1
|
Tran DB, Le NKN, Duong MT, Yuna K, Pham LAT, Nguyen QCT, Tragoolpua Y, Kaewkod T, Kamei K. Drosophila models of the anti-inflammatory and anti-obesity mechanisms of kombucha tea produced by Camellia sinensis leaf fermentation. Food Sci Nutr 2024; 12:5722-5733. [PMID: 39139927 PMCID: PMC11317715 DOI: 10.1002/fsn3.4223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024] Open
Abstract
Kombucha tea is a traditional beverage originating from China and has recently gained popularity worldwide. Kombucha tea is produced by the fermentation of tea leaves and is characterized by its beneficial properties and varied chemical content produced during the fermentation process, which includes organic acids, amino acids, vitamins, minerals, and other biologically active compounds. Kombucha tea is often consumed as a health drink to combat obesity and inflammation; however, the bioactive effects of kombucha tea have not been thoroughly researched. In this study, we reveal the underlying mechanisms of the beneficial properties of kombucha tea and how they protect against obesity and inflammation by studying Drosophila models. We established an inflammatory Drosophila model by knocking down the lipid storage droplet-1 gene, a human perilipin-1 ortholog. In this model, dysfunction of lipid storage droplet-1 induces inflammation by enhancing the infiltration of hemocytes into adipose tissues, increasing reactive oxygen species production, elevating levels of proinflammatory cytokines, and promoting the differentiation of hemocytes into macrophages. These processes are regulated by the c-Jun N-terminal Kinase (JNK) pathway. Using this unique Drosophila model that mimics mammalian inflammation, we verified the beneficial effects of kombucha tea on reducing tissue inflammation. Our data confirms that kombucha tea effectively improves inflammatory conditions by suppressing the expression of cytokines and proinflammatory responses induced by lipid storage droplet-1 dysfunction. It was found that kombucha tea consumption alleviated the production of reactive oxygen species and activated the JNK signaling pathway, signifying its potential as an anti-inflammatory agent against systemic inflammatory responses connected to the JNK pathway. Kombucha tea reduced triglyceride accumulation by increasing the activity of Brummer (a lipase), thereby promoting lipolysis in third-instar larvae. Therefore, kombucha tea could be developed as a novel, functional beverage to protect against obesity and inflammation. Our study also highlights the potential use of this innovative model to evaluate the effects of bioactive compounds derived from natural products.
Collapse
Affiliation(s)
- Duy Binh Tran
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Surgery, College of MedicineUniversity of IllinoisChicagoIllinoisUSA
| | | | - Minh Tue Duong
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| | - Kamo Yuna
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| | - L. A. Tuan Pham
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Molecular PathologyHanoi Medical UniversityHanoiVietnam
| | - Q. C. Thanh Nguyen
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Chemistry, College of Natural SciencesCantho UniversityCantho CityVietnam
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Deep Technology in Beekeeping and bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Thida Kaewkod
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Deep Technology in Beekeeping and bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Kaeko Kamei
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
2
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
3
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Yuan C, Jing P, Jian Z, Wei X. Association between urinary sodium and circulating lipid levels: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1189473. [PMID: 38093964 PMCID: PMC10716694 DOI: 10.3389/fendo.2023.1189473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Background Urinary sodium was indicated to be associated with dyslipidemia, but inconsistent conclusions for this association exist across the present observational studies. Objectives This study aimed to evaluate the causal association between urinary sodium and circulating lipid levels [low-density lipoprotein cholesterol (LDL-C), triglycerides, and high-density lipoprotein cholesterol (HDL-C)] through Mendelian randomization. Methods Univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) with pleiotropy-resistant methods were performed. Data for urinary sodium were obtained from the genome-wide association study (GWAS) from 446,237 European individuals. Data for lipid profiles were extracted from GWAS based on the UK Biobank (for the discovery analysis) and the Global Lipids Genetics Consortium (for the replication analysis). Results In the discovery analysis, UVMR provided evidence that per 1-unit log-transformed genetically increased urinary sodium was associated with a lower level of HDL-C level (beta = -0.32; 95% CI: -0.43, -0.20; p = 7.25E-08), but not with LDL-C and triglycerides. This effect was still significant in the further MVMR when considering the effect of BMI or the other two lipid contents. In contrast, higher genetically predicted triglycerides could increase urinary sodium in both UVMR (beta = 0.030; 95% CI: 0.020, -0.039; p = 2.12E-10) and MVMR analyses (beta = 0.029; 95% CI: 0.019, 0.037; p = 8.13E-10). Similar results between triglycerides and urinary sodium were found in the replication analysis. Conclusion Increased urinary sodium may have weak causal effects on decreased circulating HDL-C levels. Furthermore, genetically higher triglyceride levels may have independent causal effects on increased urinary sodium excretion.
Collapse
Affiliation(s)
- Chi Yuan
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Peijia Jing
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Xie J, Zhou F, Ouyang L, Li Q, Rao S, Su R, Yang S, Li J, Wan X, Yan L, Liu P, Cheng H, Li L, Du G, Feng C, Fan G. Insight into the effect of a heavy metal mixture on neurological damage in rats through combined serum metabolomic and brain proteomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165009. [PMID: 37353033 DOI: 10.1016/j.scitotenv.2023.165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/26/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
The heavy metals lead (Pb), cadmium (Cd), and mercury (Hg) that cause neurocognitive impairment have been extensively studied. These elements typically do not exist alone in the environment; they are often found with other heavy metals and can enter the body through various routes, thereby impacting health. Our previous research showed that low Pb, Cd, and Hg levels cause neurobehavioral impairments in weaning and adult rats. However, little is known about the biomarkers and mechanisms underlying Pb, Cd, and Hg mixture-induced neurological impairments. A combined analysis of metabolomic and proteomic data may reveal heavy metal-induced alterations in metabolic and protein profiles, thereby improving our understanding of the molecular mechanisms underlying heavy metal-induced neurological impairments. Therefore, brain tissue and serum samples were collected from rats exposed to a Pb, Cd, and Hg mixture for proteomic and metabolomic analyses, respectively. The analysis revealed 363 differential proteins in the brain and 206 metabolites in serum uniquely altered in the Pb, Cd, and Hg mixture exposure group, compared to those of the control group. The main metabolic impacted pathways were unsaturated fatty acids biosynthesis, linoleic acid metabolism, phenylalanine metabolism, and tryptophan metabolism. We further identified that the levels of arachidonic acid (C20:4 n-3) and, adrenic acid (C22:4 n-3) were elevated and that kynurenic acid (KA) and quinolinic acid (QA) levels and the KA/QA ratio, were decreased in the group exposed to the Pb, Cd, and Hg mixture. A joint analysis of the proteome and metabolome showed that significantly altered proteins such as LPCAT3, SLC7A11, ASCL4, and KYAT1 may participate in the neurological impairments induced by the heavy metal mixture. Overall, we hypothesize that the dysregulation of ferroptosis and kynurenine pathways is associated with neurological damage due to chronic exposure to a heavy metal mixture.
Collapse
Affiliation(s)
- Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
6
|
Jeong SJ, Oh GT. Unbalanced Redox With Autophagy in Cardiovascular Disease. J Lipid Atheroscler 2023; 12:132-151. [PMID: 37265853 PMCID: PMC10232220 DOI: 10.12997/jla.2023.12.2.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
Precise redox balance is essential for the optimum health and physiological function of the human body. Furthermore, an unbalanced redox state is widely believed to be part of numerous diseases, ultimately resulting in death. In this review, we discuss the relationship between redox balance and cardiovascular disease (CVD). In various animal models, excessive oxidative stress has been associated with increased atherosclerotic plaque formation, which is linked to the inflammation status of several cell types. However, various antioxidants can defend against reactive oxidative stress, which is associated with an increased risk of CVD and mortality. The different cardiovascular effects of these antioxidants are presumably due to alterations in the multiple pathways that have been mechanistically linked to accelerated atherosclerotic plaque formation, macrophage activation, and endothelial dysfunction in animal models of CVD, as well as in in vitro cell culture systems. Autophagy is a regulated cell survival mechanism that removes dysfunctional or damaged cellular organelles and recycles the nutrients for the generation of energy. Furthermore, in response to atherogenic stress, such as the generation of reactive oxygen species, oxidized lipids, and inflammatory signaling between cells, autophagy protects against plaque formation. In this review, we characterize the broad spectrum of oxidative stress that influences CVD, summarize the role of autophagy in the content of redox balance-associated pathways in atherosclerosis, and discuss potential therapeutic approaches to target CVD by stimulating autophagy.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
7
|
Xu R, Dai Y, Zheng X, Yan Y, He Z, Zhang H, Li H, Chen W. Thromboxane A 2-TP axis promotes adipose tissue macrophages M1 polarization leading to insulin resistance in obesity. Biochem Pharmacol 2023; 210:115465. [PMID: 36849064 DOI: 10.1016/j.bcp.2023.115465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Aberrant arachidonic acid metabolism has been implicated in multiple pathophysiological conditions, and the downstream prostanoids levels are associated with adipocyte dysfunction in obesity. However, the role of thromboxane A2 (TXA2) in obesity remains unclear. We observed that TXA2, through its receptor TP, is a candidate mediator in obesity and metabolic disorders. Obese mice with upregulated TXA2 biosynthesis (TBXAS1) and TXA2 receptor (TP) expression in caused insulin resistance and macrophage M1 polarization in white adipose tissue (WAT), which can be prevented by treatment with aspirin. Mechanistically, the activation of TXA2-TP signaling axis leads to accumulation of protein kinase Cɛ (PKCɛ), thereby enhancing free fat acid (FFA) induced Toll-like receptor4 (TLR4) proinflammatory macrophage activation and the tumor necrosis factor-a (TNF-a) production in adipose tissues. Importantly, TP knockout mice reduced the accumulation of proinflammatory macrophages and adipocyte hypertrophy in WAT. Thus, our findings demonstrate that TXA2-TP axis plays a crucial role in obesity-induced adipose macrophage dysfunction, and rational targeting TXA2 pathway may improve obesity and its associated metabolic disorders in future. In this work, we establish previously unknown role of TXA2-TP axis in WAT. These findings might provide new insight into the molecular pathogenesis of insulin resistance, and indicate rational targeting TXA2 pathway to improve obesity and its associated metabolic disorders in future.
Collapse
Affiliation(s)
- Ruijie Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng Dai
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongheng Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhao He
- School of Medicine, Shandong University, Wenhua West Rd. Lixia District, Jinan, Shandong 250012, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haitao Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Functional Characterization of Transgenic Mice Overexpressing Human 15-Lipoxygenase-1 (ALOX15) under the Control of the aP2 Promoter. Int J Mol Sci 2023; 24:ijms24054815. [PMID: 36902243 PMCID: PMC10003068 DOI: 10.3390/ijms24054815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory, hyperproliferative, neurodegenerative, and metabolic diseases, but the physiological function of ALOX15 still remains a matter of discussion. To contribute to this discussion, we created transgenic mice (aP2-ALOX15 mice) expressing human ALOX15 under the control of the aP2 (adipocyte fatty acid binding protein 2) promoter, which directs expression of the transgene to mesenchymal cells. Fluorescence in situ hybridization and whole-genome sequencing indicated transgene insertion into the E1-2 region of chromosome 2. The transgene was highly expressed in adipocytes, bone marrow cells, and peritoneal macrophages, and ex vivo activity assays proved the catalytic activity of the transgenic enzyme. LC-MS/MS-based plasma oxylipidome analyses of the aP2-ALOX15 mice suggested in vivo activity of the transgenic enzyme. The aP2-ALOX15 mice were viable, could reproduce normally, and did not show major phenotypic alterations when compared with wildtype control animals. However, they exhibited gender-specific differences with wildtype controls when their body-weight kinetics were evaluated during adolescence and early adulthood. The aP2-ALOX15 mice characterized here can now be used for gain-of-function studies evaluating the biological role of ALOX15 in adipose tissue and hematopoietic cells.
Collapse
|
9
|
Yan K, Ma X, Jiang M, Hu Z, Yang T, Zhan K, Zhao G. Effects of bovine milk and buffalo milk on lipid metabolism in mice. J Anim Physiol Anim Nutr (Berl) 2023; 107:428-434. [PMID: 35686558 DOI: 10.1111/jpn.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
Buffalo milk contains more polyunsaturated fatty acids than bovine milk. However, it is not clear about the effects of buffalo milk and bovine milk on lipid metabolism. In this study, a mouse model was used to explore the effects of buffalo milk and bovine milk on lipid metabolism in mice. The experiment was divided into three groups: a control group on a normal diet; a bovine milk group infused with bovine milk; a buffalo milk group infused with buffalo milk. We fed three groups of mice (n = 6) for 6 weeks. These results showed that bovine milk and buffalo milk had no effect on body weight gain. Bovine milk increased the content of ApoA1, ApoB and glucose in serum, compared with the control group, but buffalo milk has no profound change in serum ApoB. Remarkably, buffalo milk decreased the content of total cholesterol (TC) and triglyceride (TG) in the liver lipid profile, and also downregulated the expression of the carnitine palmitoyltransferase 2 (Cpt2) gene involved in the fatty acid oxidation in the liver. This study also found that bovine milk and buffalo milk did not cause the expression of pro-inflammatory factors in serum and colon tissues. This experiment proved that buffalo milk has beneficial effects on the regulation of lipid metabolism, and also does not affect the normal growth and pro-inflammatory response of the colon in mice. It provides a theoretical basis for future in-depth research on the special functions of buffalo milk and the development of buffalo milk functional foods.
Collapse
Affiliation(s)
- Kang Yan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - XiaoYu Ma
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - MaoCheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - ZiXuan Hu
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - TianYu Yang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - GuoQi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. Vaccines (Basel) 2023; 11:vaccines11010174. [PMID: 36680018 PMCID: PMC9862439 DOI: 10.3390/vaccines11010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses interact with protein or carbohydrate receptors through their spike proteins to infect cells. Even if the known protein receptors for these viruses have no evolutionary relationships, they do share ontological commonalities that the virus might leverage to exacerbate the pathophysiology. ANPEP/CD13, DPP IV/CD26, and ACE2 are the three protein receptors that are known to be exploited by several human coronaviruses. These receptors are moonlighting enzymes involved in several physiological processes such as digestion, metabolism, and blood pressure regulation; moreover, the three proteins are expressed in kidney, intestine, endothelium, and other tissues/cell types. Here, we spot the commonalities between the three enzymes, the physiological functions of the enzymes are outlined, and how blocking either enzyme results in systemic deregulations and multi-organ failures via viral infection or therapeutic interventions is addressed. It can be difficult to pinpoint any coronavirus as the target when creating a medication to fight them, due to the multiple processes that receptors are linked to and their extensive expression.
Collapse
|
11
|
Helmstädter M, Schierle S, Isigkeit L, Proschak E, Marschner JA, Merk D. Activity Screening of Fatty Acid Mimetic Drugs Identified Nuclear Receptor Agonists. Int J Mol Sci 2022; 23:ijms231710070. [PMID: 36077469 PMCID: PMC9456086 DOI: 10.3390/ijms231710070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid mimetics (FAM) are bioactive molecules acting through the binding sites of endogenous fatty acid metabolites on enzymes, transporters, and receptors. Due to the special characteristics of these binding sites, FAMs share common chemical features. Pharmacological modulation of fatty acid signaling has therapeutic potential in multiple pathologies, and several FAMs have been developed as drugs. We aimed to elucidate the promiscuity of FAM drugs on lipid-activated transcription factors and tested 64 approved compounds for activation of RAR, PPARs, VDR, LXR, FXR, and RXR. The activity screening revealed nuclear receptor agonism of several FAM drugs and considerable promiscuity of NSAIDs, while other compound classes evolved as selective. These screening results were not anticipated by three well-established target prediction tools, suggesting that FAMs are underrepresented in bioactivity data for model development. The screening dataset may therefore valuably contribute to such tools. Oxaprozin (RXR), tianeptine (PPARδ), mycophenolic acid (RAR), and bortezomib (RAR) exhibited selective agonism on one nuclear receptor and emerged as attractive leads for the selective optimization of side activities. Additionally, their nuclear receptor agonism may contribute relevant and valuable polypharmacology.
Collapse
Affiliation(s)
- Moritz Helmstädter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
12
|
Tans R, Dey S, Dey NS, Cao JH, Paul PS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Mass spectrometry imaging identifies altered hepatic lipid signatures during experimental Leishmania donovani infection. Front Immunol 2022; 13:862104. [PMID: 36003389 PMCID: PMC9394181 DOI: 10.3389/fimmu.2022.862104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.
Collapse
Affiliation(s)
- Roel Tans
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Jian-Hua Cao
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Prasanjit S. Paul
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| |
Collapse
|
13
|
Adipocyte-derived kynurenine promotes obesity and insulin resistance by activating the AhR/STAT3/IL-6 signaling. Nat Commun 2022; 13:3489. [PMID: 35715443 PMCID: PMC9205899 DOI: 10.1038/s41467-022-31126-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Aberrant amino acid metabolism is a common event in obesity. Particularly, subjects with obesity are characterized by the excessive plasma kynurenine (Kyn). However, the primary source of Kyn and its impact on metabolic syndrome are yet to be fully addressed. Herein, we show that the overexpressed indoleamine 2,3-dioxygenase 1 (IDO1) in adipocytes predominantly contributes to the excessive Kyn, indicating a central role of adipocytes in Kyn metabolism. Depletion of Ido1 in adipocytes abrogates Kyn accumulation, protecting mice against obesity. Mechanistically, Kyn impairs lipid homeostasis in adipocytes via activating the aryl hydrocarbon receptor (AhR)/Signal transducer and activator of transcription 3 /interleukin-6 signaling. Genetic ablation of AhR in adipocytes abolishes the effect of Kyn. Moreover, supplementation of vitamin B6 ameliorated Kyn accumulation, protecting mice from obesity. Collectively, our data support that adipocytes are the primary source of increased circulating Kyn, while elimination of accumulated Kyn could be a viable strategy against obesity. Kynurenine, a tryptophan metabolite, is increased in the circulating plasma of obese individuals, but the source has been unclear. Here, the authors show in mice that mature adipocytes produce kynurenine, with vitamin B6 administration preventing accumulation and protecting against high-fat diet.
Collapse
|
14
|
Boonloh K, Thanaruksa R, Proongkhong T, Thawornchinsombut S, Pannangpetch P. Nil-Surin Rice Bran Hydrolysates Improve Lipid Metabolism and Hepatic Steatosis by Regulating Secretion of Adipokines and Expression of Lipid-Metabolism Genes. J Med Food 2022; 25:597-606. [PMID: 35708630 DOI: 10.1089/jmf.2021.k.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Overconsumption of a high caloric diet is associated with metabolic disorders and a heightened risk of diabetes mellitus (DM), hepatic steatosis, and cardiovascular complications. The use of functional food has received much attention as a strategy in the prevention and treatment of metabolic disorders. This present study investigated whether Nil-Surin rice bran hydrolysates (NRH) could prevent or ameliorate the progression of metabolic disorders in rats in which insulin resistance (IR) was induced by a high fat-high fructose diet (HFFD). After 10 weeks of the HFFD, the rats showed elevated fasting blood glucose (FBG), impaired glucose tolerance, dysregulation of adipokine secretion, distorted lipid metabolism such as dyslipidemia, and increased intrahepatic fat accumulation. The IR was significantly attenuated by a daily dose of NRH (100 or 300 mg/kg/day). Doses of NRH rectified adipokine dysregulation by increasing serum adiponectin and improving hyperleptinemia. Interestingly, NRH decreased intrahepatic fat accumulation and improved dyslipidemia as shown by decreased levels of hepatic triglyceride (TG) and serum TG, total cholesterol and low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol. In addition, a modulation of expression of lipid metabolism genes was observed: NRH prevented upregulation of the lipogenesis genes Srebf1 and Fasn. In addition, NRH enhanced the expression of fatty-acid oxidation genes, as evidenced by an increase of Ppara and Cpt1a when compared with the HFFD control group. The activities of NRH in the modulation of lipid metabolism and rectifying the dysregulation of adipokines may result in a decreased risk of DM and hepatic steatosis. Therefore, NRH may be beneficial in ameliorating metabolic disorders in the HFFD model.
Collapse
Affiliation(s)
- Kampeebhorn Boonloh
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Muang District, Thailand.,Cardiovascular Research Group, Khon Kaen University, Muang District, Thailand
| | - Ratthipha Thanaruksa
- Rice Department, Surin Rice Research Center, Agricultural and Cooperatives Ministry, Surin, Thailand
| | - Tunvaraporn Proongkhong
- Rice Department, Chum Phae Rice Research Center, Agricultural and Cooperatives Ministry, Khon Kaen, Thailand
| | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Muang District, Thailand
| | - Patchareewan Pannangpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Muang District, Thailand.,Cardiovascular Research Group, Khon Kaen University, Muang District, Thailand
| |
Collapse
|
15
|
Rodents on a high-fat diet born to mothers with gestational diabetes exhibit sex-specific lipidomic changes in reproductive organs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:736-747. [PMID: 35643955 PMCID: PMC9828243 DOI: 10.3724/abbs.2022052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Maternal gestatonal diabetes mellitus (GDM) and offspring high-fat diet (HFD) have been shown to have sex-specific detrimental effects on the health of the offspring. Maternal GDM combined with an offspring HFD alters the lipidomic profiles of offspring reproductive organs with sex hormones and increases insulin signaling, resulting in offspring obesity and diabetes. The pre-pregnancy maternal GDM mice model is established by feeding maternal C57BL/6 mice and their offspring are fed with either a HFD or a low-fat diet (LFD). Testis, ovary and liver are collected from offspring at 20 weeks of age. The lipidomic profiles of the testis and ovary are characterized using gas chromatography-mass spectrometry. Male offspring following a HFD have elevated body weight. In reproductive organs and hormones, male offspring from GDM mothers have decreased testes weights and testosterone levels, while female offspring from GDM mothers show increased ovary weights and estrogen levels. Maternal GDM aggravates the effects of an offspring HFD in male offspring on the AKT pathway, while increasing the risk of developing inflammation when expose to a HFD in female offspring liver. Testes are prone to the effect of maternal GDM, whereas ovarian metabolite profiles are upregulated in maternal GDM and downregulated in offspring following an HFD. Maternal GDM and an offspring HFD have different metabolic effects on offspring reproductive organs, and PUFAs may protect against detrimental outcomes in the offspring, such as obesity and diabetes.
Collapse
|
16
|
Frommeyer TC, Gilbert MM, Brittain GV, Wu T, Nguyen TQ, Rohan CA, Travers JB. UVB-Induced Microvesicle Particle Release and Its Effects on the Cutaneous Microenvironment. Front Immunol 2022; 13:880850. [PMID: 35603177 PMCID: PMC9120817 DOI: 10.3389/fimmu.2022.880850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B radiation (UVB) has profound effects on human skin that results in a broad spectrum of immunological local and systemic responses and is the major cause of skin carcinogenesis. One important area of study in photobiology is how UVB is translated into effector signals. As the skin is exposed to UVB light, subcellular microvesicle particles (MVP), a subtype of bioactive extracellular vesicles, are released causing a variety of local and systemic immunological effects. In this review, we highlight keratinocyte MVP release in keratinocytes in response to UVB. Specifically, Platelet-activating factor receptor agonists generated by UVB result in MVP released from keratinocytes. The downstream effects of MVP release include the ability of these subcellular particles to transport agents including the glycerophosphocholine-derived lipid mediator Platelet-activating factor (PAF). Moreover, even though UVB is only absorbed in the epidermis, it appears that PAF release from MVPs also mediates systemic immunosuppression and enhances tumor growth and metastasis. Tumor cells expressing PAF receptors can use this mechanism to evade chemotherapy responses, leading to treatment resistance for advanced cancers such as melanoma. Furthermore, novel pharmacological agents provide greater insight into the UVB-induced immune response pathway and a potential target for pharmacological intervention. This review outlines the need to more clearly elucidate the mechanism linking UVB-irradiation with the cutaneous immune response and its pathological manifestations. An improved understanding of this process can result in new insights and treatment strategies for UVB-related disorders from carcinogenesis to photosensitivity.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Michael M. Gilbert
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Garrett V. Brittain
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Tongfan Wu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Trang Q. Nguyen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers,
| |
Collapse
|
17
|
Effects of Ethanolic Extract of Cynara cardunculus (Artichoke) Leaves on Neuroinflammatory and Neurochemical Parameters in a Diet-Induced Mice Obesity Model. Neurochem Res 2022; 47:1888-1903. [DOI: 10.1007/s11064-022-03572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
18
|
Zhang B, Wang Y, Zhou BW, Cheng J, Xu Q, Zhang L, Sun TQ, Zhang J, Guo YL. Chloramine-T-Enabled Mass Spectrometric Analysis of C═C Isomers of Unsaturated Fatty Acids and Phosphatidylcholines in Human Thyroids. Anal Chem 2022; 94:6216-6224. [PMID: 35420783 DOI: 10.1021/acs.analchem.1c05607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific locations of carbon-carbon double bonds (C═C) in lipids often play an essential role in biological processes, and there has been a booming development in C═C composition analysis by mass spectrometry. However, a universal derivatization and fragmentation pattern for the annotation of C═C positions in lipids is still challenging and attractive. To expand this field in lipidomics, a flexible and convenient N-tosylaziridination method was developed, with high derivatization efficiency, sensitivity, and specificity. The derivatization was very fast (15 s), and C═C numbers as well as locations could be pinpointed specifically in tandem mass spectra. By qualitative and quantitative studies of paratumor and tumor thyroid tissues of human beings, the total content of unsaturated fatty acids was suggested to be increased in tumor tissues, and good correlations in and between lysophosphatidylcholines and phosphatidylcholines were revealed by Spearman analysis. Further studies of C═C isomers showed that n-6/n-3 ratios were closely associated with human thyroid tumorigenesis, and high ratios of n-6/n-3 isomers seemed to suffer a high risk of carcinogenesis. Other isomers were not very representative; however, C═C in n-9/n-7 could also be significant for oncology research. Generally, it is supposed that both total amounts and C═C isomer ratios were related to cancer, and N-tosylaziridine derivatization could provide an alternative strategy for the C═C isomer study of disease models.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Bo-Wen Zhou
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Cheng
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qi Xu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tuan-Qi Sun
- Department of Head and Neck Surgery, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin-Long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
19
|
Moreno-Fernandez J, Ochoa J, Ojeda ML, Nogales F, Carreras O, Díaz-Castro J. Inflammation and oxidative stress, the links between obesity and COVID-19: a narrative review. J Physiol Biochem 2022; 78:581-591. [PMID: 35316507 PMCID: PMC8938224 DOI: 10.1007/s13105-022-00887-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
COVID-19, an acute respiratory disease caused by SARS-CoV-2, has rapidly become a pandemic. On the other hand, obesity is also reaching dramatic dimensions and it is a risk factor for morbidity and premature mortality. Obesity has been linked to a high risk of serious-associated complications to COVID-19, due to the increased risk of concomitant chronic diseases, which highlights the health public relevance of the topic. Obese subjects have a pro-inflammatory environment, which can further exacerbate COVID-19-induced inflammation and oxidative stress, explaining the increased risk of serious complications in these patients. Another factor that favors infection in obese patients is the high expression of ACE2 receptors in the adipose tissue. The negative impact of COVID-19 in obesity is also associated with a decrease in respiratory function, the concurrence of multiple comorbidities, a low-degree chronic inflammatory state, immunocompromised situation, and therefore a higher rate of hospitalization, mechanical ventilation, in-hospital complications such as pneumonia, and death. In this review, the link between obesity and COVID-19 was analyzed, exploring the potential common mechanisms in both diseases, with special attention to oxidative stress and inflammation, due to the crucial role of both pathways in the development of the disease.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, University of Granada, Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, , 18071, Armilla, Granada, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain.
- Instituto de Investigación Biosanitaria (IBS), 18016, Granada, Spain.
| | - Julio Ochoa
- Department of Physiology, University of Granada, Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, , 18071, Armilla, Granada, Spain.
| | - María Luisa Ojeda
- Department of Physiology, University of Seville University, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, University of Seville University, Seville, Spain
| | - Olimpia Carreras
- Department of Physiology, University of Seville University, Seville, Spain
| | - Javier Díaz-Castro
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, , 18071, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016, Granada, Spain
| |
Collapse
|
20
|
Hernandez-Baixauli J, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Caimari A, Baselga-Escudero L, Del Bas JM, Mulero M. Imbalances in TCA, Short Fatty Acids and One-Carbon Metabolisms as Important Features of Homeostatic Disruption Evidenced by a Multi-Omics Integrative Approach of LPS-Induced Chronic Inflammation in Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23052563. [PMID: 35269702 PMCID: PMC8910732 DOI: 10.3390/ijms23052563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic inflammation is an important risk factor in a broad variety of physical and mental disorders leading to highly prevalent non-communicable diseases (NCDs). However, there is a need for a deeper understanding of this condition and its progression to the disease state. For this reason, it is important to define metabolic pathways and complementary biomarkers associated with homeostatic disruption in chronic inflammation. To achieve that, male Wistar rats were subjected to intraperitoneal and intermittent injections with saline solution or increasing lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 days. Biochemical and inflammatory parameters were measured at the end of the study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; additionally, shotgun metagenomics sequencing was carried out to characterize the cecum microbiome. The chronicity of inflammation in the study was evaluated by the monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different weeks of the experimental process. At the end of the study, together with the increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of oxidative stress) were significantly increased (p-value < 0.05). The leading features implicated in the current model were tricarboxylic acid (TCA) cycle intermediates (i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are related to one-carbon (1C) metabolism. These metabolites point towards mitochondrial metabolism through TCA cycle, β-oxidation of fatty acids and 1C metabolism as interconnected pathways that could reveal the metabolic effects of chronic inflammation induced by LPS administration. These results provide deeper knowledge concerning the impact of chronic inflammation on the disruption of metabolic homeostasis.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
- Correspondence: (J.M.D.B.); (M.M.)
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (J.M.D.B.); (M.M.)
| |
Collapse
|
21
|
Tang H, Zhou Q, Zheng F, Wu T, Tang YD, Jiang J. The Causal Effects of Lipid Profiles on Sleep Apnea. Front Nutr 2022; 9:910690. [PMID: 35799595 PMCID: PMC9253611 DOI: 10.3389/fnut.2022.910690] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Observational studies have suggested that lipid profiles were associated with risk of sleep apnea (SA). However, the specific lipid types and whether this relationship has a causal effect are uncertain. This study conducted two-sample Mendelian randomization (MR) and multivariable Mendelian randomization (MVMR) to investigate the potential causal relationship between lipid profiles and risk of SA. Materials and Methods We used the largest genome-wide association study (GWAS) on European participants on the UK Biobank. After a rigorous single nucleotide polymorphism screening process to remove confounding effects, we performed MR and MVMR to explore the causal relationship between lipid profiles and SA risk. Results Both MR and MVMR showed causal effects of increased triglyceride on SA risk [MR: per 10 units, odds ratio (OR): 1.0156; 95% CI: 1.0057-1.0257; P value = 0.002; MVMR: per 10 units, OR: 1.0229; 95% CI: 1.0051-1.0411; P value = 0.011]. The sensitivity analysis including Cochran's Q test, MR-Egger intercept, and MR pleiotropy residual sum and outlier (MR-PRESSO) test indicated that our findings were robust. The causal effects of triglyceride on SA did not change after adjusting for potential confounders (obesity, age, sex, and airway obstruction). Conclusion Genetically increased triglyceride levels have independent causal effects on risk of sleep apnea without the confounding effects of obesity, suggesting that lowering triglyceride concentrations may help to reduce the risk of sleep apnea.
Collapse
Affiliation(s)
- Hongyi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qing Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiology, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiology, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
22
|
Ren J, Ning X, Zhang D, Zhang Y. Increased Level of Serum Wingless-Type Mouse Mammary Tumor Virus Integration Site Family Member 5a in Patients with Cutaneous Lichen Planus. J Inflamm Res 2022; 15:235-239. [PMID: 35046697 PMCID: PMC8761001 DOI: 10.2147/jir.s341908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Jianwen Ren
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
| | - Xiaoying Ning
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
| | - Yanfei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
- Correspondence: Yanfei Zhang Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xi Wu Road, Xi’an, 710004, Shaanxi Province, People’s Republic of ChinaTel/Fax +86-29-87679301 Email
| |
Collapse
|
23
|
Fang JY, Huang TH, Chen WJ, Aljuffali IA, Hsu CY. Rhubarb hydroxyanthraquinones act as antiobesity agents to inhibit adipogenesis and enhance lipolysis. Biomed Pharmacother 2021; 146:112497. [PMID: 34891117 DOI: 10.1016/j.biopha.2021.112497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Rhubarb as an herbal medicine has been shown to exhibit antiadipogenic activity. This study evaluated and compared the lipid-lowering activity of five rhubarb hydroxyanthraquinones (HAQs), including chrysophanol, aloe emodin, emodin, physcion, and rhein, aiming to identify candidate compounds for obesity treatment. Examination of the antiobesity effects of HAQs in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese rats showed that these anthraquinone compounds inhibited lipid accumulation in 3T3-L1 cells before and after differentiation. Emodin and rhein showed greater inhibition than the other compounds; dosage at 50 μM reduced intracellular triglyceride (TG) by about 30% in the differentiated adipocytes. Both compounds also revealed lipolytic effects to increase glycerol release from adipocytes. Adipokine overexpression induced by differentiation was downregulated by emodin and rhein through mitogen-activated protein kinase (MAPK) signaling. Despite their structural similarity, emodin and rhein exhibited different mechanisms on adipogenesis and lipid metabolism. Rhein restrained lipid deposition by controlling adipogenic transcriptional factors and lipolytic lipases during differentiation. The lipid-lowering effects of emodin did not use these pathways but reduced levels of lipogenic enzymes. HFD consumption in rats significantly increased body weight, visceral fat mass and adipocyte size, which were attenuated by intraperitoneal delivery of emodin or rhein. Rhein showed greater amelioration of obesity than emodin, decreasing plasma cholesterol by 29% and 14%, respectively. HAQs also suppressed cytokine upregulation in the liver and adipose tissues of obese rats. Rhein is a potential antiobesity agent through its ability to regulate obesity-associated adipogenesis, lipolysis and inflammation.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wei-Jhang Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, SaudiArabia
| | - Ching-Yun Hsu
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Zhao T, Wang Y, Guo X, Li H, Jiang W, Xiao Y, Deng B, Sun Y. Altered oxylipin levels in human vitreous indicate imbalance in pro-/anti-inflammatory homeostasis in proliferative diabetic retinopathy. Exp Eye Res 2021; 214:108799. [PMID: 34687725 DOI: 10.1016/j.exer.2021.108799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Proliferative diabetic retinopathy (PDR) is an advanced stage of diabetic retinopathy (DR), characterized by retinal neovascularization. It is a progressive fundus disease and a severe complication of diabetes that causes vision impairment. Hyperglycemia-induced persistent low-grade inflammation is a crucial factor underlying the pathogenesis of DR-associated damage and contributing to the progression of PDR. Highly enriched polyunsaturated fatty acids (PUFAs) in the retina are precursors to oxidized metabolites, namely, oxylipins, which exert pro-inflammatory or anti-inflammatory (resolving) effects under different pathological conditions and have been implicated in diabetes. To evaluate differences in oxylipin levels in the vitreous obtained from PDR and non-diabetic subjects, we performed a targeted assessment of oxylipins. A total of 41 patients with PDR and 22 non-diabetic control subjects were enrolled in this study. Vitreous humor obtained during routinely scheduled vitrectomy underwent a targeted but unbiased screening for oxylipins using mass spectrometry-based lipidomics. We found 21 oxylipins showing statistically significant differences in their levels between PDR and non-diabetic subjects (p < 0.05). Lipoxygenase (LOX)- and cytochrome P450 (CYP)- derived oxylipins were the most affected, while cyclooxygenase (COX) oxylipins were affected to a lesser extent. When categorized by their precursor PUFAs, ±19,20-EpDPE, a CYP product of docosahexaenoic acid (DHA) and 12S-HETE, a LOX product of arachidonic acid (ARA), were increased by the largest magnitude. Moreover, of these 21 oxylipins, 7 were considered as potential biomarkers for discriminating PDR patients from the non-diabetic controls. Our results indicate that altered oxylipin levels in the vitreous implicate an underlying imbalanced inflammation-resolution homeostasis in PDR.
Collapse
Affiliation(s)
- Tantai Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yanbin Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huiling Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wenmin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yangyan Xiao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bin Deng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
25
|
Zipris D. Visceral Adipose Tissue: A New Target Organ in Virus-Induced Type 1 Diabetes. Front Immunol 2021; 12:702506. [PMID: 34421908 PMCID: PMC8371384 DOI: 10.3389/fimmu.2021.702506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction of insulin producing β-cells and hyperglycaemia. Much of the knowledge about type 1 diabetes (T1D) has focused on mechanisms of disease progression such as adaptive immune cells and the cytokines that control their function, whereas mechanisms linked with the initiation of the disease remain unknown. It has been hypothesized that in addition to genetics, environmental factors play a pivotal role in triggering β-cell autoimmunity. The BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher the mechanisms that lead to virus-induced T1D. Both animals develop β-cell inflammation and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in the disease course plays a causal role in triggering β-cell inflammation and destruction. Furthermore, we recently found for the first time that infection with KRV induces inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated with macrophage recruitment, proinflammatory cytokine and chemokine upregulation, endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and downregulation of adipokines and molecules that mediate insulin signaling. Downregulation of inflammation suppresses VAT inflammation and T1D development. These observations are strikingly reminiscent of data from obesity and type 2 diabetes (T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms. We propose that VAT inflammation and dysfunction may be linked with the mechanism of T1D progression.
Collapse
Affiliation(s)
- Danny Zipris
- Innate Biotechnologies LLC, Denver, CO, United States
| |
Collapse
|
26
|
Alberti A, Schuelter-Trevisol F, Iser BPM, Traebert E, Freiberger V, Ventura L, Rezin GT, da Silva BB, Meneghetti Dallacosta F, Grigollo L, Dias P, Fin G, De Jesus JA, Pertille F, Rossoni C, Hur Soares B, Nodari Júnior RJ, Comim CM. Obesity in people with diabetes in COVID-19 times: Important considerations and precautions to be taken. World J Clin Cases 2021; 9:5358-5371. [PMID: 34307590 PMCID: PMC8281433 DOI: 10.12998/wjcc.v9.i20.5358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
At the end of 2019, a new disease with pandemic potential appeared in China. It was a novel coronavirus called coronavirus disease 2019 (COVID-19). Later, in the first quarter of 2020, the World Health Organization declared the outbreak of this disease a pandemic. Elderly people, people with comorbidities, and health care professionals are more vulnerable to COVID-19. Obesity has been growing exponentially worldwide, affecting several age groups. It is a morbidity that is associated with genetic, epigenetic, environment factors and/or interaction between them. Obesity is associated with the development of several diseases including diabetes mellitus, mainly type 2. Diabetes affects a significant portion of the global population. Obesity and diabetes are among the main risk factors for the development of severe symptoms of COVID-19, and individuals with these conditions constitute a risk group. Based on a literature review on obesity in people with diabetes in the framework of the COVID-19 pandemic, this study presents updated important considerations and care to be taken with this population.
Collapse
Affiliation(s)
- Adriano Alberti
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina (Unisul), Palhoça, 88137-270, Santa Catarina, Brazil
| | - Fabiana Schuelter-Trevisol
- Brazil Clinical Research Center, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Tubarão, 88704 -900, Santa Catarina, Brazil
| | - Betine Pinto Moehlecke Iser
- Brazil Clinical Research Center, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Tubarão, 88704 -900, Santa Catarina, Brazil
| | - Eliane Traebert
- Postgraduate Programme in Health Sciences, University of Southern Santa Catarina, Palhoça, 88137-270, Santa Catarina, Brazil
| | - Viviane Freiberger
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina (Unisul), Palhoça, 88137-270, Santa Catarina, Brazil
| | - Leticia Ventura
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina (Unisul), Palhoça, 88137-270, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Brazil Clinical Research Center, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Tubarão, 88704 -900, Santa Catarina, Brazil
| | - Bruna Becker da Silva
- Postgraduate Programme in Health Sciences, University of Southern Santa Catarina, Palhoça, 88137-270, Santa Catarina, Brazil
| | - Fabiana Meneghetti Dallacosta
- Postgraduate Program in Biosciences and Health, University of the West of Santa Catarina, Joaçaba, 89600-000, Santa Catarina, Brazil
| | - Leoberto Grigollo
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina (Unisul), Palhoça, 88137-270, Santa Catarina, Brazil
| | - Paula Dias
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina (Unisul), Palhoça, 88137-270, Santa Catarina, Brazil
| | - Gracielle Fin
- Department of Physical Education, University of the West of Santa Catarina, Joaçaba, 89600-000, Santa Catarina, Brazil
| | - Josiane Aparecida De Jesus
- Postgraduate Program in Biosciences and Health, University of the West of Santa Catarina, Joaçaba, 89600-000, Santa Catarina, Brazil
| | - Fabiane Pertille
- Postgraduate Program in Biosciences and Health, University of the West of Santa Catarina, Joaçaba, 89600-000, Santa Catarina, Brazil
| | - Carina Rossoni
- Environmental Health Institute of the Faculty of Medicine of the University of Lisbon, Lisboa, 1649-029, Portugal
| | - Ben Hur Soares
- Health Science, University of Passo Fundo, Passo Fundo, 99052-900, Rio Grande do Sul, Brazil
| | | | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina (Unisul), Palhoça, 88137-270, Santa Catarina, Brazil
| |
Collapse
|
27
|
Janovits PM, Leiguez E, Portas V, Teixeira C. A Metalloproteinase Induces an Inflammatory Response in Preadipocytes with the Activation of COX Signalling Pathways and Participation of Endogenous Phospholipases A 2. Biomolecules 2021; 11:921. [PMID: 34206390 PMCID: PMC8301905 DOI: 10.3390/biom11070921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that have been associated with the pathogenesis of inflammatory diseases and obesity. Adipose tissue in turn is an active endocrine organ capable of secreting a range of proinflammatory mediators with autocrine and paracrine properties, which contribute to the inflammation of adipose tissue and adjacent tissues. However, the potential inflammatory effects of MMPs in adipose tissue cells are still unknown. This study investigates the effects of BmooMPα-I, a single-domain snake venom metalloproteinase (SVMP), in activating an inflammatory response by 3T3-L1 preadipocytes in culture, focusing on prostaglandins (PGs), cytokines, and adipocytokines biosynthesis and mechanisms involved in prostaglandin E2 (PGE2) release. The results show that BmooMPα-I induced the release of PGE2, prostaglandin I2 (PGI2), monocyte chemoattractant protein-1 (MCP-1), and adiponectin by preadipocytes. BmooMPα-I-induced PGE2 biosynthesis was dependent on group-IIA-secreted phospholipase A2 (sPLA2-IIA), cytosolic phospholipase A2-α (cPLA2-α), and cyclooxygenase (COX)-1 and -2 pathways. Moreover, BmooMPα-I upregulated COX-2 protein expression but not microsomal prostaglandin E synthase-1 (mPGES-1) expression. In addition, we demonstrate that the enzymatic activity of BmooMPα-I is essential for the activation of prostanoid synthesis pathways in preadipocytes. These data highlight preadipocytes as important targets for metalloproteinases and provide new insights into the contribution of these enzymes to the inflammation of adipose tissue and tissues adjacent to it.
Collapse
Affiliation(s)
- Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Viviane Portas
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| |
Collapse
|
28
|
Xu J, Zhang L, Wu Q, Zhou Y, Jin Z, Li Z, Zhu Y. Body roundness index is a superior indicator to associate with the cardio-metabolic risk: evidence from a cross-sectional study with 17,000 Eastern-China adults. BMC Cardiovasc Disord 2021; 21:97. [PMID: 33593274 PMCID: PMC7885560 DOI: 10.1186/s12872-021-01905-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background To investigate the ability of body shape index (ABSI), body roundness index (BRI), waist circumference (WC), body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and body adiposity index (BAI) for predicting non-adipose cardio-metabolic risk. Methods A total of 17,360 Chinese subjects aged 18–95 years old who escaped cardiovascular disease (CVD) or diabetes were recruited in the cross-sectional study. Anthropometric and biochemical parameters were assessed. Receiver operating characteristic curve (ROC) and multinomial logistic regression were conducted to examine the association of anthropometric indicators with cardio-metabolic risk factors. Results The mean age of subjects were 53.7(13.1) years, 41.6 % were males. The areas under the curve (AUC) demonstrated that WC, BMI, WHR, WHtR and BRI were able to predict high cardio-metabolic risk (AUC > 0.70). Meanwhile, multinomial logistic regression showed BRI was significantly associated with high cardio-metabolic risk (OR 3.27, 95% CI 3.01–3.55). The optimal cut-off values of BRI for high cardio-metabolic risk were (< 60 y: 3.49 vs. ≥60 y: 3.46) in males and (< 60 y: 3.47 vs. ≥60 y: 3.60) in females. Conclusions WC, BMI WHR, and WHtR were potential obesity indicators in discriminating high cardio-metabolic risk, while BAI or ABSI was not. Moreover, BRI revealed superior predictive capacity and significant association with accumulated cardio-metabolic risk factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-01905-x.
Collapse
Affiliation(s)
- Jinjian Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Liqun Zhang
- Putuo District People's Hospital, Zhoushan, 316100, Zhejiang, China
| | - Qiong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yaohan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ziqi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhijian Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Department of Respiratory, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
29
|
Ghazizadeh H, Esmaily H, Sharifan P, Parizadeh SMR, Ferns GA, Rastgar-Moghadam A, Khedmatgozar H, Ghayour-Mobarhan M, Avan A. Interaction between a genetic variant in vascular endothelial growth factor with dietary intakes in association with the main factors of metabolic syndrome. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
A Representative GIIA Phospholipase A 2 Activates Preadipocytes to Produce Inflammatory Mediators Implicated in Obesity Development. Biomolecules 2020; 10:biom10121593. [PMID: 33255269 PMCID: PMC7760919 DOI: 10.3390/biom10121593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue secretes proinflammatory mediators which promote systemic and adipose tissue inflammation seen in obesity. Group IIA (GIIA)-secreted phospholipase A2 (sPLA2) enzymes are found to be elevated in plasma and adipose tissue from obese patients and are active during inflammation, generating proinflammatory mediators, including prostaglandin E2 (PGE2). PGE2 exerts anti-lipolytic actions and increases triacylglycerol levels in adipose tissue. However, the inflammatory actions of GIIA sPLA2s in adipose tissue cells and mechanisms leading to increased PGE2 levels in these cells are unclear. This study investigates the ability of a representative GIIA sPLA2, MT-III, to activate proinflammatory responses in preadipocytes, focusing on the biosynthesis of prostaglandins, adipocytokines and mechanisms involved in these effects. Our results showed that MT-III induced biosynthesis of PGE2, PGI2, MCP-1, IL-6 and gene expression of leptin and adiponectin in preadipocytes. The MT-III-induced PGE2 biosynthesis was dependent on cytosolic PLA2 (cPLA2)-α, cyclooxygenases (COX)-1 and COX-2 pathways and regulated by a positive loop via the EP4 receptor. Moreover, MT-III upregulated COX-2 and microsomal prostaglandin synthase (mPGES)-1 protein expression. MCP-1 biosynthesis induced by MT-III was dependent on the EP4 receptor, while IL-6 biosynthesis was dependent on EP3 receptor engagement by PGE2. These data highlight preadipocytes as targets for GIIA sPLA2s and provide insight into the roles played by this group of sPLA2s in obesity.
Collapse
|
31
|
Khateeb S, Albalawi A, Alkhedaide A. Regulatory effect of diosgenin on lipogenic genes expression in high-fat diet-induced obesity in mice. Saudi J Biol Sci 2020; 28:1026-1032. [PMID: 33424396 PMCID: PMC7783812 DOI: 10.1016/j.sjbs.2020.11.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
Obesity is one of the most serious health problems in the world, increasing the risk of other chronic diseases. Alterations in fatty acid synthesis related genes are crucially involved in obesity progression. Diosgenin (DG) was one of the phytosterols compounds with vital activity against lipid disorders. Therefore, this study was intended to evaluate the protective effect of DG on lipogenesis in the high-fat diet (HFD)-induced obesity in mice, via investigating the expression of two of the fatty acid synthesis–involved genes; sterol regulatory element-binding protein (SREBP-1c) and fatty acid synthase (FASN) genes. Thirty adult male mice were divided into 3 groups. Control group, fed with normal diet; HFD group, mice fed with a high-fat diet and HFD + DG group, mice fed with a high-fat diet and supplemented in parallel with DG for 6 consecutive weeks. The effect of DG on Body weights, liver enzymes, lipid profile, were evaluated. Histopathological fatty changes as well as SREBP-1c and FASN gene expression were also investigated. DG significantly alleviated body weight gain, adjusted liver enzymes, and improved lipid profile. Additionally, DG ameliorated the histopathological changes by reducing the lipid vacuoles and hence the hepatosteatosis. Accordingly, DG significantly downregulated the two-fold increase in the SREBP-1c and FASN gene expression observed in the HFD group. In conclusion, DG possesses a beneficial impact against diet-induced obesity in mice, which makes it a good candidate for NAFLD and obesity prevention.
Collapse
Affiliation(s)
- Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayum University, Fayum, Egypt.,Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Aishah Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Adel Alkhedaide
- Department of Medical Laboratory, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
32
|
Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D, Lee YWW, Li G. The Roles of H19 in Regulating Inflammation and Aging. Front Immunol 2020; 11:579687. [PMID: 33193379 PMCID: PMC7653221 DOI: 10.3389/fimmu.2020.579687] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that long non-coding RNA H19 correlates with several aging processes. However, the role of H19 in aging remains unclear. Many studies have elucidated a close connection between H19 and inflammatory genes. Chronic systemic inflammation is an established factor associated with various diseases during aging. Thus, H19 might participate in the development of age-related diseases by interplay with inflammation and therefore provide a protective function against age-related diseases. We investigated the inflammatory gene network of H19 to understand its regulatory mechanisms. H19 usually controls gene expression by acting as a microRNA sponge, or through mir-675, or by leading various protein complexes to genes at the chromosome level. The regulatory gene network has been intensively studied, whereas the biogenesis of H19 remains largely unknown. This literature review found that the epithelial-mesenchymal transition (EMT) and an imprinting gene network (IGN) might link H19 with inflammation. Evidence indicates that EMT and IGN are also tightly controlled by environmental stress. We propose that H19 is a stress-induced long non-coding RNA. Because environmental stress is a recognized age-related factor, inflammation and H19 might serve as a therapeutic axis to fight against age-related diseases.
Collapse
Affiliation(s)
- Bin Wang
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Wai Suen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Haibin Ma
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yan Wang
- Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Kong
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dajiang Qin
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuk Wai Wayne Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Li
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
34
|
Tans R, Bande R, van Rooij A, Molloy BJ, Stienstra R, Tack CJ, Wevers RA, Wessels HJCT, Gloerich J, van Gool AJ. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102157. [PMID: 32629236 DOI: 10.1016/j.plefa.2020.102157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Obesity is associated with adipose tissue inflammation which in turn drives insulin resistance and the development of type 2 diabetes. Oxylipins are a collection of lipid metabolites, subdivided in different classes, which are involved in inflammatory cascades. They play important roles in regulating adipose tissue homeostasis and inflammation and are therefore putative biomarkers for obesity-associated adipose tissue inflammation and the subsequent risk of type 2 diabetes onset. The objective for this study is to design an assay for a specific oxylipin class and evaluate these as potential prognostic biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes. METHODS An optimized workflow was developed to extract oxylipins from plasma using solid-phase extraction followed by analysis using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer in multiple reaction monitoring mode. This workflow was applied to clinical plasma samples obtained from obese-type 2 diabetes patients and from lean and obese control subjects. RESULTS The assay was analytically validated and enabled reproducible analyses of oxylipins extracted from plasma with acceptable sensitivities. Analysis of clinical samples revealed discriminative values for four oxylipins between the type 2 diabetes patients and the lean and obese control subjects, viz. PGF2α, PGE2, 15-keto-PGE2 and 13,14-dihydro-15-keto-PGE2. The combination of PGF2α and 15-keto-PGE2 had the most predictive value to discriminate type 2 diabetic patients from lean and obese controls. CONCLUSIONS This proof-of-principle study demonstrates the potential value of oxylipins as biomarkers to discriminate obese individuals from obese-type 2 diabetes patients.
Collapse
Affiliation(s)
- Roel Tans
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rieke Bande
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arno van Rooij
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Rinke Stienstra
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
35
|
Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:genes11080909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
|
36
|
Ottesen TD, Malpani R, Galivanche AR, Zogg CK, Varthi AG, Grauer JN. Underweight patients are at just as much risk as super morbidly obese patients when undergoing anterior cervical spine surgery. Spine J 2020; 20:1085-1095. [PMID: 32194246 PMCID: PMC7380546 DOI: 10.1016/j.spinee.2020.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Past studies have focused on the association of high body mass index (BMI) on spine surgery outcomes. These investigations have reported mixed conclusions, possible due to insufficient power, poor controlling of confounding variables, and inconsistent definitions of BMI categories (e.g. underweight, overweight, and obese). Few studies have considered outcomes of patients with low BMI. PURPOSE To analyze how anterior cervical spine surgery outcomes track with World Health Organization categories of BMI to better assess where along the BMI spectrum patients are at risk for adverse perioperative outcomes. DESIGN/SETTING Retrospective cohort study. PATIENT SAMPLE Patients undergoing elective anterior cervical spine surgery were abstracted from the 2005 to 2016 American College of Surgeons National Surgical Quality Improvement Program database. OUTCOME MEASURES Thirty-day adverse events, hospital readmissions, postoperative infections, and mortality. METHODS Patients undergoing anterior cervical spine procedures (anterior cervical discectomy and fusion, anterior cervical corpectomy, cervical arthroplasty) were identified in the 2005 to 2016 National Surgical Quality Improvement Program database. Patients were then aggregated into modified World Health Organization categories of BMI. Odds ratios of adverse outcomes, normalized to average risk of normal weight subjects (BMI 18.5-24.9 kg/m2), were calculated. Multivariate analyses were then performed on aggregated adverse outcome categories controlling for demographics (age, sex, functional status) and overall health as measured by the American Society of Anesthesiologists classification. RESULTS In total, 51,149 anterior cervical surgery patients met inclusion criteria. Multivariate analyses revealed the odds of any adverse event to be significantly elevated for underweight and super morbidly obese patients (Odds Ratios [OR] of 1.62 and 1.55, respectively). Additionally, underweight patients had elevated odds of serious adverse events (OR=1.74) and postoperative infections (OR=1.75) and super morbidly obese patients had elevated odds of minor adverse events (OR=1.72). Relative to normal BMI patients, there was no significant elevation for any adverse outcomes for any of the other overweight/obese categories, in fact some had reduced odds of various adverse outcomes. CONCLUSIONS Underweight and super morbidly obese patients have the greatest odds of adverse outcomes after anterior cervical spine surgery. The current study identifies underweight patients as an at-risk population that has previously not received significant focus. Physicians and healthcare systems should give additional consideration to this population, as they often already do for those at the other end of the BMI spectrum.
Collapse
Affiliation(s)
- Taylor D Ottesen
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 47 College Street, New Haven, CT 06511, USA
| | - Rohil Malpani
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 47 College Street, New Haven, CT 06511, USA
| | - Anoop R Galivanche
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 47 College Street, New Haven, CT 06511, USA
| | - Cheryl K Zogg
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 47 College Street, New Haven, CT 06511, USA
| | - Arya G Varthi
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 47 College Street, New Haven, CT 06511, USA
| | - Jonathan N Grauer
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 47 College Street, New Haven, CT 06511, USA.
| |
Collapse
|
37
|
Shahin NN, Abd-Elwahab GT, Tawfiq AA, Abdelgawad HM. Potential role of aryl hydrocarbon receptor signaling in childhood obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158714. [PMID: 32302739 DOI: 10.1016/j.bbalip.2020.158714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is a growing concern that junk food has contributed to the childhood obesity epidemic. Recently, experimental studies suggested that the aryl hydrocarbon receptor (AHR) gene is strongly linked to western diet-induced obesity. AIM This study investigated the potential role of AHR signaling in childhood obesity and the possible associations of the AHR-aryl hydrocarbon receptor repressor (AHRR)-cytochrome P450 1B1 (CYP1B1) axis with fatty acid homeostasis and the appetite-related hormones, leptin and ghrelin. SUBJECTS AND METHODS The study included 80 children; 54 obese and 26 non-obese of matched age and sex. Demographic data, anthropometric measurements, and lipid profile were assessed. Expression of AHR signaling genes was analyzed in blood cells by qRT-PCR. Serum insulin, leptin and ghrelin levels were measured using ELISA. RESULTS The statistical power of this study, calculated using G*Power version 3.1.9.2, was 90% (α = 0.05). AHR and CYP1B1 gene expression levels were upregulated in the obese group compared to controls, whereas AHRR, stearoyl-CoA desaturase 1 (SCD1), and peroxisome proliferator-activated receptor-γ2 (PPARγ2) were downregulated. Serum leptin correlated positively, while serum ghrelin correlated negatively with both AHR and CYP1B1. Stratification of obese children by age revealed more activated AHR signaling in younger than in older children. Receiver-operating-characteristic (ROC) analysis revealed that AHR, AHRR and CYP1B1 could discriminate between obese and normal weight children. Multivariate analysis showed that AHRR, CYP1B1 and ghrelin could be significant independent predictors of obesity. CONCLUSION This study provides new insights into the molecular mechanisms contributing to childhood obesity by revealing alterations in the AHR-AHRR-CYP1B1 axis, which could serve as a promising therapeutic target for childhood obesity.
Collapse
Affiliation(s)
- Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghada T Abd-Elwahab
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | - Hanan M Abdelgawad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Piancatelli D, Maccarone D, Colanardi A, Sebastiani P, Clemente K, Iesari S, Lai Q, Pisani F. HLA-G14bp ins/del polymorphism and post-transplant weight gain in kidney transplantation: potential implications beyond tolerance. BMC Nephrol 2020; 21:109. [PMID: 32228494 PMCID: PMC7104538 DOI: 10.1186/s12882-020-01752-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Human leukocyte antigen (HLA)-G is a non-classical HLA molecule with immunomodulant and immunosuppressive functions, involved in transplantation tolerance. HLA-G14bp ins/del polymorphism in exon 8 has been associated with allograft rejection and kidney transplant outcome, with controversial results. We investigated associations of HLA-G14bp ins/del polymorphism on onset of some of the main post-transplant risk factors, like excess body weight, lipid abnormalities, increased fasting plasma glucose. Polymorphisms of cytokines with both immunosuppressive and metabolic effects were also assessed for comparisons and associated analysis. Methods The present study involved kidney transplant recipients (n = 173) in which body mass index, cholesterol, triglycerides, fasting plasma glucose were registered in the first years after transplantation and analyzed in association with genotypes. Presence of hypertension and smoking habits, demographic, transplant-related and therapeutic data of patients were also recorded. Polymerase chain reaction, sequence-specific primer amplification and Taqman allelic discrimination techniques were used for genotyping of HLA-G14bp ins/del, interleukin (IL)-10(−1082G > A,-819 T > C,–592A > C), transforming growth factor-β(+ 869 T > C,+915C > G), IL-6(−174G > C), tumor necrosis factor-α(−308G > A) and IL-18(−137G > C,-607C > A). Effects of genotypes on clinical markers at each time point (pre-transplant and 1 to 5 years after transplant) were analyzed using a repeated-measures general linear model analysis; adjustment for potential confounders was performed. Results Results showed that HLA-G14bp ins/ins was significantly associated with obesity, in particular after transplantation (3 years, p = 0.002, OR = 4.48, 95% CI:1.76–11.41). Post-transplant body mass index was significantly increased in HLA-G14bp ins/ins carriers (3 and 4 years, p = 0.033 and p = 0.044); effects of HLA-G14bp genotypes on post-transplant BMI were confirmed by using repeated-measures analysis and after controlling for confounding variables. Cytokine genotypes did not associate with the examined factors. Conclusions The study of transplanted patients allowed to evidence a potential relationship between post-transplant weight gain and HLA-G14bp ins/del polymorphism, previously involved in rejection for its immunosuppressive/tolerogenic activity. This novel association could widen the knowledge of the role and functions of HLA-G molecules in diseases and transplantation.
Collapse
Affiliation(s)
- Daniela Piancatelli
- National Research Council (CNR) - Institute of Translational Pharmacology (IFT), Via Carducci, 32, 67100, L'Aquila, Italy.
| | - Daniela Maccarone
- Regional Center for Organ Transplantation (CRT), S. Salvatore Hospital, L'Aquila, Italy
| | - Alessia Colanardi
- National Research Council (CNR) - Institute of Translational Pharmacology (IFT), Via Carducci, 32, 67100, L'Aquila, Italy
| | - Pierluigi Sebastiani
- National Research Council (CNR) - Institute of Translational Pharmacology (IFT), Via Carducci, 32, 67100, L'Aquila, Italy
| | - Katia Clemente
- General Surgery and Organ Transplantation, S. Salvatore Hospital, L'Aquila, Italy
| | - Samuele Iesari
- Pôle de chirurgie expérimentale et transplantation, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Quirino Lai
- Transplant Unit, University "La Sapienza", Rome, Italy
| | - Francesco Pisani
- General Surgery and Organ Transplantation, S. Salvatore Hospital, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
39
|
Minocycline-induced microbiome alterations predict cafeteria diet-induced spatial recognition memory impairments in rats. Transl Psychiatry 2020; 10:92. [PMID: 32170156 PMCID: PMC7069973 DOI: 10.1038/s41398-020-0774-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Diets rich in sugar and saturated fat are associated with cognitive impairments in both humans and rodents with several potential mechanisms proposed. To test the involvement of diet-induced pro-inflammatory signaling, we exposed rats to a high-fat, high-sugar cafeteria diet, and administered the anti-inflammatory antibiotic minocycline. In the first experiment minocycline was coadministered across the diet, then in a second, independent cohort it was introduced following 4 weeks of cafeteria diet. Cafeteria diet impaired novel place recognition memory throughout the study. Minocycline not only prevented impairment in spatial recognition memory but also reversed impairment established in rats following 4 weeks cafeteria diet. Further, minocycline normalized diet-induced increases in hippocampal pro-inflammatory gene expression. No effects of minocycline were seen on adiposity or dietary intake across the experiments. Cafeteria diet and minocycline treatment significantly altered microbiome composition. The relative abundance of Desulfovibrio_OTU31, uniquely enriched in vehicle-treated cafeteria-fed rats, negatively and significantly correlated with spatial recognition memory. We developed a statistical model that accurately predicts spatial recognition memory based on Desulfovibrio_OTU31 relative abundance and fat mass. Thus, our results show that minocycline prevents and reverses a dietary-induced diet impairment in spatial recognition memory, and that spatial recognition performance is best predicted by changes in body composition and Desulfovibrio_OTU31, rather than changes in pro-inflammatory gene expression.
Collapse
|
40
|
Ávila-Escalante ML, Coop-Gamas F, Cervantes-Rodríguez M, Méndez-Iturbide D, Aranda-González II. The effect of diet on oxidative stress and metabolic diseases-Clinically controlled trials. J Food Biochem 2020; 44:e13191. [PMID: 32160647 DOI: 10.1111/jfbc.13191] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress is associated with several chronic diseases. It is acknowledged that molecules damaged by reactive oxygen species activate the inflammatory process and that this response increases the production of free radicals. Modifications in a diet can improve or decrease redox state markers. The aim of this revision was to provide an update of clinical controlled trials, to assess changes in diet and markers of oxidative stress in subjects with metabolic diseases. They were investigated randomized controlled intervention studies (RCTs) published in MEDLINE (U.S. National Library of Medicine, National Institutes of Health) that were conducted in subjects with obesity, hypertension, diabetes, or dyslipidemia; with dietary intervention; where markers of oxidative stress have been evaluated and published in the last 5 years. Food antioxidants, hypocaloric diets with loss of adipose tissue, substitution of animal protein by vegetable, and changes in the microbiota improve antioxidant status in people with chronic disease. PRACTICAL APPLICATIONS: Hyperglycemia in diabetes mellitus and adipose tissue in obesity are known to trigger oxidative stress. Oxidative stress, in turn, decreases insulin sensitivity and favors an inflammatory state producing adhesion molecules. Oxidative stress and adhesion molecules, can increase blood pressure and oxidation of lipoproteins, that ultimately could lead to a cerebrovascular event. Consumption of high-antioxidant and polyphenol foods increases plasma antioxidant capacity and decreases oxidative stress markers in people with diabetes, obesity, hypertension, and hypertriglyceridemia. In addition, weight loss caused by caloric restriction with or without exercise increases the endogenous antioxidant capacity. Therefore, it is likely that the combination of a hypocaloric diet with a high content of antioxidants and polyphenols will have a greater effect. Other dietary changes with antioxidant effect, such as the substitution of animal for vegetable protein or the addition of fiber, might be mediated by changes in the microbiota. However, this aspect requires further study.
Collapse
Affiliation(s)
| | - Fibi Coop-Gamas
- Faculty of Medicine, Autonomous University of Yucatan, Yucatan, Mexico
| | | | | | | |
Collapse
|
41
|
Choi EM, Suh KS, Park SY, Yun S, Chin SO, Rhee SY, Chon S. Orientin reduces the inhibitory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin signaling pathway in murine 3T3-L1 adipocytes. Chem Biol Interact 2020; 318:108978. [PMID: 32044341 DOI: 10.1016/j.cbi.2020.108978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) accumulates in human body, probably influencing adipocyte differentiation and causing various toxic effects, including wasting syndrome. Recently, orientin, a phenolic compound abundant in natural health products, has been shown to have antioxidant properties. We investigated the protective effects of orientin against TCDD-induced adipocyte dysfunction and its underlying mechanisms. In this study, orientin suppressed TCDD-induced loss of lipid accumulation. Orientin inhibited TCDD-driven decreases in the levels of peroxisome proliferator-activated receptor γ and adiponectin. Orientin also reduced TCDD-induced prostaglandin E2, and cytosolic phospholipase A2α levels, and increased TCDD-inhibited peroxisome proliferator-activated receptor gamma coactivator 1-alpha levels in 3T3-L1 adipocytes. TCDD reduced the levels of insulin receptor substrate 1 and glucose transporter 4, and decreased insulin-stimulated glucose uptake activity; however, orientin diminished these TCDD-induced effects. These results suggest that orientin may have beneficial effects on the prevention of TCDD-induced wasting syndrome and type II diabetes mellitus accompanied by insulin resistance.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So Young Park
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, 02447, Republic of Korea
| | - Soojin Yun
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, 02447, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, 02447, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, 02447, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, 02447, Republic of Korea.
| |
Collapse
|
42
|
Sabir JSM, El Omri A, Banaganapalli B, Aljuaid N, Omar AMS, Altaf A, Hajrah NH, Zrelli H, Arfaoui L, Elango R, Alharbi MG, Alhebshi AM, Jansen RK, Shaik NA, Khan M. Unraveling the role of salt-sensitivity genes in obesity with integrated network biology and co-expression analysis. PLoS One 2020; 15:e0228400. [PMID: 32027667 PMCID: PMC7004317 DOI: 10.1371/journal.pone.0228400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a multifactorial disease caused by complex interactions between genes and dietary factors. Salt-rich diet is related to the development and progression of several chronic diseases including obesity. However, the molecular basis of how salt sensitivity genes (SSG) contribute to adiposity in obesity patients remains unexplored. In this study, we used the microarray expression data of visceral adipose tissue samples and constructed a complex protein-interaction network of salt sensitivity genes and their co-expressed genes to trace the molecular pathways connected to obesity. The Salt Sensitivity Protein Interaction Network (SSPIN) of 2691 differentially expressed genes and their 15474 interactions has shown that adipose tissues are enriched with the expression of 23 SSGs, 16 hubs and 84 bottlenecks (p = 2.52 x 10-16) involved in diverse molecular pathways connected to adiposity. Fifteen of these 23 SSGs along with 8 other SSGs showed a co-expression with enriched obesity-related genes (r ≥ 0.8). These SSGs and their co-expression partners are involved in diverse metabolic pathways including adipogenesis, adipocytokine signaling pathway, renin-angiotensin system, etc. This study concludes that SSGs could act as molecular signatures for tracing the basis of adipogenesis among obese patients. Integrated network centered methods may accelerate the identification of new molecular targets from the complex obesity genomics data.
Collapse
Affiliation(s)
- Jamal Sabir M. Sabir
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelfatteh El Omri
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Aljuaid
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkader M. Shaikh Omar
- Biology, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmalik Altaf
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nahid H. Hajrah
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Houda Zrelli
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leila Arfaoui
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona G. Alharbi
- Biology, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alawiah M. Alhebshi
- Biology, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert K. Jansen
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Noor A. Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhummadh Khan
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
43
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
44
|
Chen CY, Su CW, Kang JX. Endogenous Omega-3 Polyunsaturated Fatty Acids Reduce the Number and Differentiation of White Adipocyte Progenitors in Mice. Obesity (Silver Spring) 2020; 28:235-240. [PMID: 31721479 DOI: 10.1002/oby.22626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/26/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Reducing the increased number of white adipocyte progenitors (WAP) is considered a novel approach to controlling obesity. The role of omega-3 polyunsaturated fatty acids (PUFA) in regulating the WAP resident population is unclear. The objective of this study was to investigate the effect of omega-3 PUFA on the niche composition of adipose-derived stem cells. METHODS Stromal vascular cell fraction (SVF) was collected from subcutaneous fat of wild-type (WT) and transgenic mice carrying a fat-1 gene from Caenorhabditis elegans (Fat-1 mice), which are capable of synthesizing omega-3 PUFA and have much higher tissue levels of omega-3 PUFA relative to WT mice. The isolated SVF cells were cultured and used for the examination of adipocyte differentiation, adipogenic markers, fatty acid composition, and WAP numbers. RESULTS SVF isolated from Fat-1 mice (Fat-1-SVF) exhibited markedly fewer differentiated adipocytes with smaller cell size and less lipid content than that of WT mice (WT-SVF). Accordingly, adipogenesis-related genes and the white adipocyte surface marker ASC-1 were downregulated in Fat-1-SVF relative to WT-SVF. Furthermore, WAP numbers and adipose tissue macrophages were lower in Fat-1-SVF than WT-SVF. CONCLUSIONS Omega-3 PUFA can both limit the WAP resident population and suppress their differentiation to white adipocytes, suggesting a new mechanism for the antiobesity effect of omega-3 PUFA.
Collapse
Affiliation(s)
- Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Pratt R, Lakhani HV, Zehra M, Desauguste R, Pillai SS, Sodhi K. Mechanistic Insight of Na/K-ATPase Signaling and HO-1 into Models of Obesity and Nonalcoholic Steatohepatitis. Int J Mol Sci 2019; 21:ijms21010087. [PMID: 31877680 PMCID: PMC6982200 DOI: 10.3390/ijms21010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a multifaceted pathophysiological condition that has been associated with lipid accumulation, adipocyte dysfunction, impaired mitochondrial biogenesis and an altered metabolic profile. Redox imbalance and excessive release of inflammatory mediators have been intricately linked in obesity-associated phenotypes. Hence, understanding the mechanisms of redox signaling pathways and molecular targets exacerbating oxidative stress is crucial in improving health outcomes. The activation of Na/K-ATPase/Src signaling, and its downstream pathways, by reactive oxygen species (ROS) has been recently implicated in obesity and subsequent nonalcoholic steatohepatitis (NASH), which causes further production of ROS creating an oxidant amplification loop. Apart from that, numerous studies have also characterized antioxidant properties of heme oxygenase 1 (HO-1), which is suppressed in an obese state. The induction of HO-1 restores cellular redox processes, which contributes to inhibition of the toxic milieu. The novelty of these independent mechanisms presents a unique opportunity to unravel their potential as molecular targets for redox regulation in obesity and NASH. The attenuation of oxidative stress, by understanding the underlying molecular mechanisms and associated mediators, with a targeted treatment modality may provide for improved therapeutic options to combat clinical disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Komal Sodhi
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
46
|
Pelaez M, Gonzalez-Cerron S, Montejo R, Barakat R. Protective Effect of Exercise in Pregnant Women Including Those Who Exceed Weight Gain Recommendations: A Randomized Controlled Trial. Mayo Clin Proc 2019; 94:1951-1959. [PMID: 31585579 DOI: 10.1016/j.mayocp.2019.01.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/21/2018] [Accepted: 01/04/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the effect of supervised moderate to vigorous exercise on gestational weight gain, its related risks (gestational diabetes [GD]), macrosomia, and type of delivery), and the preventive effects on women who exceed the weight gain recommendations. PATIENTS AND METHODS We conducted a single-center, 2-armed, randomized controlled trial between October 1, 2009, and June 30, 2011, in which 678 women were assessed and 345 were randomized by a central computer system to an intervention group (N=115) or a standard care group (N=230). The intervention exercise program consisted of 70 to 78 sessions (24 weeks, 3 times per week, 60-65 minutes per session, moderate to vigorous intensity). The standard care group received usual care. Excessive gestational weight (EGW) gain was calculated on the basis of the 2009 Institute of Medicine (IOM) recommendations. RESULTS Of the 345 women randomized for treatment, 44 were lost to follow-up, leaving 301 women for analysis (intervention, 100; standard care, 201). Fewer women in the intervention group exceeded IOM recommendations (22 [22.0%] vs 69 [34.3%]; P=.03), including overweight and obese women (15 of 35 [42.9%] vs 40 of 50 [80.0%]; P=.001). Analysis of women exceeding weight recommendations revealed that the 3 main related risks were directly related to EGW gain in the standard care group (GD, P=.003; macrosomia, P<.001; type of delivery, P<.001) but not in the intervention group (GD, P>.99; macrosomia, 0%; type of delivery, P=.46). CONCLUSION Supervised moderate to vigorous exercise performed throughout gestation was effective in the prevention of EGW gain even for women with a pregestational body mass index greater than 25 kg/m2. It also prevented its related risks (GD, macrosomia, and type of delivery) including for women exceeding the IOM recommendations, so we suggest that being active outweighs the effect of possible weight gain. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01477372.
Collapse
Affiliation(s)
- Mireia Pelaez
- AFIPE Research Group, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Silvia Gonzalez-Cerron
- Department of Obstetrics and Gynecology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Rocío Montejo
- Department of Obstetrics and Gynecology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Rubén Barakat
- AFIPE Research Group, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
47
|
Carillon J, Saby M, Barial S, Sansone A, Scanferlato R, Gayrard N, Lajoix AD, Jover B, Chatgilialoglu C, Ferreri C. Melon juice concentrate supplementation in an animal model of obesity: Involvement of relaxin and fatty acid pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Jansen KM, Moreno S, Garcia-Roves PM, Larsen TS. Dietary Calanus oil recovers metabolic flexibility and rescues postischemic cardiac function in obese female mice. Am J Physiol Heart Circ Physiol 2019; 317:H290-H299. [DOI: 10.1152/ajpheart.00191.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to find out whether dietary supplementation with Calanus oil (a novel marine oil) or infusion of exenatide (an incretin mimetic) could counteract obesity-induced alterations in myocardial metabolism and improve postischemic recovery of left ventricular (LV) function. Female C57bl/6J mice received high-fat diet (HFD, 45% energy from fat) for 12 wk followed by 8-wk feeding with nonsupplemented HFD, HFD supplemented with 2% Calanus oil, or HFD plus exenatide infusion (10 µg·kg−1·day−1). A lean control group was included, receiving normal chow throughout the whole period. Fatty acid and glucose oxidation was measured in ex vivo perfused hearts during baseline conditions, while LV function was assessed with an intraventricular fluid-filled balloon before and after 20 min of global ischemia. HFD-fed mice receiving Calanus oil or exenatide showed less intra-abdominal fat deposition than mice receiving nonsupplemented HFD. Both treatments prevented the HFD-induced decline in myocardial glucose oxidation. Somewhat surprising, recovery of LV function was apparently better in hearts from mice fed nonsupplemented HFD relative to hearts from mice fed normal chow. More importantly however, postischemic recovery of hearts from mice receiving HFD with Calanus oil was superior to that of mice receiving nonsupplemented HFD and mice receiving HFD with exenatide, as expressed by better pressure development, contractility, and relaxation properties. In summary, dietary Calanus oil and administration of exenatide counteracted obesity-induced derangements of myocardial metabolism. Calanus oil also protected the heart from ischemia, which could have implications for the prevention of obesity-related cardiac disease. NEW & NOTEWORTHY This article describes for the first time that dietary supplementation with a low amount (2%) of a novel marine oil (Calanus oil) in mice is able to prevent the overreliance of fatty acid oxidation for energy production during obesity. The same effect was observed with infusion of the incretin mimetic, exanatide. The improvement in myocardial metabolism in Calanus oil-treated mice was accompanied by a significantly better recovery of cardiac performance following ischemia-reperfusion. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/dietary-calanus-oil-energy-metabolism-and-cardiac-function/ .
Collapse
Affiliation(s)
- Kirsten M. Jansen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sonia Moreno
- Department Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pablo M. Garcia-Roves
- Department Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Terje S. Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
49
|
Abstract
Development of novel and effective therapeutics for treating various cancers is probably the most congested and challenging enterprise of pharmaceutical companies. Diverse drugs targeting malignant and nonmalignant cells receive clinical approval each year from the FDA. Targeting cancer cells and nonmalignant cells unavoidably changes the tumor microenvironment, and cellular and molecular components relentlessly alter in response to drugs. Cancer cells often reprogram their metabolic pathways to adapt to environmental challenges and facilitate survival, proliferation, and metastasis. While cancer cells' dependence on glycolysis for energy production is well studied, the roles of adipocytes and lipid metabolic reprogramming in supporting cancer growth, metastasis, and drug responses are less understood. This Review focuses on emerging mechanisms involving adipocytes and lipid metabolism in altering the response to cancer treatment. In particular, we discuss mechanisms underlying cancer-associated adipocytes and lipid metabolic reprogramming in cancer drug resistance.
Collapse
|
50
|
[Overweight and clinical course in children younger than two years old hospitalized for lower respiratory tract infection]. NUTR HOSP 2019; 36:538-544. [PMID: 30958689 DOI: 10.20960/nh.2303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: obesity is related to a higher morbidity and mortality in adults with respiratory infections but in children the evidence is limited. Objective: to study the association between overweight and clinical course in children younger than two years of age, hospitalized for lower respiratory tract infections (LRTI). Methods: retrospective study reviewing clinical records of children hospitalized by LRTI from 2009 to 2015. Demographic data, anthropometry, nutritional status (World Health Organization [OMS] 2006 reference) and clinical course. Results: we included 678 patients with a median age of 9.9 (range: 6.4 to 14.7) months, 55% were boys and 67% had viral pneumonia (67%). Treatment: 54.7% received basic care, 98.7% oxygen therapy, 35.4% noninvasive ventilation (NIV), 26.1% antibiotics and 47.5% corticosteroids. Regarding nutritional status, 10% had undernutrition (W/Az ≤ -1 in infants or W/Hz in the older ones), 55.2% were eutrophic and 34.8% were overweight (ME, W/Hz ≥ +1). Boys with overweight had higher frequency of viral pneumonia (75.4% vs 60.2%, p = 0.014), need for more complex care (27.7% vs 19.9%, p = 0.018) and length of NIV (4,5 [3-5.5] vs. [2-5.5] days, p = 0.007) than eutrophic. Infants had longer time of NIV than the older ones. In girls, no associations were found between nutritional status and clinical course. Conclusions: in this sample of young children hospitalized with LRTI,obesity and overweight, masculine sex and younger age were associated to worse clinical outcomes.
Collapse
|