results indicate that the enterovirus structural protein VP3 plays a pivotal role in subverting host innate immune responses and may be a potential target for antiviral drug research. IMPORTANCE EV-D68 is a globally emerging pathogen that causes severe respiratory illnesses. Here, we report that EV-D68 inhibits innate immune responses by targeting IRF7. Further investigations revealed that the structural protein VP3 inhibited the TRAF6-induced ubiquitination of IRF7 by competitive interaction with IRF7. These results indicate that the control of IRF7 by VP3 may be a mechanism by which EV-D68 represses IFN-I production.
Collapse
Affiliation(s)
- Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Jinyu Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Keke Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Cheng Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Zhenwei Zhou
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
37
|
You Y, Grasso E, Alvero A, Condon J, Dimova T, Hu A, Ding J, Alexandrova M, Manchorova D, Dimitrova V, Liao A, Mor G. Twist1-IRF9 Interaction Is Necessary for IFN-Stimulated Gene Anti-Zika Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1899-1912. [PMID: 37144865 PMCID: PMC10615665 DOI: 10.4049/jimmunol.2300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
An efficient immune defense against pathogens requires sufficient basal sensing mechanisms that can deliver prompt responses. Type I IFNs are protective against acute viral infections and respond to viral and bacterial infections, but their efficacy depends on constitutive basal activity that promotes the expression of downstream genes known as IFN-stimulated genes (ISGs). Type I IFNs and ISGs are constitutively produced at low quantities and yet exert profound effects essential for numerous physiological processes beyond antiviral and antimicrobial defense, including immunomodulation, cell cycle regulation, cell survival, and cell differentiation. Although the canonical response pathway for type I IFNs has been extensively characterized, less is known regarding the transcriptional regulation of constitutive ISG expression. Zika virus (ZIKV) infection is a major risk for human pregnancy complications and fetal development and depends on an appropriate IFN-β response. However, it is poorly understood how ZIKV, despite an IFN-β response, causes miscarriages. We have uncovered a mechanism for this function specifically in the context of the early antiviral response. Our results demonstrate that IFN regulatory factor (IRF9) is critical in the early response to ZIKV infection in human trophoblast. This function is contingent on IRF9 binding to Twist1. In this signaling cascade, Twist1 was not only a required partner that promotes IRF9 binding to the IFN-stimulated response element but also an upstream regulator that controls basal levels of IRF9. The absence of Twist1 renders human trophoblast cells susceptible to ZIKV infection.
Collapse
Affiliation(s)
- Yuan You
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Esteban Grasso
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
- School of Science, University of Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, 1428
| | - Ayesha Alvero
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jennifer Condon
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Hu
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jiahui Ding
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| |
Collapse
|
38
|
Torow N, Li R, Hitch TCA, Mingels C, Al Bounny S, van Best N, Stange EL, Simons B, Maié T, Rüttger L, Gubbi NMKP, Abbott DA, Benabid A, Gadermayr M, Runge S, Treichel N, Merhof D, Rosshart SP, Jehmlich N, Hand TW, von Bergen M, Heymann F, Pabst O, Clavel T, Tacke F, Lelouard H, Costa IG, Hornef MW. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer's patch. Immunity 2023; 56:1220-1238.e7. [PMID: 37130522 PMCID: PMC10262694 DOI: 10.1016/j.immuni.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Ronghui Li
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Charles Adrian Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Clemens Mingels
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Shahed Al Bounny
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany; Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht 6200, the Netherlands
| | - Eva-Lena Stange
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Britta Simons
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lennart Rüttger
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | | | - Darryl Adelaide Abbott
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Adam Benabid
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Michael Gadermayr
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Solveig Runge
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nicole Treichel
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Stephan Patrick Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Department of Medicine II, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany
| | - Timothy Wesley Hand
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany; German Centre for Integrative Biodiversity Research (iDiv), Leipzig 04103, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig 04103, Germany
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Hugues Lelouard
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | - Ivan Gesteira Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Mathias Walter Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
39
|
Chida T, Ishida Y, Morioka S, Sugahara G, Han C, Lam B, Yamasaki C, Sugahara R, Li M, Tanaka Y, Liang TJ, Tateno C, Saito T. Persistent hepatic IFN system activation in HBV-HDV infection determines viral replication dynamics and therapeutic response. JCI Insight 2023; 8:162404. [PMID: 37154158 DOI: 10.1172/jci.insight.162404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Hepatitis delta virus (HDV), a satellite virus of HBV, is regarded as the most severe type of hepatitis virus because of the substantial morbidity and mortality. The IFN system is the first line of defense against viral infections and an essential element of antiviral immunity; however, the role of the hepatic IFN system in controlling HBV-HDV infection remains poorly understood. Herein, we showed that HDV infection of human hepatocytes induced a potent and persistent activation of the IFN system whereas HBV was inert in triggering hepatic antiviral response. Moreover, we demonstrated that HDV-induced constitutive activation of the hepatic IFN system resulted in a potent suppression of HBV while modestly inhibiting HDV. Thus, these pathogens are equipped with distinctive immunogenicity and varying sensitivity to the antiviral effectors of IFN, leading to the establishment of a paradoxical mode of viral interference wherein HDV, the superinfectant, outcompetes HBV, the primary pathogen. Furthermore, our study revealed that HDV-induced constitutive IFN system activation led to a state of IFN refractoriness, rendering therapeutic IFNs ineffective. The present study provides potentially novel insights into the role of the hepatic IFN system in regulating HBV-HDV infection dynamics and its therapeutic implications through elucidating the molecular basis underlying the inefficacy of IFN-based antiviral strategies against HBV-HDV infection.
Collapse
Affiliation(s)
- Takeshi Chida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Yuji Ishida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Sho Morioka
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Go Sugahara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Christine Han
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Bill Lam
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | | | - Remi Sugahara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Meng Li
- Bioinformatics Service, Norris Medical Library, USC, Los Angeles, California, USA
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Chise Tateno
- PhoenixBio, Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
- Department of Molecular Microbiology & Immunology
- Department of Pathology, and
- USC Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, California, USA
| |
Collapse
|
40
|
Jeremiah N, Ferran H, Antoniadou K, De Azevedo K, Nikolic J, Maurin M, Benaroch P, Manel N. RELA tunes innate-like interferon I/III responses in human T cells. J Exp Med 2023; 220:e20220666. [PMID: 36820829 PMCID: PMC9998965 DOI: 10.1084/jem.20220666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023] Open
Abstract
In innate immune cells, intracellular sensors such as cGAS-STING stimulate type I/III interferon (IFN) expression, which promotes antiviral defense and immune activation. However, how IFN-I/III expression is controlled in adaptive cells is poorly understood. Here, we identify a transcriptional rheostat orchestrated by RELA that confers human T cells with innate-like abilities to produce IFN-I/III. Despite intact cGAS-STING signaling, IFN-I/III responses are stunted in CD4+ T cells compared with dendritic cells or macrophages. We find that lysine residues in RELA tune the IFN-I/III response at baseline and in response to STING stimulation in CD4+ T cells. This response requires positive feedback driven by cGAS and IRF7 expression. By combining RELA with IRF3 and DNA demethylation, IFN-I/III production in CD4+ T cells reaches levels observed in dendritic cells. IFN-I/III production provides self-protection of CD4+ T cells against HIV infection and enhances the elimination of tumor cells by CAR T cells. Therefore, innate-like functions can be tuned and leveraged in human T cells.
Collapse
Affiliation(s)
- Nadia Jeremiah
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Hermine Ferran
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Konstantina Antoniadou
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Kevin De Azevedo
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Jovan Nikolic
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Philippe Benaroch
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Nicolas Manel
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
41
|
Lin SJ, Lin KM, Chen SYJ, Ku CC, Huang CW, Huang CH, Gale M, Tsai CH. Type I Interferon Orchestrates Demand-Adapted Monopoiesis during Influenza A Virus Infection via STAT1-Mediated Upregulation of Macrophage Colony-Stimulating Factor Receptor Expression. J Virol 2023; 97:e0010223. [PMID: 37022164 PMCID: PMC10134875 DOI: 10.1128/jvi.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-β) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.
Collapse
Affiliation(s)
- Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Ku
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Huang
- Department of Family Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsiang Huang
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Eskandari SK, Allos H, Safadi JM, Sulkaj I, Sanders JSF, Cravedi P, Ghobrial IM, Berger SP, Azzi JR. Type I interferons augment regulatory T cell polarization in concert with ancillary cytokine signals. FRONTIERS IN TRANSPLANTATION 2023; 2:1149334. [PMID: 38993887 PMCID: PMC11235373 DOI: 10.3389/frtra.2023.1149334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/24/2023] [Indexed: 07/13/2024]
Abstract
In the transplant community, research efforts exploring endogenous alternatives to inducing tolerogenic allo-specific immune responses are much needed. In this regard, CD4 + FoxP3+ regulatory T cells (Tregs) are appealing candidates due to their intrinsic natural immunosuppressive qualities. To date, various homeostatic factors that dictate Treg survival and fitness have been elucidated, particularly the non-redundant roles of antigenic CD3ζ/T-cell-receptor, co-stimulatory CD28, and cytokine interleukin (IL-)2 dependent signaling. Many of the additional biological signals that affect Tregs remain to be elucidated, however, especially in the transplant context. Previously, we demonstrated an unexpected link between type I interferons (IFNs) and Tregs in models of multiple myeloma (MM)-where MM plasmacytes escaped immunological surveillance by enhancing type I IFN signaling and precipitating upregulated Treg responses that could be overturned with specific knockdown of type I IFN signaling. Here, we elaborated on these findings by assessing the role of type I IFN signaling (IFN-α and -β) on Treg homeostasis within an alloimmune context. Specifically, we studied the induction of Tregs from naïve CD4 T cells. Using in vitro and in vivo models of murine skin allotransplantation, we found that type I IFN indeed spatiotemporally enhanced the polarization of naïve CD4 T cells into FoxP3+ Tregs. Notably, however, this effect was not independent of, and rather co-dependent on, ancillary cytokine signals including IL-2. These findings provide evidence for the relevance of type I IFN pathway in modulating FoxP3+ Treg responses and, by extension, stipulate an additional means of facilitating Treg fitness via type I IFNs.
Collapse
Affiliation(s)
- Siawosh K. Eskandari
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hazim Allos
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jenelle M. Safadi
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ina Sulkaj
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jan S. F. Sanders
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Paolo Cravedi
- Translational Transplant Research Center, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Stefan P. Berger
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jamil R. Azzi
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
MacLauchlan S, Kushwaha P, Tai A, Chen J, Manning C, Swarnkar G, Abu-Amer Y, Fitzgerald KA, Sharma S, Gravallese EM. STING-dependent interferon signatures restrict osteoclast differentiation and bone loss in mice. Proc Natl Acad Sci U S A 2023; 120:e2210409120. [PMID: 37023130 PMCID: PMC10104545 DOI: 10.1073/pnas.2210409120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
Stimulator of interferon genes (STING) is a key mediator of type-I interferon (IFN-I) signaling in response to a variety of stimuli, but the contribution of STING to homeostatic processes is not fully characterized. Previous studies showed that ligand activation of STING limits osteoclast differentiation in vitro through the induction of IFNβ and IFN-I interferon-stimulated genes (ISGs). In a disease model (SAVI) driven by the V154M gain-of-function mutation in STING, fewer osteoclasts form from SAVI precursors in response to receptor activator of NF-kappaB ligand (RANKL) in an IFN-I-dependent manner. Due to the described role of STING-mediated regulation of osteoclastogenesis in activation settings, we sought to determine whether basal STING signaling contributes to bone homeostasis, an unexplored area. Using whole-body and myeloid-specific deficiency, we show that STING signaling prevents trabecular bone loss in mice over time and that myeloid-restricted STING activity is sufficient for this effect. STING-deficient osteoclast precursors differentiate with greater efficiency than wild types. RNA sequencing of wild-type and STING-deficient osteoclast precursor cells and differentiating osteoclasts reveals unique clusters of ISGs including a previously undescribed ISG set expressed in RANKL naïve precursors (tonic expression) and down-regulated during differentiation. We identify a 50 gene tonic ISG signature that is STING dependent and shapes osteoclast differentiation. From this list, we identify interferon-stimulated gene 15 (ISG15) as a tonic STING-regulated ISG that limits osteoclast formation. Thus, STING is an important upstream regulator of tonic IFN-I signatures shaping the commitment to osteoclast fates, providing evidence for a nuanced and unique role for this pathway in bone homeostasis.
Collapse
Affiliation(s)
- Susan MacLauchlan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Priyanka Kushwaha
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Albert Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Jia Chen
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Catherine Manning
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Gaurav Swarnkar
- Department of Orthopedics and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Yousef Abu-Amer
- Department of Orthopedics and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Katherine A. Fitzgerald
- Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Ellen M. Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| |
Collapse
|
44
|
Inborn Errors of Immunity Predisposing to Herpes Simplex Virus Infections of the Central Nervous System. Pathogens 2023; 12:pathogens12020310. [PMID: 36839582 PMCID: PMC9961685 DOI: 10.3390/pathogens12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Herpesvirus infections can lead to a number of severe clinical manifestations, particularly when involving the central nervous system (CNS), causing encephalitis and meningitis. However, understanding of the host factors conferring increased susceptibility to these diseases and their complications remains incomplete. Previous studies have uncovered defects in the innate Toll-like receptor 3 pathway and production of type I interferon (IFN-I) in children and adults that predispose them to herpes simplex encephalitis. More recently, there is accumulating evidence for an important role of IFN-independent cell-autonomous intrinsic mechanisms, including small nucleolar RNAs, RNA lariat metabolism, and autophagy, in restricting herpesvirus replication and conferring protection against CNS infection. The present review first describes clinical manifestations of HSV infection with a focus on neurological complications and then summarizes the host-pathogen interactions and innate immune pathways responsible for sensing herpesviruses and triggering antiviral responses and immunity. Next, we review the current landscape of inborn errors of immunity and the underlying genetic defects and disturbances of cellular immune pathways that confer increased susceptibility to HSV infection in CNS. Ultimately, we discuss some of the present outstanding unanswered questions relating to inborn errors of immunity and HSV CNS infection together with some perspectives and future directions for research in the pathogenesis of these severe diseases in humans.
Collapse
|
45
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
46
|
Lee SW, Lee GW, Kim HO, Cho JH. Shaping Heterogeneity of Naive CD8 + T Cell Pools. Immune Netw 2023; 23:e2. [PMID: 36911807 PMCID: PMC9995989 DOI: 10.4110/in.2023.23.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
Immune diversification helps protect the host against a myriad of pathogens. CD8+ T cells are essential adaptive immune cells that inhibit the spread of pathogens by inducing apoptosis in infected host cells, ultimately ensuring complete elimination of infectious pathogens and suppressing disease development. Accordingly, numerous studies have been conducted to elucidate the mechanisms underlying CD8+ T cell activation, proliferation, and differentiation into effector and memory cells, and to identify various intrinsic and extrinsic factors regulating these processes. The current knowledge accumulated through these studies has led to a huge breakthrough in understanding the existence of heterogeneity in CD8+ T cell populations during immune response and the principles underlying this heterogeneity. As the heterogeneity in effector/memory phases has been extensively reviewed elsewhere, in the current review, we focus on CD8+ T cells in a "naïve" state, introducing recent studies dealing with the heterogeneity of naive CD8+ T cells and discussing the factors that contribute to such heterogeneity. We also discuss how this heterogeneity contributes to establishing the immense complexity of antigen-specific CD8+ T cell response.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Gil-Woo Lee
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | | | - Jae-Ho Cho
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea.,BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
47
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524743. [PMID: 36711548 PMCID: PMC9882319 DOI: 10.1101/2023.01.19.524743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e. , cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data ( https://viz.datascience.arizona.edu/3DEpiEx/ ).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Esha V Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, AZ, USA
| | - Reid S Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences; College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Caitlyn E Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ USA
| |
Collapse
|
48
|
Van Eyndhoven LC, Verberne VPG, Bouten CVC, Singh A, Tel J. Transiently heritable fates and quorum sensing drive early IFN-I response dynamics. eLife 2023; 12:83055. [PMID: 36629318 PMCID: PMC9910831 DOI: 10.7554/elife.83055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Type I interferon (IFN-I)-mediated antiviral responses are central to host defense against viral infections. Crucial is the tight and well-orchestrated control of cellular decision-making leading to the production of IFN-Is. Innovative single-cell approaches revealed that the initiation of IFN-I production is limited to only fractions of 1-3% of the total population, both found in vitro, in vivo, and across cell types, which were thought to be stochastically regulated. To challenge this dogma, we addressed the influence of various stochastic and deterministic host-intrinsic factors on dictating early IFN-I responses, using a murine fibroblast reporter model. Epigenetic drugs influenced the percentage of responding cells. Next, with the classical Luria-Delbrück fluctuation test, we provided evidence for transient heritability driving responder fates, which was verified with mathematical modeling. Finally, while studying varying cell densities, we substantiated an important role for cell density in dictating responsiveness, similar to the phenomenon of quorum sensing. Together, this systems immunology approach opens up new avenues to progress the fundamental understanding on cellular decision-making during early IFN-I responses, which can be translated to other (immune) signaling systems.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Vincent PG Verberne
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Carlijn VC Bouten
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
- Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of DelawareNewarkUnited States
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| |
Collapse
|
49
|
Distinct gene programs underpinning disease tolerance and resistance in influenza virus infection. Cell Syst 2022; 13:1002-1015.e9. [PMID: 36516834 DOI: 10.1016/j.cels.2022.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
When challenged with an invading pathogen, the host-defense response is engaged to eliminate the pathogen (resistance) and to maintain health in the presence of the pathogen (disease tolerance). However, the identification of distinct molecular programs underpinning disease tolerance and resistance remained obscure. We exploited transcriptional and physiological monitoring across 33 mouse strains, during in vivo influenza virus infection, to identify two host-defense gene programs-one is associated with hallmarks of disease tolerance and the other with hallmarks of resistance. Both programs constitute generic responses in multiple mouse and human cell types. Our study describes the organizational principles of these programs and validates Arhgdia as a regulator of disease-tolerance states in epithelial cells. We further reveal that the baseline disease-tolerance state in peritoneal macrophages is associated with the pathophysiological response to injury and infection. Our framework provides a paradigm for the understanding of disease tolerance and resistance at the molecular level.
Collapse
|
50
|
Zhang H, Tomar VS, Li J, Basavaraja R, Yan F, Gui J, McBrearty N, Costich TL, Beiting DP, Blanco MA, Conejo-Garcia JR, Saggu G, Berger A, Nefedova Y, Gabrilovich DI, Fuchs SY. Protection of Regulatory T Cells from Fragility and Inactivation in the Tumor Microenvironment. Cancer Immunol Res 2022; 10:1490-1505. [PMID: 36255418 PMCID: PMC9722544 DOI: 10.1158/2326-6066.cir-22-0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023]
Abstract
Fragility of regulatory T (Treg) cells manifested by the loss of neuropilin-1 (NRP1) and expression of IFNγ undermines the immune suppressive functions of Treg cells and contributes to the success of immune therapies against cancers. Intratumoral Treg cells somehow avoid fragility; however, the mechanisms by which Treg cells are protected from fragility in the tumor microenvironment are not well understood. Here, we demonstrate that the IFNAR1 chain of the type I IFN (IFN1) receptor was downregulated on intratumoral Treg cells. Downregulation of IFNAR1 mediated by p38α kinase protected Treg cells from fragility and maintained NRP1 levels, which were decreased in response to IFN1. Genetic or pharmacologic inactivation of p38α and stabilization of IFNAR1 in Treg cells induced fragility and inhibited their immune suppressive and protumorigenic activities. The inhibitor of sumoylation TAK981 (Subasumstat) upregulated IFNAR1, eliciting Treg fragility and inhibiting tumor growth in an IFNAR1-dependent manner. These findings describe a mechanism by which intratumoral Treg cells retain immunosuppressive activities and suggest therapeutic approaches for inducing Treg fragility and increasing the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Hongru Zhang
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek S. Tomar
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Pathology and Laboratory Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raghavendra Basavaraja
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fangxue Yan
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Gui
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noreen McBrearty
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center and
Research Institute, Tampa, FL, USA
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Andres Blanco
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and
Research Institute, Tampa, FL, USA
| | - Gurpanna Saggu
- Takeda Development Center Americas, Inc., Lexington, MA,
02421, USA
| | - Allison Berger
- Takeda Development Center Americas, Inc., Lexington, MA,
02421, USA
| | | | | | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary
Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Correspondence to: Serge Y.
Fuchs, Dept. of Biomedical Sciences, School of Veterinary Medicine, University
of Pennsylvania, 380 S. University Ave, Hill 316, Philadelphia, PA 19104; USA.
Tel: 1-215-573-6949;
| |
Collapse
|