1
|
Pires IS, Covarrubias G, Gomerdinger VF, Backlund C, Shanker A, Gordon E, Wu S, Pickering AJ, Melo MB, Suh H, Irvine DJ, Hammond PT. "Target-and-release" nanoparticles for effective immunotherapy of metastatic ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602135. [PMID: 39005274 PMCID: PMC11245112 DOI: 10.1101/2024.07.05.602135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Immunotherapies such as checkpoint inhibitors (CPI) are effective in treating several advanced cancers, but these treatments have had limited success in metastatic ovarian cancer (OC). Here, we engineered liposomal nanoparticles (NPs) carrying a layer-by-layer (LbL) polymer coating that promotes their binding to the surface of OC cells. Covalent anchoring of the potent immunostimulatory cytokine interleukin-12 (IL-12) to phospholipid headgroups of the liposome core enabled the LbL particles to concentrate IL-12 in disseminated OC tumors following intraperitoneal administration. Shedding of the LbL coating and serum protein-mediated extraction of IL-12-conjugated lipids from the liposomal core over time enabled IL-12 to disseminate in the tumor bed following rapid NP localization in tumor nodules. Optimized IL-12 LbL-NPs promoted robust T cell accumulation in ascites and tumors in mouse models, extending survival compared to free IL-12 and remarkedly sensitizing tumors to CPI, leading to curative treatments and immune memory.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Victoria F Gomerdinger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Coralie Backlund
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Apoorv Shanker
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Ezra Gordon
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Andrew J Pickering
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02139 USA
| |
Collapse
|
2
|
Mueller PA, Bergstrom P, Rosario S, Heard M, Pamir N. Fish Oil Supplementation Modifies the Proteome, Lipidome, and Function of High-Density Lipoprotein: Findings from a Trial in Young Healthy Adults. J Nutr 2024; 154:1130-1140. [PMID: 38237669 PMCID: PMC11007744 DOI: 10.1016/j.tjnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Fish oil with the ω-3 fatty acids EPA and DHA is an FDA-approved treatment of patients with severe hypertriglyceridemia. Furthermore, EPA is an FDA-approved treatment of patients with high risk of cardiovascular disease (CVD); however, the cardioprotective mechanisms are unclear. OBJECTIVES We aimed to determine if fish oil supplementation is cardioprotective due to beneficial modifications in HDL particles. METHODS Seven fish oil naïve subjects without a history of CVD were recruited to take a regimen of fish oil (1125 mg EPA and 875 mg DHA daily) for 30 d, followed by a 30-d washout period wherein no fish oil supplements were taken. HDL isolated from fasting whole blood at each time point via 2-step ultracentrifugation (ucHDL) was assessed for proteome, lipidome, cholesterol efflux capacity (CEC), and anti-inflammatory capacity. RESULTS Following fish oil supplementation, the HDL-associated proteins immunoglobulin heavy constant γ1, immunoglobulin heavy constant α1, apolipoprotein D, and phospholipid transfer protein decreased compared to baseline (P < 0.05). The HDL-associated phospholipid families sphingomyelins, phosphatidylcholines, and phosphatidylserines increased after fish oil supplementation relative to baseline (P < 0.05). Compared to baseline, fish oil supplementation increased serum HDL's CEC (P = 0.002). Fish oil-induced changes (Post compared with Baseline) in serum HDL's CEC positively correlated with plasma EPA levels (R2 = 0.7256; P = 0.015). Similarly, fish oil-induced changes in ucHDL's CEC positively correlated with ucHDL's ability to reduce interleukin 10 (R2 = 0.7353; P = 0.014) and interleukin 6 mRNA expression (R2 = 0.6322; P =0.033) in a human macrophage cell line. CONCLUSIONS Overall, fish oil supplementation improved HDL's sterol efflux capacity through comprehensive modifications to its proteome and lipidome.
Collapse
Affiliation(s)
- Paul A Mueller
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Paige Bergstrom
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sara Rosario
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Melissa Heard
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Nathalie Pamir
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
4
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Davenport CF, Scheithauer T, Dunst A, Bahr FS, Dorda M, Wiehlmann L, Tran DDH. Genome-Wide Methylation Mapping Using Nanopore Sequencing Technology Identifies Novel Tumor Suppressor Genes in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22083937. [PMID: 33920410 PMCID: PMC8069345 DOI: 10.3390/ijms22083937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Downregulation of multiple tumor suppressor genes (TSGs) plays an important role in cancer formation. Recent evidence has accumulated that cancer progression involves genome-wide alteration of epigenetic modifications, which may cause downregulation of the tumor suppressor gene. Using hepatocellular carcinoma (HCC) as a system, we mapped 5-methylcytosine signal at a genome-wide scale using nanopore sequencing technology to identify novel TSGs. Integration of methylation data with gene transcription profile of regenerated liver and primary HCCs allowed us to identify 10 potential tumor suppressor gene candidates. Subsequent validation led us to focus on functionally characterizing one candidate—glucokinase (GCK). We show here that overexpression of GCK inhibits the proliferation of HCC cells via induction of intracellular lactate accumulation and subsequently causes energy crisis due to NAD+ depletion. This suggests GCK functions as a tumor suppressor gene and may be involved in HCC development. In conclusion, these data provide valuable clues for further investigations of the process of tumorigenesis in human cancer.
Collapse
Affiliation(s)
- Colin F. Davenport
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Tobias Scheithauer
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Alessia Dunst
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
| | - Frauke Sophie Bahr
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
| | - Marie Dorda
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Lutz Wiehlmann
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Doan Duy Hai Tran
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
- Correspondence: ; Tel.: +49-511-532-2857; Fax: +49-511-532-2847
| |
Collapse
|
6
|
Sponton CH, Hosono T, Taura J, Jedrychowski MP, Yoneshiro T, Wang Q, Takahashi M, Matsui Y, Ikeda K, Oguri Y, Tajima K, Shinoda K, Pradhan RN, Chen Y, Brown Z, Roberts LS, Ward CC, Taoka H, Yokoyama Y, Watanabe M, Karasawa H, Nomura DK, Kajimura S. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO Rep 2020; 21:e49828. [PMID: 32672883 DOI: 10.15252/embr.201949828] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
While brown adipose tissue (BAT) is well-recognized for its ability to dissipate energy in the form of heat, recent studies suggest multifaced roles of BAT in the regulation of glucose and lipid homeostasis beyond stimulating thermogenesis. One of the functions involves interorgan communication with metabolic organs, such as the liver, through BAT-derived secretory factors, a.k.a., batokine. However, the identity and the roles of such mediators remain insufficiently understood. Here, we employed proteomics and transcriptomics in human thermogenic adipocytes and identified previously unappreciated batokines, including phospholipid transfer protein (PLTP). We found that increased circulating levels of PLTP, via systemic or BAT-specific overexpression, significantly improve glucose tolerance and insulin sensitivity, increased energy expenditure, and decrease the circulating levels of cholesterol, phospholipids, and sphingolipids. Such changes were accompanied by increased bile acids in the circulation, which in turn enhances glucose uptake and thermogenesis in BAT. Our data suggest that PLTP is a batokine that contributes to the regulation of systemic glucose and lipid homeostasis as a mediator of BAT-liver interorgan communication.
Collapse
Affiliation(s)
- Carlos H Sponton
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Takashi Hosono
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Junki Taura
- End-Organ Disease Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo, Japan
| | | | - Takeshi Yoneshiro
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Qiang Wang
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Makoto Takahashi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo, Japan
| | - Yumi Matsui
- Protein Production Research Group, Biological Research Department, Daiichi-Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Kenji Ikeda
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Yasuo Oguri
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Kazuki Tajima
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Kosaku Shinoda
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Rachana N Pradhan
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Yong Chen
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Zachary Brown
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Lindsay S Roberts
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Carl C Ward
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Hiroki Taoka
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Yoko Yokoyama
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Mitsuhiro Watanabe
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Hiroshi Karasawa
- End-Organ Disease Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo, Japan
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Papah MB, Abasht B. Dysregulation of lipid metabolism and appearance of slow myofiber-specific isoforms accompany the development of Wooden Breast myopathy in modern broiler chickens. Sci Rep 2019; 9:17170. [PMID: 31748687 PMCID: PMC6868161 DOI: 10.1038/s41598-019-53728-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Previous transcriptomic studies have hypothesized the occurrence of slow myofiber-phenotype, and dysregulation of lipid metabolism as being associated with the development of Wooden Breast (WB), a meat quality defect in commercial broiler chickens. To gain a deep understanding of the manifestation and implication of these two biological processes in health and disease states in chickens, cellular and global expression of specific genes related to the respective processes were examined in pectoralis major muscles of modern fast-growing and unselected slow-growing chickens. Using RNA in situ hybridization, lipoprotein lipase (LPL) was found to be expressed in endothelial cells of capillaries and small-caliber veins in chickens. RNA-seq analysis revealed upregulation of lipid-related genes in WB-affected chickens at week 3 and downregulation at week 7 of age. On the other hand, cellular localization of slow myofiber-type genes revealed their increased expression in mature myofibers of WB-affected chickens. Similarly, global expression of slow myofiber-type genes showed upregulation in affected chickens at both timepoints. To our knowledge, this is the first study to show the expression of LPL from the vascular endothelium in chickens. This study also confirms the existence of slow myofiber-phenotype and provides mechanistic insights into increased lipid uptake and metabolism in WB disease process.
Collapse
Affiliation(s)
- Michael B Papah
- Department of Animal and Food Sciences, University of Delaware, Delaware, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Delaware, DE, USA.
| |
Collapse
|
8
|
Phospholipid transfer protein and alpha-1 antitrypsin regulate Hck kinase activity during neutrophil degranulation. Sci Rep 2018; 8:15394. [PMID: 30337619 PMCID: PMC6193999 DOI: 10.1038/s41598-018-33851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/07/2018] [Indexed: 01/21/2023] Open
Abstract
Excessive neutrophil degranulation is a common feature of many inflammatory disorders, including alpha-1 antitrypsin (AAT) deficiency. Our group has demonstrated that phospholipid transfer protein (PLTP) prevents neutrophil degranulation but serine proteases, which AAT inhibits, cleave PLTP in diseased airways. We propose to identify if airway PLTP activity can be restored by AAT augmentation therapy and how PLTP subdues degranulation of neutrophils in AAT deficient subjects. Airway PLTP activity was lower in AAT deficient patients but elevated in the airways of patients on augmentation therapy. Functional AAT protein (from PiMM homozygotes) prevented PLTP cleavage unlike its mutated ZZ variant (PiZZ). PLTP lowered leukotriene B4 induced degranulation of primary, secondary and tertiary granules from neutrophils from both groups (n = 14/group). Neutrophils isolated from Pltp knockout mice have enhance neutrophil degranulation. Both AAT and PLTP reduced neutrophil degranulation and superoxide production, possibly though their inhibition of the Src tyrosine kinase, Hck. Src kinase inhibitors saracatinib and dasatinib reduced neutrophil degranulation and superoxide production. Therefore, AAT protects PLTP from proteolytic cleavage and both AAT and PLTP mediate degranulation, possibly via Hck tyrosine kinase inhibition. Deficiency of AAT could contribute to reduced lung PLTP activity and elevated neutrophil signaling associated with lung disease.
Collapse
|
9
|
Tu AY, Cheung MC, Zhu X, Knopp RH, Albers JJ. Low-Density Lipoprotein Inhibits Secretion of Phospholipid Transfer Protein in Human Trophoblastic BeWo Cells. Exp Biol Med (Maywood) 2016; 229:1046-52. [PMID: 15522841 DOI: 10.1177/153537020422901009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. In this study, we investigated the effects of lipoproteins on the secretion of PLTP in cultured BeWo choriocarcinoma cells. Low-density lipoproteins (LDLs) decreased PLTP secretion in a dose- and time-dependent manner, whereas very low density lipoproteins and high-density lipoproteins (HDLs) had little effect. LDL suppression of PLTP secretion was not altered by the inhibition of both LDL receptor and LDL receptor–related protein with receptor-associated protein. Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, U0126, could abolish the LDL-mediated inhibition of PLTP secretion. Furthermore, LDL, but not HDL, could stimulate the expression of MAPK phosphatase-1 (MKP-1) in BeWo cells that resulted in the inactivation of p44/p42 extracellular signal-regulated kinase (ERK) 1 and 2, the family members of MAPKs. These results support the conclusion that LDL-mediated suppression of PLTP secretion in BeWo cells is through a LDL receptor-independent MAPK signaling pathway.
Collapse
Affiliation(s)
- An-Yue Tu
- Department of Medicine, Northwest Lipid Research Laboratories, Northwest Lipid Research Clinic, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, 2121 N 35th Street, Seattle, WA 98103, USA.
| | | | | | | | | |
Collapse
|
10
|
Effect of Phospholipid Transfer Protein on Cigarette Smoke Extract-Induced IL-8 Production in Human Pulmonary Epithelial Cells. Inflammation 2016; 39:1972-1980. [DOI: 10.1007/s10753-016-0432-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Kim DS, Li YK, Bell GA, Burt AA, Vaisar T, Hutchins PM, Furlong CE, Otvos JD, Polak JF, Arnan MK, Kaufman JD, McClelland RL, Longstreth WT, Jarvik GP. Concentration of Smaller High-Density Lipoprotein Particle (HDL-P) Is Inversely Correlated With Carotid Intima Media Thickening After Confounder Adjustment: The Multi Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc 2016; 5:e002977. [PMID: 27207961 PMCID: PMC4889175 DOI: 10.1161/jaha.115.002977] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent studies have failed to establish a causal relationship between high-density lipoprotein cholesterol levels (HDL-C) and cardiovascular disease (CVD), shifting focus to other HDL measures. We previously reported that smaller/denser HDL levels are protective against cerebrovascular disease. This study sought to determine which of small+medium HDL particle concentration (HDL-P) or large HDL-P was more strongly associated with carotid intima-media thickening (cIMT) in an ethnically diverse cohort. METHODS AND RESULTS In cross-sectional analyses of participants from the Multi Ethnic Study of Atherosclerosis (MESA), we evaluated the associations of nuclear magnetic resonance spectroscopy-measured small+medium versus large HDL-P with cIMT measured in the common and internal carotid arteries, through linear regression. After adjustment for CVD confounders, low-density lipoprotein cholesterol (LDL-C), HDL-C, and small+medium HDL-P remained significantly and inversely associated with common (coefficient=-1.46 μm; P=0.00037; n=6512) and internal cIMT (coefficient=-3.82 μm; P=0.0051; n=6418) after Bonferroni correction for 4 independent tests (threshold for significance=0.0125; α=0.05/4). Large HDL-P was significantly and inversely associated with both cIMT outcomes before HDL-C adjustment; however, after adjustment for HDL-C, the association of large HDL-P with both common (coefficient=1.55 μm; P=0.30; n=6512) and internal cIMT (coefficient=4.84 μm; P=0.33; n=6418) was attenuated. In a separate sample of 126 men, small/medium HDL-P was more strongly correlated with paraoxonase 1 activity (rp=0.32; P=0.00023) as compared to both total HDL-P (rp=0.27; P=0.0024) and large HDL-P (rp=0.02; P=0.41) measures. CONCLUSIONS Small+medium HDL-P is significantly and inversely correlated with cIMT measurements. Correlation of small+medium HDL-P with cardioprotective paraoxonase 1 activity may reflect a functional aspect of HDL responsible for this finding.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Yatong K Li
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Griffith A Bell
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Amber A Burt
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Patrick M Hutchins
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA TSI Incorporated, Shoreview, MN
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | | | - Joseph F Polak
- Department of Radiology, Tufts University School of Medicine, Boston, MA
| | | | - Joel D Kaufman
- Division of General Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Epidemiology, University of Washington School of Public Health, Seattle, WA Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA
| | - Robyn L McClelland
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - W T Longstreth
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Gail P Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
12
|
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. CHOLESTEROL 2015; 2015:296417. [PMID: 26634153 PMCID: PMC4655037 DOI: 10.1155/2015/296417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.
Collapse
|
13
|
Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage. PLoS One 2015; 10:e0121956. [PMID: 26034989 PMCID: PMC4452704 DOI: 10.1371/journal.pone.0121956] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 12/25/2022] Open
Abstract
The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation.
Collapse
|
14
|
Kim DS, Burt AA, Ranchalis JE, Vuletic S, Vaisar T, Li WF, Rosenthal EA, Dong W, Eintracht JF, Motulsky AG, Brunzell JD, Albers JJ, Furlong CE, Jarvik GP. PLTP activity inversely correlates with CAAD: effects of PON1 enzyme activity and genetic variants on PLTP activity. J Lipid Res 2015; 56:1351-62. [PMID: 26009633 DOI: 10.1194/jlr.p058032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 01/07/2023] Open
Abstract
Recent studies have failed to demonstrate a causal cardioprotective effect of HDL cholesterol levels, shifting focus to the functional aspects of HDL. Phospholipid transfer protein (PLTP) is an HDL-associated protein involved in reverse cholesterol transport. This study sought to determine the genetic and nongenetic predictors of plasma PLTP activity (PLTPa), and separately, to determine whether PLTPa predicted carotid artery disease (CAAD). PLTPa was measured in 1,115 European ancestry participants from a case-control study of CAAD. A multivariate logistic regression model was used to elucidate the relationship between PLTPa and CAAD. Separately, a stepwise linear regression determined the nongenetic clinical and laboratory characteristics that best predicted PLTPa. A final stepwise regression considering both nongenetic and genetic variables identified the combination of covariates that explained maximal PLTPa variance. PLTPa was significantly associated with CAAD (7.90 × 10(-9)), with a 9% decrease in odds of CAAD per 1 unit increase in PLTPa (odds ratio = 0.91). Triglyceride levels (P = 0.0042), diabetes (P = 7.28 × 10(-5)), paraoxonase 1 (PON1) activity (P = 0.019), statin use (P = 0.026), PLTP SNP rs4810479 (P = 6.38 × 10(-7)), and PCIF1 SNP rs181914932 (P = 0.041) were all significantly associated with PLTPa. PLTPa is significantly inversely correlated with CAAD. Furthermore, we report a novel association between PLTPa and PON1 activity, a known predictor of CAAD.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Amber A Burt
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jane E Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Wan-Fen Li
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Weijiang Dong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Human Anatomy and Histology and Embryology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | - Jason F Eintracht
- Department of General Medicine, Virginia Mason Medical Center, Seattle, WA
| | - Arno G Motulsky
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - John D Brunzell
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Gail P Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
15
|
Jiang H, Yazdanyar A, Lou B, Chen Y, Zhao X, Li R, Hoang Bui H, Kuo MS, Navab M, Qin S, Li Z, Jin W, Jiang XC. Adipocyte phospholipid transfer protein and lipoprotein metabolism. Arterioscler Thromb Vasc Biol 2014; 35:316-22. [PMID: 25477345 DOI: 10.1161/atvbaha.114.303764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP) is highly expressed in adipose tissues. Thus, the effect of adipose tissue PLTP on plasma lipoprotein metabolism was examined. APPROACH AND RESULTS We crossed PLTP-Flox-ΔNeo and adipocyte protein 2 (aP2)-Cre recombinase (Cre) transgenic mice to create PLTP-Flox-ΔNeo/aP2-Cre mice that have a 90 and a 60% reduction in PLTP mRNA in adipose tissue and macrophages, respectively. PLTP ablation resulted in a significant reduction in plasma PLTP activity (22%), high-density lipoprotein-cholesterol (21%), high-density lipoprotein-phospholipid (20%), and apolipoprotein A-I (33%) levels, but had no effect on nonhigh-density lipoprotein levels in comparison with those of PLTP-Flox-ΔNeo controls. To eliminate possible effects of PLTP ablation by macrophages, we lethally irradiated PLTP-Flox-ΔNeo/aP2-Cre mice and PLTP-Flox-ΔNeo mice, and then transplanted wild-type mouse bone marrow into them to create wild-type→PLTP-Flox-ΔNeo/aP2-Cre and wild-type→PLTP-Flox-ΔNeo mice. Thus, we constructed a mouse model (wild-type→PLTP-Flox-ΔNeo/aP2-Cre) with PLTP deficiency in adipocytes but not in macrophages. These knockout mice also showed significant decreases in plasma PLTP activity (19%) and cholesterol (18%), phospholipid (17%), and apolipoprotein A-I (26%) levels. To further investigate the mechanisms behind the reduction in plasma apolipoprotein A-I and high-density lipoprotein lipids, we measured apolipoprotein A-I-mediated cholesterol efflux in adipose tissue explants and found that endogenous and exogenous PLTP significantly increased cholesterol efflux from the explants. CONCLUSIONS Adipocyte PLTP plays a small but significant role in plasma PLTP activity and promotes cholesterol efflux from adipose tissues.
Collapse
Affiliation(s)
- Hui Jiang
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Amirfarbod Yazdanyar
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Bin Lou
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Yunqin Chen
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Xiaomin Zhao
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Ruohan Li
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Hai Hoang Bui
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Ming-Shang Kuo
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Mohamad Navab
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Shucun Qin
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Zhiqiang Li
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Weijun Jin
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Xian-Cheng Jiang
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.).
| |
Collapse
|
16
|
Analysis of serum phospholipid profiles by liquid chromatography–tandem mass spectrometry in high resolution mode for evaluation of atherosclerotic patients. J Chromatogr A 2014; 1371:154-62. [DOI: 10.1016/j.chroma.2014.10.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
|
17
|
Ji A, Wroblewski JM, Webb NR, van der Westhuyzen DR. Impact of phospholipid transfer protein on nascent high-density lipoprotein formation and remodeling. Arterioscler Thromb Vasc Biol 2014; 34:1910-6. [PMID: 25060793 DOI: 10.1161/atvbaha.114.303533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP), which binds phospholipids and facilitates their transfer between lipoproteins in plasma, plays a key role in lipoprotein remodeling, but its influence on nascent high-density lipoprotein (HDL) formation is not known. The effect of PLTP overexpression on apolipoprotein A-I (apoA-I) lipidation by primary mouse hepatocytes was investigated. APPROACH AND RESULTS Overexpression of PLTP through an adenoviral vector markedly affected the amount and size of lipidated apoA-I species that were produced in hepatocytes in a dose-dependent manner, ultimately generating particles that were <7.1 nm but larger than lipid-free apoA-I. These <7.1-nm small particles generated in the presence of overexpressed PLTP were incorporated into mature HDL particles more rapidly than apoA-I both in vivo and in vitro and were less rapidly cleared from mouse plasma than lipid-free apoA-I. The <7.1-nm particles promoted both cellular cholesterol and phospholipid efflux in an ATP-binding cassette transporter A1-dependent manner, similar to apoA-I in the presence of PLTP. Lipid-free apoA-I had a greater efflux capacity in the presence of PLTP than in the absence of PLTP, suggesting that PLTP may promote ATP-binding cassette transporter A1-mediated cholesterol and phospholipid efflux. These results indicate that PLTP alters nascent HDL formation by modulating the lipidated species and by promoting the initial process of apoA-I lipidation. CONCLUSIONS Our findings suggest that PLTP exerts significant effects on apoA-I lipidation and nascent HDL biogenesis in hepatocytes by promoting ATP-binding cassette transporter A1-mediated lipid efflux and the remodeling of nascent HDL particles.
Collapse
Affiliation(s)
- Ailing Ji
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Joanne M Wroblewski
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Nancy R Webb
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Deneys R van der Westhuyzen
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY.
| |
Collapse
|
18
|
Abstract
There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- From the Lipid Research Group, Centre for Vascular Research, Lowy Center, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
19
|
Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, Eden E, Jiang XC, D'Armiento J, Foronjy R. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J 2014; 28:2318-31. [PMID: 24532668 DOI: 10.1096/fj.13-246843] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1β, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.
Collapse
Affiliation(s)
- Anthony Brehm
- 2Department of Medicine, St. Luke's Roosevelt, Mt. Sinai Health System, Antenucci Bldg., 432 West 58th St., Rm. 311, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Yazdanyar A, Quan W, Jin W, Jiang XC. Liver-specific phospholipid transfer protein deficiency reduces high-density lipoprotein and non-high-density lipoprotein production in mice. Arterioscler Thromb Vasc Biol 2013; 33:2058-64. [PMID: 23846500 DOI: 10.1161/atvbaha.113.301628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The liver is one of the critical organs for lipoprotein metabolism and a major source for phospholipid transfer protein (PLTP) expression. The effect of liver-specific PLTP deficiency on plasma lipoprotein production and metabolism in mice was investigated. APPROACH AND RESULTS We created a liver-specific PLTP-deficient mouse model. We measured plasma high-density lipoprotein (HDL) and apolipoprotein B (apoB)-containing lipoprotein (or non-HDL) levels and their production rates. We found that hepatic ablation of PLTP leads to a significant decrease in plasma PLTP activity, HDL lipids, non-HDL lipids, apoAI, and apoB levels. In addition, nuclear magnetic resonance examination of lipoproteins showed that the deficiency decreases HDL and apoB-containing lipoprotein particle numbers, as well as very low-density lipoprotein particle size, which was confirmed by electron microscopy. Moreover, HDL particles from the deficient mice are lipid-poor ones. To unravel the mechanism, we evaluated the apoB and triglyceride production rates. We found that hepatic PLTP deficiency significantly decreases apoB and triglyceride secretion rates. To investigate the role of liver PLTP on HDL production, we set up primary hepatocyte culture studies and found that the PLTP-deficient hepatocytes produce less nascent HDL. Furthermore, we found that exogenous PLTP promotes nascent HDL production through an ATP-binding cassette A 1-mediated pathway. CONCLUSIONS Liver-specific PLTP deficiency significantly reduces plasma HDL and apoB-containing lipoprotein levels. Reduction of production rates of both particles is one of the mechanisms.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
22
|
Plasma PLTP (phospholipid-transfer protein): an emerging role in 'reverse lipopolysaccharide transport' and innate immunity. Biochem Soc Trans 2011; 39:984-8. [PMID: 21787334 DOI: 10.1042/bst0390984] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasma PLTP (phospholipid-transfer protein) is a member of the lipid transfer/LBP [LPS (lipopolysaccharide)-binding protein] family, which constitutes a superfamily of genes together with the short and long PLUNC (palate, lung and nasal epithelium clone) proteins. Although PLTP was studied initially for its involvement in the metabolism of HDL (high-density lipoproteins) and reverse cholesterol transport (i.e. the metabolic pathway through which cholesterol excess can be transported from peripheral tissues back to the liver for excretion in the bile), it displays a number of additional biological properties. In particular, PLTP can modulate the lipoprotein association and metabolism of LPS that are major components of Gram-negative bacteria. The delayed association of LPS with lipoproteins in PLTP-deficient mice results in a prolonged residence time, in a higher toxicity of LPS aggregates and in a significant increase in LPS-induced mortality as compared with wild-type mice. It suggests that PLTP may play a pivotal role in inflammation and innate immunity through its ability to accelerate the 'reverse LPS transport' pathway.
Collapse
|
23
|
A phospholipidomic analysis of all defined human plasma lipoproteins. Sci Rep 2011; 1:139. [PMID: 22355656 PMCID: PMC3216620 DOI: 10.1038/srep00139] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/11/2011] [Indexed: 02/02/2023] Open
Abstract
Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are performed. LC-ESI/MS, LC-ESI-MS/MS and High Performance Thin Layer Chromatography (HPTLC) analysis of different lipoprotein fractions collected from pooled plasma revealed the presence of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and sphingomyeline (SM) only on lipoproteins and phosphatidylcholine (PC), Lyso-PC on both lipoproteins and plasma lipoprotein free fraction (PLFF). Cardiolipin, phosphatidylglycerol (PG) and Phosphatidylserine (PS) were observed neither in the lipoprotein fractions nor in PLFF. All three approaches led to the same results regarding phospholipids occurrence in plasma lipoproteins and PLFF. A high abundancy of PE and SM was observed in VLDL and LDL fractions respectively. This study provides for the first time the knowledge about the phospholipid composition of all defined plasma lipoproteins.
Collapse
|
24
|
Yazdanyar A, Yeang C, Jiang XC. Role of phospholipid transfer protein in high-density lipoprotein- mediated reverse cholesterol transport. Curr Atheroscler Rep 2011; 13:242-8. [PMID: 21365262 PMCID: PMC3085729 DOI: 10.1007/s11883-011-0172-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reverse cholesterol transport (RCT) describes the process whereby cholesterol in peripheral tissues is transported to the liver where it is ultimately excreted in the form of bile. Given the atherogenic role of cholesterol accumulation within the vessel intima, removal of cholesterol through RCT is considered an anti-atherogenic process. The major constituents of RCT include cell membrane– bound lipid transporters, plasma lipid acceptors, plasma proteins and enzymes, and lipid receptors of liver cell membrane. One major cholesterol acceptor in RCT is high-density lipoprotein (HDL). Both the characteristics and level of HDL are critical determinants for RCT. It is known that phospholipid transfer protein (PLTP) impacts both HDL cholesterol level and biological quality of the HDL molecule. Recent data suggest that PLTP has a site-specific variation in its function. Moreover, the RCT pathway also has multiple steps both in the peripheral tissues and circulation. Therefore, PLTP may influence the RCT pathway at multiple levels. In this review, we focus on the potential role of PLTP in RCT through its impact on HDL homeostasis. The relationship between PLTP and RCT is expected to be an important area in finding novel therapies for atherosclerosis.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave. Box 5, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
25
|
Rosenthal EA, Ronald J, Rothstein J, Rajagopalan R, Ranchalis J, Wolfbauer G, Albers JJ, Brunzell JD, Motulsky AG, Rieder MJ, Nickerson DA, Wijsman EM, Jarvik GP. Linkage and association of phospholipid transfer protein activity to LASS4. J Lipid Res 2011; 52:1837-46. [PMID: 21757428 DOI: 10.1194/jlr.p016576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein activity (PLTPa) is associated with insulin levels and has been implicated in atherosclerotic disease in both mice and humans. Variation at the PLTP structural locus on chromosome 20 explains some, but not all, heritable variation in PLTPa. In order to detect quantitative trait loci (QTLs) elsewhere in the genome that affect PLTPa, we performed both oligogenic and single QTL linkage analysis on four large families (n = 227 with phenotype, n = 330 with genotype, n = 462 total), ascertained for familial combined hyperlipidemia. We detected evidence of linkage between PLTPa and chromosome 19p (lod = 3.2) for a single family and chromosome 2q (lod = 2.8) for all families. Inclusion of additional marker and exome sequence data in the analysis refined the linkage signal on chromosome 19 and implicated coding variation in LASS4, a gene regulated by leptin that is involved in ceramide synthesis. Association between PLTPa and LASS4 variation was replicated in the other three families (P = 0.02), adjusting for pedigree structure. To our knowledge, this is the first example for which exome data was used in families to identify a complex QTL that is not the structural locus.
Collapse
Affiliation(s)
- Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1917-24. [PMID: 21782857 DOI: 10.1016/j.bbamcr.2011.06.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Phospholipid transfer protein (PLTP) plays an important role in regulation of inflammation. Previously published studies have shown that PLTP binds, transfers and neutralizes bacterial lipopolysaccharides. In the current study we tested the hypothesis that PLTP can also regulate anti-inflammatory pathways in macrophages. Incubation of macrophage-like differentiated THP1 cells and human monocyte-derived macrophages with wild-type PLTP in the presence or absence of tumor necrosis factor alpha (TNFα) or interferon gamma (IFNγ) significantly increased nuclear levels of active signal transducer and activator of transcription 3, pSTAT3(Tyr705) (p<0.01). Similar results were obtained in the presence of a PLTP mutant without lipid transfer activity (PLTP(M159E)), suggesting that PLTP-mediated lipid transfer is not required for activation of the STAT3 pathway. Inhibition of ABCA1 by chemical inhibitor, glyburide, as well as ABCA1 RNA inhibition, reversed the observed PLTP-mediated activation of STAT3. In addition, PLTP reduced nuclear levels of active nuclear factor kappa-B (NFκB) p65 and secretion of pro-inflammatory cytokines in conditioned media of differentiated THP1 cells and human monocyte-derived macrophages. Our data suggest that PLTP has anti-inflammatory capabilities in macrophages.
Collapse
Affiliation(s)
- S Vuletic
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
27
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:345-57. [PMID: 21736953 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
28
|
Cheung MC, Wolfbauer G, Albers JJ. Different phospholipid transfer protein complexes contribute to the variation in plasma PLTP specific activity. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:343-7. [PMID: 21303701 DOI: 10.1016/j.bbalip.2011.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/15/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
Abstract
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids among lipoproteins. Over half of the PLTP in human plasma has been found to have little phospholipid transfer activity (inactive PLTP). We recently observed that plasma PLTP specific activity is inversely correlated with high-density lipoprotein (HDL) level and particle size in healthy adults. The purpose of this study was to evaluate the factors that contribute to the variation in plasma PLTP specific activity. Analysis of the specific activity of PLTP complexes in nine plasma samples from healthy adults revealed two clusters of inactive PLTP complexes with mean molecular weights (MW) of 342kDa and 146kDa. The large and small inactive PLTP complexes represented 52±8% (range 39-63%) and 8±8% (range 1-28%) of the plasma PLTP, respectively. Active PLTP complexes had a mean MW of 207kDa and constituted 40±6% (range 33-50%) of the plasma PLTP. The specific activity of active PLTP varied from 16 to 32μmol/μg/h. These data demonstrate for the first time the existence of small inactive plasma PLTP complexes. Variation in the amount of the two clusters of inactive PLTP complexes and the specific activity of the active PLTP contribute to the variation in plasma PLTP specific activity.
Collapse
Affiliation(s)
- Marian C Cheung
- Division of Metabolism, Endocrinology and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, University of Washington, Seattle, WA 98109-4517, USA
| | | | | |
Collapse
|
29
|
Cheung MC, Vaisar T, Han X, Heinecke JW, Albers JJ. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation. Biochemistry 2010; 49:7314-22. [PMID: 20666409 DOI: 10.1021/bi100359f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholipid transfer protein (PLTP), which associates with apolipoprotein A-I (the major HDL protein), plays a key role in lipoprotein remodeling. Because its level in plasma increases during acute inflammation, it may also play previously unsuspected roles in the innate immune system. To gain further insight into its potential physiological functions, we isolated complexes containing PLTP from plasma by immunoaffinity chromatography and determined their composition. Shotgun proteomics revealed that only 6 of the 24 proteins detected in the complexes were apolipoproteins. The most abundant proteins were clusterin (apoJ), PLTP itself, coagulation factors, complement factors, and apoA-I. Remarkably, 20 of the 24 proteins had known protein-protein interactions. Biochemical studies confirmed two previously established interactions and identified five new ones between PLTP and proteins. Moreover, clusterin, apoA-I, and apoE preserved the lipid-transfer activity of recombinant PLTP in the absence of lipid, indicating that these interactions may have functional significance. Unexpectedly, lipids accounted for only 3% of the mass of the PLTP complexes. Collectively, our observations indicate that PLTP in human plasma resides on lipid-poor complexes dominated by clusterin and proteins implicated in host defense and inflammation. They further suggest that protein-protein interactions drive the formation of PLTP complexes in plasma.
Collapse
Affiliation(s)
- Marian C Cheung
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
30
|
Dong W, Albers JJ, Vuletic S. Phospholipid transfer protein reduces phosphorylation of tau in human neuronal cells. J Neurosci Res 2009; 87:3176-85. [PMID: 19472218 DOI: 10.1002/jnr.22137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tau function is regulated by phosphorylation, and abnormal tau phosphorylation in neurons is one of the key processes associated with development of Alzheimer's disease and other tauopathies. In this study we provide evidence that phospholipid transfer protein (PLTP), one of the main lipid transfer proteins in the brain, significantly reduces levels of phosphorylated tau and increases levels of the inactive form of glycogen synthase kinase-3beta (GSK3 beta) in HCN2 cells. Furthermore, inhibition of phosphatidylinositol-3 kinase (PI3K) reversed the PLTP-induced increase in levels of GSK3 beta phosphorylated at serine 9 (pGSK3 beta(Ser9)) and partially reversed the PLTP-induced reduction in tau phosphorylation. We provide evidence that the PLTP-induced changes are not due to activation of Disabled-1 (Dab1), insofar as PLTP reduced levels of total and phosphorylated Dab1 in HCN2 cells. We have also shown that inhibition of tyrosine kinase activity of insulin receptor (IR) and/or insulin-like growth factor 1 (IGF1) receptor (IGFR) reverses the PLTP-induced increase in levels of phosphorylated Akt (pAkt(Thr308) and pAkt(Ser473)), suggesting that PLTP-mediated activation of the PI3K/Akt pathway is dependent on IR/IGFR receptor tyrosine kinase activity. Our study suggests that PLTP may be an important modulator of signal transduction pathways in human neurons.
Collapse
Affiliation(s)
- Weijiang Dong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
31
|
Rohrbeck A, Borlak J. Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to advanced lung adenocarcinomas induced by c-Raf-1. PLoS One 2009; 4:e7315. [PMID: 19812696 PMCID: PMC2754338 DOI: 10.1371/journal.pone.0007315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/13/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initially dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. METHODOLOGY/PRINCIPAL FINDINGS By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be up-regulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionally, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. CONCLUSIONS/SIGNIFICANCE This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jürgen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Center for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Quintão ECR, Cazita PM. Lipid transfer proteins: past, present and perspectives. Atherosclerosis 2009; 209:1-9. [PMID: 19733354 DOI: 10.1016/j.atherosclerosis.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/15/2022]
Abstract
Lipid transfer proteins (PLTP and CETP) play roles in atherogenesis by modifying the arterial intima cholesterol content via altering the concentration and function of plasma lipoproteins and influencing inflammation. In this regard, endotoxins impair the reverse cholesterol transport (RCT) system in an endotoxemic rodent model, supporting a pro-inflammatory role of HDL reported in chronic diseases where atherosclerosis is premature. High PLTP activity related to atherosclerosis in some clinical studies, but the mechanisms involved could not be ascertained. In experimental animals the relation of elevated plasma PLTP concentration with atherosclerosis was confounded by HDL-C lowering and by unfavorable effects on several inflammatory markers. Coincidently, PLTP also increases in human experimental endotoxemia and in clinical sepsis. Human population investigations seem to favor low CETP as atheroprotective; this is supported by animal models where overexpression of huCETP is atherogenic, most likely due to increased concentration of apoB-lipoprotein-cholesterol. Thus, in spite of CETP facilitating the HDL-C-mediated RCT, the reduction of apoB-LP-cholesterol concentration is the probable antiatherogenic mechanism of CETP inhibition. On the other hand, experimental huCETP expression protects mice from the harmful effects of a bacterial polysaccharide infusion and the mortality rate of severely ill patients correlates with reduction of the plasma CETP concentration. Thus, the roles played by PLTP and CETP on atherosclerosis and acute inflammation seem contradictory. Therefore, the biological roles of PLTP and CETP must be carefully monitored when investigating drugs that inhibit their activity in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eder C R Quintão
- Lipids Lab, LIM 10, Faculty of Medical Sciences, University of São Paulo, SP, Brazil.
| | | |
Collapse
|
33
|
Cheung MC, Wolfbauer G, Deguchi H, Fernández JA, Griffin JH, Albers JJ. Human plasma phospholipid transfer protein specific activity is correlated with HDL size: implications for lipoprotein physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:206-11. [PMID: 19162221 DOI: 10.1016/j.bbalip.2008.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/09/2008] [Accepted: 12/18/2008] [Indexed: 11/20/2022]
Abstract
To gain further insights into the relationship between plasma phospholipid transfer protein (PLTP) and lipoprotein particles, PLTP mass and phospholipid transfer activity were measured, and their associations with the level and size of lipoprotein particles examined in 39 healthy adult subjects. No bivariate correlation was observed between PLTP activity and mass. PLTP activity was positively associated with cholesterol, triglyceride, apo B and VLDL particle level (r(s)=0.40-0.56, p< or =0.01) while PLTP mass was positively associated with HDL-C, large HDL particles, and mean LDL and HDL particle sizes (r(s)=0.44-0.52, p<0.01). Importantly, plasma PLTP specific activity (SA) was significantly associated with specific lipoprotein classes, positively with VLDL, IDL, and small LDL particles (r(s)=0.42-0.62, p< or =0.01) and inversely with large LDL, large HDL, and mean LDL and HDL particle size (r(s)=-0.42 to -0.70, p< or =0.01). After controlling for triglyceride levels, the correlation between PLTP mass or SA and HDL size remained significant. In linear models, HDL size explained 45% of the variability of plasma PLTP SA while triglyceride explained 34% of the PLTP activity. Thus, in healthy adults a significant relationship exists between HDL size and plasma PLTP SA (r(s)=-0.70), implying that HDL particle size may modulate PLTP SA in the vascular compartment.
Collapse
Affiliation(s)
- Marian C Cheung
- Department of Medicine, University of Washington, Seattle, WA 98109-4517, USA
| | | | | | | | | | | |
Collapse
|
34
|
Vergeer M, Dallinga-Thie GM, Dullaart RPF, van Tol A. Evaluation of phospholipid transfer protein as a therapeutic target. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem 2008; 283:11541-9. [PMID: 18287097 DOI: 10.1074/jbc.m800117200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipid lipid transfer protein (PLTP) mimics high-density lipoprotein apolipoproteins in removing cholesterol and phospholipids from cells through the ATP-binding cassette transporter A1 (ABCA1). Because amphipathic alpha-helices are the structural determinants for ABCA1 interactions, we examined the ability of synthetic peptides corresponding to helices in PLTP to remove cellular cholesterol by the ABCA1 pathway. Of the seven helices tested, only one containing PLTP residues 144-163 (p144), located at the tip of the N-terminal barrel, promoted ABCA1-dependent cholesterol efflux and stabilized ABCA1 protein. Mutating methionine 159 (Met-159) in this helix in PLTP to aspartate (M159D) or glutamate (M159E) nearly abolished the ability of PLTP to remove cellular cholesterol and dramatically reduced PLTP binding to phospholipid vesicles and its phospholipid transfer activity. These mutations impaired PLTP binding to ABCA1-generated lipid domains and PLTP-mediated stabilization of ABCA1 but increased PLTP binding to ABCA1. PLTP interactions with ABCA1 also mimicked apolipoproteins in activating Janus kinase 2; however, the M159D/E mutants were also able to activate this kinase. Structural analyses showed that the M159D/E mutations had only minor effects on PLTP conformation. These findings indicate that PLTP helix 144-163 is critical for removing lipid domains formed by ABCA1, stabilizing ABCA1 protein, interacting with phospholipids, and promoting phospholipid transfer. Direct interactions with ABCA1 and activation of signaling pathways likely involve other structural determinants of PLTP.
Collapse
Affiliation(s)
- John F Oram
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Box 356426, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
36
|
Valenta DT, Bulgrien JJ, Bonnet DJ, Curtiss LK. Macrophage PLTP is atheroprotective in LDLr-deficient mice with systemic PLTP deficiency. J Lipid Res 2008; 49:24-32. [DOI: 10.1194/jlr.m700228-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Attia N, Nakbi A, Smaoui M, Chaaba R, Moulin P, Hammami S, Hamda KB, Chanussot F, Hammami M. Increased phospholipid transfer protein activity associated with the impaired cellular cholesterol efflux in type 2 diabetic subjects with coronary artery disease. TOHOKU J EXP MED 2007; 213:129-37. [PMID: 17917406 DOI: 10.1620/tjem.213.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reverse cholesterol transport (RCT) is the pathway, by which the excess of cholesterol is removed from peripheral cells to the liver. An early step of RCT is the efflux of free cholesterol from cell membranes that is mediated by high-density lipoproteins (HDL). Phospholipid transfer protein (PLTP) transfers phospholipids between apolipoprotein-B-containing lipoproteins (i.e., chylomicrons and very low-density lipoproteins) and HDL. PLTP contributes to the HDL maturation and increases the ability of HDL to extract the cellular cholesterol. It is known that RCT is impaired in type 2 diabetic patients, especially when cardiovascular complication is associated with. In this study, we measured the serum capacity that promotes cellular cholesterol efflux and the plasma PLTP activity in type 2 diabetic patients with coronary artery disease (CAD) (n = 35), those without CAD (n = 24), and 35 healthy subjects as a sex- and age-matched control. In patients with CAD, plasma triglyceride level was higher compared to controls (p < 0.01) and HDL-cholesterol was lower (p < 0.01 vs control and the patients without CAD). In diabetic patients with or without CAD, PLTP activity was consistently increased, compared to controls, while cellular cholesterol efflux activity was decreased by 20% (p < 0.001) or 13.5% (p < 0.01), respectively. In conclusion, plasma PLTP activity was increased in type 2 diabetic patients with or without CAD, which could impair cellular cholesterol removal and might accelerate atherosclerosis in diabetic patients.
Collapse
Affiliation(s)
- Nebil Attia
- Biology Department, Faculty of Sciences, University November 7th at Carthage, Bizerte, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moerland M, Samyn H, van Gent T, Jauhiainen M, Metso J, van Haperen R, Grosveld F, van Tol A, de Crom R. Atherogenic, enlarged, and dysfunctional HDL in human PLTP/apoA-I double transgenic mice. J Lipid Res 2007; 48:2622-31. [PMID: 17761633 DOI: 10.1194/jlr.m700020-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In low density lipoprotein receptor (LDLR)-deficient mice, overexpression of human plasma phospholipid transfer protein (PLTP) results in increased atherosclerosis. PLTP strongly decreases HDL levels and might alter the antiatherogenic properties of HDL particles. To study the potential interaction between human PLTP and apolipoprotein A-I (apoA-I), double transgenic animals (hPLTPtg/hApoAItg) were compared with hApoAItg mice. PLTP activity was increased 4.5-fold. Plasma total cholesterol and phospholipid were decreased. Average HDL size (analyzed by gel filtration) increased strongly, hPLTPtg/hApoAItg mice having very large, LDL-sized, HDL particles. Also, after density gradient ultracentrifugation, a substantial part of the apoA-I-containing lipoproteins in hPLTPtg/hApoAItg mice was found in the LDL density range. In cholesterol efflux studies from macrophages, HDL isolated from hPLTPtg/hApoAItg mice was less efficient than HDL isolated from hApoAItg mice. Furthermore, it was found that the largest subfraction of the HDL particles present in hPLTPtg/hApoAItg mice was markedly inferior as a cholesterol acceptor, as no labeled cholesterol was transferred to this fraction. In an LDLR-deficient background, the human PLTP-expressing mouse line showed a 2.2-fold increased atherosclerotic lesion area. These data demonstrate that the action of human PLTP in the presence of human apoA-I results in the formation of a dysfunctional HDL subfraction, which is less efficient in the uptake of cholesterol from cholesterol-laden macrophages.
Collapse
Affiliation(s)
- Matthijs Moerland
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schgoer W, Mueller T, Jauhiainen M, Wehinger A, Gander R, Tancevski I, Salzmann K, Eller P, Ritsch A, Haltmayer M, Ehnholm C, Patsch JR, Foeger B. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis 2007; 196:219-226. [PMID: 17553507 DOI: 10.1016/j.atherosclerosis.2007.04.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 04/18/2007] [Accepted: 04/27/2007] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP) facilitates cholesterol efflux from cells, intravascular HDL remodelling and transfer of vitamin E and endotoxin. In humans, the relationship of PLTP to atherosclerosis is unknown. However, strong coronary risk factors like obesity, diabetes, cigarette smoking and inflammation increase circulating levels of active PLTP. The aim of the present, cross-sectional study was to analyze the relationship of PLTP to peripheral arterial disease, a marker of generalized atherosclerosis, independently of potentially confounding factors like obesity, diabetes and smoking. METHODS We performed a case control study in 153 patients with symptomatic peripheral arterial disease (PAD) and 208 controls free of vascular disease. Smokers and patients with diabetes mellitus were excluded. A lipoprotein-independent assay was used for measurement of circulating bioactive PLTP and an ELISA utilizing a monoclonal antibody was used to analyze PLTP mass. RESULTS PLTP activity was significantly decreased in patients with PAD 5.5 (4.6-6.4)(median (25th-75th percentile)) versus 5.9 (5.1-6.9) micromol/mL/h in controls (p=0.001). In contrast, PLTP mass was similar in patients with PAD 8.5 microg/mL (7.3-9.5) and in controls 8.3 microg/mL (6.9-9.7) (p=0.665). Multivariate logistic regression analysis revealed that PLTP activity is independently associated with the presence of PAD. PLTP activity was similar in patients with and without lipid-lowering drugs (p=0.396). CONCLUSION Our results show that in non-diabetic, non-smoking subjects low rather than high PLTP activity is a marker for the presence of peripheral arterial disease and that distribution of PLTP between high-activity and low-activity forms may be compromised in atherosclerosis.
Collapse
Affiliation(s)
- Wilfried Schgoer
- Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Thomas Mueller
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria
| | - Matti Jauhiainen
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, Helsinki, Finland
| | - Andreas Wehinger
- Department of Internal Medicine, Medical University Innsbruck, Austria; Department of Internal Medicine, Landeskrankenhaus Bregenz, Austria
| | - Roland Gander
- Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Karin Salzmann
- Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Philipp Eller
- Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Meinhard Haltmayer
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria
| | - Christian Ehnholm
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, Helsinki, Finland
| | - Josef R Patsch
- Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Bernhard Foeger
- Department of Internal Medicine, Medical University Innsbruck, Austria; Department of Internal Medicine, Landeskrankenhaus Bregenz, Austria.
| |
Collapse
|
40
|
Vuletic S, Riekse RG, Marcovina SM, Peskind ER, Hazzard WR, Albers JJ. Statins of different brain penetrability differentially affect CSF PLTP activity. Dement Geriatr Cogn Disord 2007; 22:392-8. [PMID: 16960448 DOI: 10.1159/000095679] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Phospholipid transfer protein (PLTP) and apolipoprotein E (apoE) are key proteins involved in lipoprotein metabolism in the peripheral circulation and in the brain. Several epidemiological studies suggested that use of 3-hydroxyl-3-methylglutaryl-coenzyme A reductase inhibitors (statins) reduces risk of Alzheimer's disease (AD). However, the effects of statins of differing blood-brain barrier (BBB) penetrability on brain-derived molecules in cognitively normal individuals are largely unknown. METHODS To assess the effect of statins on these indices as a function of BBB penetration, cerebrospinal fluid (CSF) and plasma PLTP activity and apoE concentration were measured in cognitively intact, modestly hypercholesterolemic adults randomly allocated to treatment with either pravastatin, which does not penetrate BBB (80 mg/day, n = 13), or simvastatin, which penetrates BBB (40 mg/day, n = 10). RESULTS Simvastatin significantly increased CSF PLTP activity (p = 0.005). In contrast, pravastatin had no such effect. In the pravastatin-treated group, CSF apoE concentration decreased significantly (p = 0.026), while the simvastatin-treated group showed a tendency towards lower CSF apoE levels, with CSF apoE concentration lowered in 8 of 10 subjects. CONCLUSION Our data indicate that statins differentially affect two key lipid transfer proteins in the brain, and that effect on PLTP activity depends on statin BBB penetrability.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Siggins S, Ehnholm C, Jauhiainen M, Olkkonen VM. Plasma phospholipid transfer protein fused with green fluorescent protein is secreted by HepG2 cells and displays phosphatidylcholine transfer activity. Biochem Cell Biol 2006; 84:117-25. [PMID: 16609691 DOI: 10.1139/o05-168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is a serum glycoprotein with a central role in high-density lipoprotein metabolism. We created a fusion protein in which enhanced green fluorescent protein (EGFP) was fused to the carboxyl-terminus of PLTP. Stably transfected HepG2 cells, which overexpress this fusion protein, were generated. PLTP-EGFP was translocated into the ER and fluoresced within the biosynthetic pathway, showing a marked concentration in the Golgi complex. The transfected cells secreted into the growth medium phospholipid transfer activity 7-fold higher than that of the mock-transfected controls. The medium of the PLTP-EGFP - expressing cells displayed EGFP fluorescence, demonstrating that both the PLTP and the EGFP moieties had attained a biologically active conformation. However, the specific activity of PLTP-EGFP in the medium was markedly reduced as compared with that of endogenous PLTP. This suggests that the EGFP attached to the carboxyl-terminal tail of PLTP interferes with the interaction of PLTP with its substrates or with the lipid transfer process itself. Fluorescently tagged PLTP is a useful tool for elucidating the intracellular functions of PLTP and the interaction of exogenously added PLTP with cells, and will provide a means of monitoring the distribution of exogenously added PLTP between serum lipoprotein subspecies.
Collapse
Affiliation(s)
- Sarah Siggins
- Department of Molecular Medicine, National Public HealthInstitute, Biomedicum, Helsinki, Finland
| | | | | | | |
Collapse
|
42
|
Wirtz KWA. Phospholipid transfer proteins in perspective. FEBS Lett 2006; 580:5436-41. [PMID: 16828756 DOI: 10.1016/j.febslet.2006.06.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 01/07/2023]
Abstract
Since their discovery and subsequent purification from mammalian tissues more than 30 years ago an impressive number of studies have been carried out to characterize and elucidate the biological functions of phosphatidylcholine transfer protein (PC-TP), phosphatidylinositol transfer protein (PI-TP) and non-specific lipid transfer protein, more commonly known as sterol carrier protein 2 (SCP-2). Here I will present information to show that these soluble, low-molecular weight proteins constitute domain structures in StArR-related lipid transfer (START) proteins (i.e. PC-TP), in retinal degeneration protein, type B (RdgB)-related PI-TPs (e.g. Dm RdgB, Nir2, Nir3) and in peroxisomal beta-oxidation enzyme-related SCP-2 (i.e. 3-oxoacyl-CoA thiolase, also denoted as SCP-X and the 80-kDa D-bifunctional protein). Further I will summarize the most recent studies pertaining to the physiological function of these soluble phospholipid transfer proteins in metazoa.
Collapse
Affiliation(s)
- Karel W A Wirtz
- Bijvoet Center for Biomolecular Research, Section of Lipid Biochemistry, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
43
|
Lee-Rueckert M, Vikstedt R, Metso J, Ehnholm C, Kovanen PT, Jauhiainen M. Absence of endogenous phospholipid transfer protein impairs ABCA1-dependent efflux of cholesterol from macrophage foam cells. J Lipid Res 2006; 47:1725-32. [PMID: 16687660 DOI: 10.1194/jlr.m600051-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro experiments have demonstrated that exogenous phospholipid transfer protein (PLTP), i.e. purified PLTP added to macrophage cultures, influences ABCA1-mediated cholesterol efflux from macrophages to HDL. To investigate whether PLTP produced by the macrophages (i.e., endogenous PLTP) is also part of this process, we used peritoneal macrophages derived from PLTP-knockout (KO) and wild-type (WT) mice. The macrophages were transformed to foam cells by cholesterol loading, and this resulted in the upregulation of ABCA1. Such macrophage foam cells from PLTP-KO mice released less cholesterol to lipid-free apolipoprotein A-I (apoA-I) and to HDL than did the corresponding WT foam cells. Also, when plasma from either WT or PLTP-KO mice was used as an acceptor, cholesterol efflux from PLTP-KO foam cells was less efficient than that from WT foam cells. After cAMP treatment, which upregulated the expression of ABCA1, cholesterol efflux from PLTP-KO foam cells to apoA-I increased markedly and reached a level similar to that observed in cAMP-treated WT foam cells, restoring the decreased cholesterol efflux associated with PLTP deficiency. These results indicate that endogenous PLTP produced by macrophages contributes to the optimal function of the ABCA1-mediated cholesterol efflux-promoting machinery in these cells. Whether macrophage PLTP acts at the plasma membrane or intracellularly or shuttles between these compartments needs further study.
Collapse
|
44
|
Cheung MC, Albers JJ. Active plasma phospholipid transfer protein is associated with apoA-I- but not apoE-containing lipoproteins. J Lipid Res 2006; 47:1315-21. [PMID: 16520487 DOI: 10.1194/jlr.m600042-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma phospholipid transfer protein (PLTP) is a multifaceted protein with diverse biological functions. It has been shown to exist in both active and inactive forms. To determine the nature of lipoproteins associated with active PLTP, plasma samples were adsorbed with anti-A-I, anti-A-II, or anti-E immunoadsorbent, and PLTP activity was measured in the resulting plasma devoid of apolipoprotein A-I (apoA-I), apoA-II, or apoE. Anti-A-I and anti-A-II immunoadsorbents removed 98 +/- 1% (n = 8) and 38 +/- 25% (n = 7) of plasma PLTP activity, respectively. In contrast, only 1 +/- 5% of plasma PLTP activity was removed by anti-E immunoadsorbent (n = 7). Dextran sulfate (DS) cellulose did not bind apoA-I, but it removed 83 +/- 5% (n = 4) of the PLTP activity in plasma. In size-exclusion chromatography, PLTP activity removed by anti-A-I or anti-A-II immunoadsorbent was associated primarily with particles of a size corresponding to HDL, whereas a substantial portion of the PLTP activity dissociated from DS cellulose was found in particles larger or smaller than HDL. These data show the following: 1) active plasma PLTP is associated primarily with apoA-I- but not apoE-containing lipoproteins; 2) active PLTP is present in HDL particles with and without apoA-II, and its distribution between these two HDL subpopulations varies widely among individuals; and 3) DS cellulose can remove active PLTP from apoA-I-containing lipoproteins, and this process creates new active PLTP-containing particles in vitro.
Collapse
Affiliation(s)
- Marian C Cheung
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
45
|
Abstract
Mammalian somatic cells do not catabolize cholesterol and need to export it for its homeostasis at the levels of cells and whole bodies. This reaction may reduce intracellularly accumulated cholesterol in excess and would contribute to prevention or regression of the initial stage of atherosclerosis. High-density lipoprotein (HDL) is thought to play a main role in this reaction, and 2 independent mechanisms are proposed for this reaction. First, cholesterol is exchanged in a nonspecific physicochemical manner between cell surface and extracellular lipoproteins, and cholesterol esterification on HDL provides a driving force for net removal of cell cholesterol. Second, apolipoproteins directly interact with cells and generate HDL by removing cellular phospholipid and cholesterol. This reaction is a major source of plasma HDL and is mediated by a membrane protein, ABCA1. Lipid-free or lipid-poor helical apolipoproteins primarily recruit cellular phospholipid to assemble HDL particles, and cholesterol enrichment in these particles is regulated independently. ABCA1 is a rate-limiting factor of the HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 includes modulation of its calpain-mediated degradation.
Collapse
Affiliation(s)
- Shinji Yokoyama
- Biochemistry, Cell Biology, and Metabolism, Nagoya City University Medical School, Graduate School of Medical Sciences, Japan.
| |
Collapse
|
46
|
Cheung MC, Brown BG, Marino Larsen EK, Frutkin AD, O'Brien KD, Albers JJ. Phospholipid transfer protein activity is associated with inflammatory markers in patients with cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:131-7. [PMID: 16216472 DOI: 10.1016/j.bbadis.2005.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/02/2005] [Accepted: 09/07/2005] [Indexed: 11/28/2022]
Abstract
Plasma phospholipid lipid transfer protein (PLTP) has several known key functions in lipoprotein metabolism. Recent studies suggest that it also may play a role in the inflammatory response. Inflammatory cell activity contributes to the development of atherosclerosis. To seek further evidence for the association of PLTP with inflammation, we studied the relationship between PLTP activity and five inflammatory markers [C-reactive protein (CRP), serum amyloid A (SAA), interleukin 6 (IL-6), white blood cells (WBC), and fibrinogen] in 93 patients with low HDL and cardiovascular disease (CVD). Plasma PLTP activity had the strongest correlation with CRP (r=0.332, P<0.001) followed by SAA (r=0.239, P=0.021). PLTP, CRP, and SAA were significantly associated with body mass index (BMI), insulin or glucose, apolipoprotein (apo) B, and/or apo E level (r=0.264-0.393, P<0.01). PLTP, SAA, and IL-6 also were associated with the concentration of HDL particles without apo A-II [Lp(A-I)](r=0.373-0.472, P<0.005, n=56), but not particles with apo A-II. Smoking was associated with increased PLTP activity, CRP, and WBC, and hypertension with increased PLTP activity. In linear models, CRP remained significantly associated with PLTP after adjustment of CVD risk factors and insulin resistance. Also, much of the variability of plasma PLTP activity was explained by CRP, BMI, Lp(A-I), smoking, glucose, and blood pressure. These findings show for the first time that plasma PLTP activity is associated positively with CRP in CVD, a state of chronic inflammation.
Collapse
Affiliation(s)
- Marian C Cheung
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA 98109-4517, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Vuletic S, Peskind ER, Marcovina SM, Quinn JF, Cheung MC, Kennedy H, Kaye JA, Jin LW, Albers JJ. Reduced CSF PLTP activity in Alzheimer's disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro. J Neurosci Res 2005; 80:406-13. [PMID: 15795933 DOI: 10.1002/jnr.20458] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phospholipid transfer protein (PLTP) plays a pivotal role in cellular lipid efflux and modulation of lipoprotein metabolism. PLTP is distributed widely in the central nervous system (CNS), is synthesized by glia and neurons, and is active in cerebrospinal fluid (CSF). The aims of this study were to test the hypothesis that patients with Alzheimer's disease (AD) have altered PLTP-mediated phospholipid transfer activity in CSF, and to examine the potential relationship between PLTP activity and apolipoprotein E (apoE) levels in CSF. We assessed PLTP activity and apoE concentration in CSF of patients with probable AD (n = 50), multiple sclerosis (MS; n = 9), other neurologic diseases (n = 21), and neurologically healthy controls (n = 40). PLTP activity in AD was reduced compared to that in controls (P < 0.001), with approximately half of the AD patients with PLTP activity values below all controls. Patients with MS had lower PLTP activity than AD patients (P < 0.001). PLTP activity was highly correlated with PLTP mass, as estimated by Western blot (r = 0.006; P < 0.01). CSF PLTP activity positively correlated with apoE concentration in AD (R = 0.435; P = 0.002) and controls (R = 0.456; P = 0.003). Anti-apoE immunoaffinity chromatography and Western blot analyses indicated that some CSF PLTP is associated with apoE-containing lipoproteins. Exogenous addition of recombinant PLTP to primary human astrocytes significantly increased apoE secretion to the conditioned medium. The findings of reduced PLTP activity in AD CSF, and the observation that PLTP can influence apoE secretion in astrocytes suggest a potential link between alterations in the brain lipid metabolism and AD pathogenesis.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, Washington 98109-4517, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bossé Y, Bouchard L, Després JP, Bouchard C, Pérusse L, Vohl MC. Haplotypes in the phospholipid transfer protein gene are associated with obesity-related phenotypes: the Québec Family Study. Int J Obes (Lond) 2005; 29:1338-45. [PMID: 15953936 DOI: 10.1038/sj.ijo.0803010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The phospholipid transfer protein (PLTP) may play a role in body fat regulation. OBJECTIVE To investigate the association between PLTP genetic variants and obesity-related phenotypes. METHODS Two intronic variants, one in intron 1 (c.-87G>A) and the other in intron 12 (c.1175+68T>G), were genotyped in 811 participants of the Québec Family Study. Nine obesity-related phenotypes were investigated, including body mass index (BMI), obesity (BMI> or =30 kg/m(2)), and waist circumference, percentage of fat, fat mass and fat-free mass measured by hydrostatic weighing as well as total, visceral and subcutaneous abdominal adipose tissue areas assessed by computed tomography. Single markers and haplotypes were tested for associations in family-based designs using the FBAT program. RESULTS The SNP located in intron 1 showed significant associations with obesity, BMI, waist circumference and fat-free mass (P<0.05). The low-frequency allele (A allele) was associated with higher trait values, suggesting that the transmission of this allele is associated with an increased risk of being obese. Significant associations were observed between haplotypes and obesity, waist circumference, percentage of fat and fat-free mass (P<0.05). The transmission of the AT haplotype (frequency=0.180) was positively associated with obesity-related phenotypes. After sequencing the promoter and the coding regions of the PLTP gene, we were unable to identify a mutation that could replicate these results. CONCLUSION Intronic variants of the PLTP gene are significantly associated with obesity-related phenotypes. Considering the number and the relevance of candidate genes surrounding the PLTP locus and the absence of missense polymorphisms in the coding region, the associations could be mediated by a second gene allele in linkage disequilibrium with the marker locus.
Collapse
Affiliation(s)
- Y Bossé
- Lipid Research Center, CHUL Research Center, Laval University, Québec, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Mammalian somatic cells do not catabolize cholesterol and therefore need to export it for sterol homeostasis at the levels of cells and whole bodies. This mechanism may reduce intracellularly accumulated cholesterol in excess, and thereby would contribute to the prevention or cure of the initial stage of atherosclerotic vascular lesions. RECENT FINDINGS HDL is thought to play a main role in this reaction on the basis of epidemiological evidence and in-vitro experimental data. Two independent mechanisms have been identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from the cell surface, and cholesterol is trapped by various extracellular acceptors including lipoproteins. Extracellular cholesterol esterification on HDL provides a driving force for the net removal of cell cholesterol, and some cellular factors may enhance this reaction. The other mechanism is an apolipoprotein-mediated process to generate HDL by removing cellular phospholipid and cholesterol. This reaction is mediated by a membrane protein ABCA1, and lipid-free or lipid-poor helical apolipoproteins recruit cellular phospholipid and cholesterol to assemble HDL particles. The reaction is composed of two elements: the assembly of HDL particles with phospholipid by apolipoprotein, and cholesterol enrichment in HDL. ABCA1 is essential for the former step, and the latter step requires further intracellular events. SUMMARY ABCA1 is a rate-limiting factor of HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 involves the modulation of its calpain-mediated degradation.
Collapse
Affiliation(s)
- Shinji Yokoyama
- Biochemistry, Cell Biology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
50
|
Stein O, Stein Y. Lipid transfer proteins (LTP) and atherosclerosis. Atherosclerosis 2005; 178:217-30. [PMID: 15694928 DOI: 10.1016/j.atherosclerosis.2004.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/07/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
This review deals with four lipid transfer proteins (LTP): three are involved in cholesteryl ester (CE) synthesis or transport, the fourth deals with plasma phospholipid (PL) transfer. Experimental models of atherosclerosis, clinical and epidemiological studies provided information as to the relationship of these LTP(s) to atherosclerosis, which is the main focus of this review. Thus, inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) 1 and 2 decreases cholesterol absorption, plasma cholesterol and aortic cholesterol esterification in the aorta. The discovery that tamoxifen is a potent ACAT inhibitor explained the plasma cholesterol lowering of the drug. The use of ACAT inhibition in humans is under current investigation. As low cholesteryl ester transfer protein (CETP) activity is connected with high HDL-C, several CETP inhibitors were tried in rabbits, with variable results. A new CETP inhibitor, Torcetrapib, was tested in humans and there was a 50-100% increase in HDL-C. Lecithin cholesterol acyl-transferase (LCAT) influences oxidative stress, which can be lowered by transient LCAT gene transfer in LCAT-/- mice. Phospholipid transfer protein (PLTP) deficiency reduced apo B production in apo E-/- mice, as well as oxidative stress in four models of mouse atherosclerosis. In conclusion, the ability to increase HDL-C so markedly by inhibitors of CETP introduces us into a new era in prevention and treatment of coronary heart disease (CHD).
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|